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ABSTRACT

The thyroid hormones are very hydrophobic and those that exhibit biological activity are 3«,5«,3,5--
tetraiodothyronine (T4), 3«,5,3--triiodothyronine (T3), 3«,5«,3--triiodothyronine (rT3) and 3,5,--
diiodothyronine (3,5-T2). At physiological pH, dissociation of the phenolic ®OH group of these
iodothyronines is an important determinant of their physical chemistry that impacts on their biological
effects. When non-ionized these iodothyronines are strongly amphipathic. It is proposed that iodothyronines
are normal constituents of biological membranes in vertebrates. In plasma of adult vertebrates, unbound T4
and T3 are regulated in the picomolar range whilst protein-bound T4 and T3 are maintained in the
nanomolar range. The function of thyroid-hormone-binding plasma proteins is to ensure an even
distribution throughout the body. Various iodothyronines are produced by three types of membrane-bound
cellular deiodinase enzyme systems in vertebrates. The distribution of deiodinases varies between tissues and
each has a distinct developmental profile. Thyroid hormones have many effects in vertebrates. It is proposed
that there are several modes of action of these hormones. (1) The nuclear receptor mode is especially
important in the thyroid hormone axis that controls plasma and cellular levels of these hormones. (2) These
hormones are strongly associated with membranes in tissues and normally rigidify these membranes. (3)
They also affect the acyl composition of membrane bilayers and it is suggested that this is due to the cells
responding to thyroid-hormone-induced membrane rigidification. Both their immediate effects on the
physical state of membranes and the consequent changes in membrane composition result in several other
thyroid hormone effects. Effects on metabolism may be due primarily to membrane acyl changes. There are
other actions of thyroid hormones involving membrane receptors and influences on cellular interactions with
the extracellular matrix. The effects of thyroid hormones are reviewed and appear to be combinations of
these various modes of action. During development, vertebrates show a surge in T4 and other thyroid
hormones, as well as distinctive profiles in the appearance of the deiodinase enzymes and nuclear receptors.
Evidence from the use of analogues supports multiple modes of action. Re-examination of data from the early
1960s supports a membrane action. Findings from receptor ‘knockout ’ mice supports an important role for
receptors in the development of the thyroid axis. These iodothyronines may be better thought of as
‘vitamone’-like molecules than traditional hormonal messengers.

Key words : thyroxine, triiodothyronine, diiodothyronine, nuclear receptors, membranes, deiodinases,
metabolism, growth, development, antioxidants.
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I. INTRODUCTION

On Christmas Day, 1914, thyroxine was first
crystallised by Kendall. This was approximately
4500 years after the earliest recorded use of seaweed
as an effective remedy for goitre, approximately a
hundred years after the first isolation of elemental
iodine, approximately forty years after the initial
association of cretinism with the thyroid gland,
twenty years after the demonstration by Magnus-
Levy of the stimulatory effect of the thyroid on the
metabolic rate of humans, and at approximately the
same time as the discovery by Gudersnatch that
tadpoles fed thyroid tissue precociously turn into
frogs (Pitt-Rivers & Tata, 1959; Hetzel, 1989).
Thyroxine is 3«,5«,3,5--tetra-iodothyronine and is
nowadays commonly called T4.

The use of radioisotopes and paper chromato-
graphy in the 1940s led to the realisation that there
were other important iodinated compounds apart
from thyroxine. In Melbourne in 1948, an unknown
iodothyronine was isolated using paper chromato-
graphy and suggested to be triiodothyronine (T3)
(Hird & Trikojus, 1948). This was two years before
the generally accepted first publication of the
unknown iodinated thyronine (Gross et al., 1950)
that was later isolated and identified as 3«,5,3--
triiodothyronine and demonstrated to be more
potent than T4 in preventing goitre (see Gross,
1993). Since the 1950s with the development of
sophisticated analytical techniques we have realised

that there are several other iodinated thyronines and
their metabolites in the vertebrate body and that
there exists a complex metabolic system involved
with their interconversions.

Even before the discovery of T3 many effects of
either an inactive or overactive thyroid gland were
known and there was intense interest in the means
whereby the thyroid gland exerted its hormonal
effects on the body. Special attention was paid to its
effects on metabolism as possibly being central to
many of the other observed effects.

In the early 1960s, seminal work by Tata and
colleagues shifted emphasis to protein synthesis. The
finding of an early stimulation of ribonucleic acid
synthesis (Tata & Widnell, 1966), followed by the
discovery of specific nuclear T3binding sites (Oppen-
heimer et al., 1972; Samuels & Tsai, 1973) led to the
nuclear receptor hypothesis to explain thyroid
hormone effects.

As an offshoot of the search for the genetic basis of
cancer, in 1986 two groups reported that cellular
equivalents of the viral erb-A gene coded for part of
the thyroid hormone nuclear receptor. The genes for
the two main types of thyroid nuclear receptor had
been independently isolated from two different
sources (Sap et al., 1986; Weinberger et al., 1986).
These thyroid nuclear receptors are now recognised
to be members of a superfamily of nuclear hormone
receptors that bind to specific sections of the genome
(see Jensen, 1991).

There are myriad effects of thyroid hormones that
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have been recorded this century. A review by Hoch
in 1962 on the biochemical actions of these hormones
alone cited 611 references. Although much of the
literature about the effects of thyroid hormones
assumes that such effects are mediated by nuclear
receptors, a more detailed search of the literature for
the scientific basis of such statements turns up little
direct evidence.

What is obvious from the literature is that a
number of thyroid hormone effects are indubitably
initiated by thyroid hormone receptors within the
nucleus (e.g. thyroid-stimulating hormone (TSH)
secretion in anterior pituitary, synthesis of malic
enzyme in liver, growth hormone secretion), how-
ever, it is equally obvious that there are effects
undoubtably non-genomic in origin (e.g. Ca#+ fluxes
in mammalian erythrocytes, sugar uptake by thymo-
cytes, action on heart membranes). What a search of
the literature does suggest is that the sites of origin of
the majority of thyroid hormone effects are still
currently not known.

Following the discovery of T3, and the fact that
nuclear receptors have a greater affinity for T3 than
for T4, the belief developed that T3 is the active
thyroid hormone and that T4 is only a ‘pro-
hormone’. The finding during the last decade that
diiodothyronines (T2s) can also initiate thyroid
hormone effects, and in some cases have a potency
similar to that of T3, yet thyroid nuclear receptors
have negligible affinity for T2, has also raised
questions regarding the mode of action for thyroid
hormone effects.

It is the purpose of this review to attempt a
synthesis of what we currently know of thyroid
hormones and their effects. The literature on the
thyroid is vast and I am indebted to many excellent
reviews that will be referenced in the appropriate
sections. While much information is available for
humans and the laboratory rat, I have not restricted
myself to these two mammals but have taken a
broader phylogenetic survey because of the power of
an evolutionary perspective in understanding what
is biologically important.

(1) Some prejudices

I come to this task with a background in the
physiology of mammalian metabolism and its evol-
ution. Many years ago, in youthful exuberance, I
published a hypothesis that several thyroid hormone
effects may be caused by changes in the fatty acid
composition of membranes (Hulbert, 1978). Whilst
my ideas have inevitably evolved since then, I will

revisit this hypothesis, in order to examine if it still
has some validity.

Another prejudice stems from my early physio-
logical training. It is that the scientific use of the
word ‘regulation’ involves homeostasis and therefore
requires negative feedback to be involved some-
where. This meaning of ‘regulation’ is also ap-
plicable to biochemistry, with respect to the control
of metabolism (see Fell, 1997). It is common to read
statements like ‘…thyroid hormones regulate…(a
particular enzyme, activity etc.)«. However, in
general, negative feedback from thyroid hormone
effects to the thyroid are not evident. For example,
using this rather strict physiological definition, the
thyroid hormones do not ‘regulate ’ metabolism. If
they did, a decreased metabolic rate should result
either in increased hormonal secretion or increased
hormonal effect (or both) in order to ‘regulate ’
metabolic rate. An opposite response is expected for
an increased metabolic rate. The objection to the
improper use of the word ‘regulate ’ is, I believe,
more than a pedantic quibble. It is important in that
it influences how we think about what these
hormones are doing. Indeed, often a more ap-
propriate phrasing is that thyroid hormones ‘ in-
fluence’ (or stimulate, inhibit, initiate) a certain
enzyme, activity, developmental event etc.

One exception to the general lack of negative
feedback between thyroid hormone effects and the
thyroid is, of course, TSH release from the anterior
pituitary. With respect to the thyroid, what appears
to be ‘regulated’ are the levels of thyroid hormones
themselves. This is also true when we examine the
cellular level of organization. The thyroid hormones
are metabolised within cells via various deiodination
mechanisms and in some tissues (most notably the
brain), there is evidence of negative feedback
between thyroid status and the deiodination systems.
The consequence of this feedback is that both the
whole organism and some individual cells attempt to
maintain a relatively constant concentration of
thyroid hormone despite varying conditions. Viewed
in this light, the thyroid hormones are more akin to
an important body constituent, a ‘vitamin-like ’
molecule rather than a classical ‘hormonal mess-
enger ’.

Such a perspective has been raised, in the context
of the wide phylogenetic distribution of these
molecules, in an interesting recent review by Eales
(1997) where he suggested the term ‘vitamone’ to
describe such a role. In this light, it is also of interest
that the superfamily to which thyroid nuclear
receptors belong includes those for vitamin D and
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(vitamin-A-related) retinoic acid (Jensen, 1991).
This perspective suggests that due to the relative
constancy of their concentration, thyroid hormones
are probably best regarded not as ‘regulatory’
hormones in the normal sense but as ‘permissive ’
hormones, possibly ‘vitamones«.

II. THYROID HORMONES

(1) Structure and physical chemistry

Thyroid tissue consisting of follicles of epithelial cells
surrounding a lumen filled with colloid has been
identified in all vertebrates examined to date. In
most vertebrates, these follicles are grouped together
into a discrete gland, the thyroid, whilst in others
they are diffusely distributed generally in the
anterior region of the body (Etkin & Gona, 1974).
This review will restrict itself to vertebrates. For two
fascinating recent accounts of the function of thyroid
hormones in invertebrates the reader is referred to
Eales (1997) and Johnson (1997).

The thyroid epithelial cells take up iodide and
secrete thyroglobulin protein into the central lumen
of the follicle. Of the more than 100 tyrosine residues
per molecule of thyroglobulin, a number are iodin-
ated ortho to the phenolic hydroxyl group to form 3-
iodotyrosine and 3,5-diiodotyrosine. The spatial
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Fig. 1. The chemical structures and molecular models of four biologically active thyroid hormones ; thyroxine (T4),
3«,3,5-triiodothyronine (T3), 3«,5«,3-triiodothyronine (rT3) and 3,5-diiodothyronine (T2).

arrangement of thyroglobulin favours the coupling
of some of these iodotyrosines to form T4 which is
secreted from the thyroid follicle. In cases of iodine
deficiency, relatively more T3 and less T4 is
synthesised and secreted. This review will not
concern itself with events in the thyroid follicle but
will concentrate on the thyroid hormones themselves
and how they exert their multitudinous effects. In
view of the relative ease of synthesis of these
molecules (e.g. both T4 and T3 can be synthesised
by non-enzymatic means), their wide phylogenetic
distribution is not surprising (see Eales, 1997).

The chemical structure of the thyroid hormones
T4 and T3 is illustrated in Fig. 1 together with a
molecular model showing the outer phenolic ring
oriented in a plane perpendicular to the inner ring.
Also included in Fig. 1 are another two iodothyro-
nines, reverse T3 (rT3) and 3,5,-diiodothyronine,
that exert some thyroid hormonal effects and will be
discussed in later sections. Because they are syn-
thesised from natural tyrosine residues, the amino
acid part of the molecule is of the -isomer
configuration. The molecular mass of T4 and T3 is
777 and 651 Da, respectively. The thyroid hormones
(and their metabolites) are the only known molecules
in the body that contain iodine and most of the
molecular mass of both thyroid hormones is con-
tributed by their iodine atoms which are, by far, the
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heaviest elements found in the body (atomic mass
127). The next heaviest element found in the body is
selenium (atomic mass 79) which is an important
part of the enzymes that deiodinate the thyroid
hormones. The iodine atoms also have strong
electron binding energies and are very electron
attractive.

The amino group, carboxyl group and phenolic
®OH group are all ionizable parts of these
molecules. The relative ionization of the phenolic
group in different thyronines will be a major
influence on their relative lipophilicity. Simple
phenolic groups are 50% dissociated at pH of
approximately 10 (i.e they have a pK of approx-
imately 10). The presence of a single iodine (with its
electron attraction) on the outer ring of T3 reduces
the pK of its phenolic group to 8.45, whilst the two
iodine atoms on the outer ring of T4 further reduces
the pK of its phenolic group to 6.73 (Gemmill,
1955). At physiological pH approximately 80% of
T4 molecules have the phenolic hydroxyl group in
the ionized form whilst only approximately 10% of
T3 molecules have an ionized phenolic hydroxyl
group (Korcek & Tabachnick, 1976). This difference
will result in different relative hydrophobicities of T4
and T3 at physiological pH.

Both molecules are hydrophobic molecules, with
T3 being more so than T4 because of its relative lack
of an ionized phenolic group. They both have a low
solubility at neutral and acid pHs but dramatically
increased solubility in alkaline solutions, because of
the increased ionization of the phenolic end of the
molecule. For example, the solubility limit of T4 in
aqueous solution rises from 2.3 µ at pH 7, to 4.5 µ

at pH 9, and to 260 µ at pH 11 (values taken from
Schreiber & Richardson, 1997). This is the basis for
the common practice of using alkaline solutions for
injection of thyroid hormones. Whilst the hormones
are soluble in the injectate, once inside the body they
will return to a more neutral (or even acidic)
environment and thus will be more hydrophobic in
character. Hillier (1970) reported that at physio-
logical pH the ‘partition coefficient ’ between phos-
pholipid (phosphatidylcholine) and the aqueous
environment was 12000 for T4 and 22000 for T3.
Dickson et al. (1987) report values of 17500 and
23500 for T4 and T3 respectively.

(2) Plasma concentrations and distribution
to the tissues

Whilst circulating T4 originates from the thyroid
follicles, circulating T3 comes predominantly from

the deiodination of T4, both in the thyroid itself and
in peripheral tissues. This deiodination will be
discussed in Section II.3. Other iodothyronines are
also formed by the deiodination mechanisms and
these are present in small concentrations in the
plasma. Both T4 and T3 are found in the plasma
either bound to plasma proteins or in the free
(unbound) state. Information concerning both the
total and free concentration of T4 and T3 in plasma
from a diverse range of vertebrates under a number
of conditions is collated in Table 1. Much of this
information has been obtained from the values for
controls in particular experiments, some have been
interpolated from graphs, and many values have
been recalculated in SI units. Selected values for
earlier stages in the life cycle of some species are
also included. Fig. 2 presents plasma T4 and
T3 concentrations for normal (¯ euthyroid) adult
vertebrates relative to their body mass. Many of the
reports cited in Table 1 did not report body mass of
the animals examined. For these I have estimated
the adult body mass of the particular species. Table
1 and Fig. 2 also include the ranges regarded as
typically ‘euthyroid’ for humans (from Stockigt,
1996).

In normal adult vertebrates, the plasma total
concentration of T4 is in the nanomolar range with
an average of approximately 35 n and ranges from
below measurable levels in some amphibians to 148
n in the hedgehog, Erinaceus europaeus. The plasma
total concentration of T3 is also in the nanomolar
range for vertebrates and averages approximately
3.5 n, ranging from unmeasurable to a maximum
of 76 n reported for the parrotfish, Sparisoma spp.
The vast majority of both T4 and T3 is bound to
plasma proteins with the free hormone being in the
picomolar range for all vertebrates, approximating
0.01–0.1% of the total hormone concentration. For
adult vertebrates, the average free T4 and free T3
plasma concentrations are approximately 40–50 p,
with respective ranges of 2–600 p and 1–492 p. It
is the level of ‘ free ’ thyroid hormones that is the
more physiologically important concentration (Rob-
bins & Rall, 1957; Ekins, 1986; Mendel, 1989).

In many cases reported in Table 1, the concen-
trations in the early phase of the life cycle are
considerably higher than those observed in the adult
phase. This is especially true for periods of ‘meta-
morphic ’ change in some of the vertebrates. This
developmental surge of thyroid hormones will be
discussed later. Although the hormone concen-
trations are presented as a single value for each
species, of course the normal euthyroid hormone
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Table 1. Concentrations of thyroxine (T4) & triiodothyronine (T3) in vertebrate plasma

Vertebrate Species Condition

Body
mass
(g)

Total
[T4]
(nM)

Total
[T3]
(nM)

Free
[T4]
(pM)

Free
[T3]
(pM) Reference

Protochordate
Ascidean Phallusia mammillata Adults 0.3 0.0 Fredriksson et al.

(1993)
Agnathan

Sea lamprey Petromyzon marinus Ammocoete larvae 65.0 24.0 282.0 116.0 Weirich et al. (1987)
Sea lamprey Petromyzon marinus Juvenile 50 4.6 0.4 Youson et al. (1994)
Sea lamprey Petromyzon marinus Spawning adult 12.0 1.6 25.2 1.1 Weirich et al. (1987)
Sea lamprey Petromyzon marinus Spawning female 104.0 0.7 Hornsey (1977)
Sea lamprey Petromyzon marinus Adult males 12.0 1.7 Hornsey (1977)
Sea lamprey Petromyzon marinus Adults 200 3.5 3.0 Sower et al. (1985)

Fish
Salmon Oncorhynchus keta Eggs 19.0 Tagawa & Hirano

(1987)
Salmon Various species Embryos 9–19 1.5–7.7 Sullivan et al. (1987)
Masu salmon Oncorhynchus masou Peak smolt 19 8.4 1.2 Ura et al. (1994)
Salmon Oncorhynchus kisutch Pre-smolt 10 15.0 9.2 Swanson & Dickhoff

(1987)
Salmon Oncorhynchus kisutch Transition 31.0 7.6 Swanson & Dickhoff

(1987)
Salmon Oncorhynchus kisutch Smolt 30 15.0 4.6 Swanson & Dickhoff

(1987)
Salmon Oncorhynchus kisutch Wild smolt 4.5 4.6 Whitesel (1992)
Salmon Oncorhynchus kisutch Wild parr 2.3 3.5 Whitesel (1992)
Rainbow trout Oncorhynchus mykiss Immature 110 4.0 14.0 Gelineau et al. (1996)
Rainbow trout Oncorhynchus mykiss Immature 55 9.5 7.4 Reddy & Leatherland

(1995)
Rainbow trout Oncorhynchus mykiss Immature 100 12.6 10.2 Holloway et al. (1994)
Rainbow trout Oncorhynchus mykiss Adult 1–6 2–4 Eales et al. (1981)
Arctic charr Salvelinus alpinus 206 2.7 2.4 5.0 3.2 Eales & Shostak

(1985)
Brown trout Salmo trutta Young adults 400 1.9 0.9 Waring & Brown

(1997)
Atlantic cod Gadus morhua Male adults 750 3.6 19.3 Cyr et al. (1998)
Rainbow trout Oncorhynchus mykiss Adults 1150 7.1 3.3 Gomez et al. (1997)
Lake trout Salvelinus namaycush Adults 10.0 3.4 9.9 3.2 Weirich et al. (1987)
Baltic salmon Salmo salar Adults 11.0 Larsson et al. (1985)
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Goldfish Carassius auratus Adults 20–35 1.0 3.4 MacKenzie et al. (1987)
Squirrelfish Holocentrus rufus Adults 91 34.1 14.4 599.7 491.6 Eales & Shostak (1987)
Coney Cephalopholis fulva Adults 237 4.4 4.0 30.9 24.6 Eales & Shostak (1987)
Grunt Haemulon flavolineatum Adults 65 13.0 10.4 70.8 46.1 Eales & Shostak (1987)
Banded
butterflyfish

Chaetodon striatus Adults 72 14.0 5.7 64.4 33.8 Eales & Shostak (1987)

Rock beauty Holacanthus tricolor Adults 98 5.4 6.3 23.2 24.6 Eales & Shostak (1987)
Parrotfish Sparisoma spp. Adults 120 54.3 76.2 303.7 419.4 Eales & Shostak (1987)
Blue tang Acanthurus coeruleus Adults 104 5.0 4.6 23.2 39.9 Eales & Shostak (1987)
Ocean surgeonfish Acanthurus bahianus Adults 74 4.8 2.3 48.9 21.5 Eales & Shostak (1987)
Orange-spotted
filefish

Cantherines pullus Adults 69 1.9 0.3 2.1 0.6 Eales & Shostak (1987)

Spotted goatfish Pseudupeneus maculatus Adults 137 17.6 5.4 100.4 24.6 Eales & Shostak (1987)
Australian lungfish Neoceratodus forsteri Adults 6.5 0.4 J. M. P. Joss personal

comm.
Amphibians

Salamander Eurycea bislineata Peak-metamorphic 10.0 1.6 Alberch et al. (1986)
Salamander Eurycea bislineata Adult 0.0 0.0 Alberch et al. (1986)
Frog Rana clamitans Peak-metamorphic 9.0 Weil (1986)
Bullfrog Rana catesbiana Peak-metamorphic 6.0 2.2 Suzuki & Suzuki

(1981)
Bullfrog Rana catesbiana Adults 0.5 0.3 Suzuki & Suzuki

(1981)
Frog Bufo regularis Adults 3.0 Larsson et al. (1985)
Frog Rana ridibinda Adults 0.1–2 Vandorpe et al. (1987)
Toad Bufo japonicus Female adults 0.05–1 0–0.2 Tasaki et al. (1986)

Reptiles
Lizard Sceloporus undulatus Yearlings 7.7 5.5 Gerwein &

John-Alder (1992)
Lizard Sceloporus undulatus Captive adults 10.7 11.1 3.1 John-Alder & Joos

(1991)
Lizard Sceloporus undulatus Field adults 8.3 13.1 3.2 John-Alder & Joos

(1991)
Lizard Ameiva undulata Captive 23 8.2 Steinberg et al. (1993)
Lizard Dipsosaurus dorsalis Adult males 58 14.5 John-Alder (1984a)
Lizard Dipsosaurus dorsalis Adult males 56 3.2 John-Alder (1983)
Lizard Dipsosaurus dorsalis Hibernating adult 1.3 John-Alder (1984b)
Lizard Dipsosaurus dorsalis Adult (spring) 13.0 0.5 John-Alder (1984b)
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Table 1 (cont.)

Vertebrate Species Condition

Body
mass
(g)

Total
[T4]
(nM)

Total
[T3]
(nM)

Free
[T4]
(pM)

Free
[T3]
(pM) Reference

Reptiles (cont.)
Turtle Trachemys scripta Growing (expt 1) 80 145.0 Denver & Licht (1991)
Turtle Trachemys scripta Growing (expt 2) 80 83.7 Denver & Licht (1991)
Garter snake Thamnophis sirtalis Adults 49.5 1.3 0.3 Etheridge (1993)
Viper Viper aspis Adult hibernating 100 3.4 Naulleau et al. (1987)
Viper Viper aspis Adult spring 85 12.7 Naulleau et al. (1987)
Green sea turtle Chelonia mydas Adult 12.5 Licht et al. (1985)
Lizard Trachydosaurus rugosus Adult 520 3.0 0.3 Hulbert & Williams

(1988)
Tortoise Chelodina longicollis Adult 800 1.0 0.3 Hulbert & Williams

(1988)
Crocodile Crocodylus johnstonii Adult 1150 3.0 0.5 Hulbert & Williams

(1988)
Lizard Podarcis sicula Adult 9 0.15 1.7 Venditti et al. (1996)

Birds
Japanese quail Coturnix japonica Hatchling 38.6 5.1 McNabb & Olson

(1996)
Japanese quail Coturnix japonica Adult 21.0 2.5 18.5 12.5 McNabb et al. (1984a)
Ring dove Streptopelia risoria Adult 23.0 6.8 8.7 4.6 McNabb et al. (1984a)
Ring dove Streptopelia risoria Hatchling 5.0 0.8 McNabb & Cheng

(1985)
Ring dove Streptopelia risoria Adult 22.0 6.9 McNabb & Cheng

(1985)
Ring dove Streptopelia risoria 10 days post hatching 18.0 5.1 McNabb & Olson

(1996)
Starling Sturnus vulgaris 10 days post hatching 15.4 2.6 McNabb & Olson

(1996)
Redwing blackbird Agelaius phoenicus 8 days post hatching 23.2 3.9 McNabb & Olson

(1996)
Emperor penguin Aptenodytes forsteri Adult 23000 15.9 1.6 Groscolas & Leloup

(1989)
Chicken Gallus domesticus Egg 10.0 3.1 Sechman & Bobek

(1988)
Chicken Gallus domesticus Immature 12.0 9.2 Williamson & Davison

(1987)
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Chicken Gallus domesticus Adult 22.0 Larsson et al. (1985)
Chicken Gallus domesticus Adult 22.0 1.6 Rudas & Pethes (1986)
Chicken Gallus domesticus Adult 4300 27.0 1.3 Bruggeman et al. (1997)
Chicken Gallus domesticus Adult (30 day) 731 1.5 9.5 Di Meo et al. (1993)
Pigeon Columbia livia Adult females 400 34.2 2.5 John et al. (1995)
Ostrich Struthio camelus Hatchling 870 7.6 Dawson et al. (1996)
Ostrich Struthio camelus Adult 120000 1.8 Dawson et al. (1996)

Mammals
Platypus Ornithorhynchus anatinus Adult 1070 60.3 0.9 Hulbert & Grant

(1983)
Platypus Ornithorhynchus anatinus Juvenile 760 107.5 1.5 Hulbert & Grant

(1983)
Echidna Tachyglossus aculeatus Adult 3000 15.2 1.6 20.3 4.5 Nicol et al. (2000)
Echidna Tachyglossus aculeatus Adult 3000 15.7 0.7 Hulbert & Augee

(1982)
Bandicoot Isoodon macrourus Adult 1500 22.0 1.5 Hulbert & Augee

(1982)
Wallaby Macropus eugenii Adult 6000 12.2 0.8 8.1 41.9 Janssens et al. (1990)
Wallaby Macropus eugenii Pouch-young (peak) 81.2 3.1 44.9 166.0 Janssens et al. (1990)
Koala Phascolarctus cinereus Adults 9000 3.2 0.4 3.3 1.4 Lawson et al. (1996)
Shrew Sorex vagrans Adults 5.2 17.4 Tomasi (1984)
Rodent Peromyscus maniculatus Adults 18.4 45.7 Tomasi (1984)
Rodent Reithrodontomys megalotis Adults 12.3 30.9 Tomasi (1984)
Rodent Microtus montanus Adults 29 43.6 Tomasi (1984)
Brandt’s vole Microtus brandtii Adults 33 45.0 1.7 Liu et al. (1997)
Mouse Mus musculus Adults 61.0 1.1 Burgi et al. (1986)
Mouse Mus musculus Severe infection 21.0 0.4 Burgi et al. (1986)
Mouse Mus musculus Adult 39.7 1.3 14.1 7.6 Palha et al. (1994)
Mouse Mus musculus TTR null adult 18.9 1.1 15.7 7.6 Palha et al. (1994)
Hamster Mesocricetus auratus Adult males 146 46.3 0.7 Tomasi & Horwitz

(1987)
Hedgehog Erinaceus europaeus Active male 700 148.0 Fowler (1988)
Hedgehog Erinaceus europaeus Active female 900 103.0 Fowler (1988)
Rat Rattus norvegicus Adult male 283 65.6 0.8 Ribeiro et al. (1997)
Rat Rattus norvegicus MSG obese 224 51.5 0.9 Ribeiro et al. (1997)
Rat Rattus norvegicus Adult 200–300 43.8 0.9 16.7 1.7 Woody et al. (1998)
Rat Rattus norvegicus Exercised adult 200–300 45.0 0.9 15.4 2.3 Woody et al. (1998)
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Table 1 (cont.)

Vertebrate Species Condition

Body
mass
(g)

Total
[T4]
(nM)

Total
[T3]
(nM)

Free
[T4]
(pM)

Free
[T3]
(pM) Reference

Mammals (cont.)
Rat Rattus norvegicus Adult (young) 63.0 1.3 36.0 6.0 Chen & Walfish (1978)
Rat Rattus norvegicus Adult (old) 30.0 1.2 15.0 5.0 Chen & Walfish (1978)
Rat Rattus norvegicus Adult 80.0 1.4 67.0 16.0 Weirich et al. (1987)
Rat Rattus norvegicus Fetal (22 days) 6.0 0.2 Ruiz de Ona et al.

(1988)
Rat Rattus norvegicus Adult (PUFA diet) 400 68.0 0.5 Takeuchi et al. (1995)
Rat Rattus norvegicus Adult (SFA diet) 400 65.0 0.4 Takeuchi et al. (1995)
Guinea pig Cavia porcellus Fetal (62 days) 49.9 0.3 66.0 1.8 Castro et al. (1986)
Guinea pig Cavia porcellus Adult 39.0 0.6 17.0 4.0 Castro et al. (1986)
Cat Felis domesticus Healthy adults 26.0 24.8 Mooney et al. (1996)
Cat Felis domesticus Healthy adults 15.0 Kyle et al. (1994)
Cat Felis domesticus Adult 36.0 Larsson et al. (1985)
Cat Felis domesticus Adult 34.6 22.9 Paradis & Page (1996)
Rabbit Oryctolagus cuniculus Adult 22.0 Larsson et al. (1985)
Woodchuck Marmota monax Adult (fall) 3900 2.7 Rawson et al. (1998)
Woodchuck Marmota monax Adult (spring) 3600 8.4 Rawson et al. (1998)
Dog Canis familiaris Adult 29.0 Larsson et al. (1985)
Dog Canis familiaris Adult 32600 28.0 1.5 22.0 Peterson et al. (1997)
Dog Canis familiaris Adult 40.0 19.6 Paradis et al. (1996)
Dog Canis familiaris Adult 25.0 1.1 Miller et al. (1992)
Dog Canis familiaris Adult 13800 48.8 0.4 Minten et al. (1985)
Monkey Macaca mulatta Adult 56.0 Larsson et al. (1985)
Lamb Ovis familiaris Fetal 100.0 3.0 30.0 2.1 Wrutniak et al. (1985)
Sheep Ovis familiaris Adult 83.0 Larsson et al. (1985)
Nubian goat * Newborn 4200 64.4 235.5 De la Colina et al.

(1993)
Nubian goat * 21 days old 5600 86.2 103.0 De la Colina et al.

(1993)
Goat Capra hircus Adult 94.0 Larsson et al. (1985)
Goat Capra hircus Adult 83.7 3.7 Colavita et al. (1983)
Pig Sus scrofa Adult 46.0 Larsson et al. (1985)
Black bear Ursus americanus Adult 91000 25.7 1.0 5.1 2.6 Tomasi et al. (1998)
Harbour seal Phoca vitulina Mixed 9.8 2.9 Schumacher et al. (1995)
Gray seal Halichoerus grypus Adult 90000 29.9 0.6 14.0 Boily (1996)
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Cattle Bos taurus Adult 49.0 Larsson et al. (1985)
Cattle Bos taurus Adult (non-lactating) 64.3 1.7 Tiirats (1997)
Cattle Bos taurus Adult (lactating) 45.1 1.7 Tiirats (1997)
Horse Equus domesticus At rest 8.6 0.7 Gonzalez et al. (1998)
Horse Equus domesticus After exercise 9.0 1.0 Gonzalez et al. (1998)
Horse Equus domesticus Adults 525000 19.9 1.0 11.6 2.1 Messer et al. (1995)
Horse Equus domesticus Adults 34.8 1.2 33.2 8.8 Irvine & Evans (1975)
Newworldprimates Mixed species Adults 38.0 2.6 31.0 Arbelle et al. (1994)
Oldworld primates Mixed species Adults 71.0 2.8 34.0 Arbelle et al. (1994)
Human Homo sapiens Adults 91.6 1.9 16.4 6.4 Franklyn et al. (1985)
Human Homo sapiens Adults 115.0 2.2 Wrutniak et al. (1985)
Human Homo sapiens Adults 1.8 14.3 Maes et al. (1997)
Human Homo sapiens Adult (pre antarctic) 78000 94.0 2.2 32.2 5.0 Reed et al. (1986)
Human Homo sapiens Adult (post antarctic) 79000 88.8 2.0 29.6 4.1 Reed et al. (1986)
Human Homo sapiens Euthyroid range 60–140 1–3 10–25 3–8 Stockigt (1996)

TTR, transthyretin; MSG, monosodium glutamate; PUFA, polyunsaturated fatty acid; SFA, saturated fatty acids; *specific name of Nubian goat was
not given in the source reference.
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Fig. 2. The concentrations of total and free thyroid hormones (T4 and T3) in the plasma of adult vertebrates. The
ranges regarded as euthyroid in humans are represented by a vertical line in each graph. All data are from Table 1.

concentrations are regarded as a range. For humans
the approximate normal euthyroid range is typically
regarded as 60–140 n for total T4, 1–3 n for total
T3, 10–25 p for free T4 and 3–8 p for free T3
(taken from Stockigt, 1996). The free hormone
values especially are influenced by measurement
techniques. As can be seen from Fig. 2, the values for
fish span the entire range observed in vertebrates.
This is the case for total and free levels of both T4
and T3. The fact that most of these values come from
a single study (Eales & Shostak, 1987) shows that
this is a real situation and not an artifact of
interlaboratory variation.

Although there are only a few values for some
vertebrate classes, it appears from Fig. 2 that there is
no consistent pattern of different free hormone levels

in different vertebrate classes. This is not the case for
the total thyroid hormone levels where there seem to
be patterns for different classes of vertebrates. For
example, apart from fish, there seems to be a trend
of increasing total T4 going from amphibians to
reptiles, to birds, to mammals. For total T3, the
levels tend to increase from amphibians to reptiles, to
mammals, to birds. The total levels of hormone will
be greatly influenced by a combination of the
plasma concentrations of thyroid-hormone-binding
proteins together with their relative affinity for T4
and T3. In this light, it is of interest that one of the
main plasma binding proteins in higher vertebrates,
transthyretin, has recently been shown to have a
higher affinity for T3 than T4 in birds, but higher
affinity for T4 than T3 in mammals (Chang et al.,
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1998). Thus, total thyroid hormone levels in plasma
are likely to be largely a reflection of thyroid-
hormone-binding plasma proteins. They do not
necessarily indicate that one species of vertebrate is
more hyperthyroid than another.

Another factor of note from Fig. 2 is that there is
no relationship between body mass and the plasma
concentration of thyroid hormones. The lack of a
correlation between body mass of mammals and
either free T4 or free T3 levels is of interest in view
of the well-known influence of body mass on basal
metabolism. On a body-mass basis, mice have a
metabolic rate approximately 20-fold greater than
large mammals such as horses and cattle (Kleiber,
1961) yet the free thyroid hormone levels in their
plasma are similar. In the same manner, free thyroid
hormone concentrations are not greatly different
between ectothermic and endothermic vertebrates
although the resting metabolism of an endotherm is
5–10 times that of a similar-sized ectothermic
vertebrate at the same body temperature (Hulbert,
1980b).

The binding of T4 and T3 to plasma proteins has,
for obvious reasons, been most studied in humans
where three main thyroid-hormone-binding proteins
have been identified. These are thyroxine-binding
globulin (TBG), transthyretin (TTR, previously
known as thyroxine-binding prealbumin) and albu-
min (ALB). Some T4 is also bound to plasma
lipoproteins. The affinity for T4 is greatest for TBG
(approximately 1¬10−"! ), intermediate for TTR
(approximately 7¬10−( ) and lowest for ALB
(approximately 7¬10−& ). Their affinity for T3 is
in the same order but in each case is lower than that
for T4, being approximately 5¬10−)  for TBG,
approximately 1¬10−( M for TTR and approxi-
mately 1¬10−&  for ALB (Robbins, 1991). How-
ever the plasma concentration of each of these
thyroid-hormone-binding proteins is in the opposite
order, being greatest for ALB (640 µ), intermediate
for TTR (4.6 µ) and lowest for TBG (0.27 µ).
The combination of abundance and affinity results
in the following hormone distribution in human
plasma; TBG is estimated to carry 65% of bound T4
and 80% of bound T3, whilst TTR carries 15% of
T4 and 9% of T3, and ALB has 20% of T4 and
11% of T3 (Robbins, 1991). It is estimated that in
humans approximately one in 30000 molecules of
plasma ALB has one T4 molecule bound to it,
compared to one in 300 molecules of TTR and one
in three molecules of TBG (Schreiber & Richardson,
1997).

The difference in the affinity of these three proteins
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for T4 means they can form a multicomponent
‘buffer’ system for T4, analogous to a multi-
component pH buffer system with different pK
values for each component (Schreiber & Richardson,
1997). This is illustrated in Fig. 3. Following their
discovery, these proteins were called ‘ transport ’
proteins. However, the description of their role as
transporters probably does not fully describe their
function. Their role has been illustrated elegantly by
the classic experiment of Mendel et al. (1987). These
authors showed that when liver lobules were perfused
with buffer, electrolytes and T4 (but no protein)
that the T4 partitioned into the first parenchymal
cells with which the perfusate came into contact,
with the result that the tissue uptake of T4 was very
uneven. However, when binding proteins were
added to the perfusate, there was a more uniform
distribution and uptake of T4 by the cells of the
perfused liver. It has been suggested that the
descriptor ‘distributor proteins ’ is more apt than
‘transport proteins ’ when applied to the plasma
thyroid-hormone-binding proteins (Schreiber &
Richardson, 1997). The rapid uptake of T4 is
probably related to its high hydrophobicity. This
hydrophobicity would likely be exacerbated by the
fact that many phosholipid head groups are highly
acidic. Thus, when a T4 molecule comes close to a
biological membrane it enters an environment that
is approximately 1.5 pH units more acid than the
general medium, thus reducing the degree of
ionization of the phenolic ®OH group, which in turn
increases the hydrophobicity of the T4 molecule and
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hastens its partitioning into the membrane lipid
bilayer (Hillier, 1970). The same argument would
also apply to T3 which is more hydrophobic than T4
to begin with, having a smaller proportion of
molecules with an ionized phenolic ®OH at
physiological pH.

Although humans have three thyroid-hormone-
binding proteins in their plasma this is not true for
all vertebrates. An extensive survey of thyroid-
hormone-binding proteins in the plasma of 93
vertebrate species (Richardson et al., 1994) together
with the excellent review by Schreiber & Richardson
(1997) shows that ALB is the oldest thyroid-
hormone-binding plasma protein, being found in all
vertebrates examined. TTR is a cerebrospinal fluid
protein (secreted by the choroid plexus) in adult
reptiles, birds and mammals but only in adult birds,
polyprotodont marsupials and eutherian mammals
is it a plasma protein. This represents at least three
separate occasions during the evolution of higher
vertebrates where TTR became a plasma protein
secreted by the adult liver. Recently, a TTR has
been reported in a fish species, the sea bream Sparus
aurata (Santos & Power, 1999).

A third T4-binding protein, migrating slower
than albumin, occurs more sporadically among the
vertebrates. It has been characterized in humans,
rats and sheep as TBG and in the turtle as vitamin-
D-binding protein. It is present in most large
eutherian mammals and is probably also TBG in
these species. In other vertebrate species, its precise
identity is not known and it is suggested that it may
be one of the apolipoproteins (Schreiber &
Richardson, 1997). TBG is predominantly respon-
sible for the high total T4 concentration in the
plasma of adult humans compared to most other
vertebrates (Larsson, Pettersson & Carlstrom, 1985).
TBG is not present in all primate species. It is found
in adults from the Catarrini and Prosimiae but not
the Platyrrini (Seo et al., 1989). Whilst TBG is not
found in significant amounts in the plasma of adult
rats or mice, it is present during the early postnatal
period (Vranckx, Savu & Nunez, 1989).

In present-day adult fish, amphibians and reptiles
(and presumably early vertebrates), albumin is
adequate as the sole plasma thyroid-hormone-
binding protein but in adult birds and most
mammals there is at least one other thyroid-
hormone-binding plasma protein with a higher
affinity than albumin (and in the case of some
eutherian mammals two such proteins). It may be
that at the high metabolic activity and constant
body temperatures of the endothermic vertebrates,

the even distribution of thyroid hormones through-
out the body required a more powerful distributor
protein in their plasma.

In amphibians, TTR is a plasma protein for only
a short period during metamorphosis, but not in the
adult amphibian (Yamauchi et al., 1998). In adult
birds, diprotodont marsupials and eutherian mam-
mals, TTR is a plasma protein. It is also secreted by
the choroid plexus cells into the cerebrospinal fluid
by adult reptiles, birds and mammals. Indeed, it is
the predominant protein secreted by the choroid
plexus in all such vertebrates examined and has been
postulated to be a T4 transport system into the brain
(Dickson et al., 1987; Chanoine et al., 1992;
Southwell et al., 1993). It is probably responsible for
the even distribution of T4 throughout brain tissue
(Schreiber & Richardson, 1997). Whilst amino acid
residues at the surface of TTR show a rate of
evolutionary change similar to proteins such as
albumin, the central T4-binding channel of TTR is
as highly conserved as the histone H4, one of the
most strongly conserved proteins found in nature
(Schreiber & Richardson, 1997). Although the
amphibian choroid plexus does not secrete TTR into
the cerebrospinal fluid bathing the brain, it does
secrete a lipocalin which may have a similar function
(Achen et al., 1992).

In view of the findings of Mendel et al. (1987) and
the discussion of Schreiber & Richardson (1997), it
may be that in large vertebrates (such as humans)
there is a requirement, because of the distances
involved, for high-affinity plasma proteins to
counteract the tendency for thyroid hormones to
partition into membranes, and thus to ensure a
uniform distribution of thyroid hormones through-
out the whole body rather than a hormone gradient
radiating out from the sites of T4 synthesis (the
thyroid gland) and T3 manufacture (such as the
thyroid, liver & kidney).

A recent observation, that in the tammar wallaby
Macropus eugenii, there are plasma proteins which
bind significant amounts of thyroid hormones during
development that are not present in the adult (S. R.
Richardson, unpublished data), together with the
findings that TTR is secreted by the amphibian liver
only during metamorphosis (Yamauchi et al., 1998)
and that TBG appears in the plasma for only a short
period during the early postnatal life of the rat
(Vranckx et al., 1990), suggests it is likely that full
understanding of the evolution of plasma thyroid-
hormone-binding proteins in vertebrates will have to
wait until more is known about their biology during
vertebrate development.
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The presence of multiple thyroid-hormone-bind-
ing proteins illustrates a degree of redundancy and
thus a potential safety factor. For example, in
documented cases where one of these plasma proteins
is absent, the individuals concerned show no ill
effects and appear to be healthy and exhibit normal
development. This is illustrated for mice in Table 1,
where although total plasma T4 concentration is
reduced in TTR-null mice, they have normal free
T4 and T3 plasma concentrations (Palha et al.,
1994). Similar deficiencies in TBG and albumin in
humans, and albumin in rats, as well as other
inherited or acquired variations in these proteins,
still result in phenotypically euthyroid individuals
(see Mendel, 1989; Bartalena & Robbins, 1992).

When studied in sheep, thyroid hormones ex-
changed between the plasma pool and interstitial
fluids easily and appeared in the lymph faster than
did plasma proteins. Free T4 levels in the plasma
and lymph samples were similar (Simpson-Morgan
& Sutherland, 1976) showing that free T4 con-
centration experienced by cells is the same as that
measured as plasma free [T4].

The plasma concentration of T4 is controlled in a
homeostatic manner by the secretion of TSH from
the anterior pituitary. There is a diurnal cycle of
TSH secretion from the anterior pituitary. In
humans, peak TSH concentration occurs in the
night and the nadir in the late afternoon (Fisher,
1996). Diurnal cycles have been reported for thyroid
hormone levels in rats (Cokelaere et al., 1996),
amphibians (Gancedo et al., 1997) and fish (Cerda-
Reverter et al., 1996; Pavlidis et al., 1997).

Thyroid hormone levels are also influenced by
feeding. In young pigs, levels of both T4 and T3
increased after a meal, peaking approximately 60
min after feeding; the rise was greater for T3 than
T4 and was dependent on both the energy content
and nutrient composition of the meal (Dauncey et
al., 1983). This post-meal increase involves both
total and free hormone levels, is relatively immediate
and although it depends on the energy content of the
food, is not directly related to changes in blood
glucose levels. It is also observed in thyroidectomized
animals and likely related to changes in peripheral
deiodination and redistribution of hormonal pools
(Dauncey & Morovat, 1993). The circadian rhythms
in plasma thyroid hormone levels in rats are
influenced by their feeding pattern and are most
pronounced when the rats are fed only once a day
(Cokelaere et al., 1996). The diurnal cycle in thyroid
hormone concentrations is influenced by nutritional
state in fish (Cerda-Reverter et al., 1996) and food

deprivation results in reduced serum levels of thyroid
hormones in horses (Messer et al., 1995) and of T4 in
penguins (Groscolas & Leloup, 1989).

As well as food deprivation, non-thyroidal illness
can also reduce plasma levels of thyroid hormones,
especially T3. In humans, T4 concentrations change
very little, whilst those of T3 decrease and rT3
increase during starvation (Danforth, 1986). Similar
changes occur during non-thyroidal illness (Kaptein,
1986). In cats, non-thyroidal illness results in a
significantly lower total T4 concentration but no
change in free T4 levels (Mooney, Little & Macrae,
1996).

Blood levels of T4 represent the balance between
the rate of hormone secretion and disposal. Changes
in plasma levels may reflect changes in the regulatory
system or may simply reflect changes in the steady
state. Changes in total levels need not reflect changes
in thyroid status. For example, during pregnancy in
humans, total T4 concentration increases due to
elevated serum TBG levels, however free T4 con-
centration remains in the normal non-pregnant
range (O’Leary et al., 1992). Most reported changes
are for total hormone levels and whether there are
similar changes in free levels is often not known.
Indeed, with such a large protein-bound fraction in
the plasma, substantial changes in free T4 levels are
probably not easily achieved over short periods of
time.

Since T4 disposal appears related to metabolic
rate (see Section II.3), some reported changes in
thyroid hormone levels may best be interpreted as
changes in the steady state following changes in
metabolic rate. For example, in the rat, cold
exposure results in increased T4 degradation and a
decrease in plasma total T4 levels (Gregerman,
1963). That thyroid secretion rate also increases
during cold exposure (Lachiver & Petrovic, 1960) is
probably best explained as a homeostatic response to
maintain relatively constant plasma T4 levels in the
cold, rather than a hormonal response to increase
heat production in the cold. If the latter were the
case we would expect to measure an increase in
plasma T4 levels rather than a decrease.

Chronic exercise (swimming) in rats results in no
change in either total or free levels of T4 or T3
(Woody et al., 1998). Exercise in thoroughbred
horses resulted in no change in total T4 levels but an
increase in total T3 concentration (Gonzalez et al.,
1998). A 48 km flight in pigeons resulted in a 35%
decrease in total T4, a 60% decrease in total T3 and
a 130% increase in rT3 levels (George & John,
1992).
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Fig. 4. The relationship between phospholipid content
and thyroxine (T4) content of various tissues in the rat.
Reprinted with permission from Hillier (1970).

An examination of seasonal variations in hormone
concentrations of humans showed a small but
significant variation in total T3 but none in free T4
levels (Maes et al., 1997). Prolonged residence in
Antarctica resulted in no significant change in either
total or free T4 levels in humans but did result in a
significant decrease in both total and free plasma
concentration of T3 (Reed et al., 1986).

Animals that do show substantial seasonal vari-
ation are often those that have a seasonal inactive
(hibernation) phase. For example, woodchucks
(Marmota monax) show a seasonal variation in free T4
levels with low values at the autumnal equinox
(Rawson et al., 1998) and hedgehogs Erinaceus
europaeus show a low level of total T4 during winter
(Fowler, 1988). In the black bear Ursus americanus,
which has an inactive period known as hibernation
(without the dramatically depressed body temper-
atures of other mammalian hibernators) there is a
small decrease in free T4 and free T3 levels which
seems to be related to food restriction (Tomasi,
Hellgren & Tucker, 1998). In reptiles, both the viper
Vipera aspis (Naulleau, Fleury & Boissin, 1987) and
the desert iguanid Dipsosaurus dorsalis (John-Alder,
1984b) have a low total T4 concentration during
their annual hibernation period, whereas in the non-
hibernating green sea turtle Chelonia mydas, plasma
total T4 concentration is constant throughout the
year (Licht, Wood & Wood, 1985). In a study of
three diverse turtle species, two species (green turtle

Chelonia mydas & Mexican tortoise Gopherus flavo-
marginatus) had low plasma T4 levels with no
significant seasonality, whilst the painted turtle
Chrysemys picta showed significant seasonal variation
in plasma total T4 levels with the lowest values
associated with the hibernation period (Licht et al,.
1991).

In general, thyroid hormone plasma concen-
trations appear much less labile than the levels for
many other hormones. Often the changes measured
in total hormone concentration reflect changes in
thyroid-hormone-binding proteins rather than
changes in thyroid status. The protein-bound thy-
roid hormones in the plasma represent a significant
hormonal store that will act to dampen changes in
the hormone content of some tissues. For example,
when rats are thyroidectomized, within two weeks
plasma concentrations of T4 and T3 fall dramati-
cally by 96-98% whilst muscle, heart and brain T4
and T3 contents only fall by approximately 50%
over the same period (Obregon et al., 1981). Thyroid
hormone concentrations appear most variable be-
tween fish species.

(3) Cellular uptake, cellular location and
hormone metabolism

In 1968, Hillier examined the uptake and release of
T4 and T3 by the isolated perfused rat heart. Initial
rates of uptake were similar for both T4 and T3,
whilst a steady state was reached after 30 min
perfusion for T4 and after 120 min for T3. T3
equilibrated to a ‘ space’ five times that of T4 (which
was 15 ml g−" heart). This ‘ space’ was independent
of perfusate hormone concentration (13 p to 1.3
µ), and the rates of equilibration were relatively
unaffected by temperature. Washout curves sug-
gested two compartments, a fast-release compart-
ment which was the same size for T4 and T3 and a
slow-release compartment which was much greater
for T3 than T4 (Hillier, 1968b). These results
suggested a purely physical process of partitioning
between the perfusate and a compartment within
the heart in which the hormones are much more
soluble (T3 more so than T4). He also showed, that
with serum (containing hormone-binding proteins)
in the perfusate, the uptake of hormones was reduced
(more so with T4 than T3), that hormone uptake
became more dependent on perfusate concentration
and that the release of accumulated hormone was
also accelerated (Hillier, 1968a). Two years later, in
a follow-up study examining the binding of thyroid
hormones to phospholipid membranes he showed
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shown. All data are taken from van Doorn et al. (1985).

that there was a strong correlation between the
phospholipid content of different tissues and the
tissue T4 concentration of the same tissues. This
relationship is shown in Fig. 4.

Since the studies of Hillier (1968a, b, 1970) the
tissue concentrations of T4 and T3 have been
measured both by isotopic equilibrium analysis and
radioimmunoassay of extracted hormones with the
values obtained being similar for the two techniques
(Obregon, Morreale de Escobar & Escobar del Rey,
1978). In Fig. 5 the T4 and T3 tissue concentrations
for the rat are shown, including the % T3 formed

from local deiodination of T4 (van Doorn, Roelfsema
& van der Heide, 1985). The T4 and T3 contents of
most tissues are in the 1–10 pmol g−" range, with the
liver and kidney having higher tissue T4 contents of
31 pmol g−" and 16 pmol g−", respectively. Liver and
kidney T3 contents were more typical of other tissues
being, respectively, 7 pmol g−" and 10 pmol g−". It is
of interest that the liver has more T4 per gram than
does the thyroid gland where most thyroid hormones
are found in the form of thyroglobulin. The plasma
has the highest T4 content but most of this is protein-
bound with the free concentration being only
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approximately 20 p (equivalent to approximately
0.02 pmol g−"). It is not possible directly to translate
tissue contents in pmol g−" to equivalent concen-
trations because cells are not homogenous but
contain compartments such as membranes, in which
iodothyronines have a much greater solubility, as
well as cellular proteins to which they can bind.

Traditionally, intestinal contents have been ex-
cluded in studies analyzing the tissue distribution of
thyroid hormones (including Fig. 5) but recent
studies show that there are significant quantities of
both T4 and T3 in intestinal contents and that these
are readily exchangeable with other body compart-
ments (Nguyen et al., 1993).

The thyroid hormones with non-ionized phenolic
groups are amphipathic molecules ; although they
are highly soluble in phospholipids, spin-label studies
suggest that T3 does not flip-flop across membranes
to any appreciable extent and will tend to remain in
the outer half of the bilayer (Lai et al., 1985;
although an effect of the spin label itself influencing
the property measured cannot be ruled out in this
particular study). Interestingly, the spin-labelled T3
was measured to have a lateral diffusion constant in
the membrane of 3¬10−) cm# s−" at 31 °C (Lai &
Cheng, 1984) which is similar to the estimated rate
of diffusion through cytoplasm for T3 (Luxon &
Weisinger, 1992). The thyroid hormones are likely
to enter cells by a number of possible means,
including in some situations by endocytosis of
protein-bound thyroid hormones, as well as by
specific carriers. They can be taken up into many
cells by an energy-dependent transport system
located in the plasma membrane (Rao et al., 1976;
Krenning et al., 1978). The membrane iodothyronine
transporters have been reviewed by Kragie (1994,
1996).

Many uptake studies do not take into account the
partitioning of thyroid hormones into lipid mem-
branes in their measurement of uptake. Studies that
show saturation suggests a carrier-mediated process
and the use of various inhibitors suggest that uptake
is often energy-dependent and sometimes also de-
pendent on the transmembrane Na+ gradient.
Uptake is also often shown to be stereospecific. In the
rat liver cell, there appears to be at least two carriers,
one which preferentially transports T4 and the other
transporting T3 (Krenning & Docter, 1986). Al-
though less than half the T3 found in liver comes
directly from local deiodination (Larsen, Silva &
Kaplan, 1981; see Fig. 5), the tissue is an important
source of systemic T3 (from the deiodination of T4).
There is thus also a substantial efflux of T3 (and T4)

from the liver to the plasma which appears to be
passive (Krenning & Docter, 1986). Carrier-me-
diated, saturable uptake of thyroid hormones has
also been described for isolated adipocytes (Parl et
al., 1977; Landeta, Gonzalez-Padrones & Rod-
riguez-Fernandez, 1987), cultured fibroblasts
(Cheng et al., 1980), cultured pituitary tumour
(GH3) cells (Horiuchi et al., 1982), lymphocytes
(Holm et al., 1980) and more recently in cultured
cells from rat anterior pituitary where T3 and T4
may enter by the same carrier (Everts et al., 1993,
1994). It has recently been demonstrated in neonatal
rat cardiac myocytes (Everts et al., 1996) but not in
cultured human muscle cells (Bolhuis et al., 1983), in
cultured glial C6 cells (Yusta et al., 1988) nor in
choroid plexus (Dickson et al., 1987). It seems that
thyroid hormone uptake is controlled differently in
hepatocytes and anterior pituitary cells (Everts et al.,
1995). Many studies suggest an interaction between
amino acid transporters and the iodothyronines and
some suggest the iodothyronine transporter is either
a previously described amino acid or neuro-
transmitter transporter. It may be that iodo-
thyronine transporters and these other transporters
are related. In some situations, it appears that
plasma membrane transport is an important limiting
factor for further metabolism of thyroid hormones
within cells (for review see Hennemann et al., 1998)

Thyroxine uptake by hepatocytes from juvenile
rainbow trout Oncorhynchus mykiss suggests that the
basic system in fish liver cells closely resembles that
observed for mammalian hepatocytes, in that it is a
stereospecific, saturable, energy-dependent carrier-
mediated process. In these fish hepatocytes, thy-
roxine uptake does not depend on extracellullar Na+

but may involve an endocytotic component (Riley
and Eales, 1993).

Of all body tissues of the rat, the brain shows the
greatest contribution of tissue T3 derived from local
deiodination (see Fig. 5). It has a specialized system
of T4 uptake via the unidirectional secretion of newly
synthesised TTR by the choroid plexus, that enables
T4 to cross the blood-brain barrier (Dickson et al.,
1987). Labelled T4 is rapidly accumulated by the
choroid plexus both in vivo and in vitro. This process
appears to be simple partitioning between the blood
plasma and the choroid plexus membranes. Thus,
the choroid plexus acts as a transport system for T4
to pass from the blood to the brain via the
cerebrospinal fluid (Dickson et al., 1987).

Once taken up into cells, thyroid hormones can be
found either (i) ‘ free ’ in aqueous solution, (ii)
‘bound’ to cellular proteins or (iii) located within
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the lipid matrix of the various cellular membranes.
They will be in some form of steady state between all
three classes of sites. I know of no work that has
attempted, in any cell type, to determine the relative
amounts of either thyroid hormone in each of these
three locations.

As determined by differential centrifugation of
tissue homogenate, the subcellular distribution of
"#&I-labelled T4 in normal rat liver is 54, 18, 17 and
11% in microsomes, supernatant, nuclei and mito-
chondria respectively, whilst the corresponding
protein distribution is 25, 37, 23 and 15% re-
spectively (Schwartz, Bernstein & Oppenheimer,
1969). The subcellular location of thyroid hormones
has also been assessed in some tissues by the use of
autoradiography. In cultures of developing nervous
tissue, Manuelidis (1972) showed that "#&I-labelled
T4 accumulated at the cell membrane, mitochon-
dria, endoplasmic reticulum, nucleus and the sy-
napse in order of decreasing intensity. Following the
injection of 0.3–1.0 nmol of "#&I-labelled T3 into the
rat, Bar-Sella, Stein & Gross (1973) examined its
sub-cellular localization in the posterior pituitary
and median eminence. The ‘subcellular sites of
hormone concentration were found to correspond to
intracellular membrane structures, such as the
mitochondria, Golgi apparatus and nuclear en-
velope’ and ‘many of the grains counted with the
nucleus are actually associated with the nuclear
envelope and some of the grains counted with the
cytoplasm may be due to labelled hormone localized
on the plasma membrane’ (Bar-Sella et al., 1973,
p. 1412). In isolated liver cells, autoradiography of
labelled T3 showed that the hormone was sub-
cellularly associated with mitochondria, endoplas-
mic reticulum, cytoplasm, nuclei, lysosomes and
lipid in decreasing intensity (Sterling et al., 1984).
Because of the physics and geometry involved in
transmission electron microscopy, it is only possible
to view membranes along the plane of the bilayer
and not perpendicular to the plane of the bilayer.
Thus, it is possible that some of the T3 molecules
assigned to the cytoplasm may actually be mem-
brane located (e.g. in endoplasmic reticulum that is
in the plane of the section). Thus, electron micro-
scopic autoradiography will underestimate the as-
sociation of thyroid hormones (and other amphi-
pathic molecules) with membranes because we are
not able to ‘ see ’ all cellular and subcellular
membranes. Their relative absence in lipid droplets
in cells may reflect the fact that the hormones are
amphipathic rather than completely hydrophobic
and thus they are more likely to be associated with

the interface between lipid droplets and surrounding
aqueous environment rather than evenly distributed
in the lipid body. Kriz, Fong & Goldfine (1981) also
reported evidence for the localization of T3 at
multiple cellular sites.

Hillier (1970) found that in rat liver homogenate
12–15% of T4 was present in the ‘ free ’ state (in the
aqueous compartment). Simple alcoholic extracts
indicated that at least half of the T4-binding capacity
of the homogenates was due to lipid material and
boiling the homogenate (which will denature bind-
ing proteins but not significantly affect the relatively
thermostable phospholipids) did not impair its
ability to bind T4. The influence of this hydrophobic
compartment of the cell (i.e. its membranes) on the
distribution of thyroid hormones is shown by the
correlation between tissue phospholipid content and
tissue T4 content (see Fig. 4).

Measurements of T4 and T3 concentration in
human erythrocytes show that 60% of T3 and 34%
of T4 were associated with the cell membrane even
after seven washes of erythrocyte ‘ghosts ’ (Bregen-
gaard et al, 1989). The membrane can be calculated
to account for approximately 1% of the total cell
volume using values for the volume (94 fl) and
membrane surface area (135 µm#) of an average
human erythrocyte (Evans & Fung, 1972). These
amphipathic hormone molecules are largely asso-
ciated with the membrane bilayer because of their
physical chemistry (and thus not ‘bound’ to it in the
normal sense). These measurements are likely to be
underestimates in light of the extensive washing of
the membrane preparations prior to the measure-
ment process. The membrane component will in-
clude T4 and T3 both in the lipid matrix of the
bilayer as well as that bound to membrane proteins.
The fact that the membrane to cytosol ratio for the
various iodothyronines was the same in euthy-
roidism, hyperthyroidism and hypothyroidism sug-
gests a purely physical relationship with thyroid
hormones possibly concentrated mostly in the lipid
bilayer. High-affinity binding sites have also been
measured in both human and rat erythrocyte
membranes (Angel, Botta & Farias, 1989)

Although the amount of thyroid hormones in
membranes may not be great, because of their
relatively small volume compared to the aqueous
compartment of cells, the concentration of thyroid
hormones in membranes will be many times greater
than that in the aqueous compartment of the cell.

Both T4 and T3 bind to a number of cellular
proteins. In the euthyroid rat, it is estimated that less
than 15% of tissue T3 is bound to the specific
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nuclear receptors, except in the anterior pituitary
where it is approximately 50% (Oppenheimer,
Schwartz & Surks, 1974). How much of the
extranuclear T4 and T3 is bound to extranuclear
proteins is unknown. Extranuclear binding sites are
located on plasma membranes, in the mitochondria
and in the cytosol and many have a high affinity for
T3. For a list of extranuclear binding sites and their
respective affinities see Kragie (1996) and for plasma
membrane binding sites see Segal (1989b). Binding
to the nuclear envelope has also been reported
(Lefebvre & Venkatraman, 1984) and a protein
located on the luminal face of the endoplasmic
reticulum and nuclear envelope also binds thyroid
hormones (Kato, Velu & Cheng, 1989b). One
cytoplasmic binding protein is the monomer of
pyruvate kinase subtype M

#
, that can bind either T4

or T3; binding, in turn, inhibits the enzymatic
activity of the monomer. This enzyme also exists in
a tetrameric form which has greater enzymatic
activity than the monomeric form but the tetrameric
form does not bind thyroid hormones (Kato et al.,
1989a).

Very little is known about either the specific
identity of most of these proteins or the physiological
importance of the binding. Some of them may be
involved in the transport and the metabolism of the
thyroid hormones whilst others may have their
functions affected by such binding and thus mediate
some thyroid hormone effects. In rat liver, one of the
cytosolic binding sites has been identified as the
glutathione-S-tranferase enzymes and although the
thyroid hormones are potent inhibitors of the
activities of these enzymes this may not be physio-
logically important in the euthyroid state (Ishigaki,
Abramovitz & Listowsky, 1989). The glutathione-S-
transferase enzymes are known to bind many
different lipophilic compounds (Mannervik, 1985).
That much of thyroid hormone binding to proteins
involves hydrophobic interactions is illustrated by
the fact that fatty acids are capable of competitively
inhibiting binding both to plasma proteins (e.g. Lim
et al., 1988) and to the nucleus (Wiersinga, Chopra
& Teco, 1988; Inoue et al., 1989; van der Klis,
Wiersinga & de Vijlder, 1989).

Amphipathic molecules diffuse through hepatic
cytoplasm relatively slowly. Estimation of the in-
tracellular transport rate of T3 suggests a rate of
approximately 3¬10−) cm# s−" (Luxon & Weisinger,
1992). This is approximately the same rate as that
measured for the lateral diffusion of T3 in membrane
bilayers (Lai & Cheng, 1982, 1984) and is also
typical of aqueous diffusion of either amphipathic or

protein-bound molecules. The measured rate for a
saturated fatty acid analogue is approximately
0.4¬10−) cm# s−" (Weisinger, 1996).

Intracellular T4 and T3 undergo various meta-
bolic transformations. Knowledge of these metabolic
transformations and their relative importance in
different tissues has exploded over the last two
decades and is reviewed in detail elsewhere (see
Hennemann, 1986; Kohrle, Brabant & Hesch, 1987;
Berry & Larsen, 1992; Leonard & Koehrle, 1996;
St. Germain & Galton, 1997). Most is known about
the various deiodinative pathways which are re-
sponsible for approximately 80% of the daily T4
breakdown in humans with non-deiodinative path-
ways (conjugation, deamination and decarboxyl-
ation as well as oxidative degradation) responsible
for the remaining 20% (Burger, 1986). The non-
deiodinative pathways may be responsible for up to
approximately 56% of T3 metabolism in humans
(Burger, 1986). The pathways of thyroid hormone
deiodination are shown in Fig. 6.

Monodeiodination of T4 results in the removal of
iodine from either the outer (phenolic) ring or inner
(tyrosyl) ring and produces T3 or rT3, respectively.
These two molecules can be further deiodinated to
three types of diiodothyronines (3,5-T2, 3,3«-T2 or
3«,5«-T2), which in turn can be deiodinated to form
two monoiodothyronines (3-T1 or 3«-T1), which can
be converted to the non-iodinated thyronine (see
Fig. 6). There are three separate types of deiodinases,
initially differentiated by kinetics and patterns of
inhibition etc., they can now be identified by their
cDNAs. They have been called type I, type II and
type III, and more recently D1, D2 and D3 (St
Germain & Galton, 1997). All three appear to have
a selenocysteine residue at the active site of the
enzyme, with selenium being very important in
determining catalytic efficiency (Berry & Larsen,
1992). All require cytosolic thiols for their activity
and they possess both different affinities for substrates
and have different relative affinities for the range of
iodothyronines. All three deiodinase enzymes are
membrane-bound enzymes located mainly in the
microsomal fraction of tissue homogenates suggest-
ing an endoplasmic reticulum and}or plasma mem-
brane location.

D1 is probably found in all tissues but has
especially high activity in liver, kidney, thyroid
tissue and the central nervous system. In kidney, D1
is found on the basolateral plasma membrane of
proximal convoluted tubule cells, whilst in the liver
it is located on the endoplasmic reticulum. It is
capable of both outer- and inner-ring deiodination
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and in many animals is inhibited by the thyroid
inhibitor propylthiouracil (PTU). A PTU-insen-
sitive D1 deiodinase has recently been described for
a teleost fish species (Sanders et al., 1997).

D2 has been found in the central nervous system,
brown adipose tissue, anterior pituitary and placenta
and is capable of outer-ring deiodination. It has a
higher affinity for T4 than does D1, and is not
inhibited by PTU. D2 is located on the plasma
membrane in the cerebral cortex. In situ hybridiz-
ation histochemistry in the rat hypothalamus and
pituitary shows that D2 mRNA is not evenly
distributed but is heavily concentrated in tanycytes,
which are glial cells that reside in the floor and
lateral walls of the third ventricle having long
cytoplasmic processes that extend into the adjacent
neuropil of the medial hypothalamus and median
eminence where they are intimately associated with
axon terminals and blood vessels (Tu et al., 1997). In
the neonatal rat brain, the D2 deiodinase is primarily
expressed in glial cells, rather than neurones
(Guadano-Ferraz et al., 1997). In the adult rat
brain, the choroid plexus lacks deiodinase activity
(Southwell et al., 1993).

D3 is found in the central nervous system and the
placenta and carries out inner-ring deiodination. It
is also not inhibited by PTU. The D3 isolated from

human placenta has been shown to have an essential
requirement of phospholipids for activity (Santini et
al., 1992).

All three deiodinases are evolutionarily quite old:
cDNAs have been isolated for all three types from
various mammalian, avian, amphibian and fish
species and an evolutionary tree determined (Fig. 7).
The separation of the three deiodinase enzymes
predates the separation of the ancestors of extant
vertebrates. The deiodinases are related to each
other and their relative tissue distribution varies
between vertebrate species. It has become obvious
that these deiodinases are an integral part of the
vertebrate thyroid hormone axis. They are them-
selves influenced by thyroid status and also appear to
be important during development. The tissue dis-
tribution of the various deiodinases suggests that
they are responsible for the intracellular concen-
trations of thyroid hormones in different tissues.
Their importance in determining tissue-specific
intracellular concentrations of T4 and T3 is illus-
trated by the recent finding that in hypothyroid rats,
euthyroidism in all tissues can only be achieved by
the combined infusion of both T4 and T3 at
approximately the relative rates that both T4 and
T3 are secreted by the rat thyroid gland: 1.2 nmol
T4 and 0.23 nmol T3}100 g}day (Escobar-Morreale
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et al., 1996). The deiodinases are also involved in the
autoregulation of T3 at the cellular level during
periods of altered plasma concentrations of thyroid
hormones, especially in the brain (Dratman et al.,
1983; St. Germain & Galton, 1997).

The presence of intracellular deiodinases results in
the fact that most of the body’s T3 is produced by
deiodination of T4. It is estimated that, in the rat,
approximately 55% of the circulating T3 comes
from the thyroid gland, with a significant amount of
this being produced by the intrathyroidal deiodin-
ation of T4 by the thyroid’s own D1 deiodinase
(Chanoine et al., 1993a). The remainder of the
circulating T3 comes predominantly from the liver
and kidney. Whereas dietary selenium deficiency in
the rat results in a dramatic decline in both liver
selenium content and liver D1 deiodinase activity,
the decline in thyroid selenium content is modest
and thyroid D1 deiodinase actually increases in
activity (Chanoine et al., 1993a).

The relative importance of T3 derived from local
cellular deiodination for the T3 content of tissues
varies from 2–4% in lung and skeletal muscle to
65% in cerebral cortex (see Fig. 5).

Deiodination is also responsible for the other
iodothyronines found in vertebrates. In human
serum, total rT3 is approximately 600 p, the three
T2s are 55–85 p, and T1 is approximately 60 p

(Chopra, 1996). The total serum concentrations of
Tetrac and Triac (the deaminated products of T4
and T3) are 7.2 n and 2.8 n respectively whilst
the sulphated conjugates of T4 and T3 are, re-
spectively, approximately 20 p and approximately
75 p (Chopra, 1996). The free concentrations of
iodothyronines in adult human serum (measured by

ultrafiltration) are 30 p T4, 4.8 p T3, 0.6 p rT3,
0.4 p 3,3«-T2 and 0.8 p 3«,5«-T2 (Faber et al.,
1984). We know very little of the concentration of
these iodothyronines in other vertebrates.

The iodothyronines produced from T4 and T3 are
less lipophilic than either T4 or T3. Information
regarding their relative hydrophobicity can be
garnered from their partitioning between the eryth-
rocyte cytoplasm and membrane. In human eryth-
rocyte ghosts, the following percentages of iodothyro-
nines partition into the membrane; 60 % for T3,
34% for T4, 23% for 3,3«-T2, 16% for rT3 and 3%
for 3«,5«-T2, with these values being the same in
hypo- and hyperthyroidism (Bregengaard et al.,
1989). The order of these iodothyronines is similar to
their expected hydrophobicity at physiological pH,
when both the lipophilicity of the iodine (the more
iodine atoms the more hydrophobic the molecule)
together with the degree of ionization of the phenolic
OH group (the more iodines on the phenolic ring the
less hydrophobic the molecule) are taken into
account. The calculated phospholipid:cytoplasm
partition ratios (assuming the cell membrane is 1%
of total cell volume) for T3, T4, 3,3«-T2, rT3 and
3«,5«-T2 are approximately 150, 50, 30, 20 and 3,
respectively. These values are likely underestimates
because of the seven washes of the ‘ghosts ’ carried
out before measurement (Bregengaard et al., 1989).

In normal euthyroid humans (70 kg body mass),
the production rates of the iodothyronines are
estimated to be 130 nmol day−" for T4, 48 nmol
day−" for T3, 60 nmol day−" for rT3, 50 nmol day−"

for 3,3«-T2, 21 nmol day−" for 3«,5«-T2, 7 nmol day−"

for 3,5-T2 and 30 nmol day−" for 3«-T1 (Chopra,
1996). The deamination products of T4 and T3 are
produced at only 1.8 and 5.8 nmol day−" respect-
ively, whilst 10 nmol day−" is the production rate of
the T3 sulphate conjugate (Chopra, 1996).

In a study of the turnover of six iodothyronines
(T4, T3, rT3, 3,3«-T2, 3«5«-T2 and 3«T1) in the
euthyroid rat, DiStefano & Feng (1988) found the
distribution of all six iodothyronines could best be
characterized by three pools (in increasing size) ; a
plasma pool, a rapidly exchanging pool and a slowly
exchanging pool. The respective pool sizes for T4
(as% of total pool size) were approximately 25, 18,
and 57, whilst for T3 they were 2, 24 and 74. They
were similar for the other four iodothyronines, being
approximately 3–9, 8–22 and 60–90% of total pool
size for the plasma, rapidly exchanging and slowly
exchanging pools, respectively. The precise identity
of these two non-plasma pools is not known but there
appear to be at least two possibilities ; they could
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reflect the tissue distribution of the thyroid hormone
uptake mechanisms into two groups or they could
represent two physical compartments, respectively,
an aqueous non-membrane compartment and a
lipophilic membrane compartment. The fact that
the slowly exchanging pools are the major sites of T4
monodeiodination suggests the second scenario.

In the rat, faecal excretion accounts for 24% of
T4, 30% of T3, and 6% of T1 turnover but only
1–3% of disposal of rT3 and the T2s. The remaining
portion of each iodothyronine was completely and
irreversibly metabolised. The kinetic variables for all
the iodothyronines except T4 and T3 were similar,
suggesting that similar mechanisms are responsible
for their transport, metabolism and distribution.
The production rates (per 100 g body mass) are
approximately 1 nmol T4 day−", approximately 0.25
nmol T3 day−" and 0.13–0.84 nmol rT3 day−" (Di-
Stefano & Feng, 1988).

Expressed per 100 g body mass, the human
production rate is 0.19 nmol T4 day−" and 0.07
nmol T3 day−". Both these rates are 20–25% of the
respective production rates measured for the rat and
illustrate the body size versus metabolism relationship
in mammals (see Kleiber, 1961). The basal meta-
bolic rate (BMR) of mammals is proportional to
body mass to the 0.73 power. A recent compilation
of T4 and T3 utilization rates by euthyroid mammals
(which for T4 equals the hormonal production rate)
has shown that these rates scale to body mass to the
0.74 and 0.81 power, respectively (Tomasi, 1991).
Thus in mammals there is a correlation between the
BMR and the turnover of T4 (and T4 secretion from
the thyroid). But what is cause and what is effect? Is
the difference in BMR due to the difference in T4
secretion rate or is the T4 secretion rate due to the
difference in BMR? Because the hypothalamic}
anterior pituitary}thyroid axis is organized to main-
tain a constant plasma T4 concentration it is possible
that the thyroidal T4 secretion rate varies with the
0.74 power of body mass because the metabolic
disposal of T4 is related to the overall metabolic rate
of the mammal (which is proportional to the 0.73
power of body mass). Insight can be gained from
Fig. 2. If thyroidal T4 secretion is the ‘cause’ of the
body-mass-related change in BMR then we might
expect that plasma concentrations of free thyroid
hormones would be greater in smaller mammals
because of their greater mass-specific metabolic rate,
since presumably the regulatory information ‘seen’
by the cells is the free hormone concentration. There
is no such allometric trend in free hormone levels in
mammals. Thus, a reasonable conclusion is that the

variation in BMR is more likely the ‘cause’ of the
observed variation in T4 secretion rates in mammals
rather than vice versa. This does not preclude the fact
that thyroid status (which is related to the con-
centration of the thyroid hormones rather than their
turnover) influences the metabolic rate of mammals
specifically, and vertebrates in general.

It was originally thought that the metabolism
(especially deiodination) of thyroid hormones was
involved in the exertion of thyroid hormone effects ;
however, because of the dominance of the nuclear
receptor paradigm as the only accepted mode of
thyroid hormone action, this idea has not received
much attention. Early work (Oppenheimer et al.,
1971) that is cited as evidence for a dissociation
between hormonal deiodination and hormonal ac-
tion is not valid if these hormones act at more than
one site in the cell. The phenobarbital-induced
increase in T4 deiodination used by the above study
is due to an increased amount of microsomal
membrane per cell and would likely result in a
decreased T4 availability for other sites in the cell.
Thus, if T4 acts at multiple sites in the cell, as I will
argue later, we would expect a significant decreased
effect of T4 at these other sites also. This is exactly
what was observed by Oppenheimer et al. (1971);
the two effects measured were resting oxygen
consumption and the activity of the mitochondrial
enzyme, glycerolphosphate dehydrogenase. If there
are multiple sites of action in the cell, the possibility
that deiodination is involved in some thyroid
hormone effects should remain open.

In humans, low-energy diets lead to changes in
both deiodinative and non-deiodinative pathways
with consequent changes in plasma iodothyronine
levels. Serum levels of free T4, total 3,3«-T2 and
3«,5«-T2 are unaffected, whilst serum free T3 and
total rT3 concentrations are reduced and serum
total 3,5-T2 concentrations are increased with a low-
energy diet. There is a decrease in the overall plasma
disposal rate, but no change in the percentage of T3
metabolized by inner and outer ring monodeiodin-
ation. For rT3 there is a large decrease in outer ring
deiodination, a small increase in inner ring deiodin-
ation and a large increase in non-deiodinative
metabolism with a low-energy diet (Burger et al.,
1987). That dietary-induced alterations in deiodin-
ases can lead to complex alterations in the thyroid
axis is illustrated by the finding that fasting leads to
an increase in D2 deiodinase activity in the rat
hypothalamus (Diano et al., 1998). In young pigs,
low energy intake results in lowered serum T4 and
T3 concentrations but low ambient temperature has
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no effect on serum hormone levels. However, whilst
low temperature results in a decreased fractional
turnover of T4 and T3, energy intake has no effect
(Macari et al., 1983).

Variations in the metabolism of thyroid hormones
have also been observed during non-thyroidal illness
in humans with the degree of thyroid hormone
disturbance being correlated with disease severity.
Commonly during such illnesses, serum T3 levels are
lowered and sometimes T4 levels and TSH levels are
reduced as well (McIver & Gorman, 1997) and
serum 3,5-T2 is elevated (Pinna et al., 1997). In some
illnesses, there is also interference with plasma-
protein binding as well as cellular uptake of thyroid
hormones (Lim, Stockigt & Hennemann, 1995).

III. EFFECTS OF THYROID HORMONES

(1) When studying the effects of thyroid
hormones

The first question is which thyroid hormone to use.
It is a common assumption in the literature that T3
is the ‘active ’ thyroid hormone and that T4 is only
a prohormone. It is not uncommon to see T4
referred to as the ‘ inactive ’ hormone. Whilst T3 is
more active on a ‘per mole’ basis in many situations,
this does not mean T4 is ‘ inactive ’. Indeed, T4 is the
predominant secretion by the thyroid gland and a
case can be made that T4 is the more physiologically
relevant hormone for in vivo studies, as it allows the
body’s cells to perform any appropriate deiodina-
tions. T4 is an active hormone in its own right. T4
has been reported to affect directly the expression of
thyroid-hormone-sensitive genes (Bogazzi et al.,
1997).

T4 also can have effects separate from T3. For
some effects, T4 has been shown to be two orders of
magnitude more potent than T3 (Leonard, Siegrist-
Kaiser & Zuckerman, 1990; Farwell, Tranter &
Leonard, 1995). Similarly, studies on birds show
that T3 cannot substitute for T4 regarding re-
productive timing (Pant & Chandola-Saklani, 1995;
Reinert & Wilson, 1997). The use of T3 rather than
T4 may be misguided and based upon an assumption
(T4 is only a prohormone) that is not valid in many
situations.

The importance of taking into account both
cellular uptake mechanisms and cellular deiodinase
systems is illustrated by the recent finding that, in
the thyroidectomized rat, normal euthyroid intra-
cellular contents of T4 and T3 were only achieved
when both T4 and T3 were infused at the rates they

are reported to be secreted from the thyroid gland
(Escobar-Morreale et al., 1996).

In a similar vein, other iodothyronines have also
been shown to have significant effects. For example,
rT3 often regarded as solely an ‘ inactivated’ thyroid
hormone, is sometimes more potent than T3 (e.g.
Leonard et al., 1990; Farwell et al., 1995). It has also
been shown that 3,5-T2 is an ‘active ’ thyroid
hormone with respect to the calorigenic action of the
thyroid hormones (Horst, Rokos & Seitz, 1989).

However, because of the common practice of
using only T3 when studying thyroid hormone
effects both in vitro and in vivo much of the remainder
of this review will consider the effects of thyroid
hormones that have predominantly been measured
as T3 effects. It is the opinion of this reviewer that
there are four iodothyronines that have significant
but not identical biological activities and these are
T4, T3, rT3 and 3,5-T2 (see Fig. 1).

The other problem that plagues consideration of
literature on thyroid hormone action is that of
‘dose ’. As cited above, the T3 production rate for
the euthyroid rat is approximately 0.25 nmol}100 g}
day (approximately 0.16 µg T3}100 g}day). It is
common practice for considerably larger doses to be
used (I also plead guilty in this respect). For
example, 200 µg T3}100 g is sometimes used and
justified as being ‘receptor saturating’. This is more
than 1000 times greater than the replacement dose of
T3. Six hours after the intraperitoneal injection of
half this amount in the rat, the plasma T3
concentration is 3 µ (Hartong et al., 1987). It is not
unreasonable to expect that for a significant period
of time after the injection of such doses, the plasma
T3 concentration is three orders of magnitude above
normal euthyroid levels. Such high doses (sometimes
in the µ range) are also used in in vitro studies. Since
free hormone concentrations for a wide variety of
vertebrate species are in the p range (Fig. 2), I have
had to assume the results of many studies to be
relevant but they may instead turn out to be
physiologically unimportant when reexamined at
more realistic concentrations.

It is also common practice to give daily injections
of thyroid hormones to induce a hyperthyroid
condition. Because a single daily bolus will result in
a transient peak in plasma concentration it is
assumed a large dose is necessary to ensure a high
average concentration between the daily injections.
In other words, it is assumed that the same amount
given as a single daily injection will be less effective
than if it was given as smaller multiple injections or
by constant infusion. At least in one case, the
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opposite is true. The inhibition of TSH secretion by
the rat anterior pituitary was substantially more
sensitive to the same daily dose of T3 when it was
given as twice daily injections than when it was given
by constant infusion (Connors & Hedge, 1980). The
pulsatile nature of daily injections of T4 or T3 may
give misleading information when correlating hor-
mone effects with plasma hormone concentrations as
standard practice is often to measure plasma
hormone concentration 24 h after the last injection,
that is at the trough of the induced large daily cycle
in hormone concentration. This point is illustrated
by one of the few studies to determine the average
daily plasma hormone level following thyroid hor-
mone injection (John-Alder, 1983). In this study,
lizards were given daily T4 injections (20 µg}100 g
body mass). Whilst control lizards had a total
plasma T4 concentration of 3.2 p, the injected
animals had a 24 h post-injection concentration of
12.9 p, while the 24 h average T4 level was 122 p.
For this reason, it is more desirable to use constant
infusion of hormone if at all possible (for example by
osmotic minipumps, see Escobar del Rey et al.,
1989), unless one is examining the time course of a
particular effect following a pulse of hormone.

Another problem of interpretation of results
following thyroid hormone injections is consideration
of how the treatment alters plasma thyroid hormone
levels. Generally, total concentrations of the hor-
mone are measured and it is often not known how
the physiologically more relevant free hormone levels
are changed by the treatment.

Because of these problems, the hypothyroid-
euthyroid comparison is probably more reliable in
examining the physiological effects of the thyroid
hormones. However, there are also considerations
with this comparison. One is that some of the
observed effects may be a secondary response rather
than a primary effect (of course, this problem is also
present in the euthyroid-hyperthyroid comparison).
One of the best cases of this problem is the secondary
effects of low growth hormone secretion in hypothy-
roidism and the fact that observed effects of
hypothyroidism may be due to growth hormone
deficiency rather than thyroid hormone deficiency.
Classical hormonal replacement following induced
hypothyroidism can resolve some of these problems
but once again dose is important.

Cell culture studies can avoid many of these
pitfalls but the results of such studies should be
verified in vivo, especially since many cell lines are
originally derived from tumours and thus may not
behave normally (e.g. Sorimachi & Robbins, 1977).

In a similar vein, many cell culture media whilst
being adequate for maintaining a living cell, are not
necessarily normal and can thus result in non-
physiological conditions. This is especially the case
with respect to fatty acid composition of the media
and its consequent influence on the membrane lipid
composition of some cell cultures.

There is a large reservoir of thyroid hormones in
the body, both in the thyroid gland itself and also
bound to the plasma proteins. It appears to be very
difficult to completely deplete the body of thyroid
hormones. Although the plasma T4 and T3 levels
decrease relatively rapidly, measurable amounts of
the hormones are still present in the tissues of the rat
for some time following thyroidectomy (Obregon et
al., 1981). In addition, there is evidence that there
may be extrathyroidal synthesis of thyroid hormones
in the rat following thyroidectomy (Evans et al.,
1966).

There are some hormonal effects that can be
observed in vitro but not in vivo. There are two
possible reasons for this. The first is that it may be
possible to measure particular parameters in vitro
that are impossible to measure in vivo. The second is
that the observed effect may be due to some
condition that is found in vitro but not in vivo. Such
effects, whilst they may give important insight,
might have little relevance to understanding what is
happening in the body. However, we should also
remind ourselves that much of our knowledge of
biochemistry and cell function comes from in vitro
studies.

Finally, it is worthwhile to remember that both
hypothyroidism and hyperthyroidism can be re-
garded as pathological conditions. Our treatments
are artifices we create in order to understand the
normal euthyroid state (or of course to understand
the pathological state). In the normal (i.e. euthy-
roid) adult vertebrate, thyroid hormones, and
especially their free concentrations, appear generally
to remain relatively constant. In the normal state,
the thyroid hormone system has both a large
reservoir of hormone stored in the gland (it is
relatively unusual in this respect) and a large
reservoir of easily accessible protein-bound hormone
in the blood. Thus, the concept that thyroid
hormones regulate a process that normally varies,
whilst thyroid hormone levels themselves are rela-
tively constant, suggests that the hormones are not
the most important regulator in such situations.

My purpose in the remainder of this review is to
attempt to understand the myriad of reported
thyroid hormone effects within a few underlying
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basic concepts. I have grouped the various effects
into categories for the sake of convenience and will
first discuss reported effects in adult vertebrates
before considering the role of the thyroid in
vertebrate development.

(2) Hypotheses regarding thyroid hormone
action

Because of the dogmatic nature of the oft-repeated
statement that thyroid hormones act via nuclear
receptors, it is difficult to convince many people that
they may not do so. Generally, only some very
specific effects have been associated with a non-
genomic mode of action. Others have previously
questioned the nuclear receptor pathway as the sole
mode of action of thyroid hormones (e.g. Segal,
1989b, 1990b). A recent review of non-genomic
actions of thyroid hormones is that of Davis & Davis
(1996). Such questioning of a single genomic mode
of action for a hormone is not unique for thyroid
hormones, as non-genomic actions recently have
been proposed for reproductive hormones (Revelli,
Massobrio & Tesarik, 1998), and other steroid
hormones including aldosterone (Wehling, 1994) as
well as for some glucocorticoid effects (Buttgereit,
Wehling & Burmester, 1998).

As stated above, there exists evidence that not all
thyroid hormone effects are initiated via binding of
thyroid hormones to nuclear receptors. Some extra-
nuclear effects that have been reported have been
observed at supra-physiological concentrations of
hormone (as indeed are many nuclear-mediated
effects) but many have been observed with physio-
logical levels of hormone. Some of the most con-
vincing evidence is that which demonstrates in vitro
thyroid hormone effects on cells that have no
nucleus, that is, on mammalian red blood cells. In
human erythrocytes, membrane Ca#+-ATPase ac-
tivity is stimulated in vitro by physiological concen-
trations of thyroid hormone (Davis, Davis & Blas,
1983) and this has in vivo relevance in that
erythrocytes from hyperthyroid and hypothyroid
humans have, respectively, increased and decreased
enzyme activities (Dube et al., 1986). Lawrence,
Schoenl & Davis (1989) have shown that both T4
and T3 (0.1 n) stimulated phospholipid-dependent
protein kinase activity in rabbit erythrocytes in vitro.

There is also evidence that in nucleated cells some
thyroid hormone effects cannot be initiated at the
level of the nucleus. A very convincing aspect of this
evidence is the time course of such effects at
physiological hormone concentrations. For example,

1 n T3 induces an influx of Ca#+ into rat
thymocytes that is evident within 15 s of hormone
administration (Segal & Ingbar 1984). Similarly,
application of T3 to GH3 cells in culture (2–5 nl of
0.1 n T3) resulted in an increase in membrane
resistance and a hyperpolarization of the membrane
potential. These effects were evident within 1 min of
application, and within a few minutes spontaneously
firing cells became silent (du Pont & Israel, 1987).
These are a few examples of effects which cannot be
mediated via nuclear receptors.

It is the thesis of the present review that many
thyroid hormone effects can be explained by an
initial action on cell membranes, not just the plasma
membrane but also the other membranes within the
cell. I will examine many thyroid hormone effects to
see if they can be explained by such an initial site of
action, rather than the commonly proposed nuclear-
receptor-mediated mode. First, I should state the
hypothesis explicitly and say something about
membranes. Several years ago I proposed a similar
but more rudimentary thesis for such a site of thyroid
hormone action (Hulbert, 1978). At that time, I was
unaware of an earlier and different proposal for a
membrane site of action emphasizing the importance
of the iodine atoms of the thyroid hormones
(Gruenstein & Wynn, 1970). This earlier proposal
was based around many effects of thyroid hormones
that are present at supraphysiological levels of
hormone and thus may not be relevant to the normal
situation. Dratman (1974) proposed that some
effects of T4 stemmed from its similarity to (and
origin from) tyrosine residues and this proposal has
been recently reviewed (Dratman & Gordon, 1996).
Several other authors have also argued for a
perspective of thyroid hormone action that is broader
than the nuclear-receptor hypothesis (e.g. Sterling,
1979; Muller & Seitz, 1984). Hoch (1988) has
presented an extensive review of thyroid hormones
and lipids which has also argued that many thyroid
hormone effects can be explained as a consequence
of an effect on membrane fatty acids, although he
suggests such membrane changes are due to a
nuclear-receptor-mediated action.

The proposal is that the thyroid hormones act in
more than one way. One of the ways in which they
operate is that they associate with the hydrophobic
interior of membrane systems and change the
physical behaviour of the lipid component of the
membrane. As a consequence of this, the phos-
pholipid and fatty acyl composition of the membrane
is altered by normal cellular mechanisms and these
changes further alter the physical behaviour of the
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lipid bilayer and consequently that of various
membrane proteins. For example, due to both the
initial direct effects on the bilayer and also the effects
of the subsequent fatty acyl changes, there are
changes in membrane permeability and the en-
zymatic activity of membrane-associated systems.
These changes may be increases or decreases, and
will, in some cases, alter both the distribution and
rate of transfer of information between various
membrane-limited cellular compartments. Several
thyroid hormone effects can be explained by such an
initial site of action, especially (but not exclusively)
the effects that are related to the stimulation of
metabolism. This proposal is unusual in that
although these effects may be mediated via the
binding to some form of ‘ specific’ receptor molecule,
they are more likely to come about via a less-
conventional non-specific mode of action, i.e. not
requiring a ‘specific’ receptor in the normal sense of
the word.

Before analyzing the plethora of thyroid hormone
effects, I will briefly review both the nuclear receptor
mode of action and following that, some aspects of
membrane lipids and their function, as well as what
we know of thyroid hormone effects on membrane
lipid behaviour and composition.

(a) Nuclear receptors and thyroid response elements

In 1972, specific nuclear binding sites, with limited
capacity and high affinity for T3, were found in rat
liver and kidney (Oppenheimer et al., 1972). Fol-
lowing this, similar nuclear binding sites were
described for a variety of other tissues as well as in
various cell cultures. Although they were not isolated
and purified, the physico-chemical properties and
binding characteristics of these nuclear receptors
were defined (for early reviews see DeGroot et al.,
1978; Oppenheimer & Samuels, 1983; Oppen-
heimer et al., 1987; Samuels et al., 1988).

The thyroid nuclear receptor was similar in all
tissues and species examined (Oppenheimer et al.,
1987). It was a non-histone protein and was most
studied in rat liver and in pituitary tumor (GH and
GC) cell lines. In rat liver nuclei, it was 50.5 kDa in
mass, with approximately 6000 per nucleus and at
endogenous T3 levels it was estimated that approx-
imately 50% of nuclear receptors were occupied
(Oppenheimer et al., 1974). In GH1 and GC cells, it
was 54 kDa in mass, with approximately 15000 per
nucleus having an average half-life of approximately
4.5 h (Samuels et al., 1988). The receptor densities in
these pituitary tumor cell lines were approximately

twice the average found for anterior pituitary in vivo
(Oppenheimer et al., 1974) and presumably reflected
the specific type of anterior pituitary cell from which
the cell line was derived. In the rat, receptor density
varied between tissues, ranging from approximately
20 per nucleus in the testes to approximately 8000
per average anterior pituitary cell. In GH1 cell
cultures, the number of receptors was inversely
related to T3 levels (Samuels, Stanley & Shapiro,
1977) whereas in the intact animal similar changes
were not observed (Oppenheimer, Schwartz &
Surks, 1975; Spindler et al., 1975).

In 1986, partly by accident, the genes for these
nuclear proteins were discovered separately by two
groups (Sap et al., 1986; Weinberger et al., 1986).
The similarity of the viral erb-A oncogene product
to the glucocorticoid nuclear receptor suggested that
the cellular equivalent of this viral erb-A gene may
code for a receptor that bound one of the steroid
hormones. However, this proved unsuccessful and it
was shown instead to bind thyroid hormones with a
similar affinity to the previously described nuclear
binding sites, showed the same analog specificities
and had a similar molecular weight. Sap et al. (1986)
had isolated the gene from a library of DNA cloned
from the chicken embryo whilst the other group
(Weinberger et al., 1986) isolated it from a human
placental cDNA library. Since then it has become
apparent that there is a superfamily of related
transcription control factors that all have both a
DNA binding region and another region that binds
either a steroid hormone (e.g. glucocorticoid, min-
eralocorticoid, progesterone, estrogen), or a vitamin
(e.g. vitamin D3 and retinoic acid) or the thyroid
hormones. Soon after the isolation of the original
genes, other cDNA sequences coding for thyroid
nuclear receptors were also isolated from rat brain
(Thompson et al., 1987), human testis (Benbrook &
Pfahl, 1987), human kidney (Nakai et al., 1988) and
two from both GH

$
cells (Lazar & Chin, 1988) and

rat liver (Murray et al., 1988). The thyroid hormone
nuclear receptors are thus members of this super-
family of receptors involved in the control of
transcription (for an early review see Evans, 1988).

There are two main types of thyroid hormone
receptors, an α and a β form. Both forms are
sometimes expressed in the same tissue, and both
forms from rat liver bound thyroid hormones with
the same affinity and spectrum of analogue binding
(Murray et al., 1988). Since the mid 1980s there has
been intense research interest in this area, much
knowledge has been gained yet the precise mech-
anism of how the system operates, although slowly
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acids. Adapted from figures in Yen & Chin (1994) and Chatterjee et al. (1997).

being unravelled, is still elusive. There are several
very good reviews to which the reader is referred for
more detailed information (Chin, 1991; Martinez &
Wahli, 1991; Lazar, 1993; Yen & Chin, 1994;
Ribeiro et al., 1995; Oppenheimer, Schwartz &
Strait, 1996; Chatterjee, Clifton-Bligh & Matthews,
1997; Zhang & Lazar, 2000). I have generally
cited these reviews for information rather than the
voluminous primary literature.

In humans, the α gene resides on chromosome 17
and the β gene on chromosome 3. Alternate
processing of the initial transcript from each gene
yields two isoforms of each receptor. Both isoforms of
the β thyroid receptor (TRβ-1 and TRβ-2) but only
one of the α receptor isoforms (TRα-1) bind thyroid
hormones. The other non-hormone-binding α iso-
form (c-erbAα-2 although sometimes also called
TRα-2) is thus not a true thyroid hormone receptor
but may be involved in thyroid hormone effects as it

binds to appropriate parts of the genome. All have
the same basic structure as other members of the
receptor superfamily which as a group are described
as ligand-dependent transcription factors. This basic
structure is illustrated in Fig. 8. The amino terminal
region of the protein is followed by the DNA-binding
domain, then a hinge region, followed by the ligand-
(i.e. hormone}vitamin) binding domain. The β
receptors differ only in their amino terminal region.
The α gene products have a shorter amino terminal
region than the β receptors and have a high degree
of amino acid homology in the DNA-binding region,
hinge region and the ligand-binding region (see Fig.
8). The carboxyl terminal region is highly conserved
in all the thyroid-hormone-binding forms and is
essential for hormone binding. The ligand-binding
region of the receptor is composed of many α helices,
and X-ray diffraction studies of crystals of the region
in TRα-1, both with and without T3 (and ana-
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logues) have revealed changes in its three-dimen-
sional structure with hormone binding (McGrath et
al., 1994; Wagner et al., 1995). The hormone is
located in a deep pocket in this protein with the
amino group of the hormone facing the outside.
Analysis of the 3-D structure suggests that the
receptor adopts different structures to fit the different
ligands (i.e. T3 analogues). The conformational
change with hormone binding is probably connected
to transcriptional activation.

The DNA-binding domain consists of an area
relatively conserved between different receptors and
it is this region that is responsible for recognizing
specific parts of the genome. In thyroid receptors, it
contains 68 residues with basic amino acids or-
ganized into two ‘finger-like ’ structures that each
contain four cysteine residues tetrahedrally co-
ordinated with a zinc atom. It is believed these ‘ zinc
fingers ’ interact with a half turn of DNA (see Evans,
1988). Also, an amino acid sequence present at the
base of the first zinc finger, known as the P box, is
important for DNA-binding specificity and serves to
divide the receptor superfamily into two groups. The
P box is identical in the thyroid hormone receptors
(TRs), retinoic acid receptors (RARs), retinoid X
receptors (RXRs), vitamin D receptor (VDR) and
the peroxisomal-proliferator-activated receptors
(PPARs). These receptors preferentially bind to the
nucleotide sequence: AGGTCA (Lazar, 1993).
Between the DNA-binding and hormone-binding
domains, in the hinge region, there is a conserved
motif of basic residues that acts as a nuclear
localization signal for nuclear pore recognition.

Within the nuclei of isolated rat hepatocytes, TRs
are separable into three compartments that are
distinguished by the conditions needed for their
isolation and thus possibly related to differences in
their DNA binding. Nucleoplasmic TRs (45%) can
be isolated with isotonic saline, some other TRs
(30%) are extracted with high salt (0.4  KCl)
concentrations, whilst the remaining TRs (25%) are
salt resistant, requiring high salt and 5 m dithio-
threitol for extraction. Pulse experiments with
hepatocytes exposed to extracellular labelled T3
showed that all were rapidly labelled with T3
(within 1 min) with no preference for any particular
compartment, that the average occupation time for
T3 on a receptor was approximately 3 mins, and
that T3 did not influence any shift in receptors
between these compartments (Pullen et al., 1994).
The sum of these receptors represented 0.2 pmol TR
mg−" DNA, which is below the normal 0.5–1.0 pmol
mg−" DNA reported for liver homogenates but is

consistent with the loss of receptors that has been
observed when isolated liver cells are cultured
without protection of sulfhydryl groups (Yamamoto
et al., 1992).

Using antibodies specific to the particular TR
isoforms (which thus interfere with their T3 bind-
ing), Schwartz, Lazar & Oppenheimer (1994) were
able to show that all three receptor types are
widespread in rat tissues. In liver, the receptor
concentrations (in pmol mg−" DNA) were 0.71, 0.17,
and 0.13 for TRβ-1, TRβ-2 and TRα-1, respectively.
The respective values for kidney TRs were 0.10, 0.04
and 0.10 pmol mg−" DNA; for heart they were 0.24,
0.10, and 0.26 pmol mg−" DNA, and for brain cortex
they were 0.19, 0.07 and 0.40 pmol mg−" DNA
(Schwartz et al., 1994). Not all cells within a tissue,
however, have TRs. For example, within the brain,
immunofluorescence studies have shown that oligo-
dendrocytes possess all three receptor isoforms in
their nuclei but that astrocytes have none (Carlson et
al., 1994). However, when astrocytes are examined
in cell culture, they do possess TRs (Carlson et al.,
1996).

The mRNA for the different TR isoforms varies
between tissues but not in relation to their respective
TR content. Between tissues the receptor}mRNA
ratio can vary by as much as 15-fold (Oppenheimer,
Schwartz & Strait, 1996).

In 1986, the year that the TR genes were
identified, it was found that thyroid hormone nuclear
receptors bound to a particular part of the promoter
regions of the human growth hormone gene and the
human placental lactogen gene (Barlow et al., 1986).
For TRs to activate transcription they must bind to
sections of DNA known as ‘ thyroid response ele-
ments ’ (TREs). The DNA-binding region of the
TRs (and some other receptors) has a P box which
recognizes the hexanucleotide AGGTCA (Umesono
& Evans, 1989).

In the early 1990s it was recognised that TRs
could bind to DNA as either monomers or dimers,
and that dimers could consist of either the same or
different TR isoforms (i.e. either homodimers or
heterodimers). It was also discovered that TRs could
form heterodimers with an accessory protein, that
augmented TR binding to the genome and was later
identified as the retinoid X receptor (RXR). It is
now appreciated that the RXR–TR dimer shows the
strongest binding to the genome. Dimerization is
mediated by at least two protein-protein interactions
between the adjacent monomers. One interaction
region is in the DNA-binding region whilst another
is a heptad towards the carboxyl end of the hormone-
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consensus TRE
half-site:

Inverted palindrome (IP)

Direct repeat (DR)

Palindrome (TREpal)

TREs Nucleotide sequence

Fig. 9. The nucleotide sequences for thyroid response
elements (TREs) involved in the binding of thyroid
nuclear receptors to the genome. Reprinted with per-
mission from Yen & Chin (1994).

binding domain of the receptor. In addition, in
dimers both receptors bind to the DNA. This has led
to the recognition that AGGTCA is thus a half-site
for binding of dimers and that TREs for dimers exists
as either a direct repeat separated by four bases
(called DR­4), an inverted palindrome (TREpal),
or an inverted palindrome separated by six bases
(IP). These TREs are shown in Fig. 9. When bound
as a RXR-TR heterodimer, the TR is bound to the
3« recognition half-site and it appears that the RXR
is not ligand sensitive, indeed the TR appears to
block the binding of ligands to RXR upon dimeriz-
ation (Glass, 1996).

Thyroid receptors are known to bind to TREs
both with and without bound thyroid hormone.
Dimers generally repress transcription of target genes
in the absence of bound hormone and activate
transcription when hormone is bound. The precise
mechanism of this transcriptional activation is not
known but it appears that in the N terminal region
there is a weak transcription activation function
(AF-1) whilst in the C terminus of the ligand-
binding domain there is a more powerful ligand-
dependent activation function (AF-2). Various ex-
periments suggest that in the absence of T3, TR-TR
homodimers or RXR-TR heterodimers are bound to
TREs and that basal transcription is inhibited by
intervening co-repressors between the receptors and
the transcription initiation complex. Upon T3
binding, TR-TR homodimers dissociate and co-
repressors are released whilst in the case of hetero-
dimers both receptors stay attached to the DNA but

co-activators replace the co-repressors. In both cases,
transcription of the target gene is commenced by
allowing the transcription initiation complex to
commence transcription (Chatterjee et al., 1997).

The response elements cited above are all positive
TREs, in that they are involved in hormone-
stimulated transcription activation. Thyroid nuclear
receptors can also exhibit ligand-dependant tran-
scription inhibition but how this occurs is poorly
understood. Such inhibition may be mediated by
TRs binding as monomers to negative TREs which
appear to be half-sites not organized in any
particular way, although TR-RXR heterodimers
may also be involved (Takeda et al., 1997).

Some mutant TRs (either natural or laboratory
created) have been shown to have a dominant
negative activity, i.e. the ability to inhibit T3-
dependent TR-mediated transcriptional activation.
In the syndrome of thyroid hormone resistance
mutant TRβ have this ability, as does a mutant
TRα-1 isolated from patients with hepatocellular
carcinoma (K. H. Lin et al., 1997), and c-erbAα-2
(Lazar, 1993). Several studies have also shown that
phosphorylation of thyroid nuclear receptors can
increase binding, dimerization and transcriptional
activity (e.g Lin, Ashizawa & Cheng, 1992; Bhat,
Ashizawa & Cheng, 1994; Sugawara et al., 1994).

The majority of experiments over the last several
years that have led to the uncovering of the
mechanism of thyroid nuclear receptor operation
outlined above, have been carried out using artif-
icially constructed systems. Often the TRs have been
expressed in bacteria, the TRE has been taken from
another source and been transiently transfected,
together with a distinct reporter gene, into a cell
culture system or combined in an in vitro system.
Sometimes the cell culture used doesn’t normally
express TRs and a particular TR gene has been
transfected into the cells. Indeed, this is sometimes
regarded as necessary in that it allows more precise
control of the experimental system. Whilst these
sophisticated techniques have been powerful in
elucidating the complex mechanisms whereby the
thyroid nuclear receptor system may work, they do
not necessarily give insight into the physiological
importance of the nuclear mode of action in
explaining normal thyroid hormone effects in the
vertebrate body. Indeed, the finding that expression
of nuclear receptors in cell culture systems sometimes
differs from the in vivo situation means that care
should be taken with interpretation and extra-
polation of results obtained from such systems.

The finding of increased levels of mRNA for a
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particular protein after changes in thyroid status is
often presented as evidence that the thyroid hor-
mones are acting via thyroid nuclear receptors
stimulating transcription. However, this may not
necessarily be so, as the level of mRNA is dependent
on its rate of production (i.e. transcription) and its
rate of disappearance. Even the finding that tran-
scription is stimulated by changes in thyroid status is
not necessarily evidence that the thyroid hormones
are acting via nuclear receptors. In some cases, an
equally valid interpretation may be that these
hormones are acting pre-transcriptionally, by in-
fluencing the rate of information flow to the nucleus
and it is this changed information flow that is
responsible for the change in the rate of transcription.
An evidential requirement for a nuclear mode of
action for a thyroid hormone effect is the dem-
onstration of a TRE for the particular gene involved.

The finding of a nuclear receptor for any
particular molecule does not exclude another mode
of action. For example, retinoic acid as well as acting
through a nuclear receptor can also have effects on
human erythrocytes, cells which lack nuclei (Smith,
Davis & Davis, 1989) and is also known to inhibit
binding of T4 to human TTR (Smith et al., 1994).

(b) Thyroid hormones and the membrane bilayer

Just as DNA has been described as an ‘eternal
molecule ’, membranes can be thought of as an
‘eternal structure ’ and are assemblies of proteins
and lipid molecules held together by non-covalent
bonds. The lipids in membranes include phos-
pholipids and glycolipids as well as cholesterol and
sterols, and at least in vertebrates, it is my assertion
that cellular membranes normally also contain
thyroid hormones. All membrane lipids are amphi-
pathic molecules.

Fatty acyl chains form the hydrophobic section of
the phospholipid molecule and the core of the
membrane bilayer. Saturated acyl chains are flexible
because of the possible rotation around the CEC
bonds that form the backbone of the acyl chain The
double bonds of unsaturated acyl chains, on the
other hand, do not allow rotation around the CFC
bond. Monounsaturates have a single C¯C unit,
whilst polyunsaturates have from two to six such
units. The majority of fatty acids in the cellular
membranes of vertebrates are between 16 and 22
carbons long and the average chain length is
generally around 18 carbons long. In this review, I
will refer to specific acyl chains using a numbering
system. Thus, stearic acid, a saturated 18 carbon

fatty acid will be called 18:0, oleic acid which is an
18 carbon monounsaturate will be referred to as
18:1, whilst docosahexanoic acid a 22 carbon poly-
unsaturate with six double bonds will be called 22:6.
In higher animals, newly synthesised fatty acids are
saturated (predominantly 16:0 and 18:0) and some
are converted to unsaturated fatty acids by de-
saturases, which are membrane-bound multi-en-
zyme complexes that consume oxygen, insert double
bonds at specific places in the fatty acyl chain and
are named accordingly. The cells of vertebrates have
∆5, ∆6, and ∆9 desaturases but lack ∆12 or ∆15
desaturases. The products of the ∆12 desaturase are
called the n-6 (or omega-6) polyunsaturates, whilst
the products of the ∆12 desaturase that have been
further processed by the ∆15 desaturase are known
as the n-3 (or omega-3) polyunsaturates. The
average membrane bilayer consists of two 18 carbon
thick monolayers. Membranes without poly-
unsaturates will have no CFC units in the middle
half of membrane bilayer whilst membranes with
only n-6 polyunsaturates will have no CFC units in
the middle third of the bilayer. It is only the n-3 acyl
chains that can contribute CFC units to the middle
portion of membranes. The unsaturated fatty acids
that vertebrates generally synthesize de novo are the
n-9 or n-7 monounsaturates which will contribute
CFC units to bilayers in two regions both approx-
imately one-quarter of the way into the bilayer from
each side.

In 1972, Singer & Nicholson proposed the ‘fluid
mosaic ’ model of membrane structure and although
it has since been modified and extended, it is still the
basis of modern thinking concerning cellular mem-
branes. Over the last three decades, it has become
apparent that the hydrophobic compartments of the
cell (i.e. its membranes) are a series of complex
microenvironments that influence many aspects of
cellular function. It has also become apparent in the
last quarter of a century that these aspects of
membrane structure are regulated, in that there are
homeostatic systems within the cell to maintain an
appropriate ‘fluidity ’ (or viscosity) of the membrane
bilayer when conditions act to change membrane
‘fluidity ’. One of the most obvious of these en-
vironmental factors is temperature but there are
several others. Following its discovery in bacteria,
this response was termed ‘homeoviscous adaptation’
(Sinensky, 1974). It is possibly one of the earliest
homeostatic responses evolved by cells and has been
shown to also be present in both plants (Thompson
& Nozawa, 1984) and animals (Cossins, Bowler &
Prosser, 1981). Although it involves a number of
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responses, this self regulation of membrane ’fluidity’
is mainly brought about by manipulation of mem-
brane fatty acyl composition, particularly the degree
of unsaturation of membrane fatty acyl chains. It
thus involves the lipid desaturases. In a wide variety
of eukaryotic cells, it has been shown that the
activity of the lipid desaturases is inversely affected
by the fluidity of the membrane with which they are
associated and it has been suggested that this
relationship is one of the mechanisms of the
regulation of membrane fluidity (Brenner, 1981;
Kates, Pugh & Ferrante, 1984; Thompson &
Nozawa, 1984). Accordingly, a decrease in mem-
brane fluidity (or an increase in membrane rigidity),
whether it be caused by a decrease in temperature,
or the increased membrane incorporation of satu-
rated fatty acids or of sterols (e.g. Leikin & Brenner,
1989) or by other means (such as the experimental
incorporation of unnatural ‘ rigidizers ’ etc.) will
result in stimulation of the desaturase complexes and
a consequent increase in the degree of unsaturation
of membrane fatty acyl chains. As in any homeostatic
system the converse is also true. This is presumably
why although changes in the fatty acyl composition
of the diet may influence the relative occurrence of
individual acyl chains in membrane lipids it gen-
erally does not significantly affect the overall degree
of unsaturation of the membranes (e.g. Withers &
Hulbert, 1987). Diet can, however, have very
significant effects by influencing the balance between
the different types of polyunsaturates in membranes
(e.g. Pan, Hulbert & Storlien, 1994).

This process is not a perfect homeostatic response
and degrees of homeostasis have been observed. For
example the sarcoplasmic reticulum exhibits a lack
of ‘homeoviscous adaptation’ (Cossins, Christiansen
& Prosser, 1978). Although such responses consist
predominantly of changes in acyl chain composition
they also include other alterations such as changes in
the ratio of different phospholipid classes. The
mechanisms involved include de novo synthesis of
phospholipids and direct desaturation of membrane
acyl chains but predominantly the membrane
remodelling involves a cycle of deacylation}
reacylation of membrane phospholipids which is
accomplished by the combined action of two types of
enzymes: phospholipases and lysophospholipid acyl-
transferases (Hazel & Williams, 1990). Indeed,
although there are hundreds of different molecular
species of phospholipids in membranes, in rat
hepatocytes only four molecular phospholipid species
are synthesised de novo and the diversity of membrane
phospholipid species is due to the remodelling of

these four initial phospholipid species by deacyl-
ation}reacylation processes (Schmid, Deli &
Schmid, 1995).

I have spent some time describing membrane
lipids and have concentrated on the role of acyl
chains because it is important in the consideration of
my argument concerning the effects of thyroid
hormones. Our understanding of the roles of mem-
brane acyl composition in influencing many different
membrane-associated processes is increasing and has
been reviewed elsewhere by others (Brenner, 1984;
Stubbs & Smith, 1984; Spector & Yorek, 1985;
Bernardier, 1988; Murphy, 1990). Because of the
need to concentrate on the role of the fatty acyl
residues in membrane function in the present review,
discussion of membrane bilayer function has by
necessity been simplified, omitting for example,
consideration of such things as the asymmetry of
exofacial and cytofacial leaflets of membranes, as
well as important considerations of phospholipid
head groups. The potential importance of membrane
acyl composition and especially the degree of
polyunsaturation of membrane bilayers on the
cellular metabolic activity of vertebrates has been
recently discussed by Hulbert & Else (1999, 2000).

Because of the amphipathic nature of the thyroid
hormone molecules that have a non-ionized phenolic
®OH, they will be found in the membrane bilayer
in high concentrations and oriented with the
phenolic end of the molecule towards the centre of
the bilayer. Would their presence affect the physical
behaviour of membrane lipids? Dickson et al. (1987)
have shown that both T4 and T3 quench the light
emitted by fluorescent groups inserted in artificial
phosphatidylcholine bilayers. The pH charac-
teristics of this quenching suggest that T4 and T3
molecules with the non-ionized phenolic ®OH are
responsible for this quenching. Farias et al. (1995)
have also measured the effects of T3 and T4 on
liposome bilayers and have shown that both thyroid
hormones ‘rigidify ’ membranes in the liquid-crys-
talline phase, that - and -isomers have the same
effect but that T3 differs from T4 in that when
membrane bilayers are in a gel state (i.e. below their
phase transition temperature) T3 is also capable of
‘fluidizing’ the liposomal membrane. In this respect,
T3 is similar to cholesterol. The presence of
cholesterol in liposome bilayers also influences the
effects of both T4 and T3. In the absence of
cholesterol, T3 and T4 were incorporated into the
liposome at respectively 9 and 6 nmol of hormone
per 100 nmol of phospholipid. As cholesterol content
of liposomes increases a decreased amount of both
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T4 and T3 is incorporated into the liposome
membrane. The influence of both T3 and T4 on
membrane fluidity and membrane permeability
(both assessed by fluorescent probes) is also de-
pendent on the cholesterol content of the liposomal
membrane (Chehin et al., 1995). Although in this
study the T4 and T3 concentrations used for
measurement of both leakage and fluorescence
polarization were in the µM range, and are thus
supraphysiological, the incorporation measurements
were performed at physiological thyroid hormone
concentrations. Incorporation of 50% mol chol-
esterol into liposome membranes decreased T3
incorporation by 76% and T4 incorporation by 99
% compared to cholesterol-free liposomes (Chehin et
al., 1995).

An early and significant study is that by Schroeder
(1982) who showed that T3 in vitro resulted in
rigidification of the rat liver plasma membrane
bilayer. These results, because they occurred im-
mediately cannot be due to other thyroid-induced
changes in membrane lipid composition. They
occurred at physiological concentrations and also
occurred in a natural membrane. They were
measured using two separate membrane fluoro-
phores and the results show the same response as
measured by others on artificial membranes (unfor-
tunately often at higher T3 concentrations). It is
tempting to speculate that thyroid hormones ‘rigid-
ify ’ the membrane bilayer because the large elec-
tronegative iodine atoms in the thyroid hormones
induce increased van der Waals forces in the
surrounding acyl chains and thereby diminish their
mobilities. Liver plasma membranes isolated from
hyperthyroid rats (T3 injections), euthyroid controls
and hypothyroid rats had a similar fluidity in the
absence of Ca#+ ions (Schroeder, 1982).

In an in vivo context, Beleznai et al. (1989) have
shown that both liver mitochondrial membranes and
mitoplasts from hypothyroid rats are less rigid,
whilst those from hyperthyroid rats are more rigid
than those from euthyroid rats. Their use of both
DPH (diphenylhexa-1,3,5-triene) and TMA-DPH
(1-[4-trimethyl-aminophenyl-phenyl]-6-phenyl-
hexa-1,3,5-triene) which, respectively, associate
with the inner hydrophobic core and the outer
area of membranes showed that both parts of the
bilayer were similarly affected. Similarly, Parmar et
al. (1995) have shown that liver mitochondria from
thyroidectomized rats have less rigid membranes
than euthyroid controls and that replacement injec-
tions of T4, at physiological levels, resulted in a
rigidification of these mitochondrial membranes.

Brasitus & Dudeja (1988) have shown that the
apical plasma membranes of rat colon are more fluid
(less rigid) in hypothyroid rats than in euthyroid
controls. T4 injections into rabbits resulted in muscle
plasma membranes that were more rigid than those
from control rabbits (Pilarski et al., 1991).

Both T4 and T3 injections into euthyroid rats are
reported to have an opposite effect on brain
mitochondria in that they resulted in an increase in
fluidity (a decrease in rigidity) ; T4 was slightly more
potent at the concentrations used than was T3
(Bangur, Howland & Katyare, 1995). When the
fluidity of different membrane fractions from the
brain of hypothyroid rats was compared with
euthyroid controls a significant increase in micro-
viscosity was measured in the mitochondrial fraction
but not in the microsomal, synaptosomal or myelin
fraction (Tacconi et al., 1991).

In these in vivo studies cited on hyperthyroid or
hypothyroid mammals, there were also significant
thyroid-status-related changes in membrane lipid
composition (including phospholipid headgroup
composition, cholesterol content, and fatty acyl
composition). Many of these changes themselves
influence membrane fluidity and thus it is not always
possible to relate the reported in vivo changes in
membrane fluidity}rigidity solely to direct effects of
the thyroid hormones.

Can thyroid-hormone-induced changes in mem-
brane fluidity}rigidity affect the behaviour of pro-
teins located in the lipid bilayer? The Hill coefficient
of a reaction can be used to measure small changes
in enzyme-membrane interactions. Physiological
concentrations of T3 in vitro have been shown to
change significantly the Hill coefficient for the
allosteric inhibition of two different enzyme systems
in erythrocyte membranes from rats (De Mendoza et
al., 1977). This study provides evidence that T3
decreases membrane fluidity and also illustrates
three important points. Firstly, thyroid-hormone-
induced changes in membrane fluidity can affect
different membrane-bound enzyme systems within
the same membrane differently. For example, T3
increased the Hill coefficient for erythrocyte Na+, K+-
ATPase activity whilst it decreased it for the
erythrocyte acetylcholinesterase. Secondly, such
changes in membrane fluidity are general effects in
that they can be demonstrated in non-vertebrates :
T3 also decreased the Hill coefficient for the allosteric
inhibition of Ca#+-ATPase in bacterial membranes.
Thirdly, the influence of thyroid hormones on such
membrane systems depends on the original fatty acyl
composition of the membrane.
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Table 2. The influence of hypothyroidism on membrane fatty acyl composition in mammals

Species Tissue Membrane Lipid
Fatty acyl chain 20:4

class 16:0 18:0 18:1 18:2 20:4 22:6 18:2 Comments Reference

Rat Liver Mitochondria TL 0 ® ® ­ ® Patton & Platner (1970)
Rat Liver Mitochondria TL 0 0 0 ­ 0 Withers & Hulbert (1987)
Rat Liver Mitochondria PL ­ 0 ® ­ ® ® Chen & Hoch (1977)
Rat Liver Mitochondria PC 0 0 0 ­ ® ® Hoch et al. (1981)
Rat Liver Mitochondria PE 0 ® 0 ­ ® ® Hoch et al. (1981)
Rat Liver Mitochondria CL 0 0 0 0 0 0 Hoch et al. (1981)
Rat Liver Mitochondria PS 0 0 0 0 0 ® Hoch et al. (1981)
Rat Liver Mitochondria PL 0 0 ­ ­ ® ® Hoch et al. (1981)
Rat Liver Mitochondria TL 0 0 0 ­ ® ® Ismailkhodzhaeva et al. (1986)
Rat Liver Mitochondria PC ­ 0 0 ­ ® ® ® Raederstorff et al. (1991)
Rat Liver Mitochondria PE 0 0 ­ ­ ® ® ® Raederstorff et al. (1991)
Rat Liver Mitochondria TL 0 0 0 ­ ® ® Paradies et al. (1991)
Rat Liver Microsomes PL 0 0 0 ­ ® ® Hoch et al. (1981)
Rat Liver Microsomes TL 0 0 0 ­ ® ® Faas & Carter (1982)
Rat Liver Microsomes PC 0 0 0 ­ ® ® Faas & Carter (1982)
Rat Liver Microsomes PE 0 0 0 ­ ® ® Faas & Carter (1982)
Rat Liver Microsomes PS}PI 0 0 0 ­ 0 ® Faas & Carter (1982)
Rat Liver Microsomes PL 0 0 0 ­ ® 0 ® Tacconi et al. (1991)
Rat Liver Nuclei PL 0 ® ­ ­ ® ® Shaw & Hoch (1976)
Rat Heart Mitochondria TL 0 0 0 0 0 Steffen & Platner (1976)
Rat Heart Microsomes TL 0 0 0 0 0 Steffen & Platner (1976)
Rat Heart Mitochondria PL 0 ® ® ­ 0 ® Shaw & Hoch (1977)
Rat Heart Mitochondria PL 0 0 0 ­ ® ® Hoch (1982)
Rat Heart Mitochondria PC 0 ® 0 ­ ® ­ ® n-6 diet Pehowich (1995)
Rat Heart Mitochondria PC 0 ® 0 ­ ® 0 ® n-3 diet Pehowich (1995)
Rat Heart Mitochondria PE 0 ® ­ ­ ­ 0 ® n-6 diet Pehowich (1995)
Rat Heart Mitochondria PE 0 ® ­ ­ 0 0 ® n-3 diet Pehowich (1995)
Rat Heart Mitochondria CL 0 ­ ® 0 0 0 0 n-6 diet Pehowich (1995)
Rat Heart Mitochondria CL ® ® ® ­ ® 0 ® n-3 diet Pehowich (1995)
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Rat Heart Mitochondria TL ­ ® 0 ® ­ 0 ­ Paradies & Ruggiero (1989)
Rat Heart Sarcolemma PC 0 0 ® ­ 0 0 ® n-6 diet Pehowich & Awumey (1995)
Rat Heart Sarcolemma PE ­ ® ­ ­ ­ 0 ® n-6 diet Pehowich & Awumey (1995)
Rat Heart Sarcolemma PC 0 0 ­ 0 0 0 ® n-3 diet Pehowich & Awumey (1995)
Rat Heart Sarcolemma PE ­ ® ­ 0 ® 0 ® n-3 diet Pehowich & Awumey (1995)
Rat Muscle Sarcoplasmic reticulum PC ® ­ ® ® ­ Simonides & van Hardeveld

(1987)
Rat Muscle Sarcoplasmic reticulum PE ® 0 ® ® ­ Simonides & van Hardeveld

(1987)
Rat Brain Microsomes PL 0 0 0 0 0 0 Tacconi et al. (1991)
Rat Brain Mitochondria PC 0 0 0 0 0 0 Tacconi et al. (1991)
Rat Brain Mitochondria PE 0 0 0 0 0 0 Tacconi et al. (1991)
Rat Brain Synaptosomes PC 0 0 0 0 0 0 Tacconi et al. (1991)
Rat Brain Synaptosomes PE 0 0 0 0 0 0 Tacconi et al. (1991)
Rat Brain Myelin PC 0 0 0 0 0 0 Tacconi et al. (1991)
Rat Brain Myelin PE 0 0 0 0 0 0 Tacconi et al. (1991)
Rat Colon Plasma membrane TL 0 0 0 ­ ® Brasitus & Dudeja (1988)
Rat Erythrocyte Membrane PL 0 0 0 0 ® 0 ® Tacconi et al. (1991)
Rat Erythrocyte Membrane PC 0 0 0 ­ ® 0 Tacconi et al. (1991)
Rat Erythrocyte Membrane PE 0 0 0 ­ ® 0 Tacconi et al. (1991)
Rat Plasma PL 0 0 0 ­ ® 0 Tacconi et al. (1991)
Rabbit Heart Sarcolemma PL ­ ­ ® 0 ­ ­ Syzmanska et al. (1991)
Human Leucocyte Plasma membrane PL 0 0 0 ­ 0 Van Doormaal et al. (1986)
Human Erythrocyte Plasma membrane PL 0 0 0 ­ 0 Van Doormaal et al. (1986)
Human Platelet Plasma membrane PL 0 0 0 ­ ® Valdemarsson & Gustafson (1988)
Human Plasma PL 0 0 ­ ­ ® Valdemarsson & Gustafson (1988)
Human Plasma PL ® ® 0 ­ ® Van Doormaal et al. (1986)
Human Plasma PL 0 0 0 0 ® Kirkeby (1972b)

TL, total lipid; PL, phospholipid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PS, phosphatidylserine;
CL, cardiolipin.
­, statistically significant increase; ®, statistically significant decrease; 0, no significant effect.
In some experiments, diets with different fatty acyl composition were examined.
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From the previous discussion of homeoviscous
adaptation of membranes, we would predict that a
thyroid-hormone-induced ‘rigidifying’ effect on
membranes should stimulate a change in membrane
fatty acyl composition to compensate for the change
in membrane physical state. Over the last three
decades, many studies have shown that membrane
fatty acyl composition is influenced by thyroid status.
I have collated these studies into two groups and
summarized their findings. Table 2 summarizes the
findings showing membrane fatty acyl composition
changes induced by hypothyroidism in mammals,
whilst Table 3 shows the effects of thyroid hormone
injections on the membrane fatty acyl composition of
mammals. Most of these studies have not been
published with a view to addressing the hypothesis
stated above, but rather have been concerned with
thyroid-induced changes in lipid metabolism. The
two Tables have been restricted to studies examining
the fatty acyl composition of phospholipids or, in
some cases, the composition of total lipids where the
total lipids are predominantly membrane lipids.
Only statistically significant effects are shown. The
species include humans, rabbits and rats. The tissues
include the liver, heart, intestine, skeletal muscle,
brain, erythrocytes and leucocytes. The subcellular
membranes include those from mitochondria, micro-
somes, sarcoplasmic reticulum, nuclei, and plasma
membranes. In some studies, individual phospho-
lipid classes were also analyzed for changes in their
acyl composition.

The diversity of animal treatments, techniques
and original purposes for the varied studies precludes
a detailed analysis. For example, the range of thyroid
hormone injection treatments is huge, ranging from
some that are mildly hyperthyroid to some that are
thyrotoxic. However, we can conclude that almost
every membrane system examined showed a change
in its fatty acyl composition with the most consistent
change (the few exceptions are discussed below)
being an increase in the 18:2 content of membranes
with hypothyroidism and a decrease with hyper-
thyroidism. In addition, there was generally a
reciprocal change in membrane 20:4 content,
namely a decrease in hypothyroidism and an
increase following thyroid hormone injection. Many
of these studies have only reported the main fatty
acyl chains, and in many the influence of thyroid
hormones on n-3 polyunsaturates were not mea-
sured.

The only study to examine thyroid-hormone-
induced changes in acyl composition of brain
phospholipids found only small changes which were

not statistically significant, but were in the same
direction as found for other tissues, namely hypo-
thyroidism resulted in an increase in 18:2 and a
decrease in 20:4 (Tacconi et al., 1991).

One of the exceptions to this finding is the results
for sarcoplasmic reticulum (Simonides & van Harde-
veld, 1987). It is of interest that the sarcoplasmic
reticulum is one membrane that is reported not to
exhibit homeoviscous adaptation (Cossins et al.,
1978). Two other exceptions either do not agree with
other studies for the same membrane and are for
total lipids rather than phospholipids (Paradies &
Ruggiero, 1989) or are for thyrotoxic rabbits
(Pilarski et al., 1991).

Membrane fatty acid content is not the only
variable that influences membrane fluidity. For
example, cholesterol also acts to decrease membrane
fluidity. Cholesterol is normally not a large compo-
nent of intracellular membranes but is an important
constituent of plasma membranes. In mammalian
tissues, the cholesterol}phospholipid ratio is approx-
imately 0.1–0.2 for mitochondria and endoplasmic
reticulum but is approximately 0.8 for the plasma
membrane (Schroeder, Wood & Kier, 1998). Al-
though thyroid status has dramatic effects on plasma
cholesterol levels (hypothyroidism is associated with
serum hypercholesterolemia and vice versa, see Heim-
berg, Olubadewo & Wilcox, 1985), it appears not to
have the same effects on membrane cholesterol
levels. In rats, hyperthyroidism resulted in an
increase in both cholesterol and phospholipid con-
tent of erythrocyte membranes but no change in the
cholesterol :phospholipid ratio, whilst in hypo-
thyroidism the decrease in phospholipid content was
greater than the decrease in cholesterol content, with
a consequent small increase in the cholesterol :
phospholipid ratio (Digiorgio, Cafagna & Ruggiero,
1988). Hypothyroidism had no significant effect on
the cholesterol content of rat liver microsomes (Faas
& Carter, 1982), sarcoplasmic reticulum from rat
fast muscle (Simonides & van Hardeveld, 1987), or
human erythrocytes (van Doormal et al., 1986)
although it did result in a significant decrease in the
cholesterol content of rat colonic apical plasma
membranes (Brasitus & Dudeja, 1988). Hyper-
thyroidism had no significant effect on the chol-
esterol content of rat liver microsomes (Faas &
Carter, 1981; Ruggiero et al., 1984) but resulted in a
significant decrease in cholesterol content in rat fast
muscle sarcoplasmic reticulum (Simonides & van
Hardeveld, 1987) and liver mitochondria (Ruggiero
et al., 1984). The results concerning the cholesterol
content (relative to fatty acid content) of heart
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mitochondria are contradictory, one study suggest-
ing that thyroid hormones significantly decrease the
cholesterol content (Clejan et al., 1981) whilst
another suggests there is no effect (Hoch, 1982). The
influence of thyroid status on membrane cholesterol
content is not as consistent as that on membrane
fatty acid profile but should be taken into account
as the presence of cholesterol (and other sterols) in
membranes influences membrane desaturase activi-
ties both in vivo and in vitro (e.g. Leikin & Brenner,
1989).

As well as thyroid status affecting the level of
plasma cholesterol it also influences the composition
of plasma fatty acids. In hyperthyroid humans (and
in a euthyroid individual after a single intake of T4),
the 18:2 content of plasma cholesterol esters, plasma
phospholipids and plasma triglycerides is signif-
icantly reduced (Kirkeby, 1972a,b). Conversely,
hypothyroidism results in a statistically non-signif-
icant increase in the 18:2 content and a significant
decrease in the 20:4 content of plasma phospholipids
(Kirkeby, 1972b ; see Table 2). These changes in
plasma lipids are the same as those observed for
membranes and it is possible that these plasma
changes are the result of changes at the level of the
membrane ∆6 desaturase.

In view of the major mechanisms regulating
membrane acyl composition, namely the de-
acylation}reacylation cycle, it is of interest that T4
has recently been reported to stimulate the acylation
of lysophosphatidylethanolamine in rat heart
(Dolinsky & Hatch, 1998). Similarly, in rats,
hypothyroidism results in a decrease in the activities
of liver mitochondrial phospholipase A

#
and cyto-

solic lysophospholipase and an increased activity of
two liver microsomal acyltransferase enzymes
(Dang, Faas & Carter, 1985). The means whereby
the activities of these enzymes are altered due to
thyroid status are not known. That they are
responsive to changes in membrane properties and
are part of the system regulating membrane acyl
composition is illustrated by the finding that changes
in its surrounding lipid environment can influence
the affinity of a rat liver microsomal acyltransferase
for its acyl-CoA substrates (Fyrst et al., 1996).

Many of the studies listed in Tables 2 and 3
demonstrated reciprocal changes in 18:2 and 20:4
content. The ∆6 desaturase is the important step for
the conversion of 18:2 to 20:4 and thus there is
indirect evidence that the activity of this enzyme is
decreased in the hypothyroid state and increased by
the presence of thyroid hormones. Direct measure-
ment of ∆6 desaturase activity in rat liver microsomes

has shown that it is significantly decreased in
hypothyroidism (Faas & Carter, 1982). However,
the same authors in the previous year (Faas &
Carter, 1981) reported a significant decrease in ∆6
desaturase activity following T3 injections in normal
rats. These doses (two orders of magnitude greater
than the euthyroid rate of T3 production) are
possibly too high to give any physiological relevance
to this result. Curiously, the same study found that
although measured ∆6 desaturase activity was
reduced, the 18:2 content of the liver microsomes
was significantly decreased and the 20:4 content
significantly increased, which is the opposite of what
one would expect from the reported changes in
enzyme activity. In addition, they found the same
dose to result in a very significant increase in ∆6
desaturase activity in food-restricted rats (Faas &
Carter, 1981).

Hoch (1988) also reported that hypothyroidism
results in a significant decrease in ∆6 desaturase
activity and T3 injection into hypothyroids results in
a significant increase in enzyme activity but thyro-
toxic levels of T3 result in a decreased enzyme
activity. Similarly de Gomez Dumm, de Alaniz &
Brenner (1977) also showed a decrease in ∆6
desaturase activity at grossly thyrotoxic levels of T4
injections. This illustrates once again the need to use
physiologically relevant doses of hormones in ex-
perimental situations.

Are these thyroid-hormone-induced changes in
membrane fatty acid composition mediated by a
nuclear or an extra-nuclear site of action? Some
insight into this could be gathered from the time
course of such changes. Hoch (1988, p. 204) reports
that within 1–2.5 h after T3 injection into hypo-
thyroid rats there were significant changes in
membrane fatty acid composition of rat liver
mitochondria (specifically, decreases in 18:2, 20:4,
and 22:6, with increases in 16:0 and 18:0). These
changes had begun by 0.5 h after the T3 injection,
but were not statistically significant at that time;
however, there were only two animals in the 0.5 h
sample. He also reports (Hoch, 1988, p. 221) that
within 1 h after the T3 injection there was a
significant increase in ∆6 desaturase activity in the
liver microsomes in these rats. Once again the
changes were manifest within 0.5 h after hormone
injection but probably because only two animals
were examined there was no statistical significance
to the difference. These results suggest that the
membrane fatty acid changes occur too quickly to be
a nuclear-receptor-mediated effect and may occur as
a direct effect of the thyroid hormones on the
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Table 3. The influence of thyroid hormone injections on membrane fatty acyl composition in mammals

Species Tissue Membrane
Lipid

Fatty acyl chain 20:4

class 16:0 18:0 18:1 18:2 20:4 18:2 Treatment Reference

Rat Liver Mitochondria TL ® ­ 0 ® 0 E}T4; 2000¬10 Patton & Platner (1970)
Rat Liver Mitochondria TL 0 ­ 0 ® ® E}T4; 2000¬8 Platner et al. (1972)
Rat Liver Mitochondria PL 0 ­ 0 ® ­ 0 HX}T4; 5¬7 Clejan et al. (1980)
Rat Liver Mitochondria PL ® ­ 0 ® ­ ­ H}T4; 50¬1(4) Chen & Hoch (1977)
Rat Liver Mitochondria PL ® 0 0 ® ­ ­ E}T3; 30¬5 Ruggiero et al. (1984)
Rat Liver Mitochondria PC 0 ­ 0 ® ­ ­ E}T3; 30¬5 Ruggiero et al. (1984)
Rat Liver Mitochondria PE 0 ­ ® ® ­ ­ E}T3; 30¬5 Ruggiero et al. (1984)
Rat Liver Mitochondria PI ­ ­ 0 ® 0 ­ E}T3; 30¬5 Ruggiero et al. (1984)
Rat Liver Mitochondria CL ­ ­ 0 ® ­ ­ E}T3; 30¬5 Ruggiero et al. (1984)
Rat Liver Mitochondria PL ® ­ 0 0 ­ ­ E}T4; 100¬5 Ismailkhodzhaeva et al. (1986)
Rat Liver Mitochondria PC 0 0 0 ® ­ ­ H}T4; 0.5¬2 (oral) Raederstorff et al. (1991)
Rat Liver Mitochondria PE 0 0 0 ® ­ ­ H}T4; 0.5¬2 (oral) Raederstorff et al. (1991)
Rat Liver Mitochondria TL 0 ­ 0 ® ­ ­ E}T3; 30¬5 Paradies & Ruggiero (1990a)
Rat Liver Mitochondria TL ­ ­ 0 ® ­ ­ H}T3; 100¬1(1.0–2.5) Hoch (1988)
Rat Liver Microsomes PL 0 0 0 0 0 ­ E}T3; 30¬5 Ruggiero et al. (1984)
Rat Liver Microsomes PC 0 ­ ® 0 0 ® E}T3; 30¬5 Ruggiero et al. (1984)
Rat Liver Microsomes PE 0 ­ 0 0 0 ­ E}T3; 30¬5 Ruggiero et al. (1984)
Rat Liver Microsomes PI 0 0 0 0 0 0 E}T3; 30¬5 Ruggiero et al. (1984)
Rat Liver Microsomes TL 0 0 0 ® 0 E}T3; 500¬5 Faas & Carter (1981)
Rat Liver Microsomes TL ® ­ 0 ® ­ ­ E}T3; 25¬21 Faas & Carter (1981)
Rat Liver Microsomes TL ® ­ 0 ® ­ ­ E}T3; 25¬21 Faas & Carter (1981)
Rat Liver Microsomes PL 0 ­ ® ® ­ ­ HX}T4; 5¬16 Gueraud & Paris (1997)
Rat Heart Mitochondria PL 0 0 0 0 ­ ­ HX}T4; 5¬7 Clejan et al. (1981)
Rat Heart Mitochondria TL 0 ­ 0 ® 0 E}T4; 100¬10 Steffen & Platner (1976)
Rat Heart Mitochondria PL ­ 0 0 ® 0 0 H}T4; 50¬1(3) Shaw & Hoch (1977)
Rat Heart Mitochondria PL 0 0 ­ 0 ® ® H}T3; 25¬1(1) Shaw & Hoch (1977)
Rat Heart Mitochondria PL 0 0 ­ ® 0 0 H}T3; 25¬1(2) Shaw & Hoch (1977)
Rat Heart Mitochondria PL 0 0 ­ ® 0 0 H}T3; 25¬1(3) Shaw & Hoch (1977)
Rat Heart Mitochondria PL 0 0 ­ 0 ® 0 E}T3; 100¬3 Hoch (1982)
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Rat Heart Mitochondria PL ® ­ ­ ® 0 ­ E}T3; 30¬5 Paradies & Ruggiero (1988)
Rat Heart Mitochondria CL 0 0 0 0 0 0 E}T3; 30¬5 Paradies et al. (1994)
Rat Heart Microsomes TL ­ ­ 0 ® ® E}T4; 100¬10 Steffen & Platner (1976)
Rat BAT Mitochondria PL 0 0 0 0 0 E}T4; 50¬20 Ricquier et al. (1975)
Rat BAT Mitochondria PL 0 ­ ® 0 0 0 E}T3; 30¬7 Ruggiero et al. (1989)
Rat BAT Mitochondria PC 0 ­ 0 0 0 0 E}T3; 30¬7 Ruggiero et al. (1989)
Rat BAT Mitochondria PE 0 0 0 ® ­ ­ E}T3; 30¬7 Ruggiero et al. (1989)
Rat BAT Mitochondria CL 0 ­ ® ­ 0 0 E}T3; 30¬7 Ruggiero et al. (1989)
Rat BAT Microsomes PL 0 0 0 0 ­ ­ E}T3; 30¬7 Ruggiero et al. (1989)
Rat BAT Microsomes PC 0 ­ 0 ® ­ ­ E}T3; 30¬7 Ruggiero et al. (1989)
Rat BAT Microsomes PE ­ ® ­ 0 ® ® E}T3; 30¬7 Ruggiero et al. (1989)
Rat Muscle Sarcoplasmic reticulum PC ­ ® ­ ® ­ ­ H}T3; 10¬7 Simonides & van Hardeveld

(1987)
Rat Muscle Sarcoplasmic reticulum PE ­ 0 ­ ­ ® ® H}T3; 10¬7 Simonides & van Hardeveld

(1987)
Rabbit Muscle Sarcolemma PL 0 0 ® 0 ­ E}T4; 50¬7 Pilarska et al. (1991)
Rabbit Muscle Sarcolemma PC ­ 0 ® ­ ­ E}T4; 50¬7 Pilarska et al. (1991)
Rabbit Muscle Sarcolemma PE ® ­ ® ­ ­ E}T4; 50¬7 Pilarska et al. (1991)

BAT, brown adipose tissue; TL, total lipid; PL, phospholipid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol ;
CL, cardiolipin.
‘­’, statistically significant increase ; ‘® ’, statistically significant decrease; 0, no significant effect.
Treatments are given as: initial condition}thyroid hormone injected; µg hormone(per 100 g body mass)¬number of days injected (h after injection).
E, euthyroid; H, hypothyroid; HX, hypophysectomized; T4, thyroxine; T3, triiodothyronine.
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membrane lipid environment and consequently on
∆6 desaturase activity. It is of interest that within 0.5
h of T3 injection as well as a change in the enzyme
activity there was a large change in the Michaelis–
Menten constant (K

m
) of the ∆6 desaturase enzyme

which was present for at least 2.5 h following
hormone injection (Hoch, 1988). It is possible that
the change in ∆6 desaturase activity is primarily
responsible for the membrane fatty acid changes
although more work is necessary to ascertain
definitely this as the mode of action.

To my knowledge, nothing is known of the effects
of other iodothyronines and thyroid hormone ana-
logues on membrane fatty acid composition.

(3) Effects on the thyroid hormone axis

The concentration of thyroid hormones in plasma
and tissues is under the control of the thyroid
hormone axis which consists of the following: (1)
thyrotropin-releasing hormone (TRH) secretion by
cells in the hypothalamus, (2) TSH secretion by cells
of the anterior pituitary, (3) the plasma binding
proteins, (4) cellular uptake mechanisms, (5) in-
tracellular deiodinases, and (6) nuclear thyroid
hormone receptors.

In conscious undisturbed sheep, thyroidectomy
results in increased TRH secretion and T4 re-
placement reverses this effect (Dahl et al., 1994).
This negative influence of T4 on TRH also occurs in
the rat (Rondeel et al., 1988). Transfection of the
promoter region of the human TRH gene, together
with thyroid receptor genes into cell cultures has
shown that T3 can repress transcription (Hollenburg
et al., 1995). The latter study identified two
structurally different negative TREs (both single
half-sites that bind TR monomers) which cooperate
to allow negative regulation of the human TRH
promoter, and suggested that this may be restricted
to TRβ. More recently, it has been shown that the
TRβ-2 isoform, which is most expressed in the
hypothalamus and anterior pituitary, has a greater
effect than either TRβ-1 or TRα-1 and that this
effect is mediated by a novel amino terminal domain
of the receptor (Langlois et al., 1997).

Thyroid hormones are the major regulators of
TSH production and inhibit its secretion by anterior
pituitary thyrotropes (Shupnik, Ridgway & Chin,
1989). TSH is a glycoprotein consisting of an α
(common to some other hormones) and a β subunit
(specific to TSH). Negative TREs are found in both
the α subunit gene and the TSHβ subunit gene for
both rats and humans (Williams & Brent, 1995).

Although TRs bind T3 with greater affinity than
T4, and exogenous T3 can inhibit TSH secretion,
serum TSH levels are more negatively correlated
with serum T4 than serum T3 levels (see Chopra,
1996). The relative ability of thyroid hormones to
inhibit TSH release will be a combination of their
uptake, intracellular metabolism and relative bind-
ing to the nuclear TRs. Everts et al. (1995) compared
the relative uptake, metabolism and inhibition of
TSH release (by cultured rat anterior pituitary cells)
of thyroid hormones and their deaminated products,
Tetrac and Triac. Relative to the free concentration,
cellular uptake rates were in the following order;
Tetrac"T3"T4" rT3. Whereas T3 was not
metabolised, Tetrac, T4 and rT3 were all partly
metabolised by the cultured anterior pituitary cells.
The order of potency for reducing TSH release was
Triac"T3"Tetrac"T4 but it seems that for
both Tetrac and T4 it is likely that their effect is
indirect and possibly due to their respective metab-
olites following intracellular deiodination. Although
nuclear receptors show negligible affinity for rT3
and T2, these two iodothyronines exhibited in vitro
inhibition of TSH release. These effects were
observed at concentrations above normal and would
thus seem to have little in vivo relevance. They do,
however, raise mechanistic questions about possible
additional non-nuclear receptor influences on TSH
secretion.

Once secreted into the circulation most thyroid
hormone molecules are bound to plasma proteins.
TBG has two possible positive TREs, one in intron 0
and the other in the 3« region of the gene (Akbari et
al., 1993). In monkey hepatocarcinoma cell culture,
increasing T4 concentration in the medium from
0.01 p to 10 pM increased TBG appearance whilst
further increases of T4 concentration to 10 n

resulted in a decrease in TBG appearance in the
medium (Gershengorn et al., 1976). In humans,
treatment of thyrotoxicosis resulted in a 24%
increase in TBG concentrations although there was
considerable overlap in TBG levels measured in
thyrotoxic and hypothyroid patients (Burr et al.,
1979). The role of these putative TBG TREs is not
clear. Another T4 binding protein, TTR, is un-
responsive to thyroid status in that the levels of TTR
mRNA in liver and choroid plexus were unchanged
during both hypothyroidism and hyperthyroidism in
the rat (Blay et al., 1993). Similarly, plasma albumin
concentrations are not known to be changed by
alterations in thyroid status in the adult. During
hypothyroidism in humans there are changes in the
binding of both T4 and T3 to plasma lipoproteins,
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but no changes in the distribution of rT3 binding to
the various lipoprotein classes (Benvenga & Rob-
bins, 1996).

Changes in the thyroid hormone pool in intestinal
contents will diminish the decrease in plasma thyroid
hormone levels following thyroidectomy (DiStefano
et al., 1993). In euthyroid rats, the amount of T3 in
the intestinal contents is 20 times the plasma pool
size and this T3 is exchangeable with the circulation.
For example, T4 and T3 levels in the hepatic portal
vein plasma are, respectively, 15% and 30% greater
than that in systemic plasma in euthyroid rats. In
euthyroid rats, 34% of infused T3 is excreted in the
faeces ; however, following thyroidectomy this de-
creases to 20% of infused T3, and the hepatic portal
plasma concentrations of T4 and T3 are 95% and
63% greater than the respective concentrations in
the systemic plasma. Whereas the plasma T3
concentration decreases by 64% in thyroid-
ectomized rats, T3 concentration in the intestinal
contents decreases by 85%. (DiStefano et al., 1993).

To my knowledge, it is not known if any of the
cellular uptake mechanisms for thyroid hormones
are influenced by thyroid status.

Intracellular deiodinases are also influenced by
thyroid status. D1 deiodinase activity in rat liver and
kidney is increased in hyperthyroidism and de-
creased in hypothyroidism (Kaplan & Utiger, 1978)
and this appears to be a TR-mediated effect in that
two functional positive TREs have been identified
upstream of the human D1 gene (Toyoda et al.,
1995). However although mouse D1 gene expression
is increased by thyroid hormone the upstream region
of the mouse gene does not seem to contain a TRE
and thus its control may be different to that of the
human D1 gene (Maia et al., 1995).

The activity of the D2 deiodinase is inversely
related to thyroid status (Kaplan, 1986). This is the
opposite of the influence of thyroid status on D1 and,
unlike D1, this has been shown to be a non-nuclear-
mediated action of the thyroid hormones. In the
absence of thyroid hormones, the D2 activity of
astrocytes in cell culture was 10-15-fold greater than
when they were grown in the presence of serum and
it was demonstrated that this increase in D2 activity
was due to decreased removal of the enzyme with no
change in its rate of synthesis (Leonard et al., 1990).
T4 and rT3 had similar potency whilst T3 was 100-
fold less effective, which is similar to in vivo findings
(Silva & Leonard, 1985). The thyroid-hormone-
sensitive degradation}inactivation of the membrane-
bound D2 is an energy-requiring process requiring
an intact actin cytoskeleton (Leonard et al., 1990)

and involves specific interactions between the D2
enzyme, F-actin and T4 molecules (Farwell &
Leonard, 1992). Investigation of the degradation
and recycling of a D2 subunit in astrocytes suggests
that T4 influences fundamental processes involved
with the turnover of integral membrane proteins
(Farwell et al., 1996). Decreases in D2 mRNA levels
in the cerebral cortex of hypothyroid rats have been
recorded following injections of both T4 and T3
(Burmeister, Pachucki & St. Germain, 1997). The
inhibitory effects of T4 on the D2 enzyme are rapid,
being evident within 15 min of addition of hormone
to cultured GH3 cells (St Germain, 1985). T4 is
more potent than T3 in influencing D2 mRNA
levels. This thyroid hormone effect is not mediated
by nuclear TRs.

Thyroid hormones influence the D3 deiodinase in
a similar manner to their effect on the D1 deiodinase.
Hypothyroidism results in a decrease in skin D3
activity in the rat (Huang et al., 1985) whilst thyroid
hormones induce D3 activity in cultured astroglial
cells (Esfandiari et al., 1992). However, D3 activity
in the placenta is unaffected by thyroid status in the
rat (Emerson et al., 1988). Expression of the mRNA
for D3 in cultured cell lines from the amphibian
Xenopus laevis is increased in the presence of T3 (St.
Germain et al., 1994). Although to my knowledge no
TRE has been described associated with the D3
gene, this effect of thyroid hormones is likely to be
mediated by thyroid nuclear receptors.

Although levels of mRNA for TRβ-1 in rat heart,
kidney, liver and brain are unaffected, in the
pituitary supraphysiological doses of T3 increase
TRβ-1 mRNA levels (Hodin, Lazar & Chin, 1990).
Similarly, in the rat around birth there is a dramatic
increase in TRβ-1 mRNA levels associated with an
increase in T3 concentration (Strait et al., 1990) and
in Xenopus laevis during metamorphosis there is an
up-regulation of TRβ-1 concentration mediated by
increasing T3 levels (Kanamori & Brown, 1992).
That these tissue-specific and developmental-time-
specific increases in TRβ-1 mRNA levels are TR-
mediated effects is supported by the finding of two
TREs in the promoter region of the human TRβ
gene (Suzuki et al., 1994). The fact that a supra-
physiological T3 dose resulted in an increase in
TRβ-1 mRNA levels in the pituitary in the rat is,
however, complicated by the observation that it also
resulted in a simultaneous decrease in levels of TRβ-
2 mRNA (Hodin et al., 1990) which is transcribed
from the same gene. In the anterior pituitary of the
rat, the total nuclear TR binding capacity and
isoform distribution is relatively unaffected by



560 A. J. Hulbert

changes in thyroid status, either hypothyroidism or
hyperthyroidism (Ercan-Fang, Schwartz & Oppen-
heimer, 1996).

Thyroid hormones have effects at almost every
level of the thyroid hormone axis and together these
effects appear to function as a multi-level, hier-
archical system that, in the adult, acts homeo-
statically to maintain a relatively constant cellular
level of T3 in some tissues (notably the brain). All
but two of these effects (namely the effect on D2 and
the enterohepatic changes) appear to be mediated
by nuclear thyroid receptors. The effects on TRH
and TSH secretion are part of the classic negative
feedback system that acts to maintain a relatively
constant plasma T4 concentration. The entero-
hepatic effects of hypothyroidism will also act to
dampen fluctuations in plasma T4 concentration.
The high-affinity-binding plasma proteins in differ-
ent vertebrates can be regarded as mechanisms
maintaining a relatively constant level of plasma free
T4 which in turn will facilitate an even distribution
of T4 to the tissues both with respect to time and
body location. The secretion of TTR by the choroid
plexus into the cerebrospinal fluid of higher verte-
brates probably has a similar function. The effect of
thyroid status on the three deiodinases, and their
respective tissue distribution can be interpreted as a
system to maintain a constant level of cellular T3 in
select tissues, especially the brain. During hypo-
thyroidism, T4 consumption will be minimized in
those tissues which have D1 (e.g. liver and kidney)
whilst intracellular T3 content will be maintained in
those tissues that have the D2 enzyme, while the
decreased D3 activity will minimize T3 removal.
This means that especially within the brain there is
strong homeostasis of cellular T3 levels. For example,
brain T3 levels are at euthyroid levels when
hypothyroid rats are given T4 at only 10% of the
normal replacement dose (Silva & Leonard, 1985).
In hypothyroidism, the rat brain makes almost all of
its own T3 from intracerebral T4, whereas during
hyperthyroidism, it derives most of its T3 from the
circulation (Dratman et al., 1983). A similar response
has been recorded in the rat fetus during hypo-
thyroidism (Ruiz de Ona et al., 1988; Morreale de
Escobar et al., 1989). Whether such homeostasis is
present in other tissues is not known but one study
suggests that it may also occur in brown adipose
tissue (van Doorn, Roelfsema & van der Heide,
1986). This mechanism, unknown at the time, is
likely to be responsible for the early reports of the
brain being unresponsive to changes in systemic
thyroid status.

It appears that, extracellularly, the ‘regulated’
variable is free T4, whilst intracellularly it is T3.
There is a hierarchy of tissues with respect to the
maintenance of intracellular T3 levels. This hi-
erarchy is manifest in the results of Escobar-Morreale
et al. (1996) where some tissues (notably cerebellum
and cerebral cortex) maintained a relatively con-
stant tissue T3 concentration whilst in others it was
variable (e.g. muscle, adrenal, ovary and heart).

Currently, there is increasing interest in 3,5-T2, a
deiodination product of T3. The ‘homeostatic-like ’
influence of thyroid status on the deiodinase enzymes
means that plasma 3,5-T2 concentration will also
vary less than plasma T3 levels during changes in
thyroid status. For example, Faber et al. (1982)
found that although serum T3 levels changed by
­82% and ®71% (relative to euthyroid values) in
hyperthyroidism and hypothyroidism, respectively,
serum 3,5-T2 concentration changed by only ­54%
and ®27 %, respectively (this last change was not
statistically significant). Recently, it has been shown
that 3,5-T2 can inhibit TSH secretion from the
anterior pituitary cells of rats both in vivo and in vitro
(Horst et al., 1995) and that it also stimulates
pituitary D1 activity in rats (Baur et al., 1997).
Although nuclear receptors show negligible affinity
for T2, its in vivo potency is not greatly dissimilar
from that of T3 and this finding raises intriguing
possibilities concerning the mode of action of thyroid
hormones. Measurement of normal intracellular
levels of 3,5-T2 are necessary before we can be sure
of the physiological relevance of these findings.

(4) Effects on metabolism and
thermogenesis

The stimulatory effects of thyroid hormones on
metabolic activity (and thus heat production) have
been known for over a century (Magnus-Levy,
1895). Indeed, before the advent of modern hormone
assays, the measurement of basal metabolic rate
(BMR) was a diagnostic test for the thyroid status of
individuals (e.g. Dubois, 1936).

The finding that the allometry of T4 and T3
utilization by mammals has the same exponents as
their BMR relationship (Tomasi, 1991) means that
there is a stoichiometric relationship in all mammals,
whether mice or mammoths, whereby consumption
of one mole of oxygen is associated with the
consumption of approximately 6.3 pmol of T4 and
approximately 0.63 pmol of T3.

Thyroidectomy is capable of decreasing BMR by
up to 40% in humans (Dubois, 1936) and has a
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similar effect in other mammals and in birds.
Although it was originally believed that the thyroid
was not capable of stimulating metabolism in
ectothermic vertebrates (and this statement is re-
peated in some recent reviews, e.g. Freake &
Oppenheimer, 1995; Oppenheimer, Schwartz &
Strait, 1995), it was shown some time ago that
whether thyroid hormones stimulate the metabolism
of reptiles and amphibians depended on their body
temperature (Maher, 1961, 1964, 1967). It has since
been confirmed that thyroid status affects metab-
olism in ectotherms (e.g. John-Alder, 1983) and that
this effect is body-temperature-sensitive (e.g. Hul-
bert & Williams, 1988). Joos & John-Alder (1990)
have shown that T4 supplementation stimulated
standard metabolic rate (SMR, analogous to BMR)
by 20% in laboratory-captive lizards and by 59% in
the field-active individuals. Although night-time
ambient temperatures were not different between
the laboratory and field, day-time ambient temper-
atures were greater in the field than the laboratory.
An interesting finding from this study is that T4
supplementation resulted in a decrease in plasma T3
levels and SMR was correlated with plasma total T4
concentration but not T3 levels. For a review of
thyroid influence on ectotherm metabolic activity
the reader is referred to Gupta & Thapliyal (1991).

Metabolic activity is quite sensitive to plasma
thyroid hormone concentration. In a recent study of
patients receiving chronic thyroid hormone replace-
ment, small changes in their T4 dose significantly
affected their resting energy expenditure. Whilst
plasma TSH concentration was most sensitive to
small changes in T4 dose, resting energy expenditure
was the next most sensitive parameter measured and
thyroid-sensitive blood variables such as levels of
plasma sex hormone binding globulin, triglycerides,
lipoprotein cholesterol levels and angiotensin con-
verting enzyme showed no overall change. The low
T4 daily dose used in this study averaged 98 µg T4
while the highest dose used was an average 141 µg
T4 per day (respectively, equivalent to approxi-
mately 0.25 µg and 0.35 µg 100 g body mass per
day). This small change in daily T4 dose raised
plasma free T4 levels from 18 p to 23 p and
resulted in an average 6% increase in resting energy
expenditure (Al-Adsani, Hoffer & Silva, 1997).

In euthyroid humans, BMR was found to be
positively correlated with total T3 concentration
(Stenlof et al., 1993). Another study found that daily
energy expenditure of healthy humans was corre-
lated with plasma free T3 levels (Toubro et al.,
1996). A comparison of post-obese woman with

matched (never obese) controls demonstrated that
the previously obese subjects had a low BMR and
low plasma free T3 levels (Astrup et al., 1996). In
that study, the lower plasma free T3 levels could
statistically explain the low BMR of the obesity-
prone individuals but whether there was a causal
connection could not be established. These corre-
lations between metabolism and T3 concentration
may be due to a low metabolic activity being
associated with low deiodination activity and thus a
low production rate of T3.

Thyroid hormones can also affect other measures
of metabolic activity. For example, thyroidectomy
decreases work rate and work efficiency in goats
(Kaciuba-Uscilko et al., 1987) and decreases aerobic
capacity (V

#max
) and locomotor endurance in

lizards (John-Alder, 1984a).
That the stimulation of metabolic activity by

thyroid hormones is largely a cellular event is evident
from early studies which showed that tissue slices
isolated from rats of different thyroid status had
different in vitro respiration rates (Barker &
Klitgaard, 1952). Most tissues appear to be thyroid
hormone sensitive. The conclusion from early studies
that brain was refractory to thyroid stimulation of
metabolism should be re-examined in view of our
current understanding of the relative constancy of
brain T3 levels in different thyroid states. Much
biochemical work has been carried out on isolated
enzymes and sub-cellular preparations (e.g. mito-
chondria) from animals of varied thyroid status in
order to identify the cellular processes important in
this thyroid-stimulated metabolic activity. However,
as with many in vitro measurements, the physiological
relevance of many of these findings has been difficult
to determine because of the problem of extrapolation
to the in vivo situation. The development of metabolic
control analysis and its associated techniques over
the last quarter of a century has allowed a more
quantitative analysis of the importance of various
cellular processes during thyroid stimulation of
metabolism (see Harper & Brand, 1995). For a
review of the use of top-down regulation analysis in
understanding energy metabolism the reader is
referred to Brand (1997).

Basal metabolic rate varies dramatically between
vertebrates. Endotherms (mammals and birds) have
BMRs that are 5–10 times those of ectothermic
vertebrates of the same body size (Hulbert, 1980b)
and BMR varies allometrically with body mass in a
very predictable manner such that per gram body
mass, a mouse has a BMR that is approximately 20
times that of a horse (Kleiber, 1961). Part of these
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differences are due to variations in the relative size of
metabolically active organs but a substantial part of
this BMR variation is related to basic cellular
differences. A surprising finding has been that,
although there is considerable quantitative differ-
ence in cellular metabolic activity, the relative
composition of cellular metabolic rate is relatively
constant for a particular tissue between different
vertebrates. This has led to the suggestion of a
cellular ‘pacemaker’ for metabolic rate. The finding
that membrane polyunsaturation is positively corre-
lated with metabolic activity both in phylogenetic
comparisons (Brand et al., 1991; Brookes et al., 1998)
and body size comparisons (Couture & Hulbert,
1995a, b ; Porter, Hulbert & Brand, 1996) has led to
the suggestion that membranes are such ‘pace-
makers ’ of metabolism (Hulbert & Else, 1999, 2000).

Although the precise quantitative contribution
varies between cell types, the major energy-con-
suming processes of resting cells are : (i) maintenance
of the mitochondrial membrane H+ gradient, (ii)
maintenance of the plasma membrane Na+ gradient,
(iii) maintenance of low cytosolic [Ca#+], (iv)
synthesis of macromolecules (DNA, RNA, and
protein), and in some cells (e.g. liver) processes such
as ureagenesis and gluconeogenesis (for a recent
review, see Rolfe & Brown, 1997). In active muscle
cells, considerable energy consumption is associated
with contractile activity. All but the first of these
activities are mediated by ATP consumption.

In active cells, the mitochondrial proton gradient
is used to produce ATP for the ATP-consuming
processes. In resting cells, substrate oxidation con-
tinues but in this case, when ATP consumption is
minimal, proton pumping counteracts the leak of
protons across the mitochondrial inner membrane.
In this context, the mitochondrial proton leak is
analogous to the ‘governor’ of a steam engine, in
that, just as the governor of a steam engine prevents
explosion of its boiler, proton leak (which is non-
linearly related to the mitochondrial membrane
potential) acts to counteract the continual build-up
of the trans-membrane proton gradient and thus the
mitochondrial membrane potential. For a discussion
of mitochondrial proton leak, the reader is referred
to Brand et al. (1994) and Rolfe & Brand (1997).

The maintenance of transmembrane ion gradients
is important in that many other cellular processes
are linked to such gradients. They can be thought of
as a form of short-term energy storage. Studies on rat
thymocytes show there is a hierarchy of cellular
ATP-consuming processes to changes in energy
supply, with the maintenance of ion gradients being

the least sensitive and protein synthesis being the
most sensitive to changes in energy supply (Butt-
gereit & Brand, 1995). The maintenance of ion
gradients represents a major energy cost of the non-
equilibrium condition we know as life.

In hepatocytes isolated from rats, hypothyroidism
and hyperthyroidism resulted in, respectively, a
decreased and increased oxygen consumption rela-
tive to littermate euthyroid controls (Harper &
Brand, 1993). Top-down elasticity analysis showed
that in the hypothyroid-euthyroid comparison, half
the increase in hepatocyte oxygen consumption was
due to an increased mitochondrial proton leak and
half was due to an increase in non-mitochondrial
oxygen consumption with no net change in ATP
turnover. In the hyperthyroid-euthyroid compari-
son, just under half the increase was due to a greater
mitochondrial proton leak, whilst just over half was
due to an increase in ATP turnover and there was no
significant change in the non-mitochondrial oxygen
consumption (Harper & Brand, 1993). Even when
rat hepatocytes are performing considerable urea-
genesis and gluconeogenesis, thyroid hormones stim-
ulate both coupled respiration (that associated with
ATP production) and non-coupled respiration (i.e.
either mitochondrial proton-leak-associated respir-
ation or non-mitochondrial oxygen consumption, or
both) (Gregory & Berry, 1992).

Thyroid status influences proton leak in isolated
rat liver mitochondria with the hypothyroid-hy-
perthyroid transition resulting in a sevenfold increase
in the proton permeability of mitochondria (Hafner
et al., 1988). Related to this effect, hyperthyroidism
results in a mitochondrial membrane potential that
is approximately 30 mV lower than euthyroid
controls when measured in intact resting rat hepato-
cytes (Gregory & Berry, 1991). Other workers have
shown that in intact rat hepatocytes, the mito-
chondrial membrane potential is greatest in hepato-
cytes from hypothyroid rats and least in those from
hyperthyroid rats ; however, respiratory rate showed
the opposite trend being least in hypothyroid and
greatest in hepatocytes prepared from hyperthyroid
rats (Bobyleva et al., 1998). As these authors suggest
this indicates a physiological effect (rather than a
pathological consequence) of thyroid hormones
decreasing mitochondrial energy coupling.

Mitochondrial proton leak is found in all the
major oxygen-consuming tissues of the rat (Rolfe,
Hulbert & Brand, 1994), and in the liver mito-
chondrial proton leakiness has been shown to be
correlated with the relative polyunsaturation of the
mitochondrial membrane (Porter et al., 1996;
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Brookes et al., 1998). An examination of the
mechanistic basis for the increased mitochondrial
proton permeability induced by thyroid hormones
suggested that two factors were responsible. These
were: (i) changes in the relative amount of mitochon-
drial inner membrane, and (ii) changes in the
intrinsic permeability of the phospholipid bilayer
from the mitochondrial inner membrane (Brand et
al., 1992). Such permeability changes are not
restricted to proton permeability in that hypo-
thyroidism has also been shown to result in a
decreased inner membrane permeability to other
cations in rat liver mitochondria (Hafner, Leake &
Brand, 1989).

Metabolic control analysis of liver mitochondria
has shown that control of mitochondrial respiration
is distributed among a number of steps and that
effective stimulation by thyroid hormones can only
occur if several enzymes are activated simultaneously
(Verhoeven et al., 1985). In that study, thyroid
hormone treatment resulted in an increase in the flux
control coefficient of the adenine nucleotide trans-
locator, the dicarboxylate carrier and cytochrome
oxidase. Sterling & Brenner (1995) have convinc-
ingly shown that low doses of thyroid hormones
stimulate adenine nucleotide translocator activity in
rat liver mitochondria.

Many studies have reported an effect of thyroid
status on the activity of a wide variety of mito-
chondrial enzymes from a variety of tissues, with an
increase in thyroid status generally associated with
greater enzyme activity. For a review on thyroid
hormone action on mitochondria, the reader is
referred to Soboll (1993). Thyroid hormones both
result in more mitochondrial membrane and an
altered membrane lipid composition (e.g. see Tables
2 and 3). Changes in mitochondrial membrane lipid
composition are associated with changes in the
Arrhenius kinetics of mitochondrial enzyme activity
that is also associated with changes in temperature-
induced phase transitions of the mitochondrial
membrane (Hulbert, Augee & Raison, 1976; Par-
mar et al., 1995).

The role of thyroid-induced changes in membrane
lipid composition is also of interest in relation to
changes in the activity of some mitochondrial
enzymes. The transport of pyruvate and tricarboxyl-
ates is stimulated by thyroid hormones in rat liver
mitochondria in that the maximal rate (V

max
) of the

process is increased, yet inhibitor studies suggest that
there is no increase in the number of any of these
membrane transporters (Paradies & Ruggiero,
1990a, b ; Paradies, Ruggiero & Dinoi, 1991). Simi-

larly, in rat heart mitochondria thyroid hormones
stimulate pyruvate translocation and cytochrome
oxidase activity, without equivalent changes in the
amount of the specific mitochondrial enzyme
(Paradies & Ruggiero, 1989; Paradies et al., 1993,
1994). These studies also report thyroid-induced
changes in mitochondrial membrane lipids and
suggest that the membrane lipid changes influenced
the molecular activity of these mitochondrial mem-
brane proteins. In a similar vein, Beleznai et al.
(1989) demonstrated that T4 dramatically in-
fluenced the physical properties of the lipid micro-
environment of the mitochondrial enzyme, -gly-
cerol-3-phosphate dehydrogenase.

It seems likely that thyroid effects on mito-
chondrial function can best be described as the
consequence of thyroid-hormone-induced changes
in membrane lipid composition, especially changes
in fatty acyl composition. A thyroid-hormone-
induced increase in the relative polyunsaturation of
mitochondrial membranes (e.g. decreased 18:2
combined with increased 20:4) is proposed to
stimulate the molecular activity of proteins asso-
ciated with the membranes (see Hulbert & Else,
1999). No mitochondrial enzymes are among those
genes reported to have a TRE (see Williams &
Brent, 1995).

Thyroid hormone stimulation of cellular ATP
turnover requires an increase in ATP consumption
as well as ATP production. As noted above, the
maintenance of the Na+ gradient across the plasma
membrane of cells is a major cellular energy
consumer, the importance of which varies between
tissues (for review see Clausen, van Hardeveld &
Everts, 1991). This gradient is maintained by the
ubiquitous Na+,K+-ATPase, also known as the Na+

pump. Almost 30 years ago, Ismail-Beigi & Edelman
(1970, 1971) proposed that a substantial portion of
the enhanced oxygen consumption associated with
increased thyroid status is due to thyroid hormone
stimulation of the Na+ pump. Although there was
considerable discussion about the quantitative im-
portance of this effect, there was no disagreement
that Na+ pumping was stimulated by thyroid
hormones. The disagreement about the quantitative
importance is largely based on methodological
considerations. For example, in rat liver, ouabain
inhibition of the Na+ pump results in a 30–40%
decrease in respiration (e.g. Hulbert & Else, 1981)
whilst measurement of pump activity suggests that
its ATP consumption is equivalent to approximately
10% of liver cell oxygen consumption (e.g. Couture
& Hulbert, 1995b). Measurement of Na+ pump
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activity represents the cost of ‘maintaining’ the Na+

gradient, whilst measurement of ouabain inhibition
of respiration measures the cost of ‘not maintaining’
this gradient and will thus include inhibitory effects
of elevated intracellular Na+ concentrations as well
as the energy consumption by the pump itself.

The initial report that thyroid hormones stimu-
lated the ouabain-suppressible oxygen consumption
of tissue slices (Ismail-Beigi & Edelman, 1970) was
followed by the demonstration that the in vitro
enzymatic activity of the Na+ pump was also
increased (Ismail-Beigi & Edelman, 1971). This
effect has been reported for a wide variety of tissues
(including liver, kidney, heart, skeletal muscles and
adipose tissue) and several studies have shown that
thyroid hormones increase pump numbers and sub-
unit mRNAs (for review see Ismail-Beigi, 1993). A
comparison of sub-unit mRNAs and Na+,K+-
ATPase protein levels in a range of tissues has shown
there are differential effects of the thyroid hormones
both between tissues and between subunits and that
these include both pre- and post-translational in-
fluences (Horowitz et al., 1990).

An obvious question concerns the mode of action
for this thyroid hormone effect. It is thus of interest
that Haber & Loeb (1984) reported a thyroid-
hormone-induced increase in K+ efflux from rat liver
slices that preceded changes in Na+,K+-ATPase
activity. Similarly, Everts & Clausen (1988) reported
increases in passive Na+ and K+ leaks that preceded
changes in ouabain binding (a measure of Na+ pump
numbers). The finding that T3-induced increases in
Na+,K+-ATPase activity were not preceded by
changes in intracellular ion concentrations (Philip-
son & Edelman, 1977) may be related to the fineness
of the homeostatic control of these variables by the
Na+ pump and the difficulty of measuring in-
tracellular ion concentrations.

Measurement of thyroid-hormone-induced
changes in a rat liver cell line showed a significant
40% increase in Na+ influx 12 h, and a significant
10% increase in K+ efflux 8 h after T3 exposure
(Haber, Ismail-Beigi & Loeb, 1988). The increase in
in vivo pump activity became statistically significant
12 h after hormone exposure and in vitro Na+,K+-
ATPase activity only became statistically significant
after 16 h. In addition, the increase in in vivo pump
activity was consistently greater than the increase in
in vitro enzyme activity (Haber et al., 1988). An
intriguing possibility is that the increase in passive
Na+ flux is secondary to a thyroid-hormone-induced
increase in the fluxes of other molecules whose
transport is sometimes linked to the Na+ gradient

(e.g. possibly Ca#+, glucose, amino acids etc.). In this
light, it is of interest that the uptake of deoxyglucose
was significantly increased after 4 h of hormone
exposure, as was lactate efflux (Haber et al., 1988).
Similarly, Everts & Clausen (1988) reported that T3
induced an increase in passive K+ efflux (measured
as Rb+ efflux) from rat soleus muscle that preceded
the increase in muscle Na+,K+-ATPase activity by
1–2 days.

This perspective is also supported by the finding
that short-term administration of T3 to humans
resulted in no change in Na+ pump numbers in
leucocytes but a significant increase in uptake rate of
Rb+ (a commonly used experimental analogue for
K+) and rate of Na+ efflux. This indicates an
increased molecular activity of the Na+ pumps but
no change in their number in these cells (Turaihi et
al., 1987). Similarly, it has been demonstrated that
T3 administration to thyroidectomized rats stimu-
lates fluid reabsorption in their kidney proximal
tubules (which is related to Na+ pump activity) but
did not change the in vitro Na+,K+-ATPase activity,
suggesting no change in Na+ pump concentration.
Other experiments indicated that this thyroid hor-
mone effect on in vivo Na+ pump activity resulted
from an increase in the K+ permeability of the
proximal tubular cell membranes (Capasso et al.,
1985).

One of the main pathways of Na+ entry into cells
is via the (amiloride-sensitive) Na+}H+ exchanger in
the plasma membrane. Thyroid status has been
shown to stimulate Na+}H+ exchange in renal brush
border membranes isolated from the rat although it
is not known if this is due to an increase in the
number of exchangers or an increase in their
molecular activity (Kinsella & Sacktor, 1985).

Whether such changes are related to changes in
the acyl composition of the plasma membrane is
unknown but it is well documented that the activity
of Na}K ATPase as well as other aspects of
transmembrane ion movements are influenced by
membrane lipids (see Hoch, 1988; Hulbert & Else,
2000). A survey of the upstream region of the human
α sub-unit gene failed to find a TREsequence (Shull,
Pugh & Lingrel, 1989) and none of the Na}K
ATPase sub-units are among the genes reported to
possess a TRE (Williams & Brent, 1995).

The most parsimonious explanation is that the
increased nuclear expression of Na+,K+-ATPase
units is a response to an increase in passive ion leaks.
This increased leak results in an increased activity of
the Na+ pumps already present in the membrane
and later an increase in the number of pumps. Such
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a mechanism, whereby the demand for ion transport
is the primary driving force for Na+ pump synthesis,
has been suggested by Wolitzky & Fambrough
(1986) and is supported by the finding that exposure
of chicken muscle cells to veratridine (which in-
creases Na+ leak by opening Na+ channels) results in
an increase in both the activity of and the mRNA for
Na+,K+-ATPase (Taormina & Fambrough, 1990).

Erythrocytes from hyperthyroid humans have
both an altered membrane phospholipid profile and
show an increased Na+ and Ca#+ influx compared to
euthyroid controls (De Riva, Virgili & Frigato,
1996). Whilst there were no significant changes in
either phospholipid profile or ion fluxes 30 days after
commencement of treatment (plasma thyroid hor-
mone levels were reduced but still in the hyper-
thyroid range), 300 days after treatment commenced
both phospholipid profile and ion fluxes had re-
turned to euthyroid levels. Because mammalian
erythrocytes have no intracellular organelles it is
likely that individual cells are unable to modify their
membrane composition and it is necessary for
population turnover to occur for changes to be
manifest (De Riva et al., 1996).

The Ca#+ gradient across the plasma membrane of
resting cells is the largest known for any ion (being
approximately ¬10%) and is maintained by a Ca#+-
ATPase and a Ca#+}Na+ exchanger, both in the
plasma membrane, as well as another Ca#+-ATPase
in the endoplasmic reticulum and a Ca#+ carrier in
the mitochondrial membrane. T3 rapidly stimulates
Ca#+ uptake by the perfused rat liver (Hummerich &
Soboll, 1989). Ca#+ cycling has been most studied in
muscle (for review see Clausen et al., 1991). Thyroid
hormones have a greater effect on slow muscle than
fast muscle and have been shown to result in an
increased amount of sarcoplasmic reticulum, a
greater density of Na+ pumps and a decreased
energetic efficiency of Ca#+ pumping. The relative
contribution to the BMR depends on the degree of
futile Ca#+ cycling that occurs in the resting state. It
is estimated that approximately 30% of the change
in muscle metabolic rate from the hypothyroid to
euthyroid state is due to Ca#+ cycling changes in the
sarcoplasmic reticulum (Clausen et al., 1991) and
that Ca#+-cycling is responsible for approximately
6% of the resting metabolism of skeletal muscle,
18–36% in contracting cardiac muscle and approx-
imately 2% in liver. It is estimated that this Ca#+-
cycling in skeletal muscle, heart and liver accounts
for 3–4% of the BMR of a rat and possibly 4–6% in
humans (Rolfe & Brown, 1997).

The very high Ca#+ gradient across the plasma

membrane and its low concentration in the cytosol
makes Ca#+ entry an ideal information transfer
process across the plasma membrane. To my
knowledge, stimulation of Ca#+ entry represents the
fastest known response to physiological concen-
trations of thyroid hormones, being evident within
15 s of in vitro T3 exposure in thymocytes (Segal &
Ingbar, 1984) and heart tissue where the effect was
evident at 10 p (Segal, 1990a). It has been proposed
that this Ca#+ influx is the first messenger in several
thyroid hormone effects at the plasma membrane
(for review see Segal, 1989b, 1990b). This thyroid-
hormone-induced increase in intracellular Ca#+

concentration has also been measured in individual
rat myocytes (Lomax et al., 1991). Such a rapid
effect is obviously non-genomic in origin but whether
it is associated with thyroid-hormone-induced
changes in the physical properties of the bilayer is
not known. It is a transient response with in-
tracellular [Ca#+] being rapidly returned to normal
levels.

The plasma membrane Ca#+-ATPase has also
been shown to be stimulated by in vitro thyroid
hormone exposure in both rat erythrocytes (Galo,
Unates & Farias, 1981), human erythrocytes (Davis
et al., 1983) and rabbit myocardial vesicles (Rud-
inger et al., 1984). Erythrocytes isolated from
hypothyroid and hyperthyroid humans have similar
changes in Ca#+-ATPase activities (Dube et al.,
1986) demonstrating in vivo relevance.

Plasma membrane Ca#+-ATPase activity is known
to be affected by membrane lipids and the in-
teraction between the regulatory calmodulin and the
pump is influenced by its lipid environment (for
review see Carafoli, 1991). For example, acidic
phospholipids and unsaturated fatty acids are re-
ported to mimic the stimulatory effect of calmodulin
on purified erythrocyte Ca#+-ATPase (Niggli,
Adunyah & Carafoli, 1981). Similarly, the in vitro
modification of membrane acyl composition of
intestinal brush border vesicles has been shown to
influence Ca#+ transport (Kreutter, Lafreniere &
Rasmussen, 1984).

In human erythrocyte membranes, long chain
fatty acids have been shown to modulate Ca#+-
ATPase activity (Davis et al., 1987) and retinoic acid
has been shown to be a modulator of the thyroid
hormone activation of this enzyme (Smith et al.,
1989). The plasma membrane Ca#+-ATPase has
been most studied in mammalian erythrocytes and it
is obvious that these thyroid hormone effects can not
be mediated via the nucleus in such non-nucleated
cells. They appear likely to be due to a thyroid
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influence on the membrane and there is no apparent
reason why such an effect should not also be manifest
in nucleated cells. This influence of thyroid hormones
has been reviewed by Davis, Davis & Lawrence
(1989) and these authors have suggested that the
mechanism of this thyroid hormone effect may
involve membrane lipids. The relative potency of
various iodothyronines is also different to that for
nuclear-receptor-mediated effects in that -T4 is the
most potent iodothyronine, with -T3 and 3,5--T2
having approximately 75% the potency of -T4,
and rT3, D-T4 and D-T3 having no stimulatory
effect on the activity of human erythrocyte Ca#+-
ATPase.

The study on rat erythrocytes is interesting in that
these researchers have demonstrated that diet-
induced changes in membrane fatty acid com-
position influence both basal Ca#+-ATPase activity
and the response to both T3 and T4 (Galo et al.,
1981).

Thyroid hormone stimulation of metabolism must
also result in increased substrate utilization. In the
1960s, in vitro thyroid hormone exposure was shown
to stimulate amino acid uptake in chick embryo
bone (Adamson & Ingbar, 1967) and similar effects
were observed in rat thymocytes (Goldfine et al.,
1976). T3 was also shown to stimulate deoxyglucose
uptake in chick embryo heart cells (Segal, Schwartz
& Gordon, 1977) and in rat thymocytes, both in vitro
(Segal & Ingbar, 1979) and in vivo (Segal & Ingbar,
1984). The speed of the response together with the
lack of a requirement for protein synthesis demon-
strated it to be a direct effect on the plasma
membrane and not mediated by nuclear receptors.
Since then a number of studies have shown that
thyroid hormones facilitate substrate uptake across
the plasma membrane of a number of cell types.
For example, the uptake of deoxyglucose by cardiac
and skeletal muscle and adipose tissue is stimulated
in vivo by physiological doses of thyroid hormones
(Segal, 1989a). It has been proposed that this
effect is mediated by intracellular increases in
cyclic AMP and a transient Ca#+ influx (see Segal,
1990).

The stimulation of glucose uptake by chick
embryo heart cells is biphasic with the initial phase
(up to 6 h) involving stimulation of transporters in
the plasma membrane and the second phase (6–24
h) involving the nucleus and requiring protein
synthesis. The production of a monoclonal antibody
with the ‘configuration’ of T3 has been shown to
stimulate the first phase of this uptake (Gordon et al.,
1994). This finding supports the proposal that such

an effect may be mediated by T3 binding to a
plasma membrane receptor.

Thyroid-hormone-stimulation of glucose uptake
by a rat liver cell line (ARL 15 cells) appears to
involve an increase in both transporter numbers and
the molecular activity of individual GLUT 1 glucose
transporters. After 6 hours of hormone exposure
deoxyglucose uptake increased by 40% but GLUT
1 transporter protein levels did not change. After 48
h of T3 exposure, deoxyglucose uptake increased by
116 % whilst transporter numbers were only 58%
greater (Weinstein & Haber, 1993). In the rat heart,
hyperthyroidism has no effect on either GLUT 1
protein or its mRNA levels, whilst hypothyroidism
results in an increase in both GLUT 1 mRNA and
protein levels (Weinstein & Haber, 1992). The same
study showed that, in the rat heart, GLUT 4 mRNA
levels are very sensitive to, but that GLUT 4 protein
levels do not change with thyroid status. In rat
adipocytes, hyperthyroidism resulted in an increase
in levels of GLUT 4 transporters as well as the
functional activity of these transporters. The change
in functional activity of the plasma membrane
glucose transporters may be related to an increase in
insulin receptor affinity and insulin receptor kinase
activity during hypothyroidism (Matthaei et al.,
1995). Whilst astrocytes cultured in T3-depleted
media have a decreased number of glucose trans-
porters relative to those cultured in T3-enriched
media, short exposure (10 min) of the hypothyroid
cells to T3 increased the access of the transporters to
the binding molecules without a change in trans-
porter number (Roeder et al., 1988). Thyroxine
treatment has been shown to have only a minor
influence on insulin effects on glucose kinetics in
humans (Muller et al., 1995).

Thyroid hormones also stimulate the uptake of
amino acids and the rapid and direct stimulation of
gluconeogenesis by T3 in isolated-perfused rat liver
has been suggested to be due in part to this thyroid
hormone effect (Muller & Seitz, 1980).

When rat hepatocytes are incubated with glucose
there is an increased respiration compared to that
observed in a glucose-free medium and this glucose-
enhancement of respiration is related to the prior
thyroid status of the rat (Gregory et al., 1996).
Measured rates of glucose cycling were greater in
hepatocytes from euthyroid rats compared to those
from hypothyroid rats, however the contribution of
this enhanced hepatic glucose cycling to the calor-
igenic action of thyroid hormone is minimal
(Gregory et al., 1996).

Thyroid hormones are also known to stimulate the
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synthesis of fatty acids (lipogenesis) as well as the
hydrolysis of triglycerides (lipolysis). The possibility
that a thyroid-hormone-stimulated lipogenesis}
lipolysis ‘ futile ’ cycle is a significant contributor to
the calorigenic effect has been investigated by
Oppenheimer et al. (1991). The early loss of body fat
during induced hyperthyroidism in rats suggested
that this was the primary substrate for the T3-
induced increase in metabolic rate as food intake
only increased some days after the commencement of
hyperthyroidism. The food the rats ate (normal
laboratory chow) contained only 4.5% fat and the
increase in lipogenesis reached a plateau 4–5 days
after the commencement of hyperthyroidism. How-
ever, the metabolic cost of this increased lipogenesis
accounted for 3–4% of the total T3-induced increase
in metabolic rate. Thus, a futile cycle of lipogenesis}
lipolysis is an insignificant contributor to the calor-
igenic effects of thyroid hormones. It was suggested
that the function of the thyroid-induced increase in
lipogenesis was simply to maintain fat stores (Oppen-
heimer et al., 1991).

The effect of thyroid hormones on lipogenesis is
due to the increased expression of genes coding for
lipogenic enzymes, especially the cytosolic malic
enzyme and an enigmatic protein called S

"%
that

seemed to be associated with lipogenesis in an
unknown way (Goodridge, 1978; Towle, Mariash &
Oppenheimer, 1980; Miksicek & Towle, 1982).
Recent work suggests that S

"%
protein is located

primarily in the nucleus and acts in the induction of
mRNAs coding for key lipogenic, glycolytic and
gluconeogenic enzymes as well as for the D1
deiodinase (Brown, Maloney & Kinlaw, 1997). That
the thyroid hormone effect on lipogenesis is mediated
by nuclear receptors is demonstrated by the fact that
the genes for these lipogenic enzymes (malic enzyme
and S"%) have TREs (Petty et al., 1990; Zilz, Murray
& Towle, 1990; Liu & Towle, 1994). Indeed, the
malic enzyme TRE is a common TRE in the
construction of transfected systems used to examine
the mechanism of action of thyroid nuclear receptors.

The induction of malic enzyme in liver is also
influenced by diet fat composition. In rats, fat-free
diets result in elevated activities of malic enzyme and
other lipogenic enzymes and as dietary fat content
(polyunsaturated soya oil) is increased lipogenic
enzyme activities decrease (Carrozza et al., 1979).
An absence of polyunsaturates in the diet is a
powerful stimulus to malic enzyme induction. In
mice fed diets that differed only in fatty acid
composition, polyunsaturates resulted in a significant
decrease in liver malic enzyme activity both in the

euthyroid and hyperthyroid state (Deshpande &
Hulbert, 1995). That these diets had no effect on
metabolic rate but significantly influenced body
mass suggest that lipogenesis was similarly affected.
Hyperthyroidism diminished the effect of dietary fat
composition on liver malic enzyme activity (Desh-
pande & Hulbert, 1995). Interaction between
dietary fat and T3 effects on malic enzyme induction
has also been observed in the rat (Clarke &
Hembree, 1990). The influence of dietary polyun-
saturate content on malic enzyme induction suggests
that energy storage may not be the only factor to be
considered but that another aspect of fatty acids,
their key role in the membrane bilayer, may also be
important. Possibly, stimulation of lipogenesis is part
of a ‘make more membrane’ message.

This possibility is strengthened by the intriguing
findings of Castellani, Wilcox & Heimberg (1991).
These authors measured lipogenesis in perfused liver
from both euthyroid and hyperthyroid rats. Whilst
hyperthyroidism increased both fatty acid synthesis
(lipogenesis) and oxidation, the de novo synthesised
fatty acids were preferentially incorporated into
phospholipids rather than into triglycerides (by
severalfold) and were poorer substrates for oxidation
than were exogenous fatty acids which were preferen-
tially incorporated into triglycerides. These findings
suggest that whilst increased lipogenesis will in-
fluence triglyceride deposition the primary function
of enhanced lipogenesis may to provide fatty acids
for membrane synthesis. In this light, it is interesting
that one of the effects of an enhanced thyroid status
is an increase in the amount of cellular membranes,
for example increased mitochondrial (e.g. Jakovcic
et al., 1978) and sarcolemmal membranes (Szy-
manska, Pikula & Zborowski, 1991).

In some tissues, a substantial proportion of oxygen
is consumed by non-mitochondrial processes. For
example, in the rat this is estimated to be 20, 14 and
3%, respectively, of the in vivo oxygen consumption
of liver, skeletal muscle and heart and represents
approximately 8% of BMR (see Rolfe & Brown,
1997). Thyroid hormones stimulate non-mito-
chondrial oxygen consumption of rat hepatocytes
(Harper & Brand, 1993). One of the contributors to
non-mitochondrial oxygen consumption will be the
desaturase enzyme systems located in the endo-
plasmic reticulum (Pugh & Kates, 1979). It is
possible that the thyroid-induced changes in mem-
brane fatty acyl composition (see Tables 2 and 3) are
responsible for part (or all) of the thyroid-induced
changes in non-mitochondrial oxygen consumption
via altered desaturase activity.
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Although when considered as whole organisms,
vertebrates are aerobic organisms, some individual
cell types can adopt anaerobic strategies. Approx-
imately half the heat production of lymphocytes
measured in vitro is associated with anaerobic energy
metabolism. Lymphocytes from hyperthyroid hu-
mans have an elevated heat production due to
enhanced anaerobic metabolism (Valdermarsson &
Monti, 1994) that in turn appears to be due to
thyroid hormone stimulation of adrenoreceptor
sensitivity (Valdermarsson & Monti, 1995).

As mentioned above it is often assumed that T3 is
the ‘active ’ thyroid hormone and a large amount of
the research cited in this section has involved the use
of T3. A decade ago, a surprising report appeared
that fundamentally questioned this assumption.

Horst, Rokos & Seitz (1989) reported that 3,5-T2,
at a concentration as low as 1 p, resulted in a rapid
stimulation (within 30 min) of oxygen consumption
of the perfused liver from hypothyroid rats. T2 was
as potent as T3 and exerted its effect more rapidly.
Whereas the stimulation by T3 was largely abolished
in the presence of an inhibitor of the D1 deiodinase,
the 3,5-T2 stimulation of oxygen consumption was
not affected. Only T3 increased liver malic enzyme
activity with this enzyme being unaffected by 3,5-T2
(Horst et al., 1989). The interpretation of this finding
was that the calorigenic effect of the thyroid
hormones was mediated by a direct and rapid effect
of 3,5-T2 (derived from the intracellular deiodin-
ation of T3) on the mitochondria whilst other longer
term effects (such as increased malic enzyme
activity) were mediated via the nucleus.

Since this initial report, both 3,5-T2 and 3,3«-T2
have been shown to be equipotent in stimulating
mitochondrial cytochrome oxidase activity in vitro ;
the effects are rapid (being evident within 5 min)
and are restricted to these two iodothyronines (Lanni
et al., 1994a). When large doses of 3,5-T2 or T3 were
injected into anaesthetized rats that had been treated
with the D1 deiodinase inhibitor, propylthiouracil
(which will prevent the conversion of T3 to T2), and
mitochondria were isolated 1 h later, only 3,5-T2
injections increased in mitochondrial activity
(O’Reilly & Murphy, 1992). In unanaesthetized
rats, 3,5-T2 was also shown to stimulate lipid β-
oxidation (Cimmino et al., 1996). Rat liver mito-
chondria have been shown to bind both 3,5-T2
(Goglia et al., 1994) and 3,3«-T2 (Lanni et al., 1994b)
in vitro. Recently, it has been demonstrated that 3,5-
T2 given as a single large in vivo dose resulted in a
stimulation of both state 4 and state 3 respiration of
rat liver mitochondria; this was due to stimulation of

substrate oxidation reactions and 3,5-T2 had no
effect on the proton leak nor on the phosphorylating
system (Lombardi et al., 1998). Both 3,5-T2 and
3,3«-T2 injected into hypothyroid rats stimulated
resting metabolism (Lanni et al., 1996). The latter
study also showed that the relative influence of these
iodothyronines on cytochrome oxidase activity
varied between tissues. Hypothyroid rats responded
to a single injection of either 3,5-T2 or T3 with an
increase in resting metabolic rate. Although meta-
bolic rate increased to the same degree the response
to 3,5-T2 was more rapid and resistant to inhibition
of protein synthesis, whilst the response to T3 was
slower and completely abolished by the inhibition of
protein synthesis (Moreno et al., 1997). Supra-
physiological levels of 3,5-T2 in vitro stimulated the
oxygen consumption of human mononuclear blood
cells but glucose uptake was unaffected (Kvetny,
1992).

The study giving the most insight into the effects
of this iodothyronine on mitochondrial activity has
recently shown that in vitro 3,5-T2 stimulates
cytochrome oxidase activity. Part of the normal
control of mitochondrial respiratory chain activity is
due to the fact that at high ATP}ADP ratios, ATP
replaces ADP bound to subunit IV of the cytochrome
oxidase enzyme complex and allosterically inhibits
its activity. 3,5-T2 was shown to bind to subunit Va
of the cytochrome oxidase complex and abolish the
allosteric inhibition due to ATP binding and thus
stimulating enzyme activity (Arnold, Goglia &
Kadenbach, 1998). T3 has a similar but smaller
effect. This effect was first apparent at 10 n 3,5-T2
and was maximal at 1 µ, although because of the
constructed in vitro nature of this system these
concentrations may not have in vivo relevance.

These studies obviously raise a number of im-
portant questions. They show that : (i) T3 is not the
only active iodothyronine and that at least two T2s
are also capable of being active thyroid hormones,
(ii) the T2s can exert effects separate from T3 and on
a molar basis are approximately as equipotent as T3
in stimulating some activities, and (iii) that this
stimulation does not involve the nucleus. The later
studies, however, suffer from the same general
problem that plagues much of the thyroid literature.
The concentrations used are generally too high to
conclude physiological relevance. We currently have
limited knowledge of the concentrations of these
diiodothyronines in humans but very little knowl-
edge of the levels in the blood and tissues of rats.

Whilst I know of no reports for free 3,5-T2
concentrations, the free levels for 3,3«-T2, 3«,5«-T2
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and T3 are, respectively, 0.44 p, 0.77 p and 4.8
p (Faber et al., 1984). For a 70 kg euthyroid
human, the daily production of 3,5-T2 and T3 is 6.4
nmol and 48 nmol, respectively (Chopra, 1996).
Tissue concentrations of 3,5-T2 and T3 in euthyroid
human brains are reported to be approximately 0.1
pmol g−" and approximately 1.5 pmol g−" respect-
ively (Pinna et al., 1997). Whilst the levels in adult
euthyroid rats are not known, tissue 3,5-T2 and T3
content of liver from 16-day-old rat fetuses is
reported to be approximately 0.4 pmol g−" and
approximately 3.5 pmol g−", respectively (Porter-
field & Hendrich, 1992). Thus, all reports suggest
that the normal in vivo levels of 3,5-T2 are less than
those of T3 and suggest that the doses used to date
are an order of magnitude greater than those
required to demonstrate physiological relevance.
Future studies ideally need to include the use of and
confirmatory measurement of the relevant in vivo
concentrations.

These studies may, however, provide an expla-
nation for the conflicting findings of a direct effect of
T3 on isolated mitochondria, in that if mitochondrial
preparations have undetected microsomal contami-
nation it is possible that T3 added in vitro could be
converted to 3,5-T2 by deiodination and exert
stimulatory effects on mitochondrial respiration.

That thyroid hormones can have rapid in vivo
effects on metabolic enzymes is illustrated by a series
of reports on liver and muscle from a diverse
collection of non-terrestrial vertebrates, including a
cyclostome (Leary et al., 1997), holostean and teleost
fish (Ballantyne et al., 1992) and an elasmobranch
(Battersby, McFarlane & Ballantyne, 1996). In all
of these studies, tissues were isolated 3 h after in vivo
injection of T3 and although T3 doses were generally
in the range 1–15 µg per 100 g, in some studies effects
were observed after in vivo T3 doses as low as 0.001
µg per 100 g. These researchers have shown a
stimulation of pyruvate-fuelled state 3 mitochondrial
respiration following a 5 min in vitro incubation with
0.3 n T3 or 3,5-T2 (Leary, Barton & Ballantyne,
1996).

Although the effect of the thyroid hormones on
basal metabolism has been known for over a century
there is still no general agreement on how this effect
is initiated or mediated. Part of the reason for this is
that, until recently, we have not had much quan-
titative understanding of the processes that constitute
basal metabolism. It is obvious from the discussion
above that the stimulation of oxygen consumption of
the whole organism is due to the stimulation of many
individual processes in many different tissues. The

vast majority of these processes are membrane-
associated. Many involve an increase in the passage
(both active and passive) of ions or substrates across
membranes, and many involve an increase in the
molecular activity of particular membrane-asso-
ciated processes. Some are rapidly induced in vitro
whilst some take time to become manifest. Some
involve an increase in protein synthesis whilst others
do not.

The evidence that these effects are initiated by
thyroid nuclear receptors is scarce. The only process
that has definitively been shown to be thyroid
nuclear receptor initiated is the stimulus of lipo-
genesis and this effect is not quantitatively im-
portant. Indeed, a new interpretation of this thyroid
hormone stimulation of lipogenesis is that it may be
part of a ‘make more membrane’ message. The fact
that membrane lipid composition is altered by
thyroid status, and that these changes have been
observed for virtually all sub-cellular membranes
and in a wide variety of tissues, when coupled with
the finding that membrane composition may be a
‘pacemaker’ in determining the BMR of different
vertebrates (see Hulbert & Else, 1999, 2000) suggests
that thyroid-induced changes in the composition of
membrane bilayers are a significant mechanism in
thyroid hormone stimulation of metabolic activity.

The proposal that thyroid hormones directly
influence bilayer physical properties and that conse-
quent changes in bilayer acyl composition are
primarily responsible for mediating the calorigenic
effect of thyroid hormones is compatible with many
observations. It is compatible with the time lag
observed before there is an increase in organismal
oxygen consumption. Since bilayer acyl changes are
mediated by various enzymes (especially those
involved in deacylation}reacylation of phospholipids
as well as phosholipid synthesis) it is compatible with
the effect of inhibitors of protein synthesis. It is also
compatible with the many studies that demonstrate
that membrane acyl composition influences the
activity of various membrane proteins, as well as
being compatible with the quantitative importance
of the maintenance of transmembrane gradients in
cellular energy consumption. Whilst the finding that
there is an increase in mRNA for a particular protein
is evidence for the involvement of the nucleus in the
effect, it is not evidence that the effect is initiated in
the nucleus by thyroid nuclear receptors. In view of
the concept of continual degradation}synthesis of
proteins, an increase in protein synthesis may be due
to an increased information flow to the nucleus for
the particular protein. However, not all effects can
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be mediated by changes in acyl composition. For
example, some are too rapid. The stimulation of
increased substrate uptake at the plasma membrane
appears to be receptor mediated and some effects at
the mitochondrial membrane may also be due to a
direct interaction with proteins in the mitochondrial
membrane.

The proposal that much of the stimulation of
metabolic activity by thyroid hormones is mediated
by changes in membrane acyl composition is unusual
in that it does not require a specific receptor and
therefore is not part of the current paradigm
concerning hormone action. It is instead a response
of the cell to the physical properties of thyroid
hormone. Although we know that thyroid hormones,
(at physiological concentrations) have direct physi-
cal effects on the behaviour of membranes, our
knowledge of this area is still very rudimentary.

As well as effects on BMR, thyroid hormones have
other effects on thermogenesis. For example, thermo-
regulation is also influenced by thyroid status. The
lower resting body temperature of some hypothyroid
mammals compared to euthyroid controls (e.g.
Kaciuba-Uscilko et al., 1987) is often thought to be
due to a decreased metabolism and therefore
thermogenesis. However, recent work using the
laboratory rat suggests that rather than being a
passive consequence of decreased thermogenesis this
lower body temperature is instead a regulated
response (Yang & Gordon, 1997) and thus may be
the result of a more direct effect on the neuronal
system that determines the set point for body
temperature regulation.

Exposure of endothermic vertebrates (mammals
and birds) to cold generally results in an increased
thermogenesis to maintain body temperature homeo-
statically. The initial mechanism used by all en-
dothermic vertebrates is the controlled microtremor
of antagonistic muscles, known as shivering. Some of
the small eutherian mammals (notably rodents)
have also evolved a specialized heat-production
mechanism that is located in brown adipose tissue
(BAT) and controlled by the secretion of noradren-
aline from the sympathetic nervous system. Heat
production is the only known function of BAT and
this form of heat production is important in three
situations : cold-adaptation in small eutherian mam-
mals, heat production in eutherian neonates and
during arousal from hibernation in small eutherian
mammals. BAT thermogenesis is not present in
monotreme, marsupial or medium to large-sized
eutherian mammals (e.g. see Hulbert, 1980a) and is
also absent in non-mammalian vertebrates. It has

been studied intensively in the rat and has been
shown to be mediated by an uncoupling protein,
UCP1, that acts to uncouple mitochondrial res-
piration from ATP production by facilitating proton
flux through the BAT mitochondrial inner mem-
brane (for a review see Nicholls & Locke, 1984). The
selective advantage that favoured BAT thermo-
genesis in small eutherian mammals is presumably
the fact that, unlike the tremor associated with
severe shivering, this form of heat production in the
cold does not disturb the insulative air layer around
the animal and also allows muscle use for normal
movement in the cold. Because of their size and
consequently high relative surface area, small mam-
mals cannot use the more energy-efficient strategy of
increasing body insulation in the cold. Whilst BAT is
an important energetic tissue in cold-adapted rats,
the extrapolation of findings in the adult rat to other
adult mammals (including humans) is generally not
warranted.

The role of the thyroid hormones in BAT
thermogenesis has been reviewed by Silva (1995).
Brown adipose tissue has a high amount of D2
deiodinase and during cold exposure deiodinase
activity is activated by norepinephrine resulting in
substantial T3 production in the BAT cells. The
elevated T3 concentration appears to facilitate, via
nuclear TRs, the expression of the BAT UCP1 gene.
Two TREs have been described for the rat UCP1
gene (Rabelo et al., 1995) and the interaction
between these TREs has been examined (Rabelo et
al., 1996).

UCP1 is a member of the mitochondrial mem-
brane anion carrier family, and other proteins,
related to UCP1, have recently been identified.
Whilst these proteins have been called UCP2 and
UCP3 because of their relatedness to UCP1, there is
little direct evidence that they are indeed mito-
chondrial uncoupling proteins. Both UCP2 and
UCP3 mRNA can be induced by thyroid hormones
in some tissues of rats (Gong et al., 1997; Lanni et al.,
1997) and it has been suggested that they have a
thermogenic function. Neither UCP2 nor UCP3 is
present in hepatocytes and can thus not be directly
responsible for the mitochondrial proton leak mea-
sured in these cells. A thermogenic role for UCP2
and UCP3 has yet to be demonstrated. They have
recently been discussed by Brand et al. (1999).

During acute cold exposure in many endotherms
there is an increase in both thyroid activity and
thyroid hormone metabolism. However, because
cold exposure also often involves an increase in
energy intake, it is not always obvious whether it is
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cold exposure or the enhanced energy intake that is
the primary influence on thyroid hormone. A series
of studies on young pigs has shown that elevated
energy intake has a greater effect on thyroid
hormone metabolism than decreases in ambient
temperature (for a review see Dauncey, 1990).

(5) Effects on excitable tissues

Before the advent of modern accurate hormone
assays, the Achilles tendon reflex time (ankle jerk
reflex) was proposed as a diagnostic for thyroid
status in humans although it was later found to be
unsatisfactory (Costin, Kaplan & Ling, 1970). The
Achilles tendon reflex time averaged 0.34 s in
euthyroid humans and 0.53 s in hypothyroids, with
the time between the tap on the tendon and the
muscle action potential being 0.03–0.04 s for hypo-
thyroid, euthyroid and thyrotoxic individuals (De-
Long, 1996). This finding suggested that there was
no effect of thyroid hormones on nerve conduction
velocity but that there were significant thyroid
influences on the processes involved in muscular
contraction. Measurement of peripheral and central
nerve conduction velocity in humans showed that
hypothyroidism resulted in slower peripheral and
central nerve conduction velocity than in euthyroids
and that this difference was eliminated after T4
treatment, but there was no difference between
thyrotoxic and euthyroid individuals (Abbott et al.,
1983). These researchers showed that the slow
conduction of the hypothyroids was largely due to
the lower temperatures associated with hypothyroid-
ism. Central nerve conduction velocity was assessed
by measuring the latency of visually evoked respon-
ses. This technique has also been used to examine the
effects of thyroid hormones on the visual system of
rats. Whilst thyroidectomy resulted in an increased
latency of the response, there was no significant
difference in the optic nerve conduction velocity.
The component of the rat visual system most sensitive
to thyroid status was located in front of the optic
chiasma, probably in the retina (Takeda, Onoda &
Suzuki, 1994). In view of the relative constancy of
brain T3 levels, irrespective of changes in organismal
thyroid status, it is understandable that conduction
velocity is unaffected by thyroidectomy. Whether
peripheral nerves also maintain T3 homeostasis is
unknown.

T3 has a direct effect on the cell membrane of
GH3 cells in culture resulting in significant increases
in membrane resistance and a hyperpolarization of
the membrane potential within minutes of hormone

application. Concomitant with these effects, cells
spontaneously firing action potentials also stopped
firing within minutes of T3 application (du Pont &
Israel, 1987). Other evidence of membrane effects is
the finding that cerebral cortex slices from hypo-
thyroid mice show diminished endocytosis and
uptake of amino acids and hexose compared to those
from euthyroid mice. The fact that T3 can increase
these activities in nerve endings within 5 min of
hormone exposure demonstrates that this stimu-
lation does not involve the nuclear receptors (Iqbal,
Koenig & Trout, 1984).

Both hypothyroidism and hyperthyroidism have
detrimental effects on skeletal muscle. Thyroid-
ectomy affects the neuromuscular junction in rats,
resulting in a decrease in both the number of
acetylcholine receptors (Kragie & Smiehorowski,
1993) and G4 isoform acetylcholinesterase activity in
fast skeletal muscle (Kragie & Stock, 1994). How
these changes are initiated is not known but it was
suggested that they may involve changes in muscle
activity and}or alterations in the signal transduction
systems regulating the G4 acetylcholinesterase iso-
form (Kragie & Stock, 1994).

Thyroid hormones affect transmembrane fluxes of
both Na+ and Ca+ in skeletal muscle and thus have
dramatic effects on skeletal muscle function (for
review see Everts, 1996). Thyroid status in rats does
not affect the peak force developed during either a
single twitch or tetanus but has dramatic effects on
the rate of force development and relaxation time of
isolated muscles ; this effect is more pronounced in
slow muscles than in fast muscles. In the rat soleus,
such thyroid-hormone-induced changes take several
days (Montgomery, 1992).

The depolarization phase of action potentials at
the sarcolemma is mediated by voltage-dependent
Na+ channels. Thyroid hormones increase both the
spontaneous electrical activity and the number of
Na+ channels in cultured skeletal myotubes as well as
influencing the affinity of these Na+ channels for the
neurotoxin, saxitoxin (Brodie & Sampson, 1989).
Thyroid hormones also increase Na+,K+-ATPase
activity in skeletal muscle (see Clausen et al., 1991).
It has been suggested that the Na+ channels : Na+

pumps ratio is an important determinant of the
contractile endurance and rate of force recovery in
muscle (Harrison, Nielsen & Clausen, 1997). In rat
soleus muscle, T3 treatment increases the number of
Na+ channels and this precedes the increase in the
number of Na+ pumps; changes in contractile
endurance of the isolated muscle reflect the time
course of changes in the leak}pump ratio. Such
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changes may be important determinants of the
muscular fatigue associated with hyperthyroidism
(Harrison & Clausen, 1998).

The sarcolemmal action potential initiates transfer
of Ca#+ from the sarcoplasmic reticulum into the
cytosol via membrane-located Ca#+ channels. In
cultured skeletal muscle cells, T3 increases the
number of Ca#+ channels and influences their
binding affinity for a specific channel antagonist
(Brodie & Sampson, 1990). The Ca#+ released
during excitation is rapidly removed from the
sarcoplasm by a Ca#+-ATPase located in the sarco-
plasmic reticulum. The concentration of Ca#+-
ATPase is approximately six times higher in fast
muscle fibres than slow muscle fibres and reflects
their difference in speed of relaxation following
contraction (see Everts, 1996). Following T3 treat-
ment, there is an increase in the rate of force
relaxation after a sustained contraction in slow
muscle, correlated with an increase in the density of
Ca#+-ATPase in the sarcoplasmic reticulum (Dul-
hunty, 1990). The latter study showed that T3
effects on fast muscle fibres were small and insig-
nificant, and furthermore that T3 treatment results
in more rapid changes in factors regulating the rate
of rise in tension than those affecting tension
relaxation.

Three genes encode different isoforms of the
sarcoplasmic reticulum Ca#+-ATPase and in fast
muscle fibres SERCA1 is the predominant isoform
whilst in slow skeletal muscle, SERCA2a is the main
isoform expressed. T3 specifically stimulates the
production of SERCA1 isoform mRNA (Simonides,
van der Linden & van Hardeveld, 1990, Sayen,
Rohrer & Dillmann, 1992) resulting in increased
Ca#+-ATPase activity and favouring the transform-
ation of slow muscle to the fast muscle phenotype.
The demonstration of TREs in the promoter region
of the SERCA1 gene in a transfected system
demonstrates that this effect is mediated by thyroid
nuclear receptors (Simonides et al., 1996). The
demonstration that thyroid hormones stimulate
sarcoplasmic reticulum Ca#+-ATPase activity in vitro
suggests that non-genomic effects are also possible
(Warnick et al., 1993). Neither mode of thyroid
hormone action excludes the other.

The mode of thyroid hormone action involved in
the increase in skeletal muscle Na+ channels (Brodie
& Sampson, 1989) and Ca#+ channels (Brodie &
Sampson, 1990) is unknown. Whilst thyroid hor-
mone effects observed during inhibition of protein
synthesis preclude a nuclear-receptor-initiated mode
of action, the converse finding (i.e. no effect during

the inhibition of protein synthesis) does not necess-
arily indicate a nuclear receptor mode of action. It
does imply that the nucleus is involved, but because
a thyroid effect is pre-translational does not necess-
arily mean it is transcriptional. It may involve a pre-
transcriptional site of action. For example, the
increased manufacture of Na+ pumps, in response to
an increased Na+ leak, is due to a pre-transcriptional
increase in information flow to the nucleus that leads
to increased transcription and a consequent increase
in the number of pumps. In this light, it is of interest
that cytosolic Ca#+ has been shown to be important
in the control of the amount of acetylcholine
receptors and acetylcholinesterase (Birnbaum, Reis
& Shainberg, 1980) and voltage-sensitive Na+

channels (Sherman & Catterall, 1984). All three
effects are responsive to thyroid status (see above).
Brodie & Sampson (1989) showed that factors that
influence intracellular Ca#+ levels (e.g. external Ca#+

concentration and channel blockers) modified the
thyroid hormone effect on the number of Na+

channels. It is possible that other thyroid hormone
effects are mediated by such pre-transcriptional
changes in information flow. Whether the thyroid-
hormone-induced changes in skeletal muscle sarco-
lemmal lipid composition and fluidity (e.g. Pilarska
et al., 1991) will affect such information flow is not
currently known.

Exposure of primary cultures of vascular smooth
muscle cells to T3 results in cellular relaxation
within 10 min of exposure (Ojamaa, Klemperer &
Klein, 1996). The speed of the response suggests that
this is non-genomic. A decrease in vascular re-
sistance, which is compatible with this in vitro effect,
is part of the enhanced cardiovascular hemo-
dynamics associated with thyroid hormones in vivo.

The association between the thyroid gland and
the heart was recognized over 200 years ago (Caleb,
1785, cited by Dillman, 1990). Indeed, cardiac
hypertrophy is often used as an indication of
hyperthyroidism. The in vivo effects of thyroid
hormones on the heart are complex in that they
involve a combination of direct hormone effects and
indirect consequences from peripheral hemodynamic
changes (Klein, 1990). The use of heterotopic
cardiac transplants, in which the transplanted heart
muscle receives blood from the recipient but is not
hemodynamically loaded (in that it does not pump
the recipients blood), has shown that cardiac
hypertrophy is not a direct thyroid hormone effect.
For this reason among others, many effects have
been studied in isolated cardiac myocytes.

As well as enlargement of the heart, changes in
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thyroid status produce alterations in the electrical
activity of the heart. Tachycardia (as well as
arrhythmia) is a common sign of hyperthyroidism,
just as bradycardia is often observed during hypo-
thyroidism. The duration of the cardiac action
potential in isolated heart papillary muscle has been
shown to be inversely related to in vivo thyroid status
in a variety of vertebrates : rats (Di Meo et al., 1997),
chickens (Di Meo et al., 1993), lizards (Venditti et al.,
1996) and frogs (Di Meo et al., 1995). Resting heart
rate is directly related to in vivo thyroid status ; the
use of blockers of the sympathetic and parasympa-
thetic nervous systems has shown that changes in the
autonomic nervous system, whilst present, are not
the primary cause of thyroid-hormone-induced
tachycardia, and that the intrinsic heart rate is also
significantly increased (Di Meo et al., 1994). That
thyroid-hormone-induced changes in the electrical
activity of the heart may be associated with
membrane lipid changes is supported by the finding
that the membrane antioxidant, vitamin E, atten-
uates such changes in the rat (Venditti, De Leo & Di
Meo, 1997b). Both hypothyroidism and hyper-
thyroidism have been shown to change the phos-
pholipid fatty acyl composition of the sarcolemma of
rabbit cardiac muscle (Szymanska et al., 1991).

Studies on thyroid-hormone-induced shortening
of action potential duration in the rabbit heart have
suggested that changes in Na+ pump activity and
intracellular Na+ levels can explain the changes in
action potential duration (Doohan, Hool & Ras-
mussen, 1995). Membrane channel currents have
been shown to be influenced by thyroid hormones.
In neonatal rat cardiac myocytes, whole-cell-vol-
tage-clamp studies have shown that acute exposure
to T3 promotes the slow inactivation of Na+ currents
within 1–5 min after hormone addition (Craelius,
Green & Harris, 1990; Harris, Green & Craelius,
1991) which suggests a direct action on the cell
membrane. In rabbit cardiac myocytes, patch-clamp
studies have shown that acute exposure of the
extracellular side of the membrane to T3 modulated
the cardiac Na+ channels by increasing their pro-
pensity to enter a gating mode characterized by
‘ long events ’ or ‘bursts ’ (Dudley & Baumgarten,
1993). Thyroid hormones can affect the behaviour of
other membrane ion channels. For example, T3
increases the ATP sensitivity of the ATP-dependent
K+ channel from rat heart (Light et al., 1998).
Increased thyroid status is correlated with increased
intracellular Na+ concentrations in rat ventricular
myocytes that is associated with increased intra-
cellular acidity and it has been suggested that these

effects may mediate thyroid-hormone-induced ef-
fects on cardiac contractility (Wolska et al., 1997).

Thyroid hormones also affect the contractile
processes of cardiac muscle. In the heart, the
SERCA2a isoform of Ca#+-ATPase predominates
and T3 increases expression of this gene (Rohrer &
Dillman, 1988). Three TREs have been described in
the promoter region of the SERCA2 gene in the rat
(Hartong et al., 1994) and it has been suggested that
this effect may be specific to TRβ-1 interacting with
a myocyte-specific enhancing factor (Moriscot et al.,
1997). Thyroid hormones appear also to have direct
effects on the sarcolemmal Ca#+-ATPase in that very
low concentrations of both T3 and T4 result in in
vitro stimulation of the sarcolemmal enzyme isolated
from rabbits (Rudinger et al., 1984). Thyroid
hormones have been shown to have an acute
transient effect on the contractile abilities of the
isolated rat heart that is plasma membrane mediated
and Ca#+ dependent (Segal et al., 1996). Acute
extranuclear actions of thyroid hormones on the
heart have been reviewed by Davis & Davis (1993).

As well as influencing cardiac contraction by
affecting the proteins that regulate intracellular
Ca#+ levels, thyroid hormones also influence the
contractile proteins themselves. Myosin hydrolyses
ATP and converts the chemical energy released into
mechanical movement. Each hexameric myosin
molecule contains four light chains and two heavy
chains (MHCs). Myosin isolated from heart ventricle
was found to contain three isoforms that differed
only in their heavy chains (Hoh, McGrath & Hale,
1978). The V

"
isoform consists of two αMHCs, the

V
#

consists of a single α combined with a single
βMHC, whilst the V

$
isoform has two βMHCs. The

isoforms differ in their ATPase activity with the
αMHC having the higher activity. The control of
MHCs in the heart has been reviewed by Morkin
(1993). Thyroid hormones induce the high-activity
V

"
isoform (i.e. αMHC) and repress expression of

the low-activity V
$

isoform (i.e. βMHC) in the
ventricle of the rat and the rabbit. This effect is
mediated by nuclear receptors and TREs have been
described for the promoter regions of both the
αMHC and βMHC genes in both the rat and the
human. The time course of in vivo thyroid hormone
effects on MHC isoform mRNA levels in the rat
heart shows that small changes are evident after 12
h and complete by 72 h after hormone admin-
istration, a time course similar to that for mRNA
observed for the sarcoplasmic reticulum Ca#+-
ATPase (Balkman, Ojamaa & Klein, 1992). Thyroid
hormones also affect the expression of MHC genes in
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rat skeletal muscles where the effects are highly tissue
and developmental stage specific (Izumo, Nadal-
Ginard & Mahdavi, 1986).

Several other factors have been shown to influence
MHC isoform expression in the heart including
pressure-volume overload which promotes βMHC
and decreases αMHC expression. Although cardiac
ventricle MHC isoforms are very responsive to in vivo
manipulation of thyroid status in small mammals
like the rat, this is not true for larger mammals. For
example, in the euthyroid baboon, dog and calf
αMHC was not detectable in the heart ventricles,
and following 6 weeks of high daily doses of T4,
αMHC was not detected in the dog ventricle, was
17% in the baboon ventricle and 40% in the calf
ventricle. In the euthyroid human, βMHC is the
predominant form found in the ventricular myo-
cardium. Little is known concerning the thyroidal
regulation of cardiac MHC genes in the human, but
it is unlikely to be the major mechanism underlying
the inotropic action of the thyroid hormones (see
Morkin, 1993).

Thyroid hormones also influence adrenergic recep-
tors in cardiac muscle. In cultured ventricular
myocytes, they increase β1 receptor number via an
increase in transcription of the β1 adrenergic
receptor gene (Bahouth, 1991). Thyroid status
influences the action of catecholamines on cardiac
tissue with hyperthyroidism potentiating and hypo-
thyroidism blunting catecholamine-sensitive res-
ponses.

Interestingly, the β-adrenergic blocker, propan-
alol, has a favourable effect on many signs and
symptoms associated with thyrotoxicosis. It de-
creases plasma T3 levels and increases plasma rT3
concentration and this effect appears to be due to
inhibition of 5« deiodination. This inhibition of
deiodination, with its consequent effects on plasma
levels of T3 and rT3, is related to membrane
stabilizing activity rather than β-blocking ability
(Wiersinga, 1991).

The adult brain is often thought to be relatively
non-responsive to thyroid status. A recent review,
however, suggests that thyroid hormones influence
the expression of neuropeptides and growth factors
in brain areas involved in cognitive processes in the
adult but the molecular mechanisms involved in
these effects are unknown (Calza, Aloe & Giardino,
1997). The spontaneous behavioural activity of adult
rats has been shown to be influenced by T4 and it
was suggested that this effect was due to an enhanced
sensitivity to noradrenaline (Emlen, Segal & Man-
dell, 1972). In adult rats, the regeneration of

transected peripheral nerves has been shown to be
enhanced by local administration of thyroid hor-
mone (Voinesco et al., 1998).

(6) Effects on growth

Hypothyroidism results in pronounced growth re-
tardation in both endothermic vertebrates, for
example, humans (Snyder, 1996), rats (Evans et al.,
1966), and possums (Buaboocha & Gemmell, 1996),
as well as in ectothermic vertebrates such as lizards
(Gerwien & John-Alder, 1992), turtles (Denver &
Licht, 1991) and fish (Matty, 1985). In mammals,
this growth retardation is the result of both reduced
secretion of growth hormone (GH) from the anterior
pituitary as well as impaired peripheral growth
hormone action (Snyder, 1996) and non-GH-related
effects. Hypothyroidism results in lowered
GHmRNA and GH content in the anterior pituitary
of rats, and a reduced serum GH concentration
(Samuels et al., 1989). In hypothyroid young
humans, the nocturnal secretion of GH is dra-
matically reduced (Chernausek & Turner, 1989).

The early cloning of the GH gene together with
the availability of rat-derived pituitary tumor cell
cultures (GC and GH cell lines) allowed the first
description of DNA sequences responsive to thyroid
receptors (Koenig et al., 1987). The rat growth
hormone gene has a number of positive TREs (in the
upstream promoter region as well as in the third
intron) and also a negative TRE (see Williams &
Brent, 1995). The GH response of GH3 cells to
thyroid hormones appears to be complex and
thyroid-receptor specific, in that deletion of TRβ-1
results in an increase in cell TRβ-2 content and also
in the basal and T3-induced GH mRNA content in
these cells (Ball, Ikeda & Chin, 1997). Thyroid
hormone control of the human GH gene is not as
well defined, in that whilst thyroid hormone in-
creases endogenous rat GH expression, it results in a
decreased expression of transfected human GH gene
(Cattini et al., 1986). Similarly, when the promoter
regions for both the human GH and bovine GH gene
were transfected into rat pituitary tumor cell cultures
together with a reporter gene, the promoters for rat
and bovine GH were thyroid-hormone-responsive
whilst that for human GH was unresponsive to T3
(Brent et al., 1988).

That the relationship between thyroid status and
GH secretion in other vertebrates appears not to be
as simple as it is in rats and cell cultures of rat
pituitary tumor cells is manifest from the observ-
ations of thyroidal inhibition of growth hormone
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secretion in birds (Harvey, 1990). Age-related
changes in complex feedback mechanisms, as well as
appropriate experimental doses of hormones, need to
be considered when examining the mechanisms of
thyroid hormone influence on growth in vertebrates.
High concentrations of thyroid hormones inhibit
growth in many tissues (Greenberg, Najjar &
Blizzard, 1974).

As with some other thyroid hormone effects, 3,5,-
T2 has recently been shown to increase serum GH
concentration in hypothyroid rats (Moreno et al.,
1998). Whilst another diiodothyronine, 3,3«-T2, has
no influence on serum GH, the potency of 3,5-T2
was similar to that of T3 in these experiments. As
with the other reported effects of 3,5-T2, the
physiological relevance of these findings depends on
measurement of the plasma and tissue 3,5-T2
concentrations. These results do however raise
important questions regarding the uniqueness of T3
as the only active thyroid hormone, and regarding
its mode of action, in view of the low affinity of
nuclear receptors for T2.

The amount of thyroid hormones required to
maintain normal growth in rats is relatively small.
For example, doses as low as 0.25 µg T4}day in
thyroidectomised rats resulted in growth rates
similar to non-thyroidectomized controls (Evans et
al., 1966). This dose is approximately 25–30% of the
normal daily T4 secretion rate in rats. Although this
dose resulted in restoration of near normal growth
rates, it did not significantly stimulate the metabolic
rate of these thyroidectomised rats which remained
considerably reduced compared to non-thyroid-
ectomized controls (Evans et al., 1966). This study
also presented some fascinating results in that it
demonstrated that daily injections of 5 mg iodide
were as effective in restoring normal growth as were
T4 injections. This was proposed to be evidence for
extrathyroidal T4 formation. We have confirmed
that daily injections of 0.25 µg T4 or 5 mg of sodium
iodide were equivalent in restoring a normal growth
rate to thyroidectomized rats, and extended the
observations to show that both treatments resulted in
small increases in plasma T4 and T3 concentrations
(J.-A. Green & A. J. Hulbert, unpublished results).
The plasma concentrations of both T4 and T3
following these two treatments, however, were
considerably lower than those in the euthyroid
controls and thus support the contention that normal
growth may not require normal thyroid hormone
concentrations. Whether the iodide ion itself in-
fluences growth is still unknown.

The influence of hypothyroidism on cell pro-

liferation in the growing rat is manifest by the
reduced tissue DNA content, which is most pro-
nounced in those tissues undergoing proliferation
(Brasel & Winick, 1970). The stimulatory effects of
thyroid hormones on growth are not restricted to the
whole organism in that in vitro cell proliferation is
also stimulated by T4 in cell culture. Both T3 and
T4 can stimulate cell growth and mitotic rate of GH3
cells in culture, as well as alter their morphological
appearance (Kitagawa et al., 1987). In this respect,
it is also of interest that cells in culture have a
requirement for polyunsaturated fatty acids for cell
division and that non-availability of polyunsaturates
can lead to cessation of DNA synthesis and growth
(Holley, Baldwin & Kiernan, 1974; Hatten, Horwitz
& Burger, 1977; Doi et al., 1978).

Whilst thyroid status influences GH secretion,
many of the anabolic and mitogenic effects of GH
are mediated by insulin-like growth factor 1 (IGF-1)
secreted by the liver into the blood in response to
GH. The low plasma GH concentration in hypo-
thyroid young humans is associated with decreased
plasma concentrations of IGF-1 and these are
elevated following T4 treatment (Chernausek &
Turner, 1989). In addition to hepatic production of
IGF-1, many other tissues also express IGF-1 mRNA
and the IGF-1 peptide, which is believed to have
local functions (for review see LeRoith et al., 1995).
The actions of IGF-1 are mediated by the IGF-1 cell
surface receptors and are further modulated by a
complex series of up to six non-receptor IGF binding-
proteins (for review see Rechler, 1995). As well as
affecting plasma IGF-1 concentrations, thyroid
status in humans also influences IGF-1 bioactivity
and the concentrations of IGF-binding proteins
(Miell et al., 1993).

Whilst many of the growth-retardation effects due
to hypothyroidism can be explained by the sec-
ondary reduction in hepatic IGF-1 secretion, the
inability of GH administration alone to restore
normal growth to hypothyroid children (Greenberg
et al., 1974) shows that thyroid hormones also
stimulate growth by other pathways. This is also
demonstrated by the fact that administration of GH
and T4 together has a greater effect on the reversal
of growth retardation of rats than does GH admin-
istration alone (Burstein et al., 1979). Not all thyroid
hormone effects on the IGF system in rats are
secondary effects mediated by GH (Nanto-Salonen
et al., 1993) and the administration of T4 alone to
rats is capable of stimulating IGF-1 activity in the
absence of GH (Gaspard et al., 1978). Indeed, it has
been suggested that there is a feedback loop
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regulating peripheral thyroid hormone action in-
volving the GH-IGF axis, in that administration of
IGF-1 to rats results in a decrease in TRs (and their
respective mRNAs) as well as the activities of two
thyroid-hormone-responsive liver enzymes (Pellizas
et al., 1998). The physiological relevance of this
finding awaits demonstration that the doses of IGF-
1 used are relevant to the euthyroid situation in rats.

Although thyroid hormone replacement in hypo-
thyroid individuals restores normal growth, excess
thyroid hormone does not increase final body height
(Bernal & DeGroot, 1980). For reviews of thyroid
hormone effects on bone and mineral metabolism
the reader is referred to Auwerx & Bouillon (1986)
and Klaushofer et al. (1995). At low concentrations,
thyroid hormones stimulate the growth and calci-
fication of bone, whilst at high concentrations they
inhibit bone growth and stimulate resorption (Ren et
al., 1990), and in adult humans, thyrotoxicosis
results in bone loss (Fraser et al., 1971). It is thus of
interest that both T3 and T4 have biphasic effects on
IGF-1 production by rat osteoblastic cells in culture
and by fetal rat limb bones. Both these bone cell
systems exhibit a basal secretion of IGF-1 that is
enhanced by thyroid hormones, however at high
concentrations both T3 and T4 dramatically inhibit
IGF-1 secretion (Lakatos et al., 1993).

Transplant studies have shown that skeletal and
other tissues from fetal rats grow equally well in
hypothyroid and euthyroid rats whilst those from
juvenile rats show a growth retardation in hypo-
thyroid hosts (Cooke, Yonemura & Nicoll, 1984).
The potential importance of thyroid hormones in
skeletal development is illustrated by the finding
that in serum-free culture conditions, chondrocytes
do not mature, but the addition of both T3 and T4
can induce full expression of chondrocyte hypertro-
phy leading to matrix calcification, the normal
process involved in the conversion of cartilage to
bone (Alini et al., 1996).

The mode of thyroid hormone action on bone
remodelling is not known. Work with bone organ
cultures and cultured osteoblasts shows that thyroid
hormones increase the production of the prosta-
glandin PGE

#
and that inhibitors of PGE

#
pro-

duction diminish the bone resorption caused by both
T4 and T3. The fact that T3 binds to osteoblast
nuclei from various sources has resulted in the
suggestion that thyroid hormones exert their bone
resorption effects via nuclear receptors. However, if
following thyroid hormone treatment the arachi-
donic acid (20:4; the precursor of PGE

#
) content

increases in the membranes of bone cells as it does in

other cells (e.g. see Table 3), then it is possible that
these hormones may initiate their effects on bone
cells at the membrane (rather than the nucleus) by
resulting in increases in the levels of the precursor of
PGE

#
. Non-genomic effects on bone cells have been

reported in that T3 stimulates the inositol second
messenger system in rat bone rudiments, within 30
seconds (Lakatos & Stern, 1991). For a discussion of
thyroid effects on bone cell growth and differ-
entiation the reader is referred to Klaushofer et al.
(1995) and Williams, Robson & Shalet (1998).

A membrane site for thyroid hormone stimulation
of cellular growth is compatible with the finding that
elevated arachidonic acid (20:4) content of mem-
branes stimulates cell growth and increases mRNA
levels of growth-related early response genes (c-fos
and Egr-1) in non-bone cell cultures (Danesch,
Weber & Sellmayer, 1996). As they are mediated by
increased PGE

#
production, such effects were re-

stricted to the n-6 PUFA, arachidonic acid and were
not observed following increases in the n-3 PUFAs.
Several other cell cultures have also been reported to
show increased cellular proliferation following alter-
ation of their membrane n-6 PUFA content (e.g.
Holley et al., 1974; Murphy, 1986; Sylvester et al.,
1994).

(7) Other effects

Effects to be discussed in this section are those
related to: (i) reproduction, (ii) immune and
antiviral defence, and (iii) defence against free
radicals (i.e. as antioxidants).

In many vertebrate species, reproduction occurs
only at certain times of the year and during the
remainder of the year such species are refractory to
reproduction. European starlings Sturnus vulgaris are
such seasonal breeders and following thyroidectomy
remain in their breeding season indefinitely (Woit-
kewitsch, 1940). Many bird and mammal species
have since been shown to require thyroid hormones
for the cessation of reproductive activity in their
normal seasonal breeding cycle (for review see
Karsch et al., 1995). Experiments with male Am-
erican tree sparrows Spizella arborea, has shown them
to be programmed for photoperiodic gonadal growth
and separately for post-nuptial moult. Both events
are dependent on thyroid hormones and findings
suggest that separate neural control circuits are
organized early in the breeding season (Wilson &
Reinert, 1996). In both this and another bird species,
it has been demonstrated that T4 and not T3 is
the ‘active ’ thyroid hormone (Pant & Chandola-
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Saklani, 1995; Reinert & Wilson, 1997). Experi-
ments with the ewe have shown that thyroid
hormones are required for only a short ‘window’ of
time during the breeding season for the development
of anoestrus at the end of the breeding period
(Thrun et al., 1996; Karsch et al., 1995).

Such thyroid-hormone-dependent seasonal cess-
ation of reproductive activity is mediated by the
hypothalamic-pituitary-gonad axis, involving both
gonadotropin-releasing hormone (GnRH) neurones
and secretion of luteinizing hormone (LH) and
follicle-stimulating hormone (FSH) from the an-
terior pituitary. The role of the GnRH system in
seasonal breeding has been reviewed by Lehman et
al. (1997). In two seasonal breeding mammal species
(sheep and hamsters), an antibody to both TRα1
and TRα2 co-localized with GnRH neurones in the
brain (Jansen et al., 1997). However, considering
that the effect of thyroid hormones is restricted to a
‘window’ of time that precedes anoestrus by a
considerable period, such nuclear thyroid receptors
may not be directly relevant to setting the seasonal
breeding timetable. Instead, it is tempting to
speculate that the mode of this thyroid hormone
effect involves T4-dependent interactions between
neurones and astrocytes and laminins in the extra-
cellular matrix (see Leonard & Farwell, 1997). This
is likely in view of the fact that there is considerable
seasonal plasticity in the degree of synaptic inputs to
GnRH neurones, and GnRH neurones differ from
neighbouring neurones in that they are almost
completely surrounded by glial processes from
adjacent astrocytes (Lehman et al., 1997). Experi-
ments examining the relative potencies of rT3, T3
and T4 in such situations will probably give
additional insight into the mechanisms involved.

Hypothyroidism has no influence on testicular
development in prenatal rats but postnatal hypo-
thyroidism results in reduced levels of gonadotropins
and delays pubertal spermatogenesis (Francavilla et
al., 1991). In the adult female rat, hypothyroidism
results in dramatically extended oestrus cycles
(Evans et al., 1966). Whether this is an effect on the
gonadotropin system or an effect at the ovarian level
is not known. Thyroid hormones are known to
influence ovarian cells. For example, T3 exposure
influences steroid (androgen, estradiol and pro-
gesterone) production by porcine ovarian follicle
cells. The effects are complex in that they depend on
the particular type of follicle cell, the stage of
follicular development and also demonstrate inter-
actions with human chorionic gonadotropin ex-
posure (Gregoraszczuk & Skalka, 1996). Exposure

of cultured human granulosa cells to T3 stimulates
the in vitro production of tissue inhibitor of metallo-
proteinases 1 (TIMP-1) which is suggested to be
involved in ovulation, luteal development and
regression as well as trophoblast invasion (Goldman
et al., 1997). T3 has also been suggested to be a
negative modulator of steroidogenic function in the
avian adrenal gland (Carsia et al., 1997).

Thyroid status has limited influence on the
immune system. For example, neither hypo-
thyroidism nor hyperthyroidism had significant
effects on the number of blood mononuclear cells or
immune function in the rat or guinea pig (Wall,
Twohig & Chartier, 1981). At supraphysiological
concentrations, thyroid hormones alter the response
of lymphocytes to mitogens but have no such effects
at physiological levels (Ong, Malkin & Malkin,
1986). Thyroid hormones at physiological concen-
trations do however potentiate the antiviral action of
interferon γ in cultured human cells, and T4 is
approximately ten times more potent than T3 (Lin
et al., 1994). Thyroid hormone itself is not antiviral
and various analogues of thyroid hormones lack the
ability to potentiate interferon activity. It has been
suggested that there are two pathways for such an
effect of thyroid hormones, one dependent on, and
the other independent of protein synthesis (Lin et al.,
1996). The protein-synthesis-dependent pathway is
blocked by inhibitors of protein kinases C and A and
appears to be independent of thyroid nuclear
receptors (H.-Y. Lin et al., 1997).

Although aerobic organisms cannot exist without
oxygen, the reductive nature of the cellular en-
vironment provides ample opportunities for the
creation of reactive oxygen species (ROS) which are
extremely dangerous to living systems in that they
can damage proteins, lipids, carbohydrates and
nucleic acids. This has been called the ‘oxygen
paradox’ (for review see Davies, 1995). Thus,
aerobic organisms both generate and accumulate a
variety of water- and lipid-soluble antioxidant
compounds, as well as producing a series of anti-
oxidant enzymes, to intercept and inactivate ROS.
Membrane phospholipids are continually subject to
such oxidative damage and lipid peroxidation is an
autocatalytic chain of reactions initiated at the
double bond of an unsaturated acyl chain. Phos-
pholipids are more prone to peroxidation than
triglycerides, with the highly polyunsaturated acyl
chains (e.g. 20:4 and 22:6) being the most sensitive
to damage (e.g. Catala & Cerruti, 1997). It is
estimated that approximately 1% of daily oxygen
consumption goes to mitochondrial ROS generation.
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Another major source are phagocytic cells which use
an NADPH oxidase system to produce ROS as a
weapon against invading microrganisms. Such cells
only produce ROS in large amounts when they have
been activated to phagocytose (Davies, 1995).

Thyroid hormones themselves also pose a paradox.
This ‘ thyroid hormone paradox’ is that they both
promote damage by ROS, by stimulating aerobic
metabolic activity, but they also act as antioxidants
themselves, as well as influencing other antioxidant
defences.

Hyperthyroidism increases lipid peroxidation in
young, old and very old rats and hypothyroidism
results in lower levels of lipid peroxidation in young
rats (Mooradian et al., 1994). One study reports that
hypothyroidism in rats significantly decreases lipid
peroxidation in skeletal muscle but not thymus,
spleen or lymph nodes (Pereira et al., 1994), whilst
another reports that it results in no reduction in lipid
peroxidation in liver, cardiac or skeletal muscle
(Venditti et al., 1997a). In rats, hyperthyroidism
results in increased levels of lipid peroxidation
products in liver, heart, soleus muscle and lymph
nodes (Asayama et al., 1989; Pereira et al., 1994;
Venditti et al., 1997a). Higher levels of mitochondrial
enzymes and increased ROS production by sub-
mitochondrial particles has also been reported for
hyperthyroid rats (Fernandez & Videla, 1993).

Thyroid-induced increases in lipid peroxidation
are not restricted to enhanced mitochondrial ac-
tivity. For example, in rats T3 increases superoxide
production, NADPH oxidase activity and lipid
peroxidation in hepatic microsomes (Fernandez et
al., 1985). Polymorphonuclear leucocytes from hy-
perthyroid rats have an enhanced capacity to
produce superoxide when stimulated in vitro and this
seems primarily related to thyroid-hormone-en-
hanced NADPH oxidase activity (Fernandez &
Videla, 1995). A similar effect has been observed in
phagocytes from hyperthyroid humans (Videla et al.,
1993). Both T4 and T3 can also stimulate, in vitro,
the activity of myeloperoxidase isolated from human
leukocytes (Van Zyl, Basson & Van der Walt, 1989).
Low-density lipoproteins isolated from hyperthyroid
humans also show an elevated lipid peroxidation
compared to those from euthyroid individuals,
intriguingly as do those from hypothyroid indiv-
iduals (Costantini et al., 1998). These results suggest
that, at least in humans, the euthyroid condition
represents that which results in the minimal peroxi-
dative damage to low-density lipoproteins. Whether
this also applies to other molecules capable of
oxidative damage is not known.

Cells utilize a number of antioxidant scavengers
and enzymes as a defence against damage by ROS.
Vitamin E is a major membrane antioxidant whilst
vitamin C is a major aqueous antioxidant. Other
membrane-bound antioxidant compounds include
β-carotene, ubiquinone and, as will be discussed
shortly, possibly thyroid hormones. Antioxidant
enzymes include superoxide dismutase (SOD), gluta-
thione peroxidases and catalases (Davies, 1995). The
influence of thyroid status on antioxidant defences is
mixed and there appears to be no consistent pattern.
Some studies report that hyperthyroidism increases
vitamin E content of cardiac muscle (Mano et al.,
1995; Venditti et al., 1997a) whilst others show no
effect (Asayama et al., 1989). Hyperthyroidism
increases glutathione levels in erythrocytes and
serum (Morini et al., 1991; Seven et al., 1996) but
decreases glutathione levels in rat liver (Morini et al.,
1991). During hyperthyroidism, glutathione per-
oxidase is elevated in liver, erythrocytes, spleen and
skeletal muscle (Morini et al., 1991; Seven et al.,
1996; Pereira et al., 1994; Fernandez & Videla,
1995) diminished in thymus, heart and skeletal
muscle (Seven et al., 1996; Pereira et al., 1994;
Asayama et al., 1989; Fernandez & Videla, 1995;
Mano et al., 1995) and unaffected in liver and heart
(Fernandez & Videla, 1995). Whilst in hypo-
thyroidism it has been reported as both increased in
cardiac and skeletal muscle (Fernandez & Videla,
1995; Mano et al., 1995) and reduced in thymus and
skeletal muscle (Venditti et al., 1997a ; Pereira et al.,
1994). Glutathione reductase activity appears rela-
tively unaffected by thyroid status (Venditti et al.,
1997a) although it has been reported to be elevated
in liver during hyperthyroidism (Morini et al., 1991).
Catalase activity is reported both to increase in
skeletal muscle (Pereira et al., 1994) and decrease in
thymus, spleen, cardiac and skeletal muscle (Pereira
et al., 1994; Asayama et al., 1989; Seven et al., 1996)
during hyperthyroidism. The activity of Cu#+,Zn#+-
SOD is also reported to be increased in thymus,
leucocytes and skeletal muscle (Pereira et al., 1994)
but decreased in cardiac and skeletal muscle (Asa-
yama et al., 1989) whilst Mn#+-SOD is reported to be
increased in leucocytes, thymus, spleen, cardiac and
skeletal muscle (Pereira et al., 1994; Asayama et al.,
1989) during hyperthyroidism. No general pattern
can be discerned from the diverse responses of
antioxidant defences to hyperthyroidism. Most
studies involving hypothyroidism report no sig-
nificant influence on levels of either antioxidant
scavengers or enzymes.

The question as to whether thyroid hormones
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themselves can act as antioxidant compounds was
first raised after De Caro (1933) observed that T4
can decrease oxygen uptake by solutions of un-
saturated fatty acids. It was later shown that T4
could also prevent lipid peroxidation in isolated
erythrocytes (Bunyan et al., 1960) and liver homo-
genates (Bunyan et al., 1961), and that T4, T3 and
3,5-T2 (but not the non-iodinated thyronine) could
inhibit lipid peroxidation in isolated rat liver
mitochondria as well as dramatically inhibiting
carbon tetrachloride accelerated lipid peroxidation
(Cash et al., 1967). As with many early studies, the
T4 concentrations used in these experiments were
high and non-physiological, the lowest being 1 µ.
Wynn (1968b) used an in vitro system to show that
Fe#+ could activate lipid peroxidation of rat liver
microsomes and that T4 could terminate such lipid
peroxidation by acting as an antioxidant. The lowest
T4 concentration examined was 100 n, and at this
concentration, T4, rT3 and T3 all showed anti-
oxidant activity (in decreasing intensity) and their
antioxidant abilities were greater than that of either
vitamin E or ascorbic acid in the same system. He
also showed that pharmacological doses of T4 could
reduce in vivo the peroxide content of epididymal fat
pads in the rat (Wynn, 1968a). Because of its relative
metabolic inertness such a tissue is unlikely to have
had significant thyroid-hormone-induced peroxi-
dation. In these lipid peroxidation experiments, T4
was degraded when exerting its antioxidant effects.
This was consistent with the finding that the in vivo
rate of T4 degradation seemed to be related to its
clinical effect (Galton & Ingbar, 1962). Lipid
peroxidation can also be catalyzed in vitro by
hemoglobin, and iodothyronines inhibit such per-
oxidation, and are more potent antioxidants in these
situations than vitamin E, glutathione or ascorbic
acid (Tseng & Latham, 1984).

The physiological importance of the antioxidant
properties of thyroid hormones was questioned when
the antioxidant capacities of both T3 and T4 in
retarding the auto-oxidation of rat brain homo-
genate and free-radical-mediated oxidation of rat
erythrocyte membranes was evaluated and found to
be very low (1–2%) at hormonal concentrations of
50 n but substantial at micromolar hormonal levels
(Faure, Lissi & Videla, 1991).

However, a more recent report of T4 and T3
inhibition of ROS generation by activated human
neutrophils (Antipenko & Antipenko, 1994) raises
questions with respect to the possible physiological
importance of the antioxidant properties of the
thyroid hormones. These findings have been re-

produced in Fig. 10. When human neutrophils are
stimulated by pyrogenal-lipopolysaccharide from
the Salmonella typhi cell wall, they initiate ROS
generation that can be monitored by a chemi-
luminescence assay. Thyroid hormones at high
concentrations (5 µ) inhibit this chemilumin-
escence as does another powerful antioxidant, ionol
(4-methyl-2,6-di-isobutyl phenol). This inhibition
decreases to approximately half as thyroid hormone
concentrations decrease to 1 n. Surprisingly, when
T4 and T3 concentrations are further decreased to
10 p and 0.1 p, chemiluminescence inhibition
increases. Such a bimodal response suggests that two
separate processes are operating. The effect was only
observed if T4 and T3 were added prior to
stimulation of ROS production and only when the
ROS generation stimulus was pyrogenal and not
when it was 4β-phorbol 12-myristate 13-acetate
(PMA). Whilst T4 and T3 showed a bimodal
antioxidant response, the powerful antioxidant, ionol
did not. These results suggest that T4 and T3, at
very low concentrations, have effects that influence
ROS production. They are more potent than ionol,
which is in turn is a more potent antioxidant than
vitamin E. These authors also discuss the proposal
that thyroid hormones are involved in other cellular
repair mechanisms.

That thyroid hormones possibly have antioxidant
activity is also illustrated by the finding that
although resting neutrophils exhibit negligible de-
iodination of both T4 and T3, when they are
stimulated to phagocytose (and ROS production is
consequently activated), the deiodination of both T4
and T3 dramatically increases severalfold. Neutro-
phils from individuals with chronic granulomatous
disease, which are deficient in the capacity to
produce ROS, degrade T4 and T3 poorly during
phagocytosis (Klebanoff & Green, 1973).

Examination of the potential role of thyroid
hormones as potent natural membrane antioxidants
also deserves attention in light of other observations.
As can be seen from Fig. 4, a strong correlation has
been observed in rats between the phospholipid
content of tissues and their T4 content. Analysis of
this relationship, assuming that all T4 is associated
with membranes, suggests a molar ratio of T4:
phospholipid of approximately 1:1000. This is
similar to the molar ratio of vitamin E: lipid observed
in biological membranes which is of the order of
1:2000–3000 (Packer & Landvik, 1989). Whilst
obviously not all thyroid hormone molecules are
associated with membranes, measurements in hu-
man erythrocytes suggest that approximately half of
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Fig. 10. The influence of the concentration of thyroid hormones (T4 & T3) and ionol (Ion) on the release of reactive
oxygen species (monitored as chemiluminescence) by human neutrophils activated by pyrogenal-lipopolysaccharide
(Pyr) from Salmonella typhi cell wall. The symbols on the right of the figure indicate the sequence of addition. Reprinted
with permission from Antipenko & Antipenko (1994).

cellular thyroid hormone molecules (34% of T4 and
60% of T3) are associated with membranes (Bregen-
gaard et al., 1989). As the human erythrocytes lack
intracellular membranes and in this particular study
they were washed several times before measurement,
these are likely to be minimum values.

Another reason why this area is worthy of careful
examination is that the resting oxygen consumption
of mammals is proportional to approximately the
0.75 power of body mass (Kleiber, 1961). This is the
same allometric exponent observed for whole-
mammal ethane exhalation rate, which is indicative
of lipid peroxidation (Topp et al., 1995) and for the
degradation rates of T4 and T3 in mammals
(Tomasi, 1991). These findings of similar allometric
exponents for these three processes means that, in
mammals, irrespective of metabolic activity, there is
a relatively constant molar ratio between oxygen
consumption, phospholipid peroxidation and de-
iodination of T4 and T3.

IV. THYROID HORMONES AND VERTEBRATE

DEVELOPMENT

(1) Thyroid axis during vertebrate
development

The influence of thyroid hormones on vertebrate
development was first demonstrated by Gudernatsch
(1912) who showed that when tadpoles were fed
desiccated horse thyroid tissue they precociously

metamorphosed into frogs. Since that time it has
become obvious that the thyroid is also involved in
normal development of vertebrates, ranging from
fish to mammals.

Indeed, thyroid hormones may be necessary from
conception for normal development. Interestingly,
iodine deficiency in female rats results in a dramatic
decrease in the size of their young even when such
iodine deficiency is ceased at the time they conceive
their young (Sunitha, Udaykumar & Raghunath,
1997). Pharoah, Buttfield & Hetzel (1971) have
shown that iodized oil must be given prior to
conception to iodine-deficient mothers to prevent
neurological damage in their children. In sheep,
maternal thyroidectomy prior to conception results
in neurological damage (Potter et al., 1986). Al-
though the plasma concentrations of thyroid hor-
mones are relatively constant throughout adult life
of most vertebrates, all vertebrate classes examined
to date, during their early development, have a
surge of plasma T4 (and T3) to levels that exceed
those found in the adult plasma.

Thyroid hormones are found in the eggs of fish
(Tagawa & Hirano, 1987; Leatherland et al., 1989)
and birds (Sechman & Bobeck, 1988; Prati, Calvo &
Morreale de Escobar, 1992; Wilson & McNabb,
1997). The detection of both T4 and T3 in
amphibian embryos one day after fertilization (at,
respectively, approximately 0.6 and approximately
4.7 pmol g−") suggests that they are also present in
amphibian eggs (Weber et al., 1994). Nothing is
known concerning reptilian eggs. Because mam-
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malian eggs remain in the mothers body, it is also
likely that mammalian eggs contain thyroid hor-
mones. In fish eggs, the T4 content can either exceed
that of T3 (e.g. Leatherland et al., 1989) or be less
than the T3 content (e.g Yamano & Miwa, 1998).
Partial depletion of both T4 and T3 in the eggs of the
Medaka fish Oryzias latipes had no discernable effects
on either hatching, survival or development of the
young fish (Tagawa & Hirano, 1991). In the
amphibian embryo, T3 concentration exceeded T4
concentration (Weber et al., 1994) whilst the opposite
was the case for avian eggs (Sechman & Bobeck,
1988; Prati et al., 1992; Wilson & McNabb, 1997).
The deposition of thyroid hormones in avian eggs
and their role has recently been reviewed by
McNabb & Wilson (1997).

There is a surge of T4 concentration during
metamorphosis in the flounder Paralichthys olivaceus
(Miwa et al., 1988). In tilapia fish Oreochromis
mossambicus, there is a surge of T4 concentration
which corresponds in time to a morphogenic change
in body shape and is followed by an increase in T3
concentration (Okimoto, Weber & Grau., 1993).
Inhibition of thyroid function with goitrogens has
been shown to inhibit, and exogenous T4 to
stimulate, the metamorphosis of larvae to juvenile
fish in the flounder (Miwa & Inui, 1987), and the
zebrafish Danio rerio (Brown, 1997), whilst both
exogenous T4 and T3 promote early metamorphosis
in grouper Epinephelus coioides larvae (de Jesus,
Toledo & Simpas, 1998). A developmental T4 surge
has also been observed in the larvae of black sea
bream (Tanaka et al., 1991) and red sea bream
Pagrus major (Kimura et al., 1992).

Juvenile salmonid fish undergo a parr-smolt
transformation that prepares them for the impending
sea-water phase of their life cycle, and during this
process plasma T4 levels temporarily increase four-
fold followed by a smaller T3 increase (Dickhoff,
Darling & Gorbman, 1982; Specker et al., 1984). In
coho salmon Oncorhynchus kisutch, a year before the
parr-smolt change (which takes place in the second
year of freshwater life) there is a small surge in T4
concentration followed by a small increase in plasma
T3 levels. Whether this has any developmental
importance is unknown but it has been suggested
that it may be the basis for ‘phase differentiation’
measured in other salmon species (Dickhoff et al.,
1982).

Lampreys are modern representatives of the
earliest vertebrates, the jawless agnathan fish, and
exhibit metamorphosis. In this group, plasma levels
of thyroid hormones increase during the larval

period and metamorphosis is associated with a
dramatic decrease in plasma thyroid hormone levels.
The larvae lack a follicular thyroid gland but possess
instead an endostyle (a subpharyngeal gland) that
develops into a follicular thyroid in the adult. In
premetamorphic lampreys, inhibition of thyroid
function induces early metamorphosis whilst ex-
ogenous thyroid hormones inhibit metamorphosis
(Manzon, Eales & Youson, 1998). The lampreys
appear to be unique among vertebrates in the
relationship between thyroid function and meta-
morphosis, whether they represent the original
vertebrate condition or a derived condition is
unknown. The other extant agnathans, the hagfishes,
which are believed to be phylogenetically older than
lampreys, do not exhibit metamorphosis and possess
a follicular thyroid gland. The role of the thyroid in
lamprey metamorphosis has been recently reviewed
by Youson (1997).

Although earlier studies suggested that thyroid
hormones may not be present in the plasma of
premetamorphic amphibians, recent work has shown
that both T4 and T3 are measurable in the tissues
of amphibian larvae from the time of hatching
(Gancedo et al., 1997). In amphibians, there is a
developmental surge of T4 and T3 concentration
that peaks at metamorphic climax (Mondou &
Kaltenbach, 1979; Suzuki & Suzuki, 1981; Weber et
al., 1994). In Rana catesbeiana, the T4 surge precedes
the T3 surge (Suzuki & Suzuki, 1981) and there is a
surge in transthyretin (TTR) mRNA levels in liver
during metamorphosis which is absent in the adult.
Transthyretin mRNA was not detectable in the
tadpole choroid plexus (Yamauchi et al., 1998).

Mexican axolotls are neotenous amphibians that
rarely undergo metamorphosis. Juvenile axolotls
have no detectable thyroid hormones in their plasma
whilst adults have no detectable T3 and only low
plasma levels of T4, and thus do not appear to have
such developmental surges of thyroid hormones
(Galton, 1992b). However if they are given an
exogenous T4 surge they will undergo metamorphic
changes (e.g. Brown, 1997).

The egg, especially the yolk, is the source of T4
and T3 found in the tissues of the avian embryo prior
to the onset of thyroid function (Prati et al., 1992;
Wilson & McNabb, 1997). Accumulation of T3 is
especially high in the brain and is much greater than
inferred from measurement of plasma levels, and in
this respect the chicken embryo in similar to the rat
fetus (Prati et al., 1992). Transthyretin mRNA is
produced by the chick embryo liver well before the
development of the thyroid gland and rapidly rises
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to adult levels, whilst the chick embryo’s choroid
plexus also produces TTR mRNA during incubation
but at levels lower than that found in the adult
chicken’s choroid plexus (Southwell et al., 1991).
The role of the unidirectional secretion of TTR into
cerebrospinal fluid as a brain thyroid hormone
pump may be important in the accumulation of
thyroid hormones by the avian embryo’s brain.

In the chicken, there is a developmental surge in
plasma T4 concentration that peaks just before
hatching, whilst the T3 level peaks at the time of
hatching and remains high thereafter (Darras et al.,
1992). In the precocial Japanese quail Coturnix
japonica, there is a developmental surge of both T4
and T3 levels around the time of hatching, this surge
in hormone concentration is relatively brief and
manifest in both the total and the free plasma
hormone levels (McNabb, Lyons & Hughes, 1984).
In the altricial ring doves Streptopelia risoria, starlings
Sturnus vulgaris and redwing blackbirds Agelaius
phoeniceus there is a more extended developmental
surge of plasma T4 levels that begins after hatching
and lasts for approximately the first three weeks of
post-hatching life (McNabb & Olson, 1996). In ring
doves, although total plasma T4 concentration does
not demonstrate a pronounced peak, there is an
eightfold increase in free T4 levels peaking at
approximately day 14 after hatching, that is sug-
gested to be due to displacement from plasma
protein binding (McNabb, 1988).

To my knowledge, nothing is known of the
developmental profile of thyroid hormones in reptiles
or the egg-laying mammals, the monotremes. In the
marsupials, the young are born at a very immature
phase and undergo a large amount of development
in the pouch of the mother. Indeed, it is near the
time of pouch exit, rather than birth, that the
physiological development of marsupial young is
similar to that of newborn eutherian mammals.
Marsupial pouch young have been likened to
‘exteriorised embryos ’ and have been proposed as
good model systems in which to study mammalian
development (see Tyndale-Biscoe & Janssens, 1988).
In the tammar wallaby Macropus eugenii (Fig. 11)
there is a developmental surge of T4 concentration
that precedes a T3 surge. In very early pouch young
(well before histological development of the thyroid
gland), plasma T4 concentration is similar to adult
levels, rising to a peak at approximately 160 days of
age before returning to adult levels. By contrast,
plasma T3 levels in newborn are considerably lower
than adult levels and peak later, at approximately
220 days of age, which is after initial pouch exit in

this species. The developmental profiles for T4 and
T3 are similar for both total and free hormone
concentrations. Plasma rT3 levels are higher (and
more variable) during pouch life than in adults and
show a peak at the same time as the T4 peak. Both
liver and kidney show no 5« deiodination activity at
birth but such enzymatic abilities increase during
pouch life to reach adult levels shortly after the time
of pouch exit (Janssens et al., 1990). A similar
developmental surge in levels of thyroid hormones
has been recorded for another marsupial, the
brushtail possum Trichosurus vulpecula (Buaboocha &
Gemmell, 1995).

Eutherian mammals similarly show developmen-
tal surges in T4 and T3 levels. In the rat, both T4
and T3 are found in the embryo prior to onset of
fetal thyroid function (Obregon et al., 1984) and
maternal hypothyroidism at this time results in
reduced tissue levels of both T4 and T3 in the fetus,
which for some tissues persists throughout gestation
(Morreale de Escobar et al., 1985). The surge in
plasma T4 levels precedes the increase in plasma T3
concentration in the rat (Morreale de Escobar,
Obregon & Escobar del Rey, 1987), the horse
(Irvine & Evans, 1975), the ferret (Kastner, Kastner
& Apfelbach, 1987) and the lamb (Wrutniak,
Cabello & Bosc, 1985). In the rat, which is an
altricial eutherian, these hormone surges commence
before birth but predominantly occur in the first
postnatal weeks, whilst in both the sheep and
humans, the thyroid hormone surges are prenatal.

Summarizing the accumulated data for verte-
brates, there is a severalfold increase in plasma T4
concentration during early vertebrate development
which is either followed by, or coincident with, an
increase in plasma T3 levels. The plasma T4 surge is
more prevalent in vertebrates than a developmental
surge in plasma T3 levels.

Deiodinase activity also varies during vertebrate
development. In larval lampreys, outer ring (5«)
deiodination activity is high in the intestine and liver
and low in kidney and muscle, whilst in adult
lampreys the intestine, kidney and muscle retain 5«-
deiodination activity but it is completely absent from
adult liver tissue (Eales et al., 1997). Inner ring 5-
deiodination activity was not detected in larval
tissues but was observed in adult intestine and, to a
lesser extent, in adult kidney (Eales et al., 1997).
Manipulation of thyroid status in larval lampreys,
which influenced the timing of metamorphosis, had
no influence on intestinal 5«-deiodinase activity
(Manzon et al., 1998).

In salmon, during the parr-smolt transformation,
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Fig. 11. Thyroid hormone levels and tissue deiodination activity during development of the tammar wallaby Macropus
eugenii. (A) The developmental profiles for total plasma T4 and T3 concentrations. (B) The developmental profiles
for free plasma T4 and T3 concentrations. (C) The developmental profile for total plasma rT3 concentration and the
developmental profile of the in vitro 5« monodeiodination activity of liver and kidney. In all graphs, the time of initial
pouch exit is marked. Young wallabies are at a stage physiologically similar to newborn eutherian mammals at this
time. Reproduced using the data of Janssens et al. (1990). Values are means ­S.E.M. (N¯ 2–8).

changes in T4 production, distribution and metab-
olism are relatively independent of being in a fresh-
water or salt-water environment (Specker et al.,
1984). Tissue thyroid hormone levels do not echo
plasma concentrations during this period (Specker,
Brown & Bern, 1992). During the parr-smolt
transformation, there is enhanced outer ring 5«-
deiodination activity in liver and heart, but in gill
and skeletal muscle the relatively low deiodinase
activity remains unchanged. Plasma T3 levels are
correlated with liver 5«-deiodination activity and
brain 5«-deiodination activity increases at the end of
the transformation. Inner ring 5-deiodination ac-

tivity is high in brain tissue, as well as heart and gill,
but is low in liver and muscle (Morin, Hara & Eales,
1993; Eales et al., 1993). These studies suggest that
tissue deiodinase activities are probably important in
determining different developmental profiles for
intracellular thyroid hormones in individual tissues
during the parr-smolt transformation in salmonid
fish.

Galton & Cohen (1980) observed negligible in vivo
conversion of T4 to T3 in premetamorphic tadpoles
yet both exogenous T4 and T3 had effects in these
premetamorphic tadpoles. Later it was demon-
strated that outer ring 5«-deiodinase activity was
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absent in liver, heart, kidney and tail during
premetamorphosis but was present in skin and
exhibited minimal activity in brain and intestine
whilst inner ring 5-deiodinase activity was detectable
in most tissues during premetamorphosis, being
highest in liver, intestine and kidney. At meta-
morphic climax, induced by T4 exposure, 5«-
deiodinase activity dramatically increased in skin
and intestine and was present in tail but remained
absent in liver, heart and kidney, whilst 5-deiodinase
activity became barely detectable (Galton & Hie-
bert, 1988). Galton (1988) examined tissue de-
iodinase activities during spontaneous metamor-
phosis and extended measurements to include pro-
metamorphosis and adult tissues. She found that 5«-
deiodinase activity was highest in skin and intestine
and negligible in other tissues. In prometamorphic
tadpoles, deiodinase activity was comparable to that
in premetamorphic tadpoles and it remained high in
adult tissues. In the adult frog, whilst 5«-deiodinase
activity was only observed in intestine and skin,
inner ring 5-deiodinase activity was present in all
tissues examined. Unexpectedly, in view of the
observation that 5-deiodinase activity decreases
during metamorphic climax, it has been shown that
5-deiodinase (D3) gene expression and D3 enzyme
activity is increased by exposure to T3 (Becker et al.,
1995). The measurement of both 5«-deiodinase (D2)
and 5-deiodinase (D3) enzyme activity in a variety
of tissues during metamorphosis in the amphibian
Rana catesbeiana (Becker et al., 1997) has strongly
supported the concept that coordinated development
of different tissues during the developmental surge of
extracellular T4 levels could be determined by
specific ontogenetic profiles for the deiodinases in
different tissues. In this excellent study, the authors
showed that some tissues (e.g. hindlimb) have high
D2 deiodinase activity prior to, and negligible
activity after metamorphic climax, whilst other
tissues (e.g. tail, intestine, forelimb) had the opposite
profile and still other tissues (e.g. skin, eye) had a
relatively constant activity throughout the various
stages of amphibian development. The activity of
the inner ring D3 deiodinase also showed a de-
velopmental profile that differed between tissues.
Thus, by tissue-specific changes in deiodinase ac-
tivities, the common developmental surge in extra-
cellular T4 levels can be modified in individual
tissues. Prior to metamorphic climax there is a
decline in liver 5-deiodinase activity whilst after
metamorphic climax there is an increase in 5«-
deiodinase activity in skin and intestinal tissue
(Galton, 1992a). There is a shift in the prepon-

derance of inner ring 5-deiodination prior to meta-
morphic climax to predominantly outer ring 5«-
deiodination after climax.

The ontogeny of deiodination in birds has been
reviewed by McNabb (1988). In the precocial
Japanese quail, at the time of the T4 surge around
the time of hatching there is also a dramatic increase
in outer ring 5«-deiodination in the liver, which is
initially due an small increase in D2-type deiodinase
but is rapidly replaced by a much larger increase in
D1-type deiodinase activity. After its initial surge in
activity, the D1 deiodinase declines to adult levels
during the first few days after hatching. In the
altricial ring dove, hepatic 5«-deiodinase activity is
relatively constant in embryos and for a few days
after hatching after which it declines in activity. The
decline in 5«-deiodinase activity after hatching in
this species is the opposite of changes in the serum
T3}T4 ratio which shows an increase during this
period (McNabb, 1988) This is probably due to the
even more dramatic decline in 5-deiodination which
will remove T3 formed from T4. During the last
week of incubation, the chick embryo liver shows a
substantial increase in outer ring 5«-deiodinase
activity, whilst there is an even more dramatic
decrease in inner ring 5-deiodinase activity over the
same period (Galton & Hiebert, 1987). Others have
confirmed that in the chick embryo, D1 deiodinase
activity increases whilst D3 deiodinase activity
decreases during the last days of incubation (Van
der Geyten et al., 1997). A decline in 5«-deiodinase
activity following hatching is also reported for the
chicken and is unlike the situation after birth in some
mammals. Although hepatic 5«-deiodination de-
creases after hatching in the chicken, the decrease in
5-deiodination is even greater and begins approx-
imately 4–5 days prior to hatching. In the newly
hatched chicken, hepatic 5-deiodination is negligible
(Darras et al., 1992). The deiodinase activities of
avian tissues other than liver, and their importance,
is relatively unknown. In the chicken, kidney
deiodinase activity is less than that found in liver and
is relatively constant before and after hatching
(Darras et al., 1992). The chicken brain is reported to
have both D2 and D3 deiodinases and the deiodinase
system in birds is reported to be similar to that in
mammals (Kuhn, Mol & Darras, 1993).

During early pouch life in the marsupial Macropus
eugenii neither liver nor kidney demonstrate any in
vitro 5«-deiodinase activity. However, at approx-
imately the time of the plasma T4 surge, in vitro 5«-
deiodinase activity increases in both liver and kidney
to levels found in the adult tissues (Fig. 11). The fact
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that significant amounts of rT3 are measured in
pouch young plasma prior to this period suggests
that 5-deiodination activity is present from a very
early developmental stage. The decline in rT3
towards the end of pouch life supports the conclusion
that around the time of the developmental T4 surge
there is a shift in emphasis from inner ring to outer
ring deiodination in this marsupial species (Janssens
et al., 1990).

In the rat, 5«-deiodinase activity is absent in liver
and intestine until day 18 of fetal life, after which it
appears in both tissues and gradually increases in
activity. However, whereas 5«-deiodinase activity is
much lower in the fetal rat than the adult mother,
the opposite is the case for 5-deiodination which is
especially high in fetal intestine and brain compared
to adult intestine and brain and of approximately
similar activity in fetal and adult rat liver (Galton,
McCarthy & St. Germain, 1991a). In the rat, there
is fourfold increase in the activity of brain D2 5«-
deiodinase between gestational days 17 and 22
(birth) that is correlated with an increase in brain
T3 content. Inhibition of thyroid function during
this period results in significant increases in D2
activity (Ruiz de Ona et al., 1988).

Selenium deficiency in rats (which causes a near-
complete loss of hepatic D1 5«-deiodinase in adults)
does not interfere with the postnatal plasma T3
surge, and it has thus been suggested that peripheral
deiodination is not important in this T3 surge but
that it may predominantly be due to intrathyroidal
deiodination of T4 (Chanoine et al., 1993b). In
sheep, there are increases in both D1 and D3
deiodinase activities after the T4 surge which begins
before birth. The dramatic decrease in rT3 con-
centration and the increase in T3 concentration in
sheep plasma at birth demonstrates that this species
too shows a switch from predominantly inner ring to
outer ring deiodination at this time (Fisher, Polk &
Wu, 1994). In humans, the increase in both T4 and
rT3 levels during the second half of gestation
precedes the increase in T3 levels which does not
commence until approximately three-quarters of the
way through gestation. This suggests that a similar
switch occurs in humans (Fisher et al., 1977).

The switch over from inner ring to outer ring
deiodination during development appears to be a
general finding for many higher vertebrates. Whilst
deiodinase activity has been predominantly studied
in liver tissue, the finding of tissue-specific profiles in
intracellular deiodinase activities during develop-
ment in amphibians, together with the finding of
high intestinal deiodinase activity in the rat fetus but

its relative absence in adult rat intestine, and the
importance of tissue deiodination for determining
normal tissue T4 and T3 levels in the adult rat,
suggests that there may be tissue-specific de-
iodination profiles during the development of verte-
brates. Indeed, in the rat, the development of 5«-
deiodinase activity has different ontogenetic patterns
in different tissues which consequently affect the
ontogenetic profiles for tissue T3 (Obregon et al.,
1989).

The concentrations of the two types of nuclear
thyroid receptors and their respective mRNAs also
vary during vertebrate development. The differ-
ential tissue expression of these receptors has been
elegantly demonstrated with in situ hybridization of
tissues from the developing flounder (Yamano &
Miwa, 1998). This study showed that virtually every
tissue expressed either an α- or β-type TR gene, and
that both the intensity and the tissue distribution of
the two types of TR mRNA varied. At metamorphic
climax, the TRα mRNA concentration was greatest
in skeletal muscle and digestive epithelium, whereas
TRβ mRNA was strongest in cartilage cells and
presumed osteoblasts, as well as in the myosepta
which separate the myotomes. At a whole-body
level, TRα mRNA is more prevalent in the larval
flounder than TRβ mRNA. During flounder meta-
morphosis TRα mRNA concentration increases and
peaks at climax, after which it decreases dramatically
in the postclimax flounder. TRβ mRNA concen-
tration increases during metamorphic climax and
peaks after the TRα mRNA peak, after which it
remains high. Unlike the situation in the larval
flounder, in the post-climax flounder TRβ mRNA is
more prevalent than TRα mRNA (Yamano &
Miwa, 1998).

It has been reported that the TRα gene is
expressed in eggs and embryonic stages that precede
the maturation of the thyroid gland in Xenopus laevis
and that TRα mRNA levels increase dramatically
before metamorphic climax (Banker, Bigler &
Eisenman, 1991). That it may have some effects at
this early stage is suggested by the fact that
precocious increase in synthesis of the α receptor
leads to hormone-dependent developmental abnor-
malities in Xenopus laevis embryos (Old et al., 1992).
In the larval amphibian, at the whole-animal level,
TRα mRNA predominates over TRβ mRNA and
reaches high levels prior to metamorphic climax.
The concentration of TRβ mRNA increases just
prior to metamorphic climax and reaches its peak
level at climax after which the mRNA for both types
of thyroid receptors decreases (Yaoita & Brown,
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1990). There is also differential expression of TRs in
amphibian tissues, in that the nucleated amphibian
erythrocytes express the gene for TRα but not TRβ
(Schneider, Davey & Galton, 1993), whilst tran-
scripts of the TRβ gene have been detected in
various tissues (tail, skin, kidney, leg, heart and
intestine) of premetamorphic tadpoles but not in
their erythrocytes (Davey, Schneider & Galton,
1994). In both cases, mRNA levels are highest at
metamorphic climax and are decreased in the adult
frog. Furthermore, the amount of transcript for both
types of receptors increases in the presence of T3.
Kanamori & Brown (1992) have shown that TRβ
mRNA is absent in unfertilized eggs, embryos and
young tadpoles but shows a dramatic developmental
surge in transcript levels peaking at metamorphic
climax and returning to negligible levels in the adult.
They demonstrated that TRβ expression was stim-
ulated by thyroid hormones and this stimulation
required protein synthesis. Schneider & Galton
(1991) have similarly shown that expression of the
TRα gene is also responsive to thyroid hormone level
in tadpole erythrocytes. This thyroid hormone
responsiveness of thyroid receptors will result in the
autoinduction of receptors during metamorphosis
and has been reproduced in Xenopus laevis cell culture
as well as in tadpoles (Machuca & Tata, 1992). In
both whole tadpoles and the cultured cells, TRα
mRNA was present in the absence of thyroid
hormones whilst negligible TRβ mRNA was mea-
sured. The degree of stimulation by thyroid hor-
mones was greater for TRβ mRNA than for TRα
mRNA. The autoinduction of TRs is sensitive to
inhibition of protein synthesis (Machuca & Tata,
1992). Such autoinduction during metamorphosis is
likely to be due to the fact that the TR gene has a
TRE in its own promoter region. This may be
especially true for the TRβ gene which, in Xenopus
laevis, has been shown to have a number of TREs in
its own promoter region (see Tata, 1996).

In erythrocytes from the chick embryo, there is
dramatic decline in nuclear thyroid receptors during
development (Dasmahapatra, Thomas & Frieden,
1987). This is probably due to changes in TRα, as
TRα mRNA but not TRβ mRNA has been
identified in chick erythrocytes (Forrest, Sjoberg &
Vennstrom, 1990).

Measurement of receptor binding has shown that
TRs are present in rat fetal tissues prior to the onset
of fetal thyroid function. Brain receptor number
increased threefold from day 14 to day 17, after
which it remained constant until after birth when it
rapidly increased to approximately adult levels by

postnatal day 6. In contrast to this pattern, receptor
numbers in liver and heart increased progressively
throughout fetal and postnatal periods towards the
level found in adult rat tissues (Perez-Castillo et al.,
1985). The postnatal rise in receptor number in rat
liver is almost completely due to increases in TRβ
which is absent in the fetal rat liver but responsible
for approximately 80% of total binding in the liver
of the young adult rat. TRα binding remains
relatively constant during this period and thus
declines from being responsible for 100% of liver T3
binding prior to birth to approximately 20% in the
adult rat (Rodd et al., 1992). Although there are
dramatic changes in mRNA for TRs during this
period, T3 binding capacity remains little changed
(Strait et al., 1990).

(2) Effects of thyroid hormones on
vertebrate development

Thyroid hormones have effects on several tissues
during development, the most notable being the
central nervous system. That their deficiency during
development permanently impairs brain function in
the adult has been known for some time and has
been reviewed by a number of authors (e.g. Legrand,
1986; Morreale de Escobar et al., 1987; Nunez et al.,
1991; Porterfield & Hendrich, 1993; Oppenheimer
& Schwartz, 1997). In humans, there are three
clinical situations where such effects are manifest.
They are, in order of decreasing severity of brain
damage, (a) substantial endemic goitre associated
with environmental iodine deficiency, (b) congenital
hypothyroidism in the newborn and (c) maternal
hypothyroxinemia during gestation. Such maldev-
elopment is characterized by deaf-mutism, mental
retardation and motor disorders and can be rem-
edied by hormone replacement initiated soon after
birth. If hormonal replacement is delayed, the effects
on the central nervous system can be irreversible. As
well as thyroid deficiency impairing development,
excess thyroid hormone levels are also detrimental to
normal brain development (as they are also for
amphibian metamorphosis). Most of our knowledge
concerning the effects of thyroid hormones on brain
development concerns the laboratory rat, in which
the important periods are both the fetal and
(particularly) the neonatal period. It was long
thought that maternal thyroid hormones did not
cross the placenta of eutherian mammals and were
thus not important. However, the extensive studies
of Morreale de Escobar and Escobar del Rey and
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others have conclusively shown that thyroid hor-
mones of maternal origin are found in the early fetus
before onset of fetal thyroid function and their
absence during early fetal life can have devel-
opmental effects (see Morreale de Escobar et al.,
1985, 1987). Maternal hypothyroidism during the
first half of gestation has been shown to compromise
the normal development of rats during the second
half of their gestation (Bonet & Herrera, 1991).

The rat brain at birth is at the same stage as the
human brain at 5–6 months of gestation and
consequently, stages of brain development that take
place during the last trimester of human devel-
opment occur postnatally in the rat. This period also
corresponds to the time of the developmental surge
of thyroid hormones in the rat. Recently, the
culturing of fetal and neonatal brain cells has given
substantial insight into the cellular mechanisms
involved, but much still remains unknown.

The early work of Eayrs and Legrand in the 1960s
demonstrated that thyroid deficiency results in
altered brain anatomy and dramatically decreased
neuronal connectivity. This is largely due to a
drastic decrease in axonal and dendritic outgrowth
of neurones and synaptogenesis. In the brain, thyroid
hormones not only influence the development of
neurones but also that of glial cells. For example,
thyroid hormone deficiency results in reduced
myelination of neuronal axons.

When rats are thyroidectomized at postnatal day
10, there results a decrease in the density and a
changed distribution of spines from the apical shaft
of pyramidal neurons in their visual cortex, which is
a manifestation of reduced neuronal connectivity. If
T4 replacement is initiated at postnatal day 12, then
spine density and distribution are similar to the
control (euthyroid) condition. If however, T4 re-
placement is not commenced until postnatal day 30,
spine density and distribution remains identical to
that observed in the thyroidectomised group (Mor-
reale de Escobar et al., 1987).

Possibly the most dramatic visual manifestation of
reduced arborization during hypothyroidism is ob-
served in the characteristic dendritic tree of Purkinje
cells in the cerebellum (see Legrand, 1986, p. 518).
Growing axons and dendrites must reach their
synaptic partners at an appropriate time and the
correct spatio-temporal timing of neurite outgrowth
is an essential component of the development of
normal neuronal networks. Hypothyroidism retards
the rate of growth of neurite outgrowths and thus the
rate of migration of neurones towards their synaptic
targets. The impaired growth and arborization of

axons and dendrites in hypothyroid rats has been
related to deficiencies of the cytoskeleton in per-
ipheral and central neurons. The neuronal cyto-
skeleton includes microtubules and microfilaments.
Microtubules are built from dimers of tubulin and
also contain microtubule-associated proteins (known
as MAPs) whilst microfilaments are composed of
actin subunits. Actin is particularly important in
axonal growth cones. Normal neurite growth de-
pends both on the synthesis of cytoskeletal proteins
and on their axonal transport. Axonal transport of
tubulin has been measured in the optic nerve of the
hypothyroid hyt}hyt mouse and found to be sig-
nificantly slower than in euthyroid hyt}­ littermates
(Stein et al., 1991).

Tubulin barely self-assembles into microtubules at
physiological concentrations and two protein fam-
ilies, MAP2 and Tau, act as promoters of tubulin
assembly to form microtubules. Many of these
proteins have a number of isoforms that are expressed
at different developmental times. The mRNA levels
for many of these proteins change in diverse ways
during the period of neuronal differentiation and
maturation (e.g. Figueiredo et al., 1993). It has been
suggested that thyroid hormones are biphasic (i.e.
stimulating early, whilst inhibiting later) in their
influence on cytoskeletal proteins and their re-
spective mRNAs (Biswas, Pal & Sarkar, 1997).
However, a better description of these findings is
that thyroid hormone deficiency delays the normal
developmental program of expression of these cyto-
skeletal components. Whilst the mRNA levels for α1
tubulin in cerebellum are elevated in hypothyroid
rats compared to euthyroid control rats during the
first 3–4 postnatal weeks (Aniello et al., 1991;
Figueiredo et al., 1993), β4 tubulin mRNA levels
show the opposite effect, being reduced in hypo-
thyroid compared to euthyroid rats (Aniello et al.,
1991). Both effects can be interpreted as hypo-
thyroidism delaying the normal expression of
tubulin isoforms. In a similar manner, thyroid
hormone deficiency delays the transition between
immature and mature MAP2 and Tau variants. In
this case, the influence of thyroid hormones appears
to be at the level of the splicing mechanism, that is,
post-transcriptional (Nunez et al., 1991).

The developmental profile for β-actin mRNA
from normal (euthyroid) rat cerebra shows a peak at
postnatal day 5 whilst in hypothyroid rats the peak
occurs at postnatal day 10 (Poddar et al., 1996). In
vitro transcription measurements demonstrate a
depressed actin gene transcription in hypothyroid
cerebra that can be remedied by incubation of nuclei
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with T3. By contrast, in vitro tubulin gene tran-
scription rates are similar in hypothyroid and
euthyroid cerebra and incubation of nuclei with T3
has no effect on tubulin gene transcription. This
suggests that whereas transcription represents an
important level of thyroid hormone control of the
actin gene, thyroidal influence over tubulin ex-
pression is primarily post-transcriptional (Poddar et
al., 1996). Levels of actin and its mRNA have also
been measured in cultures of fetal human brain
during the second trimester of gestation and it has
been demonstrated that there is a peak in actin
mRNA levels at week 18 of gestation, which
corresponds with both a significant increase in
cytoskeletal actin levels as well as the period when
thyroid hormones in the culture medium stimulate
actin production (Pal, Biswas & Sarkar, 1997).
Thyroid hormones affect cytoskeletal actin and its
mRNA during the maturation, in culture, of
astrocytes obtained from neonatal rat brain and also
have a distinctive influence on the external mor-
phology of such astrocytes (Paul et al., 1996).

Neural networks are formed by neurite growth
cones migrating along predictable routes to form
synapses with specific target cells. The pathways of
this migration are determined by proteins of the
extracellular matrix, especially laminin, which is
essential for synapse formation and cell survival as
well as neurite migration. In the brain, astrocytes
participate in the formation of these migration
pathways by synthesizing and secreting laminin,
which is a major component of the extracellular
matrix of the developing brain. Laminin is bound to
the astrocyte cell surface by specific transmembrane
receptors known as integrins, which in turn are held
in specific locations on the astrocyte surface by the
actin microfilament network in the cytoplasm of the
astrocyte (Reichardt & Tomaselli, 1991). In a
potentially very important paper, Farwell et al.
(1995) have shown that T4-treated astrocytes in
culture readily attach to laminin whereas attach-
ment was delayed for thyroid-hormone-deficient
astrocytes. The T4-dependent laminin-integrin in-
teractions provide a mechanism whereby T4 might
influence neuronal migration and development. This
effect has similarities to the previously described
effects of thyroid status on the D2 deiodinase in
astrocytes where specific T4-enzyme-actin inter-
actions are necessary for the rapid internalization of
the D2 deiodinase (Farwell & Leonard, 1992). In
both cases, T4 and rT3 are considerably more
effective than T3.

It is tempting to speculate that both the continual

presence of T4 and the high levels of rT3 present
(largely due to the predominance of inner ring over
outer ring deiodination) during early development
has an important functional role in facilitating
interaction between body cells and the extracellular
matrix. Together with the recent confirmation that
astrocytes have an important support role for
neurones and their function in the adult (see
Magistretti & Pellerin, 1999) these findings make
this an area very worthy of further investigation.

The expression of the different isoforms of nuclear
thyroid receptors varies between different types of
fetal brain cells. TRα-1 is found in both neuronal
and astroglial cells, whilst TRβ-1 is localized to
neuronal cells and the non-hormone-binding TRα-2
is restricted to astrocytes (Leonard et al., 1994). It
has recently also been demonstrated that D2
deiodinase is primarily expressed in glial cells, rather
than neurones, in the neonatal rat brain (Guadano-
Ferraz et al., 1997).

The regions of the brain that mature late are those
most severely affected by hypothyroidism. This
includes the cerebellum, where the external germinal
layer persists and remains the site of mitosis for an
extended period in hypothyroidism. In germinal
cells, thyroid hormones affect cell maturation rather
than cell replication (Legrand, 1986). Myelogenesis
is also retarded in hypothyroidism. The retardation
effect of hypothyroidism is also manifest in mRNA
levels for four brain proteins during postnatal
development of the rat (Strait, Zou & Oppenheimer,
1992). In this study, the mRNA levels for calbindin,
myo-inositol-1,4,5-triphosphate(ICP

$
)receptor,Pur-

kinje cell protein-2 (PCP-2), and myelin basic
protein (MBP) are all low at birth and show a
similar postnatal profile in euthyroid rats. Hypo-
thyroidism did not change the final level of these four
mRNAs but did delay their increase, such that at
postnatal day 15 the mRNA levels for all four brain
proteins were much reduced in hypothyroid com-
pared to euthyroid rats. Cotransfection experiments
in this study suggested that the thyroid hormone
effect on PCP-2 was mediated by the TRβ-1 isoform.
Hypothyroidism had no effect on the mRNA levels
for these four brain proteins after the first four
postnatal weeks of development in the rat, and
manipulation of thyroid status of late-fetal rats also
had no effect on the mRNA levels for PCP-2 and
MBP proteins, suggesting that these proteins are
unresponsive to thyroid hormones prior to birth in
rats (Schwartz, Ross & Oppenheimer, 1997). Two
thyroid response elements have been identified for
the PCP-2 gene, one in the 5« upstream region (A1)
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and one in the first intron (B1) and it has been
proposed that the function of the A1 TRE is
suppressed by a neighbouring silencer element
operating after the initial period of thyroid hormone
responsiveness (Zou et al., 1994; Anderson et al.,
1997). A TRE has also been characterized for MBP
(Farsetti et al., 1992) but examination of the 1100
base pair region upstream of the calbindin gene has
failed to find a TRE (see Oppenheimer & Schwartz,
1997). The situation has been complicated by the
recent finding that a knockout strain of mice, devoid
of TRβ-1, which was initially proposed to mediate
the thyroid hormone effect, have a postnatal profile
for PCP-2 mRNA and MBP mRNA that is identical
to that in normal mice that possess a TRβ (Sandhofer
et al., 1998). These results indicate that either it is the
TRα isoform that mediates this developmental effect,
or that nuclear receptors are not involved. They also
suggest that translation of the findings of in vitro
transfection experiments to the in vivo situation
should be made with caution.

Hypothyroidism during development also com-
monly results in deafness. Postnatal rats made
hypothyroid from late-fetal stages show no auditory
evoked potentials and also show no postrotatory
nystagmus which demonstrates that vestibular func-
tion is also impaired in hypothyroidism (Meza,
Acuna & Escobar, 1996). Little is known of the
precise cellular targets of thyroid hormone effects on
the auditory system. Effects are manifest both in the
sensory organ itself as well as in the auditory cortex.
In normal rats, cochlear potentials following audi-
tory stimulation have been recorded from postnatal
day 9 but in hypothyroidism no cochlear potentials
could be elicited during the first 30 postnatal days of
life (Uziel, Rabie & Marot, 1980). Hypothyroidism
results in abnormal synaptogenesis of efferent bou-
tons at the level of the cochlear outer hair cells (Uziel
et al., 1983). In the brain itself, hypothyroidism
results in a decreased number and abnormal dis-
tribution of apical shaft spines in pyramidal cells of
the auditory cortex (Ruiz-Marcos et al., 1983).
These changes were similar to those found in the
visual cortex, by the same investigators, but were less
responsive to thyroid hormone replacement and it
was suggested that the auditory cortex pyramids
were either more sensitive to a minor degree of
hypothyroidism, or have a shorter critical period
during which hormone replacement can remedy
damage, than other cerebral or cerebellar neurones
and structures.

Early studies showed that Na+,K+-ATPase ac-
tivity of the both the cerebra and cerebellum of the

rat increased during the first postnatal month
(Valcana & Timiras, 1969). Hypothyroidism de-
layed this increase in brain Na+,K+-ATPase activity
and the later thyroid hormone replacement was
begun, the less was the remediation (Schmitt &
McDonough, 1988). The effect of T3 on the mRNA
levels of Na+,K+-ATPase subunit isoforms has been
examined in a cell culture system of rat forebrain
that reproduces in vitro the pattern of normal in vivo
development. Although T3 influenced the levels of
mRNA for some isoforms at a culture stage equiv-
alent to postnatal day 7 it had no influence at a
culture stage equivalent to birth. Transcription rates
for each isoform differed markedly but remained
stable for the 12 days of culture and were not
affected by T3. The effects of T3 on mRNA levels for
the Na+,K+-ATPase subunit isoforms are likely to be
post-transcriptional (Corthesy-Theulaz et al., 1991).

Few studies on the developmental effects of
thyroid hormones on the brain and its function have
been carried out in non-mammalian vertebrates.
One such study, however, suggests that the thyroid
hormones play a role in olfactory learning and
imprinting in salmonid fish during the parr-smolt
transformation (Morin, Dodson & Dore, 1989).

Thyroid hormones influence the development of
tissues other than brain. For example, in muscle,
embryonic myosin isoforms are replaced by neonatal
isoforms which in turn are replaced by adult-type
myosin heavy chain isoforms during early devel-
opment. In rats, the postnatal surge in plasma T4
concentration coincides with the transition from
neonatal to mature fast myosin isoforms in fast
muscles and is retarded by hypothyroidism and
precociously induced in hyperthyroidism (Gambke
et al., 1983; Butler-Browne, Herlicoviez & Whalen,
1984). The times of such transitions vary between
muscles and hypothyroidism delays, whilst hyper-
thyroidism accelerates, such transitions (d’Albis et
al., 1990). Similarly, in humans, hyperthyroidism
has been shown to result in precocious accumulation
of adult myosin heavy chains early in postnatal
development (Butler-Browne, Barbet & Thornell,
1990). Although hypothyroidism retards develop-
mental changes in myosin expression in chick
embryo skeletal muscles (Gardahaut et al., 1992),
replacement of neonatal myosin isoforms with adult
isoforms is not influenced by thyroid hormones in the
turkey (Maruyama, Kanemaki & May, 1995). In
amphibians, a moderate increase in thyroid hormone
levels is sufficient to induce differentiation of adult
fibre types and the production of adult myosin
isoforms in skeletal muscle (Chanoine et al., 1987). In
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a salmonid fish, the Arctic charr Salvelinus alpinus, T3
accelerates the neonatal-adult isoform transition to a
small extent, but is not as effective as increased
temperature (Martinez et al., 1995). In the meta-
morphosing flounder, T4 exposure accelerates
muscle developmental changes whilst exposure to
thyroid inhibitors delays such changes (Yamano et
al., 1991).

During postnatal muscle development in the rat, a
dramatic increase in the ability of the sarcoplasmic
reticulum to transport Ca#+ has been observed. This
increase is not observed in hypothyroid rats but can
be restored by T3 (Simonides & van Hardeveld,
1989). Interestingly, this developmental response of
muscle is unlike brain, in that it does not appear to
have a critical period during which thyroid hormone
replacement is necessary to restore normal devel-
opment. Hypothyroid rats given replacement T3 at
postnatal week 6 show the same response as those
given replacement T3 in the first postnatal week
(Simonides & van Hardeveld, 1989).

Mild hypothyroidism has also been shown to
influence muscle development in the postnatal pig,
in which it resulted in reductions in activities of both
Na+,K+-ATPase and Ca#+-ATPase in several
muscles but only limited effects on the fibre
composition of skeletal muscles (Harrison et al.,
1996). Developmental regulation of cation pumps in
skeletal and cardiac muscle has been reviewed by
Dauncey & Harrison (1996). In the rat, there are
postnatal changes in the abundance of mRNAs for
different subunit isoforms for Na+,K+-ATPase dur-
ing the first postnatal weeks that differ from the
profile in the brain and other tissues (Orlowski &
Lingrel, 1988) but it is not known if these are
influenced by the postnatal T4 surge.

The importance of the developmental thyroid
hormone surge for muscle maturation has also been
shown in the precocial sheep where this T4 surge
occurs prenatally. Thyroidectomy in utero resulted in
slower axon conduction in motor neurones (possibly
due to thyroid hormone effects on myelination), and
slower and weaker contractions of fast muscle, but
had lesser effects on slow muscles (Finkelstein et al.,
1991). Such thyroid hormone effects on isolated
muscle function are likely to be combinations of
effects on myosin composition as well as sarcoplasmic
Ca#+ and sarcolemmal Na+}K+ dynamics.

In the heart of the newborn rat, the sarcoplasmic
reticulum is poorly developed and the cardiac cycle
is more dependent on Ca#+fluxes across the sar-
colemma than across the sarcoplasmic reticulum
membrane. During the first postnatal weeks the

importance of the sarcolemmal Na+}Ca#+ exchanger
diminishes and the role of the sarcoplasmic reticulum
Ca#+-ATPase (SERCA2) increases. Inhibition of
thyroid function during this time results in a lower
level of both the SERCA2 protein and its mRNA
and a higher level of the sarcolemmal Na+}Ca#+

exchanger and its mRNA, with even greater effects
on the respective transport activities of these two
proteins (Cernohorsky et al., 1998). Administration
of T3 during this period had no effect on the levels
of either protein and their respective mRNAs,
however, it did result in an increase in the Ca#+

transport activity of SERCA2 and a decrease in that
of the sarcolemmal Na+}Ca#+ exchanger. The
additional effect on the activity of SERCA2 is
suggested to be due to either changes in phos-
pholamban or membrane lipids (or both), whilst the
effect on the activity of the Na+}Ca#+ exchanger is
suggested to be due to effects of altered Na+,K+-
ATPase activity or membrane lipid changes (or
both). Thus, the thyroid hormones are necessary for
the reciprocal changes in expression of the cardiac
sarcolemmal Na+}Ca#+ exchanger and SERCA2
during normal postnatal development and also have
influences on their respective activities that are
independent of changes in the expression of their
respective genes (Cernohorsky et al., 1998).

It has been shown that T3 is a potent stimulant for
embryonic myoblasts to differentiate in culture. A
transient rise in cyclic AMP levels appears essential
for the terminal differentiation of such myoblasts
and T3 causes both an earlier and a greater cyclic
AMP concentration increase (Marchal et al., 1995).

The influence of the thyroid hormones on cartilage
and bone has been recently reviewed by Williams et
al. (1998). When various bones and cartilage are
removed from one-day-old neonatal rats and trans-
planted under the kidney capsule of euthyroid and
hypothyroid rats it was shown that the growth and
differentiation of endochondral bones was more
dependent on thyroid hormone levels than was that
of membranous bones and cartilage. The former
develop their thyroid hormone dependence before
postnatal day 4 whilst the latter develop such
dependence at the end of the first postnatal week
(Liu & Nicoll, 1986).

The transfer of immunoglobulins across the in-
testinal mucosa is a process that diminishes during
normal postnatal maturation of the mammalian
intestine. In two-week-old rats, T4 administration
stimulated structural and functional maturation
resulting in a decreased fluidity of the microvillus
membrane and diminishing uptake of immuno-
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globulin (Israel et al., 1987). In the rat, there are
significant changes in the activities of a number of
intestinal enzymes in the third postnatal week. Some
enzymes decrease (e.g. lactase and acid β-galacto-
sidase), whilst others increase in activity (e.g. sucrase
and glucoamylase). As well as plasma T4 con-
centration, plasma corticosterone concentration also
increases during the second postnatal week and is an
important factor in this postnatal maturation of
intestinal enzymes. Treatment with T4 increases
serum corticosterone levels during this period and
also synergistically heightens the effects of exogenous
glucocorticoid on intestinal enzyme maturation
although it does not in itself enhance maturation of
intestinal enzymes (McDonald & Henning, 1992).
That the thyroid is generally involved in the normal
maturation of the vertebrate digestive system is
illustrated by the finding that exposure to T4
stimulates precocious development of the gastric
gland in premetamorphic flounder whilst inhibition
of thyroid function inhibits gastric development
during flounder metamorphosis (Miwa, Yamano &
Inui, 1992).

An interaction between corticosterone and thyroid
hormones has also been observed with respect to
amphibian metamorphosis and has recently been
reviewed by Hayes (1997). Exogenous corticoids in
early development inhibit metamorphosis whilst in
late development they accelerate metamorphosis.
They interact with the thyroid axis in multiple ways.
For example, in erythrocytes from premetamorphic
tadpoles, the normal thyroid hormone stimulation
of TRα number is inhibited by corticosterone
(Schneider & Galton, 1995), whilst it has been
shown that corticosterone stimulates 5«-deiodination
but inhibits 5-deiodination in premetamorphic tad-
poles resulting in an increased conversion of T4 to
T3 and thus an increase in body T3 levels (Galton,
1990). Corticoids can also accelerate or inhibit
tadpole hindlimb growth and development de-
pending on the stage of spontaneous development
(Wright et al., 1994). Such hormonal interactions are
the likely mediators of ecological and environmental
effects on amphibian development. Cortisol and T3
also interact in larval development of a fish species
(Kim & Brown, 1997).

Tissue remodelling during amphibian metamor-
phosis can be extensive. Metamorphic changes in the
amphibian intestine involve the programmed cell
death (apoptosis) of tadpole epithelium and its
replacement by newly formed adult epithelium. Of
several genes whose expression is increased early
during amphibian metamorphosis, some are tran-

scription factors, some are involved in metabolism
whilst others are involved with extracellular sig-
nalling (Shi, 1996). The role of two of these latter
genes has recently been discussed (Stolow et al.,
1997) and these authors have stressed the important
role of the extracellular matrix and the transfer of
information between different cell types during
development. For example, the development of the
adult epithelium requires the presence of larval
connective tissue (Ishizuya-Oka & Shimozawa,
1992) and without it, the only observed morpho-
logical change in cultures of intestine treated with
thyroid hormones is apoptosis of the larval epi-
thelium. The proliferation and differentiation of the
adult epithelium is absolutely dependent on the
presence of larval connective tissue. This may present
an interesting example for other cases of devel-
opmental changes. If cell to cell information transfer
is an important component of developmental
changes then thyroid hormone effects that enhance
such transfer may speed up development; inhibition
of such information transfer would be likely to retard
developmental change. This means that thyroid
hormone effects need not be genomic to influence
development but could for instance act at a
membrane level to speed up information transfer
and consequently development. Interactions be-
tween cells and the extracellular matrix can result in
transcriptional regulation of cellular genes (see
Stolow et al., 1997).

Apoptosis is also observed in other tissues (notably
the tadpole tail) during amphibian metamorphosis
(for review see Tata, 1994). Thyroid hormones play
two distinctive roles during cell death in the tadpole
tail. They induce and promote keratinization (pro-
grammed cell death with terminal differentiation) in
epidermal cells of the tail and body, and influence
proliferation of these two types of cells in opposite
directions. T3 inhibits DNA synthesis in tail cells,
but stimulates the same process in body cells
(Nishikawa, Kaiho & Yoshizato, 1989). Whilst T3
accelerates keratinization of body cells, these cells
will gradually keratinize in vitro without T3. Simi-
larly, expression of the adult-type keratin gene in
head skin during larval development of Xenopus laevis
has been demonstrated to be activated by two steps :
one independent and one dependent on T3
(Mathisen & Miller, 1987).

One of the changes that occur during amphibian
metamorphosis is the development of the capacity
for urea biosynthesis in the adult amphibian liver. A
key enzyme for urea biosynthesis is carbamyl
phosphate synthetase (CPS); CPS mRNA levels and
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CPS enzyme activity are increased when pre-
metamorphic tadpoles are exposed to T4 (Morris,
1987) and T3 (Galton et al., 1991a). Thyroid
hormones have the opposite effects in rat liver in that
urea biosynthesis is stimulated by hypothyroidism
(Marti et al., 1988). Interestingly, whilst T4 stim-
ulates synthesis of the gluconeogenic enzyme phos-
phoenolpyruvate carboxykinase in rat liver, it has
the opposite effect in tadpole liver (Morris, 1987).
Recently, it has been demonstrated that thyroid
hormone induction of enzymes for urea synthesis
(including CPS) during both spontaneous and
induced metamorphosis of Rana catesbeiana is a
secondary response due to a transcription factor in
the amphibian liver that is homologous to the
mammalian transcription factor C}EBPα. The
mRNA for this transcription factor accumulates
early in response to thyroid hormones, and the
product of this mRNA can bind to and transactivate
the promoters of CPS and ornithine trans-
carbamylase (another urea biosynthesis enzyme) in
the liver of Rana catesbeiana (Chen & Atkinson, 1997).
These results suggest that there is a cascade of gene
activation induced by thyroid hormones during
amphibian metamorphosis. Intriguingly, examin-
ation of thyroid hormone influence on the levels of
the C}EBPα and C}EBPβ proteins, as well as their
respective mRNAs, in the liver of the rat during
early postnatal development suggests that the in-
fluence of thyroid hormones on these transcription
factors is either translational or post-translational
(Menendez-Hurtado et al., 1997). Stimulation of
malic enzyme in cultured chick embryo hepatocytes
by T3 has also been suggested to occur primarily at
a post-transcriptional level (Back et al., 1986).

Many developmental changes that have been
examined appear to be associated with the de-
velopmental surges of T4 and T3 levels. My
impressions from the literature concerning thyroid
hormone influences on development is that when
single time points in development are investigated
the conclusions are that thyroid hormones act, in
some cases, to increase and in others to decrease the
expression of genes, sometimes even the same genes
at different times. However, when multiple time
points are examined, a more consistent pattern
emerges. This is that exposure to exogenous thyroid
hormones generally accelerates development, whilst
inhibition of thyroid function retards developmental
change. The acceleration of normal development
with increased levels of thyroid hormone and
retardation with thyroid hormone deficiency is, in a
way, analogous to their effects in adult vertebrates

where they predominantly speed up normal pro-
cesses when present in excess, and mostly slow down
normal processes when not present in adequate
amounts.

The influence of thyroid hormones on vertebrate
development is likely to be via several different
modes of action. Many effects are likely to be direct
genomic effects, whilst several others are probably
non-genomic. Differentiating between such modes
will involve several criteria. The observation that
thyroid hormone exposure results in elevated mRNA
levels for a particular gene is, by itself, not adequate
evidence for a direct genomic mode of action. Direct
genomic effects will be mediated by nuclear receptors
binding to TREs in the genome and thus a TRE is
a mandatory requirement for a direct genomic
action. The role of thyroid effects on the membrane
bilayers and changes in the rate of information
transfer on development has not been investigated.
This is presumably because of the widely held belief
that thyroid hormones only act via the nuclear
receptor mode.

Membrane lipid compositional changes during
development of vertebrates are known but have been
little researched. For example, Hoch (1988) reports
an increase in the unsaturation index of lipids
(mainly due to an increased PUFA content) in the
liver of Rana catesbeiana during metamorphosis that is
coincident with the T4 surge. Changes in membrane
acyl composition, cholesterol :phospholipid ratio and
membrane fluidity of various membranes have been
observed during postnatal development of the rat
(e.g. Hubner et al., 1988; Rovinski & Hosein, 1983;
Kameyama et al., 1987) and the rabbit (e.g.
Nagatomo, Sasaki & Konishi, 1984; Ricardo et al.,
1986; Schwartz, Lambert & Medow, 1992) as well
as during embryonic development of the chicken
(e.g. Schjeide, 1988; Fuhrmann & Sallmann, 1996;
Rivas et al., 1996). For example, in the rat there is a
postnatal peak in the unsaturation of liver mito-
chondrial phospholipids (Pollack & Harsas, 1981)
that is consistent with the developmental T4 surge.
Similarly, there is a postnatal peak in the 20:4
content of plasma membrane phospholipids, as well
as microsomal and mitochondrial phospholipids
isolated from chick heart (Kutchai et al., 1978).
However, the role of thyroid hormones in these
changes in membrane bilayer composition and their
functional consequences are not known.

One of the most interesting recent findings is
thyroid hormone enhancement of the laminin-
integrin-actin interaction observed in astrocytes
(Farwell et al., 1995; Leonard & Farwell, 1997).



593Thyroid hormones and their effects

Whether this phenomenon is also applicable to other
cells and their interaction with the extracellular
matrix, and whether thyroid-hormone-membrane
interactions have a role in this effect is, in my
opinion, one of the most fascinating and important
questions regarding the developmental effects of
thyroid hormones yet to be answered. In this effect,
T4 is much more potent than T3, and rT3 is nearly
as potent as T4. In view of the importance of cell
migration during development, this thyroid hor-
mone effect may be related to a number of findings
in vertebrates : (i) the presence of T4 in the eggs and
embryos of vertebrates well before the development
and maturation of thyroid gland function in the
individual, (ii) the developmental surge of T4, and
(iii) the preponderance of inner ring 5-deiodination
early in development and the switch over to outer
ring 5«-deiodination, with the consequence of high
levels of rT3 early in vertebrate development and its
decrease and replacement by T3 later at approx-
imately the time of the developmental T4 surge.

V. SOME PERSPECTIVES

(1) Analogues as a source of knowledge

As well as natural analogues of T4 (i.e. T3, rT3, the
three T2s, the two T1s, and thyronine and other
products of T4 metabolism) a substantial number of
other analogues have been synthesised and examined
for their thyroid-hormone-like potencies. A sub-
stantial amount of this work has been carried out by
Jorgensen and his colleagues and an excellent review
of these findings is provided by Jorgensen (1981).
For additional reviews, see Cody (1996) and Craik,
Duggan & Munro (1996). Coupled with the study of
the conformation of analogues, these studies have
resulted in considerable insight into: (i) important
aspects of the molecular interactions during the
binding of thyroid hormones to various proteins, (ii)
the relative importance of the various parts of the
thyroid hormone molecules in their physiological
effects, and (iii) the mode of action for various effects
of thyroid hormones.

These analogues bind with different affinities to a
variety of proteins, which include both the extra-
cellular distributor proteins and intracellular pro-
teins (notably nuclear thyroid receptors). Although
binding affinities vary between vertebrate species,
detailed measurement has generally been restricted
to the human or rat proteins. Such relative binding
affinities are presented in Table 4.

Binding to ALB is weak and insensitive to the
stereochemistry of the alanine side chain with the
major binding feature being the o-diiodophenolic
structure in which the phenolic ®OH group is
ionized. Binding to TTR is highly sensitive to the
stereochemistry of the alanine side chain with
binding being primarily to the carboxylate ion of the
side chain with the ammonium group weakening
such binding. The o-diiodophenolic structure is also
important for binding to TTR with the 3« and 5«

iodine atoms being very important, together with a
hydrogen bond formed between the ionized form of
the phenolic ®OH group and TTR N-terminal
residues (which reside at the entrance to the TTR
binding channel). In this light, it is of interest that
the N-termini are longer and more hydrophobic in
avian TTR compared to rat, sheep and human
TTR, and that avian TTRs have a greater affinity
for T3 than the mammalian TTRs (Chang et al.,
1998). Thyroid hormones bind to TBG with great
affinity because this protein associates with both the
carboxylate and the ammonium groups of the
alanine side chain. As with TTR, the 4« ®OH in its
ionized form together with the 3« and 5« iodine atoms
are important in the binding of thyroid hormones to
TBG (Jorgensen, 1981).

The in vitro binding of thyroid hormones and
analogues to thyroid nuclear receptors (TRs) has
been examined for intact rat liver nuclei and its
solubilized receptor. The two preparations closely
agree and both binding affinities are shown in Table
4. Whereas T3 binds to the plasma proteins with
much less affinity than T4 (TBG, TTR and ALB
have affinities for T3 that are respectively 9, 5 and
55% of their affinity for T4), the opposite is the case
with binding to thyroid nuclear receptors where the
affinity for T3 is approximately 800% of that for T4.
TRs have less affinity for the -isomer of the alanine
side chain than the -form. Binding is to the carboxyl-
ate ion of the alanine side chain, with the presence
of an amino group reducing binding. Two aromatic
rings separated by either an O, S or a C (with an
inter-ring bond angle of approximately 120°) is
also important. Non-polar groups on the 3- and
5- positions on the inner ring are important for
binding to TRs. The greatest affinities are for iodine
atoms in these positions, and their replacement with
smaller groups (e.g. Br atoms or ®CH

$
groups)

gives lower affinities. The role of these inner ring
iodine atoms appears to be to hinder rotation around
the ether linkage and thus restrain the two aromatic
rings such that they are perpendicular to each other.
This role can be easily observed in the molecular
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Table 4. The relative potencies of iodothyronines in binding to selected proteins and exerting selected thyroid hormone effects

Iodothyronine L-T4 D-T4 L-T3 D-T3 rT3 3,5-T2 3«,3-T2 3«,5«-T2 3-T1 3«-T1 T Reference

Relative binding affinity
TBG (human serum) 1100 600 100 422 1 14 1 0 0 Jorgensen (1981)
TTR (human serum) 2100 56 100 4 167 2 15 48 0 1 0 Jorgensen (1981)
ALB (human serum) 180 182 100 182 55 155 27 0 Jorgensen (1981)
Intact nuclei (rat liver) 13 100 0 0 1 Jorgensen (1981)
Soluble TR (rat liver) 14 100 0 0 1 Jorgensen (1981)

Thyroid hormone effect
Antigoitre assay (rat) 18 3 100 7 0 1 0 0 0 Jorgensen (1981)
Body growth (rat) 100 100 Evans et al. (1964)"

BMR(rat) 70 12 100 C 100 C 100 Pitt-Rivers & Tata (1959),
Lanni et al. (1996),
Moreno et al. (1997)

Isolated liver O
#

consumption (rat)
96 100 0 108 0 0 18 Horst et al. (1989)

Muscle in vivo sugar
uptake (rat)

C 70 C 40 100 C 70 Segal (1989)#

Thymocyte amino acid
uptake in vitro (rat)

34 13 100 20 48 15 103 5 28 3 0 Goldfine et al. (1976)

Erythrocyte Ca#+-ATPase
in vitro (rat)

132 0 100 0 0 100 Davis et al. (1989)$

Brain D2 deiodinase
in vivo (rat)

C 1200 100 400 Silva & Leonard (1985)%

Amphibian metamorphosis
(by immersion)

32 16 100 35 1 13 0 0 0 Jorgensen (1981),
Pitt-Rivers & Tata (1959)

Amphibian metamorphosis
(by injection)

10 3 100 50 Jorgensen (1981)

Membrane fluidity
in vitro (liposomes)

C 60 C 60 100 C 100 C 10 Farias et al. (1995)&

Membrane antioxidant
in vitro (rat)

C 180 100 C 50 0 Cash et al.(1967)'

All potencies are expressed relative to L-T3 (¯ 100), with relative potencies measured as less than 0.5 shown as zero.
"Both T4 and T3 (at 0.1 µg day−") resulted in similar growth of several body organs as well as body mass and metabolic rate.
#Calculated as average values for diaphragm, atria and ventricles after 0.1 µg per 100 g mass injection.
$Similar relative potencies also reported for sarcoplasmic reticulum Ca#+-ATPase by Warnick et al. (1993).
%Values for effect on cortex D2 deiodinase activity, similar relative potencies measured for pituitary D2 deiodinase activity (Silva & Leonard, 1985)
and GH3 cells in vitro (St Germain, 1985).
&Calculated from relative change in membrane fluidity of dimyristoyl-phosphatidylcholine liposomes due to 50 µ hormone at 36 °C.
'Calculated from relative % inhibition of liver mitochondrial membrane lipids at 1 µM hormone concentration.
T, thyronine; TBG, thyroxine binding globulin; TTR, transthyretin; ALB, albumin; TR, thyroid nuclear receptor; BMR, basal metabolic rate.
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models for T4, T3 and 3,5-T2 in Fig. 1 (compared to
the model of rT3). On the phenolic ring, the 4«®OH
group is also important (in the non-ionized form),
and affinity is enhanced by a lipophilic halogen,
alkyl, or aryl group adjacent to this 4«®OH group.
Strongest binding is obtained when the 3«-position is
occupied by either an iodine atom or the similar-
sized isopropyl group.

One of the in vivo tests of the thyromimetic activity
of thyroid hormone analogues is the rat goitre
prevention test, which is a measure of the amount of
analogue required to inhibit thyroid gland en-
largement in rats in which thyroid gland function is
inhibited and a goitre is developing. It is a measure
of the potency of the analogue to inhibit TSH release
from the anterior pituitary and is also given in Table
4. There is a strong correlation between the relative
affinity of nuclear TRs for an analogue and its
potency in the rat antigoitre assay (Dietrich et al.,
1977). Discrepancies between TR binding affinity
for and the thyromimetic potency of particular
analogues have been variously explained. For ex-
ample, the discrepancy between the low TR affinity
of analogues lacking the 4«®OH but their relatively
greater thyromimetic potency has been explained by
the in vivo 4«-hydroxylation of such analogues
(Oppenheimer, 1983). The relatively low thyro-
mimetic potency of Triac (the acetic acid analogue
of T3) compared to the very high TR affinity for it,
has been explained by its more rapid metabolism
compared to T3 (Oppenheimer, 1983).

The goitre prevention assay tests only one of the
myriad effects of thyroid hormones. Other assays of
thyromimetic potency that have been used in the
past are the stimulation of metabolic rate of rats and
the stimulation of amphibian metamorphosis. An
earlier compilation of analogue potency included
these other two assays (Pitt-Rivers & Tata, 1959)
and showed that the relative potency of some
analogues varied between the types of assay (Fig.
12). As can be seen from Fig. 12, there are some large
discrepancies among assays. For example, whilst T3
had a thyromimetic potency that was 400–500%
that of T4 in the goitre prevention and the
metamorphosis assay, it was only 67% more potent
than T4 in the metabolic rate assay. Whilst 3,5,3«-
tribromothyronine had 20–28% of the T4 potency
in goitre prevention and stimulation of metamor-
phosis it was 90% as potent as T4 in stimulating
metabolic rate. Conversely, 3,5-diiodo-3«,5«-di-
chlorothyronine was 22–48% as potent as T4 in
stimulating metamorphosis and preventing goitre
but had almost no effect on metabolic rate being

only 0.4% as potent as T4. Alteration of the alanine
side chain produced a series of analogues that were
considerably more potent than T4 in stimulating
metamorphosis but considerably less potent than T4
in preventing goitre or stimulating metabolic ac-
tivity. Whilst some of the high relative potencies for
stimulation of metamorphosis obtained for these
later analogues were measured by in vitro exposure,
and lesser relative potency values were obtained
following in vivo injection into tadpoles (see Jor-
gensen, 1981), they still remained more potent than
T4 in this thyromimetic property but less potent
than T4 in the other assays. Whilst comparison of
the stimulation of metamorphosis with the other two
assays is complicated by the fact that different
species are involved, this is not the case when
comparing the other two assay systems, which were
both measured in the rat. The finding that analogues
have different relative potencies when different
thyroid hormone effects are measured is evidence
that the effects themselves probably involve different
modes of action.

Whilst the nuclear TR has an affinity for T3 that
is 800% that for T4, T3 has a thyromimetic potency
for stimulating growth and metabolism in rats that is
similar to that for thyroxine (Table 4). This has been
explained by assuming that T4 is converted to T3 to
exert all its effects (see Oppenheimer, 1983). Another
explanation is that thyroid hormone effects on
metabolism and growth are not predominantly
mediated by thyroid nuclear receptors. In contrast
to their almost equivalent potency in stimulating
metabolism and growth, T3 is approximately four-
fold more potent than T4 in suppression of rat serum
TSH levels and the non-halogenated analogue, 3,5-
dimethyl-3«-isopropyl-thyronine has approximately
10% of the potency of T4 (Chopra et al., 1984). The
relative potencies of these two analogues in the goitre
prevention assay are similar to the relative TR
affinities (Jorgensen, 1981). That the thyroid stimu-
lation of metabolic activity is not predominantly
mediated by nuclear receptors is also supported by
the fact in humans that doses of Triac sufficient to
suppress TSH secretion had no effect on metabolic
rate whilst doses of T4 sufficient to suppress TSH
secretion resulted in a significant stimulation of
metabolic activity (Bracco et al., 1993).

The relative potencies of iodothyronines in several
other effects are also presented in Table 4. These
relative potencies differ markedly from the relative
binding affinity of nuclear receptors for the iodo-
thyronines and thus imply that these effects are not
mediated by nuclear receptors. Within this group
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L-thyroxine (L-T4)

3,5,3!-triiodo-L-thyronine (L-T3)

3,5,3!-tribromo-DL-thyronine

3,5-diiodo-3!,5!-dichloro-DL-thyronine

3,5,3!,5!-tetraiodothyropropionic acid

3,5,3!-triiodothyropropionic acid

3,5-diiodothyropropionic acid

3,5,3!,5!-tetraiodothyroacrylic acid

3,5,3!,5!-tetraiodothyroacetic acid

3,5,3!-triiodothyroacetic acid

0.1 1 10 100 1000 10000 100000

Potency relative to L-thyroxine (= 100)

Fig. 12. A comparison of the potencies (relative to T4) of various thyroid hormone analogues on three different thyroid
hormone effects. Data are from Pitt-Rivers & Tata (1959). The goitre prevention and oxygen consumption assays
were performed in rats. The growth}differentiation assay involves induction of metamorphosis in amphibians.

there appear to be several different patterns. Meta-
bolic rate and nutrient uptake may represent one
group, Ca#+-ATPase stimulation another, and the
effects on D2 deiodinase still another. This latter
effect appears to involve the same mechanism as the
interaction of astrocytes with the extracellular
matrix. T4 and rT3 may turn out to be more
important in the early development of vertebrates
than T3.

In Table 4, I have included two other effects of the
thyroid hormones for which the relative potencies
were obtained at high concentrations. These are the
only data available for these effects and the relative
potencies for the various iodothyronines may change
when they are measured at lower, more physio-
logically relevant, concentrations.

I have argued elsewhere in this review that the
effects due to 3,5-T2 may not be physiologically
relevant because plasma T2 levels are considerably
lower than those of T4 and T3. However, the finding
that T2 is almost as active as T3 in exerting various
thyroid hormone effects, yet TRs show negligible
binding affinity for it, raises serious questions about
the assumption that most thyroid hormone effects
are mediated by a TR mode of action.

There are several other effects of thyroid hormones
where the relative potency of analogues does not
agree with their TR affinity. For example, TRs show
negligible affinity for 3,5-dimethyl-3«-isopropyl-thy-

ronine yet it is the most potent stimulator of muscle
sarcoplasmic Ca#+-ATPase activity, and although
there are substantial differences between TR af-
finities for T4 and T3, these two iodothyronines have
almost equal influence on the activity of this Ca#+-
ATPase. Whilst the acetic acid analogue of T3 has
no significant influence on Ca#+-ATPase activity, the
nuclear TR has a very high affinity for this analogue
(Warnick et al., 1993). Such effects would not appear
to be initiated via nuclear TRs.

(2) The early sixties revisited

It is the purpose of this section to use the wisdom of
hindsight to re-examine the seminal studies of Tata
et al. (1962, 1963), Tata (1963) and Tata & Widnell
(1966). These detailed the time course of changes in
a substantial number of variables following T3
injection into thyroidectomised rats. Our under-
standing of biological systems has increased greatly
since this time. For example, the beginning of the
modern understanding of fluid membranes and their
importance can be dated to almost a decade later
(Singer & Nicolson, 1972). Similarly, the often
misleading but powerful concept of ‘ rate-limiting
enzymes’ permeated the understanding of the
control of metabolism at the time. The more
sophisticated understandings from ‘metabolic con-
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trol analysis ’ which now guide our thinking also had
their birth about a decade later (see Fell, 1997).

Tata and colleagues conducted their experiments
within a paradigm that suggested that the primary
action of thyroid hormones was on mitochondria
and that these hormones acted to uncouple ATP
production from oxygen consumption and substrate
utilization. They showed that when more physio-
logically relevant concentrations of thyroid hor-
mones were used in vivo that the mitochondria from
both rat liver and muscle exhibited no change in
their P}O ratio. This was correctly interpreted to
show that thyroid hormones did not result in
uncoupled mitochondria. However, they also
showed that thyroid hormones stimulated liver and
muscle mitochondrial respiration when a phosphate
acceptor system is absent and thus provided early
evidence that thyroid hormones increased mitochon-
drial proton leak, an effect studied extensively by
Brand and others and discussed in Section III.4.

Tata et al. (1963) also included the time course of
thyroid hormone influences on a number of non-
mitochondrial enzymes presented in a series of
Tables and concluded: ‘ it appears from our results
that enzymes or functions linked firmly to mem-
branous subcellular structure are more markedly
affected during the early phase of thyroid hormone
action than activities not dependent on structural
integrity ’ (Tata et al., 1963, p. 426). Some of their
results are given in graphical form in Fig. 13. In this
form, it becomes obvious that the injection of T3
resulted in substantial stimulation of those enzymes
associated with microsomal membranes but had no
consistent or substantial influence on those enzymes
present in the cytosol. They also showed that T3
increased the efficiency of amino acid incorporation
into microsomally synthesised proteins in liver but
that T3 resulted in no change in tissue RNA
concentration.

The interpretation of the time course of thyroid
hormone effects on RNA synthesis in rats (Tata &
Widnell, 1966) further focussed attention on the
nucleus as the site of thyroid hormone action. The
most dramatic increases were in (i) the incorporation
of "%C-labelled orotic acid into nuclear RNA, (ii) an
increase in [$#P]phosphate into ribosomal RNA, (iii)
an increased incorporation of "%C-labelled amino
acids into microsomal protein. Other effects included
increased RNA polymerase activity that peaked
30–45 h after T3 injection. The sequence of these
responses (especially the first) were very important
evidence favouring a nuclear site of action for the
thyroid hormones. The manner of their measure-

ment, however, does not exclude other inter-
pretations including changes in membrane per-
meability for these labelled substrates. It is quite
feasible that thyroid hormone changes in the uptake
dynamics of orotic acid into liver nuclei would result
in increased measured incorporation into nuclear
RNA. Such an interpretation is supported by the
fact that although there was a 300% increase in
"%C-labelled orotic acid incorporation into nuclear
RNA there was no change in the amount of nuclear
RNA following T3 injection (see Fig. 7 in Tata &
Widnell, 1966). In addition, the results of their study
showed that after in vivo T3 injection, ribo-
nucleoprotein particles, or the mRNA attached to
them, or both, were more firmly bound to micro-
somal membranes. Thus, the results from these
experiments can also be interpreted to support a
membrane site of action for the thyroid hormones.

(3) Knockouts from the nineties

One of the major advances made possible by the
revolution in molecular biology is the capacity to
interfere with specific genes. In particular, the ability
to produce ‘knockout mice’ has provided a new
experimental tool. Of relevance to the current review
are the recently published findings for a number of
knockout mice strains, in which the genes for either
the TRα receptors, the TRβ receptors or the thyroid
hormone binding protein, TTR, have been made
non-functional.

The TRβ knockout mouse strain has a recessive
gene for nonfunctional TRβs (Forrest et al., 1996c).
Heterozygous mice have functional TRβ receptors
whilst homozygote recessives have neither functional
TRβ-1 nor TRβ-2. There is no change in TRα
expression. Use of behavioural tests that had
previously demonstrated learning disabilities in the
hypothyroid (hyt) mouse (Anthony, Adams & Stein,
1993) showed that there were no differences between
mice possessing and mice lacking functional TRβs
(Forrest et al., 1996b). Histological and histo-
chemical analysis of the central nervous system
revealed no obvious abnormalities in brain anatomy,
including the cerebellum and hippocampus and
structures known to be thyroid hormone sensitive
(Forrest et al., 1996b). When homozygous mice were
tested for their hearing ability, they were observed to
have a permanent deficit in auditory function over a
wide range of frequencies, and as the auditory-
evoked brainstem response had a normal waveform,
although greatly diminished, it was suggested that
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Fig. 13. Time course following T3 injection, of the activities of microsomal (solid symbols and unbroken lines) and
cytosolic (open symbols and broken lines) enzymic activities and liver RNA:DNA (open square and unbroken lines) in
the rat. Data are from Tata et al. (1963). G-6-Pase, glucose-6-phosphatase ; NADPH cyt c reductase, NADPH cyto-
chrome C reductase ; LDH, lactate dehydrogenase ; IsoCDH, Isocitrate dehydrogenase ; G6PDH, glucose-6-phosphate
dehydrogenase ; CrPKase, creatine phosphokinase.

the primary deficit was at the cochlear level. They
exhibited no other neurological defects (specifically
no vestibular defects) and the developmental defect
in hearing was not influenced by the maternal
uterine environment (Forrest et al., 1996a). Such
TRβ-deficient mice appear to grow normally and
become normally fertile adults. Litters were in
normal Mendelian ratios which showed there was no
differential prenatal mortality (Forrest et al., 1996b).
TRβ-null mice have a postnatal profile for PCP-2
mRNA and MBP mRNA that is identical to that of
normal mice (Sandhofer et al., 1998). Other than the
hearing defect, the only other (so far) reported
abnormality relates to the thyroid hormone regu-
lation axis, especially TSH responsiveness.

Measurement of serum TSH levels in TRβ-null
mice showed them to have 3–4 times the serum TSH
concentration of mice with functional TRβs and
similar differences were observed in serum T4 and
T3 levels (both for total and free hormone levels).

Elevated TSH is normally inconsistent with high
serum thyroid hormone levels and similar to the
‘resistance to thyroid hormone’ syndrome observed
in humans. These mice also had enlarged thyroid
glands (Forrest et al., 1966c), consistent with their
high TSH levels. More recently, it has been shown
that such TRβ-null mice respond normally to
hypothyroidism (induced by dietary iodine de-
ficiency) with an increased secretion of TSH but that
they are deficient in their response to injection of
thyroid hormones. Whereas mice with functional
TRβ will completely suppress TSH secretion fol-
lowing thyroid hormone injection, TRβ-null mice
are unable to suppress TSH levels below those
observed in normal euthyroid mice (Weiss et al.,
1997). Thus, TRβ-null mice exist in a hyperthyroid
condition.

Two different TRα knockout strains have been
created. In one strain, only the TRα-1 isoform is
nonfunctional (Wikstrom et al., 1998), whilst in the
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other strain both TRα–1 and the non-thyroid-
hormone binding c-erbAα-2 are both nonfunctional
(Fraichard et al., 1997). I will refer to them here as
TRα1-null and TRα-null mice, respectively.

The TRα1-null mouse is a homozygous recessive
condition. Such mice are born in the expected
Mendelian ratio suggesting no differential prenatal
mortality. They are viable and survive to at least 18
months of age with both males and females being
fertile and producing litters of a normal size. The
animals appear healthy with no overt abnormalities
detected at autopsy (Wikstrom et al., 1998). No
compensatory changes in TRβ expression are ob-
served in TRα1-null mice. Such TRα1-null mice, at
2–4 months of age, show a reduction in serum TSH
levels with no significant reduction in free T3
concentration but an approximately 30% reduction
in free T4 levels. They are thus slightly hypothyroid
(Wikstrom et al., 1998).

The TRα1-null mice also exhibited significant
phenotypic variation in that they had heart rates
that were nearly 20% lower, and a body tem-
perature that was on average 0.5 °C lower than
wild-type controls (Wikstrom et al., 1998). However,
whether this is due to the absence of TRα-1 or due
to the hypothyroid state of these mice is unknown.
That injections of T3 into TRα1-null mice resulted
in an increase in both heart rate and body
temperature illustrates that they were reponsive to
thyroid hormone despite the absence of TRα-1,
suggesting that the second explanation is most likely.

The TRα-null mouse is also a homozygous
recessive condition. Young are born according to a
normal Mendelian ratio suggesting no differential
prenatal mortality. Similar to the TRα1-null mice,
there was no compensatory change in TRβ ex-
pression. They exhibited no obvious external pheno-
type until postnatal week 2 when they ceased
growing. At three weeks of age, although they had
ceased growing, TRα-null mice appeared healthy
and exhibited normal behaviour. Their internal
tissues did not display any overt abnormalities and
no cellular or morphological abnormalities could be
detected. The cerebral cortex showed normal lami-
nar organization, cytoarchitectonics and cortical
parcellation with the organization of subcortical
nuclei being normal (Fraichard et al., 1997). How-
ever, at three weeks of age they appeared more
severely hypothyroid than the TRα1-null mice.
They had mRNA levels for βTSH that were
approximately 70% reduced compared to wild-type
controls and serum levels of total T4, free T4 and
total T3 that were 40% lower than those of wild-

type controls. They had very small thyroid glands in
which some follicle cells exhibited vacuolar de-
generation. By postnatal week 5 this hypothyroidism
in the TRα-null mice had become extremely severe
in that total T4 and total T3 levels were respectively
90% and 60% reduced compared to wild-type
controls and serum free T4 concentration was below
the limits of detection (Fraichard et al., 1997).
Although they had not exhibited any growth from
postnatal day 10, from postnatal week 4 onwards
TRα-null mice actually lost 30–50% of their body
mass and consequently died. Survival time varied
with litter size and was probably influenced by
lactational energy transfer from the mother.

Intriguingly, a very small number of TRα-null
mice (approximately 1%) spontaneously survived
for up to 3–7 months. When TRα-null mice were
given T3 for a short period at 3 weeks of age, a
substantial number (40%) survived for a further 3–6
months resuming a near-normal growth rate; when
serum was measured several weeks after the T3
injections, they had the same levels of total T4 and
T3 as wild-type control mice (Fraichard et al., 1997).
These findings together with those of Weiss et al.
(1997), suggest that TRα-1, but not TRβ, is
responsible for the up-regulation of TSH levels and
that both TRα and TRβ are involved in the down-
regulation of TSH levels, with TRβ being more
potent than TRα (in that it is able to inhibit TSH
secretion completely).

These results suggest the following scenario.
Without both TRαs there is little likelihood that
serum thyroid hormones will reach a level where
TRβ alone can regulate their concentrations. If
thyroid hormone levels can be elevated artificially to
such a level, then TRβ alone can regulate thyroid
hormone levels by negative feedback. The difference
between TRα1-null mice and TRα-null mice sug-
gests an important role for TRα2 in that it may
stimulate TSH release irrespective of serum thyroid
hormone levels. It may be an important component
of the rising phase of the T4 surge during de-
velopment. The role of TRH in this feedback system
is presently unknown. These findings give some
insight into the developmental T4 surge, which in
normal mice occurs during these first postnatal
weeks, and suggests that it may be an important
process involved in the ‘kicking in’ of the regulatory
system which then homeostatically regulates a
relatively constant plasma level of thyroid hormones
during adult life. It also suggests that the two
different receptor isoforms may have different roles
during this surge; the TRα isoforms being re-
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sponsible for the rising phase whereas the TRβ
isoform is more important in the falling phase of the
surge.

Similarly, the TRα-null mice showed phenotypic
effects. These were only manifest after the first
postnatal week and included delayed maturation of
the small intestine as well as delayed bone de-
velopment. That these were not direct effects due to
the absence of TRαs but were more likely to be due
to the postnatal hypothyroidism is illustrated by the
fact that TRα-null mice that were given T3
injections also had normal maturation of small
intestine and bone following these injections (Frai-
chard et al., 1997).

Differentiation between genomic and non-gen-
omic modes of thyroid hormone action could be
determined if mice in which both TRα and TRβ are
nonfunctional were examined. Because of the un-
doubted role of both receptor isoforms in the
hypothalamus-anterior-pituitary-thyroid axis, it
would be necessary to maintain plasma T4 levels
artificially (including its developmental surge) in
such animals.

The TRβ-1 receptor has also been deleted in a
GH3 cell culture system with the use of an antisense
RNA vector directed against TRβ-1. Similar to the
situation observed in knockout mice, there were no
compensatory changes observed in TRα expression.
However, within the TRβ isoforms, there were
compensatory changes observed. In GH3 cells that
had TRβ-1 isoform expression repressed, there was
an increase in TRβ-2 expression and also an increase
in basal expression, as well as the T3-stimulated
expression of the growth hormone gene (Ball et al.,
1997). Such a finding suggests that within cells there
are TR-isoform-specific expressions of thyroid hor-
mones and that one TR isoform may not compensate
for another.

Another knockout mouse of relevance to this
review is the TTR-null mouse. This condition is also
a homozygous recessive condition and such mice are
born in the expected Mendelian ratio suggesting no
differential influence on fetal development. TTR-
null mice display no obvious postnatal phenotypic
abnormalities as determined morphologically and
by histopathological analysis. They exhibit the same
longevity as wild-type siblings and both males and
females have normal fertility. TTR was found
neither in the plasma of such mice nor was it
produced by the choroid plexus (Episkopou et al.,
1993). Although total plasma T4 concentration was
reduced by 50% and total T3 levels were reduced by
15% in TTR-null mice compared to wild-type

siblings, there was no difference in the plasma levels
of either free T4 or free T3 nor in plasma TSH
concentrations. Similarly, the activities of three
thyroid-hormone-sensitive enzymes were unaffected
in TTR-null mice (Palha et al., 1994). When the
transfer kinetics of tissue uptake of labelled T4 was
examined in such mice it was observed that although
the T4 clearance from plasma to brain was reduced
by approximately 40%, and measured brain T4
content was reduced by approximately 30% in
TTR-null mice, the T3 content of brain was not
significantly different compared to wild-type sib-
lings. Tissue T4 content was not significantly affected
in liver and kidney (Palha et al., 1997). Such results
are indicative of redundancy of plasma proteins and
emphasize the importance of both the ‘ free hormone’
concept and the brain D2 deiodinase. TTR also
normally transports plasma retinol complexed with
plasma retinol-binding protein; the transport and
metabolism of retinol in TTR-null mice is reviewed
by Wolf (1995).

(4) Resistance to thyroid hormones

In 1964, a young deaf-mute girl was involved in a
road accident in Los Angeles and when she was X-
rayed in hospital, it was observed that all major
secondary ossification centres in her bones were
stippled. This observation together with a slight
enlargement of her thyroid gland suggested neonatal
hypothyroidism but her serum protein-bound iodine
was unexpectedly high and found to be in the
hyperthyroid range. A follow-up examination of her
siblings and parents resulted in the first description
of the condition, now known as ‘resistance to thyroid
hormones ’ or RTH (Refetoff, DeWind & DeGroot,
1967; Refetoff, 1994). There have been several
excellent recent reviews of this condition (Usala,
1995; Refetoff, 1996; Chatterjee, 1997; Beck-Pecoz,
Asteria & Mannavola, 1997). Since the original
description, several hundred patients have been
recognised and categorised into two types of RTH;
generalized RTH (i.e. GRTH) in which the subjects
have (i) elevated levels of free thyroid hormones, (ii)
inappropriately normal serum TSH levels, and (iii)
a mosaic of phenotypes but can generally be
regarded as clinically euthyroid. This is the pre-
dominant form representing approximately 85–90%
of described cases, with the other form known as
pituitary RTH (i.e. PRTH) exhibiting (i) elevated
free thyroid hormone levels, and (ii) inappropriately
normal TSH, but (iii) showing signs and symptoms
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of hyperthyroidism. The difference between these
two conditions is not distinct.

The phenotype associated with RTH is extremely
variable with the most common features being the
presence of goitre (95%), tachycardia (80%),
hyperkinetic behaviour (72%), and emotional dis-
turbance (65%). Other less frequently diagnosed
features include cardiac disease (30%), learning
disabilities and speech impediments (both in 28% of
cases), growth retardation (19%), attention-deficit
hyperactivity disorder (11%) and hearing loss in
8% of cases (Beck-Pecoz et al., 1997). The majority
of cases are inherited (80–90%) and are related to a
variety of mutations in the TRβ hormone-binding
domain which generally occur in one of three specific
‘hot-spot‘ regions. All of the mutated TRβs for
which it has been measured show a diminished T3
binding affinity (Usala, 1995). Most patients are
heterozygous having both a mutant and a normal
TRβ but the mutant TRβ inhibits the activity of the
normal TRβ as well as TRα. This condition is
described as a ‘dominant negative‘ effect. One
individual has been recorded as homozygous for a
mutant TRβ and exhibited the most severe form of
the syndrome having a resting heart rate of 190
beats}min. He died from cardiogenic shock com-
plicated by septicemia. Interestingly, the subjects
originally described were homozygous for a complete
deletion of both TRβ alleles (Beck-Pecoz et al.,
1997). TRβ-null mice exhibit both the deaf-mutism
and the serum thyroid hormone and TSH profile
typical of this form of RTH. No mutations have been
recorded for TRα in RTH patients.

The variability of the phenotype in RTH may be
related to the variety of mutations in TRβ but
individuals with the same mutation have been
classified differently and even within families with
the same mutation, phenotypic variation has been
recorded. In addition, significant temporal variation
in clinical symptoms and thyroid hormone action
has been recorded in affected individuals. Such a
phenotypic spectrum has been attributed to as yet
unknown environmental}genetic factors (see Beck-
Pecoz & Chatterjee, 1994). Apart from serum
thyroid hormone levels, thyroid-hormone-responsive
variables are often the same in affected and
unaffected individuals and most attempts to dem-
onstrate tissue hyposensitivity to thyroid hormones
have given contradictory and nonreproducible re-
sults (see Beck-Pecoz et al., 1997). Most explanations
of the euthyroid-hyperthyroid phenotype associated
with RTH have suggested that the high free T4 and
T3 levels have overcome the tissue resistance

associated with non-functional mutant TRβ recep-
tors and also generated the effects manifested by the
TRα receptors. This does not sit easily with the
dominant negative effects of such mutant TRβs.
However, it is compatible with many thyroid
hormone effects, commonly assumed to be mediated
by nuclear receptors, instead being mediated by
non-nuclear-receptor mechanisms. The attentuated
response to exogenous thyroid hormones sometimes
recorded in RTH subjects is compatible with the
long-known attenuated response to exogenous thy-
roid hormones associated with hyperthyroidism.

Resistance to the action of thyroid hormones also
occurs in situations other than the clinical RTH
syndrome. Galo, Unates & Farias (1981) reported
the novel finding that the influence of thyroid
hormones on rat erythrocyte Ca#+-ATPase activity
differed when the rats were fed diets that differed
only in their fat composition. When the rats were fed
a saturated fat diet, their basal (unstimulated)
erythrocyte Ca#+-ATPase activity was less than if the
rats had been fed a polyunsaturated diet. The
surprising finding was that both T4 and T3
stimulated in vitro Ca#+-ATPase activity in the
saturated-fat-fed rats but that both thyroid hor-
mones inhibited enzyme activity in the poly-
unsaturated-fat-fed rats. At in vitro concentrations of
10 p for T3 and 1 p for T4, the Ca#+-ATPase
activity was similar in erythrocytes irrespective of
their type of dietary fat. These results showed that
not only did thyroid status influence membrane acyl
composition (as discussed above) but that membrane
acyl composition also has effects on thyroid hormone
action.

Other studies also suggest that membrane acyl
composition might influence thyroid hormone ac-
tion. Erschoff (1949) reported that soyabean meal
counteracted the thyrotoxic effects of feeding desic-
cated thyroid tissue to growing rats, that the anti-
thyrotoxic effects were related to the fat component
of the soyabean meal, and that the effect was not
restricted to soyabean meal but was also present
when other fats were used in the diet. His review of
the earlier literature (primarily German) indicated
that this effect had been known since the 1920s and
seemed to be associated with the relative unsat-
uration of the fats. Whether these early reported
influences of dietary fat on the effects of thyroid
hormones are mediated by changes in membrane
acyl composition is not known. However, later
studies have shown that alterations in the acyl
composition of the nuclear envelope, by dietary-fat
manipulation, also result in changes in T3 binding to
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the nuclear envelope (Venkatraman, Lefebvre &
Clandinin, 1986).

Fatty acids have been demonstrated to inhibit the
binding of thyroid hormones to plasma proteins and
to nuclear receptors but such effects are not likely
normally to be of in vivo importance (Mendel, Frost
& Cavalieri, 1986; Mazzachi et al., 1992). In mice,
a diet enriched with omega-6 polyunsaturates in-
hibited the stimulatory effects of T4 and T3 on malic
enzyme activity but showed no influence on some
other hormone effects (Deshpande & Hulbert, 1995).

The interaction between membrane acyl com-
position and the effects of thyroid hormones is
worthy of more detailed examination. For example,
ageing is associated with resistance to thyroid
hormone action (Mooradian & Wong, 1994) and it
is possible that such changes may be mediated by
changes in membrane acyl composition with age.

(5) Future insights from the human genome

Because nuclear receptors require the presence of
TREs at appropriate places in the genome to exert
their actions, the complete sequencing of the human
genome will allow determination of how many
TREs are located in the promoter region of genes
and in which genes. It will answer many questions.
TREs have been known now for over ten years yet
surprisingly few have been described (see Williams
& Brent, 1995). A preliminary search of the genome
databases in June 1998 for the three types of TRE
(Fig. 9) revealed some interesting results. As ex-
pected, the vast majority of matches were for the
human genome but there were also TREs found in
many other types of organisms (including insects,
plants and microorganisms). There were curious
repeats of palindrome TRE in the genome of
Caenorhabditis elegans. Some of the matches appeared
to be multiple reportings and thus this search may
not represent a representative sample of the genome
data. The majority (82%) of TREs found in the
human genome were of the direct repeat DR-4 type,
with the inverted palindrome (IP-6) type being
13% and the palindrome type 5% of total matches.
Most matches were not identified as being part of a
particular gene but rather on a particular chromo-
some. TREs were reported for 17 of the 23 human
chromosomes. Some of the findings were expected
(e.g. deiodinase promoter), whilst other genes such
as a chloride channel and a phospholipase were
more suprising.

The finding of a TRE associated with a gene need

not necessarily mean that its expression is controlled
by thyroid hormones unless the TRE is found in an
appropriate part of the gene. Some TREs are
reported to be in exons and some in introns, whilst
others are in promoter regions. Similarly, the finding
of a TRE will not by itself mean it is a mediator of
thyroid hormone effects. TRs are also required for
such thyroid hormone effects to become manifest
and therefore the cellular concentration of TRs will
give additional insight into their relative importance
in different tissues. The fact that TR concentration
is greatest in anterior pituitary cells supports the
proposal that they are especially important in effects
related to the thyroid axis.

An intriguing finding was that the direct repeat
TRE (DR­4) was sometimes found associated with
another (DR­4) TRE on the other strand some
distance away. This may be a type of long-distance
palindrome. The complete sequencing of the human
genome will allow many questions to be answered.

VI. CONCLUSIONS

(1) The thyroid hormones are very old molecules
and appear to be omnipresent among vertebrates.
The paradigm that T3 is the ‘active ’ thyroid
hormone and T4 is only a prohormone is inadequate.
Several iodothyronines are active hormones (namely
T4, T3, rT3 and 3,5-T2) and there are several
significant pathways of hormone action.

(2) It is proposed that the physical chemistry of
these molecules is an important consideration and
that several thyroid hormone effects are the conse-
quence of such physical properties. This is additional
to, but different from the current paradigm of effects
being mediated only by a nuclear receptor mode of
action. It agrees with the proposition, recently raised
by a review of thyroid hormones in invertebrates,
that these hormones may, in many ways, be better
thought of in a ‘vitamin-like ’ role than as a classical
hormone.

(3) In aqueous solution at physiological pH,
approximately 80% of T4 molecules, but only 10%
of T3 molecules have an ionized phenolic ®OH
group. Thus one-fifth of T4 and nine-tenths of T3
molecules will be strongly amphipathic. This differ-
ence in the relative ionization of the phenolic ®OH
group is largely responsible for the greater hydro-
phobicity of T3 compared to T4 and also explains
the difference in their relative binding affinities to
plasma proteins (generally T4"T3) and nuclear
receptors (T3"T4).
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(4) Iodothyronines are very hydrophobic mol-
ecules and their amphipathic nature results in them
associating with membranes with the iodine atoms
located within the acyl chain region of biological
membranes.

(5) The various iodothyronines are formed by
sequential monodeiodination of either or both the
outer and}or inner ring of T4. Such deiodinations
are membrane-associated process and there are three
types of deiodinase enzymes (D1, D2 and D3) found
in vertebrates. The T3 found in the plasma of
vertebrates is produced by deiodination of T4 both
in the thyroid follicles and in non-thyroid tissues.

(6) In adult vertebrates, the free plasma concen-
trations of both T4 and T3 are maintained in the
picomolar range whilst the total concentrations of
T4 and T3 are in the nanomolar range. The function
of the plasma proteins appears to be to ensure a
reasonably even and constant distribution of the
thyroid hormones throughout the body.

(7) The plasma concentrations of the other
iodothyronines are considerably lower than those of
T4 and T3 in those vertebrates in which they have
been measured. One of the main influences on
thyroid hormone concentrations and the various
deiodinative pathways appears to be the energy
status and food intake of the individual vertebrate
being measured.

(8) Although there is considerable variation in
the resting metabolic rate of vertebrates there is no
correlation between metabolic rate and either
plasma T4 or T3 levels. However, the turnover of T4
and T3 in mammals varies with body size in the same
way that resting metabolic rate varies. This implies
that differences in the secretion rate of thyroid
hormones are a response to differences in the
metabolic activity of vertebrates rather than the
cause of such variations in metabolic rate.

(9) Although thyroid hormones rapidly associate
with membranes, because of their amphipathic
nature they do not easily cross membrane bilayers.
They enter cells by various uptake mechanisms.
They diffuse in aqueous solution at rates typical of
amphipathic molecules and also diffuse laterally in
membranes at rates similar to those of other
membrane lipids and at a similar rate to their
aqueous diffusion rate. They are found at a variety
of locations within the cell and are often located with
membranes. It is proposed that they are normal
constituents of all membranes in vertebrates. The T4
content of various tissues in the rat is proportional to
the phospholipid content of the tissue.

(10) Once associated with membranes they rigid-

ify the fluid membrane bilayer. The mechanism
whereby this happens is unknown but it is im-
mediate. The effects of T4 and T3 may be different
in this respect and the physical state of the membrane
is also a factor.

(11) Thyroid hormones result in an increased
degree of unsaturation of membrane acyl chains
(especially in the omega-6 PUFAs). The mechanism
of this effect is unknown. It is proposed that the
normal phospholipid remodelling mechanisms
(largely deacylation}reacylation) present in animal
cells respond in a ‘homeoviscous ’ manner to the
thyroid-hormone-induced membrane rigidification
by altering the acyl composition of the membrane.
Nuclear receptors may be involved in stimulating
some parts of the process. Similarly, their effects on
membrane acyl composition may also be connected
to the antioxidant activities of thyroid hormones.
This is yet to be determined.

(12) T3 binds strongly to nuclear proteins which
belong to a superfamily of nuclear receptors. These
(TRs) consist of two main types : a TRα and two
TRβ receptors (TRβ-1 and TRβ-2) which have
different tissue distributions and developmental
profiles. TRs act by binding to thyroid response
elements (TREs) in the genome and, in turn,
activating or repressing transcription of associated
genes. There are several types of TRE, which
generally have a consensus half-site nucleotide
sequence of -AGGTCA-. TREs exist either as a single
half-site, a direct repeat of two half-sites separated
by four bases, a palindrome separated by six bases or
a palindrome not separated by any nucleotide bases.
TREs are an evidential requirement for genes that
are modulated by thyroid nuclear receptors.

(13) The thyroid hormone axis consists of TRH
release from hypothalamic cells, TSH secretion from
anterior pituitary thyrotrophs, plasma binding pro-
teins, cellular uptake mechanisms and intracellular
deiodinases as well as production of nuclear recep-
tors. This axis has been examined in most detail in
adult vertebrates and appears organized as a series of
hierarchical regulatory systems that function to
maintain a relatively constant level of circulating T4
and relatively constant intracellular T3 levels. The
hierarchical nature includes the finding that in-
tracellular homeostasis is maintained in some types
of cells at the expense of other cells. The brain
appears to be particularly protected in this regard.
Almost all the effects of thyroid hormones on the
thyroid hormone axis are mediated by nuclear
receptors with T3 being the most active intracellular
thyroid hormone in this regard; TREs have been
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described for many of the important genes involved.
One exception is the effect of thyroid hormones on
the D2 deiodinase enzyme system where the thyroid
hormone effect appears to be on the interaction
between the membrane and the intracellular cyto-
skeleton, with T4 and rT3 being considerably more
potent than T3.

(14) Although the effects of thyroid hormones on
metabolic rate have been known for some time, the
mode of thyroid hormone action until recently
remained obscure. Thyroid hormones affect the
metabolic activity of cells and tissues by stimulating
both the mitochondrial proton leak and ATP
turnover of cells. Many cellular processes are
increased, including ion channel activity, substrate
uptake mechanisms, and the activity of mito-
chondrial-membrane-bound enzymes. The amount
of membranes within cells is also often increased.
The vast majority of the effects on metabolic rate can
be explained by thyroid-hormone-induced changes
in both the amount of membranes and changes in
membrane bilayer acyl composition with a conse-
quent increase in the molecular activities of mem-
brane proteins. Ca#+ fluxes are increased by thyroid
hormones and these effects are relatively immediate
and appear to be membrane effects separate from
changes in acyl composition. Relatively few effects
on metabolism appear to be mediated via nuclear
receptors. Those that are, such as increased lipo-
genesis appear to be quantitatively unimportant as
sources of increased metabolism, but may be im-
portant not only in maintaining fat stores but also in
remodelling and manufacture of more membranes.

(15) Thyroid hormones speed up several func-
tions associated with the membranes of nerve and
muscle cells. They also stimulate the manufacture of
specific isoforms of the sarcoplasmic reticulum Ca#+

pump and myosin heavy chains in muscle. Some of
these effects are mediated by nuclear receptors.
Many other effects, however, appear to be non-
nuclear-receptor mediated in that they are too rapid
for such a mode of action. The precise mode of action
of many of these effects is not known but may be
mediated either by direct effects on the membrane
bilayer, associated with acyl changes in the mem-
brane bilayer, or are effects due to interaction with
specific membrane receptors.

(16) Growth is stimulated by thyroid hormones
and part of this stimulation is due to increased
secretion of growth hormone (GH) which is a
nuclear-receptor-mediated effect. However, the fact
that 3,5-T2 also stimulates GH secretion but that
TRs have negligible binding affinity for this iodo-

thyronine suggests that other pathways may also be
involved. Some of the non-GH-mediated effects may
be associated with changes in membrane acyl
composition, in that some effects appear to be
associated with prostaglandin production.

(17) Thyroid hormones are present from the egg
stage through to adulthood and almost all verte-
brates appear to have a surge in the plasma T4 levels
during development. This is often, but not in all
species, associated with a metamorphic event. Dur-
ing development of vertebrates, there are also
changes in the deiodinases and TR isoforms, the
profiles of which may vary between individual
tissues.

(18) The effect of thyroid status on development
is often to retard (in the case of hypothyroidism) or
accelerate (in the case of hyperthyroidism) particular
developmental processes rather than to initiate or
stop these changes altogether. This influence on the
rate of development of various parts of the vertebrate
can be particularly serious during the development
of the nervous system. The mode of action of most of
these processes is unknown but it is postulated that
the recent finding that T4 can influence the
interaction between cells and the extracellular
matrix is likely to be very important during the
development of tissues, especially the nervous system.
This finding may also explain the high rT3 and low
T3 concentrations that have been measured during
the early development of vertebrates (including
humans).

(19) Other effects of thyroid hormones include
effects on reproduction, defence against viruses and
defence against free radicals. The defence against
viruses appears to involve two mechanisms. Whilst
the mechanisms of the effects on reproductive timing
and on learning are unknown, it is possible that they
too, involve thyroid hormone effects on the inter-
actions between cells and the extracellular matrix.
The role of thyroid hormones as membrane anti-
oxidants has received relatively little attention in
recent years but it too deserves more research in light
of the findings that at very low concentrations T4
and T3 inhibit the respiratory burst of activated
neutrophils. Whether the membrane antioxidant
role of thyroid hormones is also associated with its
direct effects on membrane fluidity or the thyroid-
hormone-induced changes in acyl composition is
currently unknown.

(20) A comparison of the relative potencies of
thyroid hormone analogues in various effects sup-
ports multiple modes of thyroid hormone actions.

(21) The re-examination of results from the early
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Fig. 14. Schema illustrating the proposed pathways whereby thyroid hormones exert their effects in vertebrates. The
effects are shown in italic type. The thickness of the arrows represents the relative importance of the pathway for the
particular effects.

1960s that were very influential in the development
of ideas concerning thyroid hormone action also
support a membrane site of action for thyroid
hormones.

(22) ‘Knockout ’ mice, in which the TR isoforms
have been inactivated, have been examined. TRβ
knockout mice appear normal except for two factors,
they exhibit a permanent auditory deficit and are
deficient in the thyroid hormone axis in that they are
unable to completely suppress TSH release and are
thus hyperthyroid. Two strains of TRα knockout
mice were produced. Those that are only deficient in
TRα-1 also appear normal except that they have
reduced TSH levels and are mildly hypothyroid.
Another strain of knockout mice in which both the
TRα-1 and the non-thyroid-hormone binding, but
related, receptor c-erbAα-2 are non-functional shows
the most extreme abnormalities. These mice appear
normal until the time of the developmental T4 surge.
At this time they develop extreme hypothyroidism,
fail to grow or develop normally and generally die.
When affected individuals were given a short
temporary burst of exogenous thyroid hormone
several became euthyroid, resuming normal de-
velopment and surviving for a considerable time
without exogenous thyroid hormone but instead
now making their own. The relative lack of effects in

these knockout mice strains suggests that there may
be a certain amount of redundancy between TRα
and TRβ with one receptor isoform capable of
substituting if the other is absent. However, there
were no compensatory increases in expression of the
other receptor in either TRα or TRβ knockout mice.
The results show the importance of both of these
receptors in the homeostatic system that maintains
normal thyroid hormone levels in the adult. They
also suggest that the non-thyroid-hormone-binding
c-erbAα-2 receptor may also have an important role
in initiating the developmental surge of T4 con-
centration.

(23) The clinical syndrome of ‘resistance to
thyroid hormone’ is due to mutations in the TRβ
receptor in those humans affected. The considerable
phenotypic variation found for this syndrome is
compatible with multiple pathways of thyroid
hormone action. Results from animal studies suggest
that factors such as dietary fat composition (which
can influence membrane acyl composition) can also
modulate thyroid hormone effects.

(24) In conclusion, this review suggests that the
effects of thyroid hormones can be mediated by a
number of pathways and proposes that there are
several modes of action: (i) the binding of T3 to
thyroid nuclear receptors is an important pathway of
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hormone action, especially in the control system that
maintains relatively constant hormone levels in adult
vertebrates, it is also important in some other effects,
(ii) due to their physical properties, thyroid hor-
mones are normal constituents of membranes and
correspondingly influence the properties of these
membranes and their function; they also cause
changes in the acyl composition of membranes
which, in turn, influence the behaviour of proteins
associated with such membranes and this is an
important mode of stimulation of metabolic activity,
(iii) there are additional membrane effects about
which little is known, such as interaction with the
extracellular matrix and probable binding to pro-
teins which can be regarded as receptors for non-
nuclear-mediated effects. The proposed pathways
whereby thyroid hormones exert their effects are
summarised in Fig. 14.

(25) Although study of the thyroid gland and the
effects of its hormones has a relatively long history,
much still remains to be investigated before we know
the full picture of the connections between these
hormones and their observed effects.
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