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Imaging with THz radiation has proved an important tool for both fundamental science and industrial use. Here
we review a class of THz imaging implementations, named coherent lensless imaging, that reconstruct the coherent
response of arbitrary samples with a minimized experimental setup based only on a coherent source and a camera.
After discussing the appropriate sources and detectors to perform them, we detail the fundamental principles and
implementations of THz digital holography and phase retrieval. These techniques owe a lot to imaging with differ-
ent wavelengths, yet innovative concepts are also being developed in the THz range and are ready to be applied in
other spectral ranges. This makes our review useful for both the THz and imaging communities, and we hope it will
foster their interaction. ©2019Optical Society of America

https://doi.org/10.1364/AO.58.00G256

1. INTRODUCTION

Terahertz (THz) radiation denotes the portion of the electro-
magnetic spectrum whose frequency ranges from 0.1 THz to
10 THz, lying between the infrared and microwave regions [1].
As such, its interaction with matter shares properties of both
neighboring bands. Like microwaves, THz waves can penetrate
insulating materials, such as building and plastic materials
[2–5], intrinsic semiconductors [6], paper [7], and fabrics [8].
Owing to the shorter wavelength compared to microwaves,
THz waves offer a higher spatial resolution, paving the way
for new non-destructive tools for industrial inspection with
sub-mm resolution [9]. Like the infrared band, the THz band is
host to a wide variety of energy transitions in aqueous [10] and
solid-state systems [11], making THz radiation a valuable probe
to investigate fundamental properties of matter, as well.

In order to fully exploit this potential, it is crucial to develop
imaging techniques using THz radiation. Research on THz
imaging has been growing for more than 20 years [12,13], and
its advances go hand in hand with the improvement of THz
sources and detectors.

In particular, ultrafast lasers enabled the development of
broadband THz sources and coherent detectors [14]. Along
these lines, imaging with THz time-domain spectroscopy
(THz-TDS) [15] has found widespread use in both industrial

[16] and scientific applications [17,18]. In the latter case, it
is worth mentioning its use in near-field setups breaking the
diffraction limit [19,20]. The most important advantage of
imaging with THz-TDS is its ultrafast detection, which allows
direct measurement of the time evolution of the THz electric
field, so that the complex refractive index of the object can be
extracted [21]. This comes at the expense of the flexibility of the
setup, which should always feature synchronization between
source and detector. Furthermore, manufacturing detector
arrays with usable size for full-field imaging is currently pre-
vented by the need for high-power (Watt-level) femtosecond
lasers, thus limiting THz-TDS imaging as a scanning technique
[22,23]. The use of THz-TDS towards real-time imaging has
been recently reviewed by Guerboukha et al. [13].

Other THz imaging techniques borrowed their operational
principle from techniques implemented at shorter wave-
lengths, from the visible to the x-ray range. THz tomographic
techniques are a valuable solution to obtain non-destructive
three-dimensional (3D) reconstructions of weakly absorbing
samples [24], either from projections taken at different angu-
lar positions [25] or in a confocal microscopy arrangement
in reflection mode [26], where in both implementations, the
acquisition can be made coherent with the addition of a ref-
erence arm. Compressive sensing is a smart computational
imaging concept, where the beam transmitted through the
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object is modulated with a carefully designed mask, and the
resulting intensity is recorded with a single-pixel detector.
Provided that the object transmission function or its gradient
is sparse, its reconstruction is allowed from a number of mea-
surements lower than the number of unknown pixels [27].
First demonstrated with a THz source by Chan et al. [28,29],
it represents a cheaper alternative to imaging techniques using
THz cameras, although it imposes stringent requirements on
the object transmission function.

Imaging techniques delivering coherent reconstructions of
arbitrary objects, with flexible and compact setups and using
cameras, belong to the realm of coherent lensless imaging (see,
e.g., [30]). The fact that cameras are not fast enough to record
both the amplitude and phase of the electric field impinging
on them leads to the so-called “phase problem,” which entails
extracting the missing phase information from intensity-only
measurements. Upon illuminating the object with a spatially
and temporally coherent beam, coherent lensless imaging tech-
niques solve the phase problem using one or more diffraction
patterns of the object (with iterative algorithms referred to as
“phase retrieval” [31,32]), or their interference with a known
reference wavefront (holographic techniques [33]). Because
they obviate the need for imaging components such as lenses,
coherent lensless imaging techniques were originally conceived
for x-ray and electron imaging, where the quality of optics used
to be poor. Nevertheless, this makes them particularly useful in
THz imaging too, where the dramatic increase in wavelength
would require optics so large as to make conventional imaging
experiments more difficult and unpractical to implement. As
a rule of thumb given in [34], the aperture of the optics should
be at least twice that of the incoming beam size in order to avoid
diffraction effects.

In this contribution, THz coherent lensless imaging tech-
niques will be reviewed, with a two-fold relevance. First, its
content will complement the two latest reviews of THz imaging
[12,13], mostly focusing on THz-TDS imaging, near-field
imaging, tomography, and compressive sensing. Second, we
have realized that the peculiar interaction of THz radiation
with materials triggered the development of new THz coherent
lensless imaging techniques, which can in turn be implemented
at different wavelengths [35,36]. This review is therefore meant
to build a bridge between the THz and imaging communities,
both of which are expected to benefit from it.

The paper summarizes both the technical and theoretical
aspects of THz coherent lensless imaging. Section 2 reviews the
coherent THz sources and detectors used to perform them, and
lists the source–detector combinations that yielded successful
THz imaging setups. Section 3 explains the operational prin-
ciples of digital holographic and phase retrieval techniques and
reports on their implementation with THz radiation. Finally, a
summary and outlook are provided in Section 4.

2. COHERENT THz SOURCES AND DETECTORS

A. Overview

The generation and detection of THz radiation remain the most
challenging yet revolutionary domains (see, e.g., [1,13,37–40]).
In particular, coherent THz sources and intensity-sensitive
detectors are the core elements employed in THz coherent

imaging systems. This section discusses the representative THz
sources and detectors with emphasis on their applicability in
THz coherent lensless imaging systems.

B. Coherent THz Sources

The mechanisms for coherent THz generation are based on
various physical principles [1]. As the THz range is located
between microwaves and infrared radiation, it is no surprise that
THz radiation can be generated by both optical and electronic
techniques. In the following, we discuss the THz sources by
their generation principle, from pure optical to pure electronic.

Gas lasers pumped by a CO2 laser are a high-power table-top
source of continuous-wave (CW) THz radiation. They are
based on stimulated emission from rotational transitions in
molecules such as methanol, formic acid, and their deuterated
compounds and offer a wide selection of single-line emissions
from around 60 µm to 500 µm with powers up to several
tens of mW [41]; CW radiation at 2.52 THz (118.8 µm) can
exceed 150 mW [42]. The single-line operation with a coher-
ence length of several meters and the power level make them a
convenient source for coherent imaging (see Section 2.4).

Difference frequency generation (DFG) provides a tunable
THz source by mixing two lasers in a non-linear medium [43–
45] and operates at room temperature. Because of the non-linear
optical principle, DFG is preferably based on pulsed lasers. In
optical rectification second-order non-linearity is used to gen-
erate a difference frequency in the THz domain. Here, the use
of pulsed lasers limits the coherence length to typically below a
few mm [46]. In four-wave mixing, third-order non-linearity is
used from non-linear crystals [47], but also from water vapor or
laser-induced air plasma [48]. THz sources based on DFG have
not been used so far for coherent imaging. For CW photomix-
ing, powers of a few 10µW and a coherence length of 13 m were
reported [44], limited by the coherence length of the pump
lasers. As the optical path rather than a CW phase is measured,
pulsed sources are applicable for coherent imaging only when
used in scanning mode.

Photoconductive antennas are used to generate a burst of
THz radiation. These combined electronic–optical devices use
photoinduced currents from micro-antennas [49] or photo-
mixing of two lasers/laser modes in a semiconductor coupled
to microstructured antennas [50], generating a ps THz pulse
corresponding to a pulse length of 300 µm or to a spectral
band spanning typically 0.1 THz to 7 THz. To obtain phase
information, a synchronized gated detection device is used.

Quantum cascade Lasers (QCLs) are electrically pumped
unipolar lasers based on electronic transitions from semicon-
ductor multilayered structures [51–53]. QCLs are attractive for
coherent imaging, because they are table-top and approach pow-
ers of a fraction of a W [54]. Although Stirling, liquid nitrogen,
or cryogenic cooling would increase the output power [55,56],
progress is being made towards room-temperature high-power
sources [57,58]. There exist single-line and multi-line devices
operating in pulsed mode, providing a CW equivalent THz
power of several mW [59]. The coherence length of a single-
line QCL is typically several meters [60] and can reach several
hundred meters with external stabilization [61].
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p-type Ge-lasers [62] are tunable CW THz sources, but need
cryogenic cooling to helium temperature and are not practical
for coherent THz imaging.

Electronic solid-state oscillators are also based on semi-
conductor technologies [63]. Impact ionization avalanche
transit-time (IMPATT) diodes and Gunn diodes are compact
sources in this category. A microwave oscillator is created by
applying a DC voltage to bias the device into its negative resist-
ance region. Gunn diodes based on gallium arsenide are made
for frequencies up to 200 GHz, while those relying on gallium
nitride can reach up to 3 THz [64,65]. As these devices operate
at room temperature in CW mode emitting monochromatic
radiation in the range of 0.1–1 THz (from here on referred to
as “sub-THz radiation”), they are suitable sources for coherent
imaging.

Frequency multiplier chains are often used with electronic
sources such as Gunn and IMPATT diodes to generate even
higher frequency radiation. Frequency multipliers are Schottky-
diode-based or transistor-based electronic circuits, which have
a nonlinear response to electromagnetic waves [65]. They gen-
erate higher harmonic components of the incoming wave. With
a suitable filter or waveguide, harmonics are collected. It is also
possible to use several frequency multipliers in series to produce
even higher frequencies. Frequency multiplier modules are often
integrated in the transmitter and receiver parts of a millimeter
wave vector network analyzer (VNA) as a frequency extender.

Backward wave oscillators (BWOs) are vacuum tubes used
to generate microwaves up to the THz range. Belonging to the
traveling-wave tube family, they are oscillators tunable over a
wide range of frequencies by varying the accelerating voltage
[66,67]. The output power in the range of 1 mW at 1 THz to
50 mW at 0.2 THz is coupled out near the electron gun. Despite
lower power at high frequencies, a combination of millimeter-
wave BWO (100–370 GHz) with frequency multipliers offers
a very attractive alternative to sub-mm wave BWO, extending
their spectral coverage to 2.2 THz [68]. High output powers,
narrow spectral linewidths, and frequency tunability are the
main advantages of these THz sources. Due to the good qual-
ity wavefront they produce, they find use as illuminators in
coherent THz imaging [69].

THz sources based on free electron lasers (FELs) are emerg-
ing. In an early work investigating the possibility of THz 3D
holographic tomography, a coherence length of 1 cm for the
THz pulse was reported [70]. The FEL output pulse is typically
near-Fourier-transform limited. A discussion of high-power
THz sources based on vacuum electronics, including BWO and
FEL, is found in [71].

C. THz Detectors

Imaging with array detectors working up to video frame rates
allows dynamic measurements and is today the method of
choice for THz coherent lensless imaging. The first approaches
to THz hologram recording using array detectors were discussed
already in 2005 [72–74]. One of them uses indirect thermal
methods to record the temperature increase of a plate induced
by absorption of THz radiation. This is based on thermography
cameras or on thermally sensitive phosphor plates, which are

read out with a CCD camera [75]. Triggered by a first study con-
ducted at the U.S. Naval Research Lab (NRL) [14], uncooled
micro-bolometer arrays for thermal imaging started to be used
in the THz range [76–78]. A comprehensive and quite recent
compilation of available THz detectors is given in the review
paper by Dhillon et al. [1].

In the following, we summarize the properties of different
detector types that have been utilized in lensless imaging.

Pyroelectric cameras are solid-state arrays able to detect radi-
ation spanning from infrared to THz using LiTaO3 pyroelectric
crystals as detector material. A chopper is integrated to modu-
late the irradiance in time. Pyrocam III and Pyrocam IV are
commercially available pyroelectric cameras from Ophir [79].
Pyrocam III has a resolution of 124 × 124 pixels with a pitch of
100µm. The latest model Pyrocam IV has a higher resolution of
320 × 320 pixels with a pitch of 80µm.

Microbolometers are bolometer detectors integrated on a
chip. They measure the power of electromagnetic radiation
indirectly via the temperature-dependent electrical resistance of
the detector material, typically amorphous silicon, vanadium
oxide, or silicon nitride. Microbolometers designed for infrared
applications represent an established technology field, with
typical resolutions of 640 × 480 pixels, even though arrays of
up to 1280 × 960 pixels can be found [80]. For many prac-
tical applications, the scene imaged by the thermal detector is
at room temperature, where the noise content of the image is
dominated by the thermal radiation noise. The use of uncooled
array detectors is generally sufficient, as thermal noise from
such a camera is on the same order as that from the scene.
Microbolometers have been intensively applied for long-wave
infrared coherent imaging [81]. Interestingly, the microbolome-
ters designed for the wavelength range 8–14 µm possess better
sensitivities than THz microbolometers around 100 µm [82]
and thus have become the cameras of choice for lensless imag-
ing applications [35,36,83–87]. Notice that, however, care
should be taken because their pixels are venerable to dazzling or
permanent damage caused by a low-power (several µW) laser
focused on several pixels. For a review on the use of uncooled
bolometer-type infrared detectors for real-time THz imaging,
see also [88,89]. Microbolometers specifically designed for THz
radiation include cameras from the National Optics Institute
(INO, Québec, Canada) [90], the NEC Corporation (Tokyo,
Japan) [91], and the French Alternative Energies and Atomic
Energy Commission (CEA Leti) [92,93].

Detection of sub-THz radiation at room temperature is often
realized with Schottky-barrier diodes (SBDs) or field effect
transistors (FETs) [94,95]. The detection mechanism of SBDs
and FETs is based on the rectification process of electromagnetic
signals. At low radiation powers, the output voltage is propor-
tional to the input power. Both SBDs and FETs show response
times below 10 ps at room temperature, and can be assembled
into arrays [96,97].

D. Source–Detector Systems

Sub-THz radiation is the probe of choice for the investigation of
dielectrics such as clothes, building materials, 3D printing fila-
ments, and composites, as their absorption coefficient increases
drastically when the frequency exceeds 1 THz [3,98,99]. The
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long wavelength implies that a fairly large numerical aperture
(NA) should be employed to achieve an appropriate lateral
resolution. For instance, in [100], when working at 0.495 THz
(λ= 606 µm), for a sample located 16.3 cm away from the
detector, a detection area of 20 × 20 cm is needed to achieve
a lateral resolution comparable to the wavelength. To the
authors’ knowledge, most published works on lensless imag-
ing at sub-THz band have been done using a raster-scanned
single detector, due to the lack of large enough 2D arrays with
adequate sensitivity [9].

Materials such as polyethylene, polypropylene, polystyrene,
poly tetrafluoroethylene (Teflon) [101,102], thin textiles [103],
or dehydrated biological tissues [104] should be probed at
frequencies above 1 THz, as they maintain high transparency,
and images at better resolution can be obtained. The first reports
on successful camera-based THz holography used the pyro-
electric detector Pyrocam III [105,106]. In later works, models
with higher resolutions were used [107]. Decent signal-to-noise
ratios (SNRs) can be achieved with pyroelectric cameras at the
strongest line (2.52 THz) of far-infrared gas lasers (FIRLs), after
multi-frame averaging and dead pixel replacement procedures
to improve the SNR [106,108,109]. However, the rather large
sample pitch of 80–100 µm set a limit to the off-axis angle in
off-axis digital holography. A comparison of four area detectors
for their use in THz off-axis digital holography and real-time
THz imaging was presented by Hack et al. [82]. According
to them, the tested uncooled microbolometers are 40 times
more sensitive than the pyroelectric camera Pyrocam III. As a
consequence, the high detectivity of infrared microbolometers
allows working with mW-level output sources such as QCLs
or various FIRL lines [82,110–113]. Their pixel pitch of 17–
25 µm is ideal for off-line holography, as it allows large off-axis
angles. Moreover, their frame rate can go up to 50 Hz, enabling
real-time imaging [114].

Representative imaging configurations, using cameras or
scanning single-pixel detectors, are summarized in Table 1. The
imaging techniques of these works will be detailed in the next
section.

3. COHERENT LENSLESS IMAGING

TECHNIQUES

A. General Remarks

Despite most coherent lensless imaging techniques using THz
radiation bear no difference from the corresponding implemen-
tations at shorter wavelengths, e.g., with visible light, x rays, or
electrons, the tremendous increase in wavelength has a relevant
impact on the design and analysis of a THz imaging experiment.

From here on, we will describe the amplitude and phase
modulation imposed by an unknown object, be it probed in
transmission or in reflection, with a two-dimensional (2D) com-
plex function on the plane of the object o(x), with x ≡ (x , y ).
Radiation at the wavelengthλnormally impinging on the object
is diffracted at angles γx ,y with respect to the x , y axis given
by cos(γx ,y )= λ fx ,y [129], where f ≡ ( fx , f y ) is the spatial
frequency coordinate corresponding to x. While this makes
the requirements on the dynamic range less stringent when

using THz radiation, minimizing the object–detector distance
becomes the most crucial issue in THz imaging. In practical
cases, the camera housing sets a lower limit to the object–
detector distance around d ≈ 5 mm. A reasonable estimate of
the incident beam size in all full-field, THz coherent lensless
imaging techniques amounts to w≈ 5 mm, which translates
to a Fresnel number NF ≡w2/(λd)= 50 at λ= 0.1 mm.
Therefore, the far-field (or Fraunhofer) approximation, com-
monly employed in optical [130], x-ray [30], and electron
[32] imaging, breaks down. In what follows, a generic complex
wavefront g (x) (representing, e.g., the object function at the
object plane) will be propagated to a parallel plane at a distance
|L |, thus yielding the propagated wavefront G(x) (representing,
e.g., the wavefront diffracted by the object function at the detec-
tor plane), through the following convolution, indicated with
the symbol ∗:

G(x)= g (x) ∗ h L(x). (1)

Here, h L(x) is the Rayleigh–Sommerfeld convolution ker-
nel [129], which has been obtained assuming only the scalar
diffraction regime, and a propagation by |L | ≫ λ through a
homogeneous and isotropic medium. It is given by

h L(x)≡
|L |

iλ

exp[2π i sgn(L)
√

|x|2 + L2/λ]

|x|2 + L2
, (2)

where L > (<)0 denotes forward (backward) propagation, and
sgn(·) is the sign function. The relatively high Fresnel num-
bers also make the angular spectrum propagation operator an
alternative suitable choice in THz imaging [106].

B. Resolution in Coherent Lensless Imaging

Like all conventional imaging techniques, all the coherent
lensless imaging techniques presented in this contribution
are subject to the diffraction limit, i.e., the lateral resolution
ρlat depends on the wavelength and the NA according to
ρlat = λ/(2 NA). In the absence of imaging components such
as lenses, NA at a generic position x on the reconstructed wave-
front is set only by the angle η subtended by the detector size
from x, so

ρlat =
λ

2 sin(η)
, (3)

where a refractive index of 1 has also been assumed. Although
the best achievable lateral resolution is limited by Abbe’s limit
λ/2, much finer features can be resolved along the longitudi-
nal direction. For example, in the reconstruction of an object
with refractive index n, measured in transmission at normal
incidence, a phase difference of1φ between two points relates
to a thickness difference 1t =1φλ/[2π(n − 1)]. In these
conditions, it is the phase resolution ρφ that determines the
depth resolutionρdepth, as follows:

ρdepth =
ρφλ

2π(n − 1)
, (4)

which can lead to values ofρdepth as low as aboutλ/91 [112].
In the following sections, the coherent lensless imaging tech-

niques demonstrated using THz radiation will be discussed. For
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Table 1. Combinations of Sources and Detectors Used for THz Lensless Imaging

Source Source Frequency Detector Scan Area/Array Size Scan Step/Pixel Pitch References

Gunn diode 0.1 THz SBD 150 × 150 mm Not available [115]
Gunn diode 0.1 THz SBD 297 × 297 mm 2.32 mm [116]
Gunn diode 0.17 THz Pyrocam III 124 × 124 100µm [117]
Gunn diode 0.31 THz SBD 400 × 400 mm 0.5 mm [118]
Multiplier chain 0.495 THz Heterodyne receiver 200 × 200 mm 0.2 mm [100]
Multiplier chain 0.712 THz SBD 80 × 80 mm 0.5 mm [119]
BWO 0.58 THz SBD 50 × 50 mm 0.5 mm [120]
QCL 3.0 THz Devitech IR-032 640 × 480 25µm [83]
QCL 2.8 THz Miricle307 640 × 480 25µm [85]
QCL 3.0, 4.4 THz NEC IRV-T0831 320 × 240 23.5µm [110–113,121]
FIRL 2.52 THz Pyrocam III 124 × 124 100µm [105,106,108,122–125]
FIRL 2.52 THz Pyrocam IV 320 × 320 80µm [107,126,127]
FIRL 2.52 THz Devitech IR-032 640 × 480 25µm [84]
FIRL 2.52, 3.1 THz Xenics Gobi-640 640 × 480 17µm [35,36,86,114,128]
FIRL 5.24 THz IRay Technology 640 × 512 17µm [87]

each technique, a theoretical overview as well as a summary of
the published results will be provided.

C. Digital Holography

Holography reconstructs the object function o(x) by recording
the intensity of the interference pattern between the wavefront
diffracted by o(x) at the detector, referred to as “object beam”
O(x), and a coherent wave that does not interact with the
object and is referred to as “reference beam” R(x), yielding the
following distribution known as a “hologram”:

I (x)≡ |R(x)+ O(x)|2. (5)

Originally developed by Gabor in 1948 to replace conventional
imaging techniques in electron microscopy [131], it is nowadays
mostly performed with electromagnetic radiation. Owing to the
recent increased computational capabilities of digital devices,
the reconstruction has evolved from an analogue to a fully
numerical procedure. Digital holography has therefore turned
into the coherent lensless imaging technique of choice for many
applications in biology, materials science, and mechanical
engineering (see, e.g., [33,132–135]).

1. Off-axisDigital Holography

In one variant of digital holography, named “off-axis”
[Fig. 1(a)], the reference beam and the object beam travel along
different directions. We denote their complex wavefront at the
detector plane by U(x)≡ AU (x) exp{i[kU · x + φU (x)]},
where AU (x) is the amplitude, φU (x) is the phase when
observed across a plane perpendicular to the average wavevector
kU , and U ∈ {R, O} labels the reference beam (R) and the
object beam (O).

The hologram of Eq. (5) thus becomes

I (x)≡ A2
R(x)+ A2

O(x)+ 2AR(x)AO(x)

× cos[(kR − kO) · x + φR(x)− φO(x)]. (6)

The angle θ between kR and kO [displayed in the inset of
Fig. 1(a)] modulates I (x) [Fig. 1(b)] at the spatial carrier
frequency fc , with modulus sin(θ)/λ and same direction as
1k ≡ kR − kO on the Fourier plane. The Fourier transform
of I (x), I(f) [whose modulus is shown in Fig. 1(c)], features a
DC component at the spatial frequency f = (0, 0), the +1st
diffraction order C(f − fc ) at f = fc , and the −1st diffraction
order C∗(f + fc ) at f = −fc , where C(f) is the Fourier transform
of c (x)≡ AR(x)AO(x) exp{i[φR(x)− φO(x)]}. Following the
widespread Fourier transform demodulation technique devel-
oped by Takeda et al. [137], provided that (i) fc is large enough
to prevent C(f − fc ), C

∗(f + fc ), and A(f) from overlapping;
and (ii) the amplitude AR(x) and phase φR(x) of the reference
beam are known or can be measured at a preliminary stage, then
AO(x) and φO(x) are retrieved upon taking the modulus and
the argument of c (x), respectively, after selecting C(f − fc ) by
filteringI(f).

Since the detector plane is typically oriented perpendicularly
to kO , the wavefront diffracted by the object can be simplified
to O(x)= AO(x) exp[iφO(x)]. The reconstruction of o(x)
is obtained by back-propagating O(x) by the object–detector
distance d through the propagation kernel of Eq. (2):

o(x)= O(x) ∗ h−d (x). (7)

If, like in the setup in Fig. 1(a), the object is tilted with respect to
the detector plane, the reconstructed wavefront appears skewed
[Figs. 1(d) and 1(e)]. A rotational transformation [138,139]
may be finally applied to bring the reconstructions to the
reference frame of the object.

Off-axis holography was the first variant of digital holog-
raphy ever implemented with THz radiation, performed in
transmission mode. Mahon et al. first demonstrated an off-axis
THz digital holography configuration using a 100 GHz Gunn
diode oscillator and a SBD installed on a planar scanner to
record the hologram pixel by pixel [115,140]. A Teflon sample
inside an envelope was reconstructed with a lateral resolution
of 9 mm (3λ). In 2011, Heimbeck et al. proposed a THz off-
axis digital holography geometry based on a Mach–Zehnder
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Fig. 1. Schematic of off-axis digital holography (simulations). (a) Experimental setup; (b) hologram and (c) modulus of its Fourier transform;
(d) amplitude and (e) phase of the reconstructed object function. The inset of (a) shows the average wavevectors of the object beam and reference
beam, as well as their difference. Wavelength: 96.5 µm. Scale bars in (b), (d), and (e): 2 mm; scale bar in (c): 5mm−1. Adapted with permission
from [136].

interferometer [119]. The off-axis holograms were recorded
with a Schottky diode square law detector, combined with a
lock-in amplifier and mounted on a 2D linear stage. Tuning the
emission frequency in the range of 0.66–0.76 THz through a
frequency-multiplied microwave synthesizer allowed the use of a
dual-wavelength approach to eliminate the 2π phase ambiguity
problem for optical path differences as large as the synthetic
wavelength. Note that this well-known multi-wavelength tech-
nique has also been developed in other THz interferometry
setups for, e.g., thickness measurement applications [141,142].
The first actual “full-field” implementation was provided by
Ding et al. using a 2.52 THz optically pumped THz laser and a
pyroelectric detector with 124 × 124 pixels and obtaining a lat-
eral resolution of about 0.4 mm (3.4λ) [105]. By shortening the
recording distance, Li et al. [122] pushed the resolution down
to 0.245 mm (2.1λ). In 2014, Hack and Zolliker used a 3 THz
non-monochromatic QCL and an uncooled microbolome-
ter array detector to build an off-axis setup based on a Lloyd’s
interferometer [83]. A metallic Siemens star and a patterned
polypropylene slab were reconstructed with a lateral resolu-
tion of 0.280 mm (≈ 2.8λ) and a phase resolution of 0.5 rad,
corresponding to a depth resolution of 16 µm according to
Eq. (4). Shortly afterwards, Yamagiwa et al. reported reconstruc-
tions of optically opaque plastic and silicon plates with a depth
resolution of 1.1µm (λ/91) [112].

An off-axis digital holographic setup conveniently lends itself
to reconstructions in reflection mode, too. The first implemen-
tation with THz radiation was reported by Cherkassky et al.
[73]. Quasi-CW THz radiation was generated by a Novosibirsk
high-power FEL in the wavelength range of 120–180 µm.
Holograms were indirectly recorded via a combination of digital
video camera and InAs near-infrared thermograph. In 2008,
Tamminen et al. proposed a THz off-axis digital holographic
setup for reflective objects placed 1.5 m away from the detector,
reaching resolutions between 4 mm and 8 mm (4 − 8λ) [118].

Later on, Zolliker and Hack proposed a THz off-axis digital
holography setup in reflection, where resolution enhancement
was achieved via a synthetic aperture acquisition [84] borrowed
from the radar imaging community [143]. The system included
a movable mirror to produce phase-shifted holograms, and the

detector was moved across its detection plane so as to synthe-
size a hologram with an area 3.5 times larger than the detector
area, after stitching 19 partially overlapping holograms. The
obtained lateral and depth resolutions were 200 µm (≈ 1.7λ)
and 6 µm (≈ λ/20), respectively. Locatelli et al. successfully
reconstructed in real time a moving metallic plate [Fig. 2(a)],
both when it was directly seen by the detector [Fig. 2(b)] and
when it was hidden behind an optically opaque polypropylene
mask [Figs. 2(c) and 2(d)] [85]. With a similar setup, Valzania
et al. proposed a systematic procedure to suppress the spurious
reflections from a cover plate hiding an object from the cam-
era field of view, thereby improving the reconstruction of the
hidden object [35]. Humphreys et al. reported the first video
rate (50 Hz) THz off-axis digital holography reconstructions,
achieving a resolution of 280 µm (2.4λ) [114]. Recently, Wang
et al. used a widespread sub-pixel image registration algorithm
[144] and image stitching to expand the reconstructed field of
view [126]. After a comparison with reference measurements
with a surface profiler, they estimated a relative error of 3% and
6% in the reconstruction of a gold plated bookmark when it was
not covered and covered by a Teflon plate, respectively.

2. In-lineDigital Holography

In in-line digital holography, which is the variant originally
conceived by Gabor, the reference beam and the object beam
travel along the same direction before impinging on the detec-
tor. To allow such a scheme, the object must be smaller than the
incident beam, or it should impose a weak modulation, such
that a portion of the incident beam is not affected by the object
and can act as a reference beam, interfering with the part of the
beam being diffracted and playing the role of the object beam
[Fig. 3(a)]. Figure 3 illustrates the principle using the simulated
pure phase object displayed in Fig. 3(b) and the hologram in
Fig. 3(c).

Using the superscript * to denote complex conjugation, we
rewrite Eq. (5) as

I (x)= |R(x)|2 + |O(x)|2 + O∗(x)R(x)+ R∗(x)O(x). (8)
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Fig. 2. THz off-axis digital holographic reconstructions in reflection mode of an object moving at 5 mm/s. (a) Photograph of the object, a metal-
lic plate with inscriptions; (b) reconstructed amplitude of the object at one position during its movement; (c) photograph of the plate covered by an
optically opaque mask; (d) reconstructed amplitude of the hidden object at the same position as in (b). Scale bars: 4 mm. Adapted from [85] under the
terms of the Creative Commons Attribution 4.0 License.
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shown, to favor its comparison with (d). Wavelength: 96.5 µm. Scale
bars: 2 mm.

Illuminating the hologram with the reference beam another
time yields the following distribution:

R(x)I (x)= R(x)|R(x)|2 + R(x)|O(x)|2

+ O∗(x)R2(x)+ |R(x)|2 O(x)

≈ O∗(x)+ O(x), (9)

where the approximation holds under the assumptions that
|O(x)| ≪ |R(x)|, the reference beam is a plane wave nor-
mally impinging on the detector, i.e., R(x)= constant, and
the constant background and factors have been omitted. A
back-propagation of such a distribution by the object–detector
distance d , using the fact that, apart from a constant phase
factor, h∗

L(x)= h−L(x) [see Eq. (2)], leads to the distribution

[R(x)I (x)] ∗ h−d (x)≈ o∗(x) ∗ h−2d (x)+ o(x), (10)

whose phase is shown in Fig. 3(d), featuring the reconstructed
object o(x) superimposed with an out-of-focus image of o∗(x),
referred to as “twin image.” Conversely, forward propagating
the last side of Eq. (9) by d brings the twin image o∗(x) in focus
and the real image o(x) out of focus [see Fig. 3(e), where the
complex conjugate of the twin image is shown, which is equiv-
alent to the real image]. The overlap of these two distributions
worsens the reconstruction of o(x), and solutions have been
suggested to cope with the twin image problem, employing
mostly iterative phase retrieval procedures that will be detailed
in the next section (see, e.g., [145–147]).

Compared with the off-axis variant, in-line digital holog-
raphy represents a more compact solution featuring a shorter
reconstruction distance and consequently a higher resolution,
although it is suited only for isolated or almost transparent
objects. Xue et al. performed CW THz in-line digital hologra-
phy [148], increasing the lateral resolution by a factor of two
compared to [105] (1.7λ as opposed to 3.4λ), and demon-
strated its effectiveness in imaging hidden objects [122]. Hu
et al. thoroughly investigated different amplitude, phase, and
support constraints on the object plane as well as zero padding
of holograms, boundary replication expansion, and apodization
to improve the iterative phase retrieval in THz in-line digital
holography [123,124]. Upon recording two sets of in-line
holograms at different distances [149], Li et al. departed from
the conventional in-line digital holographic reconstruction
procedure, gradually blurring the boundary between in-line
digital holography and phase retrieval. Further, they recorded
holograms translated by sub-pixel distances to yield a finer holo-
gram sampling, and they overall achieved a lateral resolution
of 1.3λ. Rong et al. combined the phase retrieval algorithm
from [145] with a hologram extrapolation method [150] to
suppress the twin image and enhance the lateral resolution of
a dragonfly hindwing, revealing features of 35 µm (≈ λ/3)
[106]. While hologram extrapolation has the advantage of being
a post-processing tool, which does not impact the acquisition
time of the experiment, it can provide only a guessed solution in
the regions that were not measured. As an alternative, a synthetic
aperture scheme uses real holograms to increase the resolution,
and is an effective solution for THz in-line digital holography, as
well. Examples were reported in [110,111], reconstructing fea-
tures as low as λ. In Ref. [108], THz in-line digital holography
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was implemented toward a medical application. The recon-
struction of a hepatocellular carcinoma tissue slice [Fig. 4(a)]
proved that early signs of liver cancer and diseases can be traced
to the phase of a reconstructed THz hologram. Although the
reconstructions from one hologram [Figs. 4(b) and 4(c)] did
not provide enough insight, increasing the resolution through
synthetic aperture acquisition [Figs. 4(d) and 4(e)] and in com-
bination with numerical hologram extrapolation [Figs. 4(f ) and
4(g)] revealed a sign of tissue fibrosis, thus making THz coher-
ent lensless imaging a promising tool for cancer diagnosis, with
the potential to complement conventional histopathological
analyses.

Recently, Li et al. reported a resolution of 0.7λ adding a
L1-sparsity constraint to the support constraint at the object
plane [87]. Further strategies for the correction of experi-
mental inaccuracies were reported. Chen et al. developed a
denoising method for THz in-line digital holographic recon-
structions, based on a Markov chain Monte Carlo sampling
[151]. Different auto-focusing algorithms and corrections
were investigated by Huang et al. [125,127] and applied to
reconstruct a pair of objects at different distances from the
detector [121].

D. Phase Retrieval

Phase retrieval imaging techniques aim at reconstructing
the object function o(x) from the intensity of its diffrac-
tion pattern I j (x) measured at one or multiple distances d j ,
j = 1, 2, . . . , J , as shown at the top of Fig. 5, i.e.,

I j (x)= |o(x) ∗ hd j (x)|
2. (11)

Although the acquisition setup recalls that of in-line digital
holography, if we assume J = 1 (Fig. 3), the reconstruction
procedure is essentially different from the one outlined in
Section 3.3.2, the main difference being that phase retrieval
techniques need not model a reference beam. This makes the
experimental constraints easier to meet, as the object is allowed
to be strongly diffracting and even have a size comparable to that
of the incident beam.

We assume that each I j (x) is sampled with N × N = N2 pix-
els, and that o(x) is unknown on a number of pixels M2 ≤ N2.
Because both the amplitude and the phase of o(x) have to
be determined, the total number of unknowns amounts to
2M2. Using the definition of oversampling ratio given by
Miao et al. [152],

σ ≡
total number of pixels

number of pixels of unknown value
=

N2

M2
, (12)

we can therefore conclude that an oversampling ratio σ = 2
is needed in order to invert the system of Eq. (11). In real
experiments, however, the presence of noise requires redun-
dant information, so typically σ ≫ 2 is preferred. Each phase
retrieval technique aims at increasing the oversampling ratio in
at least one of the following ways:

• by increasing the total number of pixels N2, collecting sev-
eral (J > 1) diffraction patterns described by Eq. (11) at differ-
ent distances from the object [153,154];

Fig. 4. THz in-line digital holographic reconstructions.
(a) Photograph of the object, a human hepatocellular carcinoma
tissue; (b) reconstructed absorption and (c) phase shift from a sin-
gle 12.4 × 12.4 mm2 hologram; (d) reconstructed absorption and
(e) phase shift from a larger hologram obtained through aperture
synthesis; (f ) reconstructed absorption and (g) phase shift after numer-
ically extrapolating the holograms used for reconstructions (d) and (e).
The green arrow indicates a cut across a vessel or a region damaged after
freezing the object. The blue arrow indicates a vertical line that is a sign
of tissue fibrosis, which can be resolved only in (g). Adapted from [108]
under the terms of the Creative Commons Attribution 4.0 License.

• by decreasing the number of pixels of unknown value
M2, using a priori knowledge on the object function at some
locations [31]. Because usually the approximate spatial extent
of the object or of the incident beam is known, such a priori
information is referred to as “support constraint.”
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Therefore, a typical iterative phase retrieval procedure
proceeds according to these steps, graphically summarized
in Fig. 5:

1. Construct a first estimate of o(x), usually by assigning a
constant or random distribution to its amplitude and phase
(left-hand side of Fig. 5). If available, a support constraint,
represented with a red circle in Fig. 5, is applied.

2. Propagate the current estimate of o(x) to the first detector
plane through the propagation kernel of Eq. (2). Apply the
so-called “intensity constraint,” replacing the calculated
amplitude of the propagated wavefront with the square
root of the measured intensity at that detector plane, while
keeping the phase unchanged.

3. Propagate the corrected wavefront to the next detector
plane, if any, and apply the intensity constraint again using
the diffraction pattern recorded at the corresponding plane.
Repeat this operation for every remaining detector plane
(Fig. 5 shows the process for J = 3).

4. Back-propagate the last corrected wavefront to the object
plane, where the support constraint is applied again.

5. Iterate steps 2–4, enclosed in the orange box in Fig. 5, until
a suitably defined error function becomes lower than a pre-
defined threshold.

1. Two-intensity Techniques

Using the diffraction patterns recorded at two detector planes,
which increases the oversampling ratio by a factor of two, may
not be enough for a phase retrieval algorithm to converge to
the sought solution [155]. In this case, to further increase the
oversampling ratio and lower the chance that the algorithm
stagnates in a local minimum, M2 is decreased to values much
lower than N2 through a support constraint.

A phase retrieval technique of this kind was performed by
Hislop et al. using THz radiation [120]. The THz source was a
BWO operating at 0.58 THz and the detector was a Schottky
diode, sensitive only to the power of the incident THz radi-
ation and scanned across two 50 × 50 mm2 planes, with a
relative distance of about λ, i.e., 0.5 mm [Fig. 6(a)]. Their

reconstruction technique, referred to as the “successive pro-
jections method” [155], reproduced a standard iterative phase
retrieval procedure like the one outlined in the previous section,
where the knowledge of the incident beam was used as a support
constraint. Two additional constraints were applied to favor
convergence. The first one consisted of updating the low spatial
frequencies of the object function during the first iterations, and
subsequently allowing the reconstruction to be refined at higher
and higher spatial frequencies. Notice that such a constraint
is essentially another way to reduce the number of pixels with
unknown value M [see Eq. (12)] in the first iterations, thereby
increasing the oversampling ratio. The second constraint rep-
resented a modified version of the intensity constraint, where
the calculated diffracted amplitude at the j th detector plane
A j (x) was averaged with the square root of the corresponding

measured intensity
√

I j (x), yielding the corrected estimate of
the wavefront at the j th detector plane A′

j (, as follows:

A′
j (x)≡ (1 − β)A j (x)+ β

√

I j (x). (13)

The real parameter β, known as the “over projecting factor,”
decreases its value from ≈ 3 to 1 with increasing iterations and
helps the algorithm reach the global minimum of the error func-
tion, avoiding stagnation in local minima. When approaching
the last iterations, i.e., β = 1, Eq. (13) reduces to the standard
intensity constraint A′

j (x)≡
√

I j (x). The performance of the
algorithm was demonstrated by successfully reconstructing a
metallic thumbtack in transmission mode [Figs. 6(b) and 6(c)].

2. Multiple-intensity Techniques

As opposed to two-intensity phase retrieval techniques,
multiple-intensity methods employ diffraction patterns col-
lected at J > 2 planes in order to increase the oversampling
ratio to values greater than 2, obviating the need for a support
constraint.

The single-beam multiple-intensity reconstruction (SBMIR)
technique [154,156] follows the typical five steps of phase
retrieval techniques to reconstruct o(x) with no a priori
knowledge on it.



Review Vol. 58, No. 34 / 1 December 2019 / Applied Optics G265

Fig. 6. Two-intensity phase retrieval. (a) Schematic experimental setup, featuring: a BWO (A) with its waveguide opening (B), a chopper (C), a
beam splitter made of non-conducting silicon (D), a detector to monitor the stability of the source (E), a beam stopper to prevent the THz radiation
emitted by the source from directly reaching the receiver (F), mirrors (G), (H), a metallic thumbtack used as the object (I), and the receiver (J) moved
longitudinally through two sliding blocks (K), (L) and transversely through a 2D stage (M). (b) Amplitude of the reconstructed object and (c) phase of
the object and of the incident beam. Adapted with permission from [120] 2019 IEEE.

The optimum acquisition parameters of a SBMIR
experiment have been discussed in [156–158] and in the sup-
plementary document of [36]. The minimum object–detector
distance theoretically allowed must guarantee that the highest
spatial frequencies of the wavefront diffracted by the object at
the detector plane are sampled by the detector pixels without
alising. This implies that sin(ζ/2) < λ/(4p), where ζ is the
angle under which a point on the detector centered with the
object sees the object, and p is the pixel pitch. Since at THz
wavelengths, λ≈ 100 µm, and for currently available digital
cameras, p ≈ 20 µm, λ/(4p) > 1, i.e., there are no restrictions
(or no stringent restrictions in case longer wavelengths are used)
on the minimum object–detector distance, with a positive
impact on the NA and consequently on the lateral resolution.

The distance between consecutive detector planes should
ensure that each new diffraction pattern provides both redun-
dant and additional information to allow the phase to be
iteratively retrieved. A reasonable estimate of the propagation
length after which a diffraction pattern at the object–detector
distance d has changed is the depth of focus DOF, scaling with
the sizew of the illuminated region according to [129]

DOF ≈ λ

(

d

w

)2

. (14)

For example, imaging a field of view of w= 5 mm at the
wavelength λ= 0.1 mm and at a distance d = 10 mm yields
DOF = 0.4 mm.

Once the minimum object–detector distance as well as
the distance between consecutive detector planes is fixed, the
number of diffraction patterns should be chosen by carefully
considering that the larger the object–detector distance, the
lower the resolution of the diffraction pattern due to a lower
NA, and the higher the chance that it will be corrupted by noise
caused by, e.g., experimental misalignments and laser power loss
through absorption during the propagation, resulting in a detri-
mental effect on the reconstruction. Although the optimum
acquisition parameters vary with the object to be reconstructed,
we have found that in all the implementations using THz radi-
ation, up to five diffraction patterns have been used at a DOF
ranging from 0.5 to 1 mm and at a minimum object–detector
distance larger than ≈ 5 mm [36,120].

An example of THz SBMIR reconstructions will be discussed
in the next section, as part of a phase retrieval technique for
imaging behind a moving and scattering barrier.

3. PhaseRetrieval Technique for Imagingbehind aMoving
andScatteringBarrier

Recently, an imaging technique reconstructing two objects
stacked one behind the other in transmission mode has been
developed and experimentally demonstrated with THz
radiation [36].

A schematic setup is shown in Fig. 7(a). We denote the trans-
mission functions of the two objects with b(x) and o(x), where
“b” stands for the barrier and “o” for the object hidden behind
it at a distance u. When a plane wave with unit amplitude
impinges on the hidden object, the wavefront 9(x) at a plane
perpendicular to the optical axis and at the distance d from the
barrier can be written as

9(x)= {[o(x) ∗ hu(x)]b(x)} ∗ hd (x), (15)

where we have assumed the two objects are thin enough,
such that their interaction with the corresponding incident
wavefront can be described through the multiplicative approxi-
mation [32]. Nevertheless, we point out that no assumptions on
b(x) and o(x) have been made, therefore allowing either object
to strongly diffract its corresponding incident beam.

Provided that one object is transversely shifted with respect
to the other one, and the shifts are known, both transmission
functions o(x) and b(x) can be retrieved, with no a priori infor-
mation on them. Denoting the translations of the barrier with
xk , k = 1, 2, . . . , K , Eq. (15) becomes

9k(x)= {[o(x) ∗ hu(x)]b(x − xk)} ∗ hd (x). (16)

Now the reconstruction procedure relies on two steps:

1. Retrieve the wavefrontsψk(x), referred to as “exit waves,” at
the exit of the barrier plane, namely, the quantities

ψk(x)≡ [o(x) ∗ hu(x)]b(x − xk). (17)

This is achieved through the SBMIR technique from
Section 3.D.2, using the intensities of a set of J diffrac-
tion patterns 9k j (x) recorded at the distances d j ,
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j = 1, 2, . . . , J from the barrier, for each position of
the barrier with respect to the hidden object [Fig. 7(b)],
as follows:

|9k j (x)|
2 ≡ |ψk(x) ∗ hd j (x)|

2. (18)

2. Recover the transmission functions o(x) and b(x), using
the exit waves available from the previous step, and the
transversal shifts xk .

Towards this goal, we notice that, despite the barrier being
seen directly by the detector, its reconstruction is prevented
because it is illuminated by a set of strongly non-uniform
probes, represented by the wavefronts transmitted through
the hidden object and shifted by the amounts xk . In order to
enable a reliable reconstruction of b(x), the authors proposed
to wash out the high-frequency components of o(x) ∗ hu(x),
so as to mimic a slowly varying probe incident onto the barrier.
They achieved this by (i) compensating for the shift of the exit
waves and (ii) averaging them. If we let SK

k=1[ fk(x)] denote an
operator performing these two operations on each amplitude or
phase distribution fk(x) (see also the supplementary document
of [36]), the estimated amplitude |b(x)| and phaseφb(x) of b(x)
read

|b(x)| ≈ S
K
k=1[|ψk(x)|], (19a)

φb(x)≈ S
K
k=1[φψk (x)]. (19b)

Finally, the hidden object is obtained by dividing each exit wave
by the barrier transmission function, and back-propagating the
wavefront to the object plane:

o(x)=

〈

ψk(x)

b(x − xk)

〉

k

∗ h−u(x), (20)

where 〈·〉k performs the average over all the configurations
indexed by k.

The method was experimentally verified using THz radiation
to reconstruct a glass fabric sample and a pure amplitude or a
pure phase object hidden behind it. Upon translating the fabric
across a 2D square grid of 20 × 20 = 400 points with a spacing
of ≈ 0.8λ, the authors could reconstruct the hidden objects
with a depth resolution of ≈ λ/10 and a lateral resolution of
≈ 1.5λ [see the top row of Fig. 7(c), showing the reconstructions
for an amplitude object]. Furthermore, they demonstrated
comparable results after retrieving the shifts xk through cross-
correlation on the measured diffraction patterns [middle row of
Fig. 7(c)]. Most interestingly, they showed that reconstructing
the hidden object is possible even when the shifts are unknown,
or cannot be retrieved through cross-correlation [bottom row of
Fig. 7(c)], thus suggesting promising applications for imaging
behind dynamic scattering media.

4. Ptychography

Another coherent lensless imaging technique successfully
implemented with THz radiation is ptychography [32]. Hoppe
originally conceived the ptychographic method in 1969 as
a new microscopic principle for imaging crystalline samples
[160] and, like holography, in order to improve electron imag-
ing, which suffered from poor imaging optics. In its simplest
and most common implementation, ptychography itera-
tively reconstructs an object using a set of diffraction patterns,
obtained upon scanning the object with a coherent beam with
partially overlapping neighboring positions. The combina-
tion of the original ptychographic idea with iterative phase
retrieval algorithms, suggested by Rodenburg and Faulkner
[32,161], boosted the interest of the imaging community
in ptychography. Several algorithms have been put forward,
e.g., reconstructing the incident beam alongside the object
[162–164], dealing with partially coherent radiation [165],
or recovering the scan shifts between the beam and the object
[166]. Ptychography has been heavily used with x rays [167], as
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well as with visible [164] and ultra-violet [168] light and, only
recently, it has been demonstrated with THz radiation too [86].
In the next section, the principles of a basic ptychographic algo-
rithm, known as ptychographic iterative engine (PIE) [161],
will be outlined.

PIE algorithm: Fig. 8(a) sketches the geometry of a typical
ptychographic experiment. We let an aperture crop a coher-
ent beam, referred to as “probe” and represented by the 2D
distribution p(x), which impinges on the object with trans-
mission function o(x). A collection of diffraction patterns
Ik(x), k = 1, . . . , K , is acquired while shifting the object with
respect to the probe by the amounts xk , such that the regions
of the sample illuminated at consecutive positions of the beam
partially overlap (typical values of overlap range between 60%
and 80% [169]). This over-determination of information allows
the reconstruction of o(x) in an iterative fashion.

Provided that the object satisfies the thin object approxi-
mation, further discussed in [32,162,170] and also used in
the phase retrieval technique described in Section 3.D.3, the
wavefront right at the exit of the object plane, referred to as “exit
wave”ψk(x), can be modeled as the product

ψk(x)= p(x)ok(x − xk), (21)

where the subscript k is used to indicate the kth estimates of the
exit wave and the object function. As a rule of thumb, a thickness
of up to a few λ guarantees that the thin object approximation is
satisfied well enough to yield a resolution comparable to λ. The

first step of the PIE algorithm consists of creating an estimate of
the exit wave at the detector plane,9k(x), through a numerical
propagation ofψk(x)by the object–detector distance d :

9k(x)=ψk(x) ∗ hd (x). (22)

Because the amplitude of the wavefront at the detector plane
should match the square root of the measured diffraction pat-
tern Ik(x), the “intensity constraint” typical of phase retrieval is
applied, yielding the corrected wavefront at the detector plane
9 ′

k(x) [Eq. (24)] and, after a numerical back-propagation, at the
object planeψ ′

k(x) [Eq. (24)]:

9 ′
k(x)=

√

Ik(x)
9k(x)

|9k(x)|
; (23)

ψ ′
k(x)=9 ′

k(x) ∗ h−d (x). (24)

An update of ok(x) in the illuminated region, ok+1(x), is calcu-
lated through the following:

ok+1(x)= ok(x)+ α(o)
p∗

k (x + xk)

max |pk(x + xk)|
2

× [ψ ′
k(x + xk)−ψk(x + xk)], (25)

where 0<α(o) ≤ 1 tunes the weight of the update. Three
derivations of Eq. (25) have been provided in [171]. ok+1(x)
is then used in Eq. (21), where the shift xk+1 is used, and the



G268 Vol. 58, No. 34 / 1 December 2019 / Applied Optics Review

above procedure repeats, until all the shifts have been used
once, which completes one iteration of the algorithm. At the
end of each iteration, the convergence of the reconstruction is
evaluated through an appropriate error metric so that when the
error becomes lower than a predefined threshold, the algorithm
terminates.

Some steps of the reconstruction process of a simulated
binary Siemens star are displayed in Fig. 8. After using the top
left diffraction pattern once, the reconstruction in Figs. 8(b)
and 8(c) is obtained. Using all the diffraction patterns yields
the reconstruction in Figs. 8(d) and 8(e) after the first itera-
tion. A considerable improvement is obtained after the 100th

iteration, especially in the estimation of the phase of the object
transmission function [Figs. 8(f ) and 8(g)].

Being a phase retrieval technique, ptychography recon-
structs the object function by increasing the oversampling ratio
with a combination of the two methods listed in Section 3.D.
Collecting multiple diffraction patterns, here while translating
the object as opposed to typical phase retrieval techniques,
where the detector is moved, increases the total number of
measured pixels by a factor as high as K and depending on the
amount of overlap of the scan. Additionally, the update of the
object function is performed only in the illuminated region at
each step, which represents a subset of the pixels with unknown
value, thus setting a support constraint given by the size of the
probe. A comparison between ptychography and the phase
retrieval technique presented in Section 3.D.3 is discussed in
[36]. Among the numerous studies aiming at reducing the effect
of experimental inaccuracies, THz ptychography has benefited
from solutions coping with wrong estimates of the probe func-
tion [86] and of the shifts [109], which will be reviewed in what
follows.

Extended PIE (ePIE) algorithm: the PIE algorithm assumes
that the probe function p(x) is known a priori, which usually
requires its reconstruction by measuring its diffraction pattern
without the object.

A closer look at Eq. (21) shows that the probe and the object
function could be swapped, with no effect on the computation
of the exit wave. In other words, one can conversely regard
Eq. (21) as if the object illuminated the probe, and the latter has
to be recovered. This suggests that it must be possible to update
the reconstruction of the probe alongside that of the object, such
that Eq. (21) becomes

ψk(x)= pk(x)ok(x − xk), (26)

where pk(x) is the kth estimate of the probe function. Maiden
and Rodenburg proposed the ePIE [164] by allowing the probe
to be updated in a way analogous to the object, as follows:

pk+1(x)= pk(x)+ α(p)
o∗

k(x − xk)

max |ok(x − xk)|
2
[ψ ′

k(x)−ψk(x)],

(27)

where the feedback constant for the update of the probe has been
indicated withα(p). The algorithm then proceeds like a standard
PIE.

Through the ePIE algorithm, Valzania et al. reconstructed
both amplitude and phase objects, reaching a lateral resolu-
tion of about 2λ and a depth resolution of λ/30 [86], and
demonstrated that THz ptychography shares the same intrinsic
resolution factors as THz off-axis digital holography [172].
Figure 9 summarizes some reconstruction steps. The imaged
object was the nine-spoked Siemens star depicted in Fig. 9(a).
Figures 9(b), 9(d), and 9(f ) show the diffraction patterns cast
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Fig. 9. Ptychographic reconstruction of a pure amplitude object in the shape of a nine-spoked Siemens star, shown in (a). (b), (d), (f ), (c), (e), (g)
Diffraction patterns obtained by illuminating the simulated [real] object at the positions enclosed by the circles shown in (a) with the corresponding
color. (h) , (i) Amplitude and (j) , (k) phase of the reconstructed object. The insets show the reconstructed probes (left column: simulated probe; right
column: real probe; top: amplitude; bottom: phase). All the amplitude distributions share the same color bar next to (a), and all the phase distributions
share the same color bar between (j) and (k). Adapted with permission from [86] The Optical Society.
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Fig. 10. Intensity (label 1) and phase (label 2) of the ptychographic reconstructions with and without correction of the scan positions.
(a) Reconstruction of the object after 30 iterations of the ePIE algorithm and (b) after 30 iterations of the ccPIE algorithm; (c) , (d) reconstruction
of the object [probe] after 30 iterations of the ccPIE algorithm and 20 iterations of the pcPIE algorithm. Scale bars: 1 mm. Adapted with permission
from [109] The Optical Society.

by a simulated version of the object, when it was illuminated in
the regions enclosed by the colored circles in Fig. 9(a), whereas
Figs. 9(c), 9(e), and 9(g) contain the corresponding diffraction
patterns from a real metallic nine-spoked Siemens star. The
reconstructed amplitude and phase from simulated [real] data
are shown in Figs. 9(h)–9(k)], respectively. The final estimates of
the probe can be found in the nearby insets (simulated probe in
the left-hand column and real probe in the right-hand column;
amplitude on the top row, phase on the bottom row).

Position-correcting PIE (pcPIE) algorithm: a second source
of errors degrading ptychographic reconstructions is the inac-
curacy in the knowledge of the shifts. We should expect such
inaccuracies to have a considerable effect when they amount
to a fraction of the desired lateral resolution. On one hand,
this does not pose a problem with THz radiation, as the step
resolution of motorized translation stages is currently more than
two orders of magnitude smaller than typical THz wavelengths.
On the other hand, unwanted angular tilts between the object
and the detector plane, which are likely when the object has a
maximum thickness of only few λ, introduce uncertainties on
the knowledge of the shifts, and should be taken into account
even when using THz radiation. For example, assuming shifts
1x = 8λ [109] applied to an object tilted by δ= 7◦ with respect
to the detector plane leads to an error in the estimation of the
shifts of 1x [1 − cos(δ)] ≈ λ/10, 20% of the theoretical res-
olution limit for the lateral resolution, as well as to a wrong
reconstruction distance by1x sin(δ)≈ λ.

A “trial and error” algorithm, which can correct the scan
positions, was proposed under the name of pcPIE [166]. The
algorithm is an extension of the ePIE method, and therefore it
is included in an ePIE iteration. The estimate of the exit wave at
the object plane, corresponding to the kth diffraction pattern, is

computed in a way similar to Eq. (26), however by allowing for a
correction ck to the nominal shift xk :

ψk0(x)= pk(x)ok(x − (xk + ck)). (28)

At each new iteration, the corrections ck are refined by con-
structing M alternative estimates of ψk , denoted with ψkm ,
m = 1, 2, . . . , M, with M different offsets, randomly chosen
within a distance c from the starting position at xk + ck , as
follows:

ψkm(x)= pk(x)ok(x − (xk + ck + c1m)), (29)

where both components of 1m are selected from a uni-
form probability distribution within the range [−1, 1].
Equations (28) and (29) make up a set of estimates for ψk ,
which are propagated to the detector plane, i.e.,

9kn(x)=ψkn(x) ∗ hd (x), n = 0, 1, . . . , M, (30)

and evaluated again using an appropriate error metric. The
estimate of the wavefront at the detector plane leading to the
minimum error, denoted with9kn′(x), is then modified accord-
ing to the intensity constraint and back-propagated to the object
plane, as in Eqs. (23) and (24). If the selected wavefront belongs
to the set of newly tried wavefronts, i.e., n′ > 0, the value of ck

is replaced by ck + c1n′ ; otherwise, it is kept unchanged. The
algorithm proceeds with the next scan position, and after all of
them have been used, a new iteration starts, when a lower value
of c is employed.

Cross-correlation-based PIE (ccPIE) algorithm: alternative
solutions to correct the scan positions were proposed, using
cross-correlation on the estimates of the object at consecutive
iterations [173], or at consecutive scan positions [174]. Rong
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et al. [109] have recently proposed a similar method, here
referred to as ccPIE, which retrieves the shifts through a cross-
correlation directly performed on the exit waves at the object
plane, and they demonstrated its principle with a THz laser. In
a standard ePIE framework, they suggested refining the shifts
after correcting the exit wave with the intensity constraint, i.e.,

xk ≡ arg max
ξ

[ψ ′
k(x) ⋆ ψ1(x)](ξ), (31)

where ⋆ denotes cross-correlation. Their method was applied to
the reconstruction of a cicadas’ forewing. Owing to its thickness
of about 10 µm, tilts between the object plane and the detec-
tor plane are inevitable. The ccPIE algorithm improved the
reconstruction [Figs. 10(b1) and 10(b2)], compared to when
only the ePIE algorithm was applied [Figs. 10(a1) and 10(a2)].
The improvements after refining the scan positions through 20
additional iterations of pcPIE [Figs. 10(c1) and 10(c2)] are more
subtle.

4. CONCLUSION AND OUTLOOK

In conclusion, we have reviewed the state of the research on
THz coherent lensless imaging, focusing on the tools currently
available for its implementation, their combination in successful
imaging setups, and image reconstruction techniques.

Several coherent THz sources allow coherent THz imaging.
Gas lasers have not seen any development in the last decades;
their output will remain limited by the gas volume and by the
cavity size. QCLs are developing rapidly and deliver ever-higher
power. Future development will be directed towards relaxed
cooling conditions, eventually operating at room temperature.
There is a limitation to photo mixing, even when non-linear
materials are getting more and more effective, as two pump
photons are needed to create one THz photon of a fraction of
the energy. An improvement in photomixing THz sources could
be found in array geometries, which would allow combining the
output of several device elements or large area emitters. With
proper control, the emission wave overlay can also be achieved in
a coherent way.

The state-of-the-art detectors for lensless imaging in the
1–4 THz range are microbolometers and pyroelectric cameras.
Due to the lack of high-resolution cameras in the sub-THz
range, lensless imaging is still realized by scanning single-pixel
detectors.

Three directions can be identified towards the future devel-
opment of THz cameras for lensless imaging. The first one
aims at higher resolution, by increasing the array size to values
comparable to those of infrared microbolometer arrays. Note
that for THz applications, using wavelengths of 100 µm and
above, pixels much smaller than the wavelength are already
available, and decreasing their size is not expected to crucially
impact the imaging performance. The second direction points
towards low-cost infrared cameras, whose small detector areas
could be compensated for by synthetic aperture methods, con-
trolled by smartphones [175]. The third direction is seeking
for efficient area detectors in the sub-THz regime. Commercial
area detectors with 64 × 64 pixels with a pitch of 1.5 mm are
available [176], based on photon detector technology. They
have already been employed in THz imaging studies for security

and non-destructive testing applications, and represent good
candidates for sub-THz coherent lensless imaging. An alterna-
tive has been proposed using a THz microbolometer camera,
highly sensitive at sub-THz frequencies, in combination with
specifically designed THz objectives for a larger field of view
[177]. Such a solution is also applicable to digital holography
with ingenious reference beam injection techniques, as shown
in [178].

We have reviewed the digital holographic and phase retrieval
techniques already implemented with THz radiation. Basically,
they share the same principles as the corresponding implemen-
tations at shorter wavelengths, among which is the fact that the
lateral resolution is diffraction limited. However, we have shown
that in a typical THz imaging experiment, the conditions for the
far-field approximation, commonly employed with visible light
and x rays, are not met. It is therefore necessary to replace the
Fourier transform with the Rayleigh–Sommerfeld integral (or,
equivalently, the angular spectrum approach) to numerically
propagate complex wavefronts.

THz off-axis digital holography was the first variant of holog-
raphy demonstrated with a coherent THz source, owing to two
reasons. First, it can be performed with large enough off-axis
angles to separate the diffraction orders in the Fourier spectrum
of the hologram, without the risk of undersampling by the
detector pixels. Second, both transmission and reflection modes
are allowed. The latter geometry makes it particularly appealing
for imaging-absorbing objects as well.

On the contrary, in-line digital holography is based on the
assumption that part of the incident beam is not diffracted by
the object, which thus must be probed in transmission and
smaller than the beam size or weakly absorbing. This is the
case for, e.g., excised biological tissue slices, with a thickness
much lower than the wavelength, which were successfully
reconstructed with THz radiation. The main advantage of
in-line digital holography consists of the possibility to shorten
the reconstruction distance, thereby improving the resolution
compared to off-axis digital holography. The compact experi-
mental setup comes at the expense of the twin image problem.
In order to cope with it, the analysis of in-line digital holograms
borrowed several solutions from another category of coherent
lensless imaging techniques, namely, phase retrieval.

Phase retrieval imaging techniques reconstruct the object
starting from a guessed solution and improving it by impos-
ing a support constraint or intensity constraints from a set
of diffraction patterns recorded at different object–detector
distances.

Ptychography, combining typical iterative phase retrieval
algorithms with a setup inherited from scanning microscopy,
has also been recently migrated from electron imaging, where it
was originally conceived, to the THz range, and was shown to
be a valuable alternative to the widespread THz off-axis digital
holography. Taking advantage of the numerous ptychographic
algorithms and implementations already demonstrated will
make THz ptychography a powerful tool and approach it to
real-life applications. For example, THz ptychography in reflec-
tion [179] would allow imaging in vivo biological samples,
while a multi-slice implementation [180] would deliver coher-
ent tomographic reconstructions without either rotating the
sample, or using an interferometric approach.
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In the same way as for the imaging techniques, migrating
optical components to the THz range would drastically expand
the capabilities of THz imaging. For instance, THz spatial
light modulators (THz-SLMs) would pave the way for THz
wavefront shaping [181]. THz imaging could thus benefit from
the plethora of achievements obtained in biomedical optics
with visible light. Crucially, this will allow using structured
illumination techniques to improve the resolution [182] and
imaging through multiple-scattering media [183], which can be
successfully exploited in non-destructive industrial inspection
with THz waves. Despite different prototypes of THz-SLMs
having been demonstrated and reported in Refs. [12,13], they
are far from their counterparts in the visible range.

Although this review makes it clear that THz imaging owes
a lot to imaging with electrons, x rays, and visible light, we
should not forget that new coherent lensless imaging techniques
are being developed in the THz range, with the potential to
be implemented at different wavelengths, too. In particular,
we have described an innovative phase retrieval technique for
imaging through a moving and scattering barrier, whose loose
assumptions make it applicable wherever imaging hidden
objects is an issue. Along this line, we expect that the essential
role of THz radiation for today’s scientific and technologi-
cal advancements will spur the THz imaging community to
develop further coherent lensless imaging techniques that will
prove beneficial for diverse applications and wavelength ranges.

For these reasons, we foresee a flourishing era at the interface
between THz science and coherent lensless imaging techniques.
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