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Abstract Statistical approach is a valuable way to describe
texture primitives. The aim of this study is to design and
implement a classifier framework to automatically identify
the thyroid nodules from ultrasound images. Using rigorous
mathematical foundations, this article focuses on developing
a discriminative texture analysis method based on texture
variations corresponding to four biological areas (normal
thyroid, thyroid nodule, subcutaneous tissues, and trachea).
Our research follows three steps: automatic extraction of the
most discriminative first-order statistical texture features,
building a classifier that automatically optimizes and selects
the valuable features, and correlating significant texture
parameters with the four biological areas of interest based
on pixel classification and location characteristics. Twenty
ultrasound images of normal thyroid and 20 that present
thyroid nodules were used. The analysis involves both the
whole thyroid ultrasound images and the region of interests
(ROIs). The proposed system and the classification
results are validated using the receiver operating character-
istics which give a better overall view of the classification
performance of methods. It is found that the proposed

approach is capable of identifying thyroid nodules with a
correct classification rate of 83 % when whole image is ana-
lyzed and with a percent of 91 % when the ROIs are analyzed.

Keywords Thyroid ultrasound images . First-order
statistical features . T test . CADi software . Pixel
classification

Introduction

Today, mathematical models are the routine and essential
base for biomedical computing and they are tools in deliv-
ering the medical scientific progress. The ultimate goal of
the research in the field of biomedical engineering is to
develop software methods and computer applications able
to be implemented into therapeutic systems.

The thyroid gland is component of the endocrine system
and it controls the metabolic process in an organism. The
thyroid nodules are a common endocrine disease [1]. Statis-
tical studies show that the incidence of this disease increases
with age, extending to more than 50 % of the world's
population. However, it has an estimated prevalence of only
4–7 % by palpation [2–6] because the detection of a nodule
by palpation depends on its location in the thyroid gland, the
patient's neck anatomy, and the experience of the examiner.
Moreover, more than 50 % of people with solitary nodules
detected by experienced physicians have additional nodules
detected by instrumentality of ultrasonography [1, 2, 7, 8].

As Whiest et al. [9] presented only 6.4 % of nodules with
less than 0.5 cm in diameter which have been detected by
ultrasonography were also detected by physical examina-
tion. Improved physical examination detection has been
reached for increasingly bigger nodules but still only
48.2 % for nodules larger than 2 cm could be detected.
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Currently, various methods for automatic detection and
investigation of the thyroid nodules in the ultrasound (US)
images were proposed [10–13]. All methods are based on
the analysis of an optimal region of interest (ROI) cropped
from the US image. Maroulis et al. [14] presented a
computer-aided approach for nodule delineation in thyroid
ultrasound images based on a novel active contour model,
named variable background active contour. This model
incorporates the advantages of the level set region-based
active contour without edges model, offering noise robust-
ness and the ability to delineate multiple nodules. Keramida
et al. [15] proposed a computer-aided diagnosis system
prototype, for the detection of nodular tissue in ultrasound
thyroid images and videos acquired during thyroid US
examinations.

In this study, we propose a novel algorithm for
automatic detection of nodules in both the whole thy-
roid echography images and ROIs containing four bio-
logical areas (normal thyroid area, thyroid nodule,
subcutaneous areas, and trachea area) based on first-
order gray-level statistical features. In a CADi system,
the biological object segmentation, feature extraction,
and classification are usually followed in this sequence.
The main goal of our study is to analyze the effective-
ness of investigation when the additional operations as
de-noising and segmentation (which is stronger related
to manual delineation) are avoided. To reach this goal,
our investigation was carried out in two stages:

1. First, a preliminary analysis using the first-order gray-
level statistical features is accomplished for the four
biological areas. T test has been used to assess the
significance of feature variables and to identify their
usefulness to a given predictor. Also, it allows to estab-
lish scale values based on the gray intensity of the pixels
to differentiate the biological tissues of the thyroid US
images.

2. Application of a novel algorithm for automatic detection
and classification of normal and nodular thyroid dis-
ease; the textural characteristics of the thyroid tissue
and the surrounding tissues are encoded by the mean
values of the gray-level intensity as texture features. The
advantage of this novel algorithm consists of a very
good accuracy in nodule detection through analytical
separation between the nodule areas and tissues belong-
ing to normal thyroid tissue, trachea areas, and subcu-
taneous areas. The interface with adjacent tissues should
always be studied.

We considered that the proposed algorithm is simple and
it is efficient in terms of running-time. In order to analyze
the efficiency of the proposed CADi software, the sensitiv-
ity, the specificity, the correct classification rate, and the
receiver operating characteristic (ROC) analysis have

been utilized. The present paper is organized as follows:
“Introduction”; “Materials and Methods”; “Experimental
Results and Discussions”; and finally, the concluding
remarks are presented.

Materials and Methods

Materials

The study comprised 40 patients; each of them has under-
gone high-resolution US examination of the thyroid gland.
Twenty patients presented a normal thyroid and 20 were
diagnosed with thyroid nodules through biopsy. Figure 1a, b
presents two examples of the acquired images. The images
were acquired using an SLE 401 echography medical device
and a linear probe with a frequency of 6.5–9 MHz. The US
image parameters are bitmap images (size 524×512 pixels,
8 bit/pixel). The processing of the experimental US images
and developing of CADi application were made using the
Matlab software ver. 9a and an Intel Core I3 CPU, 4-GB
RAM as hardware platform. The statistical analysis is ac-
complished using the SPSS ver. 17 software.

First-Order Statistical Features

First-order statistics are very straightforward but relevant. In
this context, the first-order statistical features describe the
pixel intensity distribution in digital images. The mean,
standard deviation, skewness, kurtosis, energy, and entropy
are the most usual first-order statistical features [16–18].

Let M be the image resolution, L the number of gray levels
(in our case L0256), i the current gray level, and h(i) the
number of image pixels having the gray intensity value
corresponding to the “i” level. The mean parameter μ is a
measure of themedian intensity of the gray levels of the image:

μ ¼ 1

M

XL�1

i¼0

i � hðiÞ: ð1Þ

Fig. 1 US image of thyroid gland. a Normal thyroid. b Thyroid nodules
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A dark image has a small mean value and a light image
has a height mean value. The standard deviation of the gray
levels σ describes the image contrast by the degree of
scattering of gray levels to the mean value:

σ ¼ 1

M

XL�1

i¼0

i� μð Þ2 � hðiÞ: ð2Þ

Table 1 Some results of the
first-order statistical features
corresponding to the
subcutaneous areas

ROIs Mean Standard deviation Skewness Kurtosis Energy Entropy

1 203.40 40.04 −0.63 −0.51 23.61 6.96

2 198.80 47.77 −0.52 −0.91 14.59 6.93

3 223.30 35.78 −1.15 0.36 23.26 6.03

4 220.70 32.44 −1.03 0.55 19.14 6.29

5 124.00 23.28 −0.08 −0.35 14.76 6.50

6 209.10 37.80 −0.77 −0.13 7.20 6.63

7 203.60 44.87 −0.80 −0.44 11.01 6.91

8 233.20 27.52 −1.57 1.64 21.00 5.54

9 216.10 36.49 −1.00 0.06 8.55 6.36

10 193.60 41.02 −0.38 −0.95 11.61 7.10

Fig. 2 Flowchart explaining
the steps involved in the
CADi algorithm
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A height standard deviation value is specific to height
contrast in the image paragraph. The skewness μ1 describes
the histogram asymmetry:

μ1 ¼
1

M � σ�3

XL�1

i¼0

i� μð Þ3 � hðiÞ: ð3Þ

The kurtosis μ2 represents the “sharpness” of the image
histogram:

μ2 ¼
1

M � σ�4

XL�1

i¼0

i� μð Þ4 � hðiÞ: ð4Þ

The energy indicates how the gray levels are distributed:

Energy ¼ 1

M 2

XL�1

i¼0

hðiÞ½ �2: ð5Þ

The entropy is a measure of the randomness of gray-level
distribution.

Entropy ¼ � 1

M

XL�1

i¼0

hðiÞ � log2
hðiÞ
M

� �
: ð6Þ

Feature Selection and Classification

In the medical research domain, statistical analysis is an
important tool to evaluate the medical significance of the
outcome of various processing techniques [19]. Theoretically,
a complete study of feature selection should be imposed to
examine all 2N different combinations of characteristic fea-
tures (hereN is the number of characteristic features). But, this
is a huge drawback because a kind of exhaustive study has
high computational cost even in case of small number N of
features. While a classifier overcomes this drawback by using
only certain features as main tool for its final discriminatory
performance, the challenge is to find the minimum optimal
combination that allows identifying, discriminating, or classi-
fying the malignancy or diseases. Due to the considerable
overlap in ultrasonic features between biological objects (as
tumors, cyst, nodules, or calcifications) and surrounding
tissues, the computer-based classification methods are devel-
oped to increase the classification accuracy and stability.

We started our research focused on six first-order statistical
features but, as our analysis has shown, a number of them are
irrelevant due to their mutual correlations. T test was used to

Table 3 Some results of
the first-order statistical features
corresponding to the thyroid
nodules areas

ROIs Mean Standard deviation Skewness Kurtosis Energy Entropy

1 33.57 9.95 0.77 0.54 39.61 5.24

2 41.42 10.95 0.26 0.03 54.83 5.47

3 40.25 10.91 0.14 −0.18 36.54 5.45

4 44.88 12.68 0.51 −0.07 29.29 5.63

5 39.36 12.46 0.50 0.37 165.01 5.64

6 55.72 13.15 0.58 0.08 21.57 5.66

7 56.90 12.38 0.24 −0.23 21.18 5.58

8 69.93 16.93 0.48 −0.57 24.23 5.99

9 53.06 14.74 1.05 1.77 21.89 5.71

10 57.05 13.89 0.46 0.50 84.40 5.80

Table 2 Some results of
the first-order statistical features
corresponding to the normal
thyroid

ROIs Mean Standard deviation Skewness Kurtosis Energy Entropy

1 108.85 23.46 0.75 0.50 31.13 6.46

2 98.93 29.82 1.08 1.24 25.54 6.72

3 96.00 24.98 0.44 −0.17 35.00 6.61

4 109.72 21.75 0.40 0.71 33.67 6.40

5 96.64 29.24 1.93 5.13 22.28 6.46

6 95.03 25.60 0.46 0.59 39.72 6.65

7 102.92 24.71 0.71 0.53 34.67 6.55

8 97.20 23.98 0.18 0.05 27.63 6.57

9 76.48 19.90 0.12 0.01 33.16 6.28

10 87.80 21.71 0.97 2.76 24.47 6.33
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assess the significance of features. In order to maximize the
performance of the classifier, it is compulsory to choose the
best feature or feature combination. We consider that this type
of validation can be proposed as a standard tool when a CADi
system is designed as a classifier.

Z and t statistical tests are successfully used to determine
differences between two groups [20]. Z test is usually used for
large groups with more than 30 subjects. T test is used when
the number of subjects is less than 30. During the last years,
there was a tendency to replace the Z tests with T tests.

The t value of the T test for independent samples is
defined by relation (7), where m1 and m2 represent the mean
values of the two independent samples and EEm1�m2 (8) is
the standard error of the mean difference.

t ¼ m1 � m2

EEm1�m2

: ð7Þ

EEm1�m2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n2

s
: ð8Þ

where s1 and s2 are the standard deviations of the two
samples and n1 and n2 are the number of samples.

The number of degrees of freedom is:

df ¼ n1 � n2 � 2: ð9Þ

The decision task consists of comparison of the calculat-
ed t value with the values summarized in t tables. More
statistical textbooks [20, 21] list the values for t distributions
corresponding to an alpha bilateral threshold of significance
(commonly set as 0.05), to a specific number of freedom
degrees, and to “one-tailed” or “two-tailed” standard normal
distributions. Two-tailed corresponds to the salient differ-
ence between the means of sample hypothesis without spec-
ifying their direction. The one-tailed case specifies the mean
direction. If the calculated t value is higher than the value
displayed in t table, the null hypothesis (no significant
difference between the means of samples) is rejected. So,
it is a statistical significant difference between the means of
the two groups.

P value is another way to test the statistical hypothesis but
under the assumption that the sample comes from an approx-
imately normal distribution. The probability that a random
variable X takes a value less than x [22] is defined as:

P X < xð Þ ¼
ðx

�1

1

σ
ffiffiffiffiffi
2p

p e�
t�μð Þ2
2σ2 : ð10Þ

where μ and σ are the mean and the standard deviation,
respectively. If the associated p value is smaller (p<0.05 is
often used as the threshold), there is evidence that the mean is
different from the hypothesized value. If the p value is higher

Table 5 P values and the first-order statistical parameters corresponding to biological areas

Subcutaneous-normal thyroid Normal thyroid-thyroid nodule area Thyroid nodule area-tracheal tissue

t value p value t value p value t value p value

Mean 10.53 <0.001 11.61 <0.001 8.41 <0.001

Standard deviation 4.40 <0.001 11.08 <0.001 6.09 <0.001

Skewness −6.95 <0.001 1.27 0.223 −0.63 0.536

Kurtosis −2.1 0.056 1.61 0.133 −1.91 0.086

Energy −5.9 <0.001 −1.39 0.197 −3.73 0.006

Entropy 0.137 0.894 13.79 <0.001 5.43 <0.001

Table 4 Some results
of the first-order statistical
features corresponding to
the trachea areas

ROIs Mean Standard deviation Skewness Kurtosis Energy Entropy

1 5.80 1.08 0.29 0.41 324.44 2.14

2 4.88 0.84 0.48 1.20 748.76 1.74

3 6.96 0.78 0.11 1.01 1,681.64 1.65

4 7.13 0.85 1.48 9.79 1,387.05 1.66

5 7.20 0.74 0.10 −0.28 1,037.17 1.61

6 3.00 0.34 0.15 8.38 1,690.00 0.61

7 14.45 6.89 0.86 0.36 58.42 4.59

8 7.87 0.99 0.65 1.87 1,590.77 1.99

9 18.59 7.17 0.62 0.12 132.62 4.77

10 37.71 13.59 0.90 1.55 56.96 5.66
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(p>0.05) then the null hypothesis is not rejected and the mean
is not different from the hypothesized value.

CADi Application and Efficiency Analysis

The overall performance of the radiologists' diagnostic in
US images is subjective and it is influenced by many factors
[23]. In the research literature, many CADi systems are
developed to automatically investigate the US images
[10–13, 24, 25]. However, most of them require either a
training processing that is time-consuming or need supervi-
sion from experienced physicians. Based on the proposed
algorithm, we developed a new unsupervised, stable, and
accurate CADi software application. The flowchart of the
proposed method is presented in Fig. 2.

The characteristic of an effective classification system is its
higher diagnosis efficiency. In a binary classification (or two
class prediction) problem, the real outcomes can be labeled
either as positive (P) or negative (N). In the CADi application,
four results are possible: true positive (TP), if the CADi result
and the real outcomes are positive; false positive (FP), if the
CADi result is positive and the real outcome is negative; true
negative (TN), if the CADi result and the real outcomes are
negative; and false negative (FN), if the CADi result is nega-
tive and the real outcome is positive.

The sensitivity (true positive rate or no false negative
rate) of the CADi is defined as the ratio between the number
of true positive cases and sum of true positive and false
negative cases [26]. The specificity is defined as the ratio
between the number of true negative cases and sum of true
negative and false positive cases [26].

Sensitivity ¼ TP

P
¼ TP

TPþ FN
: ð11Þ

Specificity ¼ TN

N
¼ TN

TNþ FP
: ð12Þ

The correct classification rate or accuracy (CCR) is
defined as the ratio between the number of correct
classified results and the total number of the results
[26].

CCR ¼ TPþ TN

P þ N
: ð13Þ

An ROC is a graphical plot of sensitivity (true positive
rate) versus 1-specificity (false positive rate) at different
possible cutoff (thresholds) values of the diagnostic test
[10, 26]. The points on the ROC curve which are the closest
to the left upper coin of ROC space correspond to maximum
CADi accuracy. The accuracy is measured by the area under
ROC curve: the areas' values from 1 to 0.9 attest an excel-
lent test; 0.9 to 0.8 a good test; 0.8 to 0.7 a fair test; 0.7 to
0.6 a poor test; and 0.6 to 0.5 certify the fail test. It is known
that area under ROC curve has a value from 0.5 to 1.0
(where 1.0 represents perfect discrimination task and 0.5 is
complete failure).

Experimental Results and Discussions

In order to determine the values of the first-order statistical
texture parameters of the chosen areas into the thyroid US

Fig. 4 Highlighting the biological areas. a For image in Fig. 1a. b For image in Fig. 1b

Fig. 3 The proposed discriminative gray intensity interval between thyroid biological areas, based on the mean values
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images, 20 ROIs from each biological area (normal thyroid
tissue, thyroid nodule tissue, subcutaneous tissues, and tra-
chea tissue) were cropped. The values of six first-order
statistical features were calculated. Tables 1, 2, 3, and 4
provide some results of textural analysis for each feature set.

Significant differences of the feature values corresponding
to the chosen areas can be observed. The results are in con-
cordance with our expectations and are the key elements for
our study.

Due to the correlation between the above six features, an
effective feature subset should be selected in order to avoid
“dimension disasters” and the features' contribution to tissue
class separability in feature space should be investigated
[27, 28]. To identify the optimal parameters capable to
differentiate between the biological classes, we began by
analyzing the vector of the first-order statistical parameters
V0[μ, σ, μ1, μ2, Energy, Entropy]. Based on the statistical
analysis and according with their ability to discriminate
among various tissues, the features were eliminated one by
one starting with those having higher p values.

The statistical parameters were labeled as “test variables”
and the classes “subcutaneous-normal,” “normal-nodule,”
and “nodule-trachea” areas as “grouping variables.” Table 5
presents the p values for each class. The T test results
indicate the mean and standard deviation as reliable param-
eters because they present the significant differences (p<
0.05) of values corresponding to the four classes. As a
consequence, the feature vector dimension is reduced to
V0[μ, σ].

The next step of this optimization method is to choose the
best parameter of the two selected parameters. The maximal
t value is used because a large t value indicates a significant
capacity to discriminate between the biological classes. In
this respect, the standard deviation features are eliminated
and the meaningful feature vector is reduced to a unique
component V0[μ]. Thus, the mean value has been indicated
as an optimal feature for four analyzed biological areas.
Further, this statistical feature is used as a criterion to dis-
criminate between healthy and nodular thyroid.

Taking into account all the results, in order to distinguish
between the biological tissues of the thyroid, we proposed
four intervals based on the mean value of the gray intensity
of the pixels (see Fig. 3). Our proposal is to deal with the
difficulty created by the choice of boundary values using a
feasible and advisable approach: in the case of two neigh-
boring biological areas, the “i” area and the “j” area, the
boundary values have been calculated as an arithmetic
means of the maximum mean value belonging to i area
and the minimum mean value of j area.

We also found that the thyroid nodule areas have a
similar gray-level interval value to the “pre-tracheal” areas.
This finding can be a drawback in the automatic diagnosis
process of the thyroid nodule areas, but we design a solution

Fig. 7 Processed images using the proposed algorithm. a Image pre-
sented in Fig. 5a. b Image presented in Fig. 5b. c Image presented in
Fig. 6a. d Image presented in Fig. 6b

Fig. 6 Cropped images. a ROI cropped from Fig. 5a. b ROI cropped
from Fig. 5b

Fig. 5 Eliminating the isolated gray pixels using the 5×5-pixel mask.
a For image in Fig. 4a. b For image in Fig. 4b
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to overcome it. Thus, a method based on pixel classification
capable of automatically diagnosing the presence or absence
of the thyroid nodules in thyroid US images is proposed.
The flowchart has already been presented in Fig. 2 and the
procedural steps are as follows:

– Acquisition of the US thyroid images and importing the
experimental images in CADi application; converting
the RGB image in gray scale image.

– Based on proposed intervals of the mean values of gray
intensity, the biological areas are highlighted using a
customized mask that allows detecting the real margins
(Fig. 4). This preprocessing step is helpful for the com-
plete automation. In this concern, a 5×5 mask is used to
acquire information of the analyzed tissues and the
mean gray intensity inside the mask has been associated
to the pixel values belonging to the proposed intervals.
Thus, if the resulted gray level of the pixel image value
is higher than 77, then the pixel masks are set to 255
(normal thyroid sets to white); the pixel mask, belong-
ing to the nodule areas with mean intensity values
between 36 and 77, are set to 125 (nodule area/pre-
tracheal areas set to gray); and rest of the pixels
corresponding to the trachea area having mean intensity
pixel mask less than 36 are set to 0 (black color).

– Due the influence of the speckle noise, there are some
isolated points in the binary image after pixel classifi-
cation. A 5×5-pixel mask is used to remove isolated
dots (Fig. 5). The center pixel mask (located at the
intersection of line 3 and column 3) scans all the gray
pixels inside the mask and compare their values with the
gray level intensity value of 125 assigned to nodule
area. If the percentage of the gray pixels inside the mask

is less than 40 %, the center pixel mask identifies these
pixels as being isolated and they were set to 255 (namely,
white pixel). Here, the value of threshold of 40 % was
empirically selected.

– The diagnosis process was run for both the entire US
image (Fig. 5) and for ROIs cropped from US image
(Fig. 6).

– The hypoechoic area comprises trachea region and the
hyperechoic area comprises the pre-trachea, and it is
recommended to remove their undesirable impact on
nodules detection process (which are also hyperechoic).
The nodule areas are analyzed using a customized mask
by 11×11 pixel size. The center mask pixel (located at
the intersection of line 6 and column 6) scans the all the
gray pixels inside the mask. If the percentage of the
pixels having the gray intensity level value of 125 is
higher than 50 %, we presumed that the mask analyzes
either a nodule area or a pre-tracheal area. In order to
distinguish between the two areas, the following meth-
od has been used: the 11×11 mask was recursively
translated to the left, right, and down until one of the
next three cases was found: (a) the percentage of white
pixels (assigned to 255) in the mobile mask is higher
than 95 %; (b) the percentage of black pixels (assigned
to 0) in the mobile mask is greater than 30 %, or (c) the
mobile mask reaches the edge of the image. If the results
of the translations in the three analyzed directions belong
to the first case, the analyzed area is classified as nodule
and the mask area is highlighted in red. If at least one
result is in the second or third case, the analyzed mask
belongs to the pre-tracheal area. In terms of diagnostic
needs, the absence of the red squares indicates normal
thyroid pathology and their presence indicate thyroid

Fig. 9 The new optimized
intervals used in CADi
application

Fig. 8 The ROC curves of
normal thyroid area-nodule area
and nodule area-tracheal area
limits
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nodule pathology. This method is proven to be beneficial
to remove the adjacent tissue areas that are viewed as
artifacts but which share similar features as the real nod-
ule area. Figure 7a–d presents the processed images
shown in Figs. 5 and 6 using the proposed algorithm.

– Save the data.

To validate the proposed intervals in Fig. 3, five decrease/
increase units in the interval limits of tracheal area-nodule
area and nodule area-normal thyroid tissue have been real-
ized. The ROC curves presented in Fig. 8 allow establishing
the optimal ranges for maximal diagnostic accuracy. The
calculated areas under the curves are 0.82 and 0.84, respec-
tively, and indicate a good accuracy of the proposed method.
Following this finding, the limits of the initial proposed
intervals are changed according to those points on the
ROC curves that are closer to the point of best possible
prediction (the left upper point from ROC space). The new
proposed limits for normal thyroid area-nodule area is 74
and for nodule area-tracheal area is 36 (Fig. 9). Similarly,
the limit values used in the highlighting step of the algo-
rithm were replaced.

In these maximum accuracy conditions, Table 6 shows
the marks as true negative, true positive, specificity, sensi-
tivity, and accuracy values of the CADi application soft-
ware, corresponding to 20 US entire images of normal
thyroid and 20 entire US images of thyroid nodule.

Table 7 shows the same marks of the CADi application
software, corresponding to 40 ROIs of normal thyroid
US and 40 ROIs of thyroid nodules. Looking at the
results presented in Tables 6 and 7, we concluded that a
good diagnostic efficiency of the CADi application is
achieved.

The proposed method has some limitations. First, the
ultrasound images with good brightness and contrast are
demanded. Then, the diagnostic errors can occur as a
result of the mask size and the threshold values used in
the algorithm (if the percentage values of gray pixels
having the intensity of 125 inside the mask is less than
50 %, the center mask pixel does not recognize a
possible thyroid nodule). Finally, most of the errors
appear when the nodule area is located close to the
pre-trachea, trachea, left side, or right side areas of the
image (Fig. 10). In these cases, the algorithm fails to
recognize the thyroid nodules.

Conclusions

The first-order statistical features, statistical test, and a new
software application are successfully used to characterize
and classify the thyroid nodules in the thyroid US images.
Based on the mean feature values, we proposed the follow-
ing mean value of gray intensity intervals as classifier for
biological areas in thyroid US images: 0 to 36
corresponding to trachea tissues; 37 to 74 corresponding to
nodule areas; 75 to 117 corresponding to normal thyroid
tissues; and 118 to 255 corresponding to subcutaneous
areas. Based on these intervals, we developed a CADi
software application able to discern between the two pathol-
ogies. The diagnostic efficiency of the CADi system is
good. However, the final diagnosis belongs to the specialist
physicians. In the future, we intend to improve the CADi
efficiency and to include the present application in a com-
plex system CADi capable to assist the physicians in med-
ical image interpretation.

Fig. 10 Limitations of the method appear when the nodule is closer: to
the left boundary of the image (1); to the right boundary of the image
(2); and to the pre-trachea or trachea areas of the image (3)

Table 7 The CADi efficiency for ROI images

TN (correct labeled as normal thyroid) 36

TP (correct labeled as thyroid nodule) 37

Specificity 90 %

Sensitivity 93 %

CCR 91 %

Table 6 The CADi efficiency for entire thyroid US images

TN (correct labeled as normal thyroid) 15

TP (correct labeled as thyroid nodule) 18

Specificity 75 %

Sensitivity 90 %

CCR 83 %
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