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Terahertz (THz) spectroscopy covers numerous interactions in physical, chemical, and 

biological systems. For opaque materials in the THz band, spectroscopy is generally performed 

with THz time-domain reflection spectroscopy (THz-TDRS), which compares the relative 

amplitudes and phases of reflected THz waveforms from a sample with those from a reference. 

The reference is often a flat metal mirror. This method is straightforward but the front surfaces of 

the reference and the sample must be positioned, within a fraction of a micron, in exactly the same 

location to obtain the accurate phase of the reflection. Such precise in situ positioning is difficult, 

although various methods have tried to overcome phase uncertainty [1-3]. 

Spectroscopic ellipsometry is a promising way to solve this problem and there have been 

attempts to establish THz time-domain spectroscopic ellipsometry (THz-TDSE) [4,5]. Here, we 

present a new instrumentation for THz ellipsometer, THz-TDSE with simultaneous measurements 

of orthogonal polarizations, which extends the reliable frequency range with a low dynamic range 

photoconductive antenna THz source. In order to realize simultaneous measurement of orthogonal 

polarizations, the method of splitting the circularly polarized probe laser pulses was employed [6]. 

This method made the apparatus capable of measuring orthogonal polarizations with very high 

extinction ratios and without rotating the polarizer. In the calibration, the TDSE response function 

was obtained via the simultaneous polarization measurements reflected by a flat metal mirror, 

adapted in conventional TDRS, and used here for THz-TDSE without problems of position 

accuracy. The calibration could be used to determine accurate ellipsometric parameters with a high 

tolerance of imperfect polarizer extinction ratios and of non-ideality in the THz reflection 

components. As a proof of principle demonstration, results were presented for an opaque, heavily 

p-doped Si (0.01~0.05 cm ) wafer and highlighted the advanced potential of our THz-TDSE 

for reflection-based measurements. 

The optical layout of our THz-TDSE system is shown in Figure 1a for simultaneous 

measurements of p- and s-polarizations. The THz pulses, generated from a photoconductive-

antenna radiated by a commercial Ti:sapphire laser, were collimated and focused into the reflection 

module with an incident angle of 60, which was similar to a periscope, for easy placement of the 

sample. In the detection part, the probe pulses were then split by a 5:5 non-polarizing beam splitter 

(NPB) into a detector for the X-polarized electric field (DX) and a detector for the Y-polarized 

electric field (DY). With proper azimuths of half-wave plates (/2), DX and DY could 

simultaneously measure THz waveforms with different polarizations. The frequency-dependent 

ellipsometric parameters ( tan  and  ) of the Si wafer are shown in Figure 1b. The measured 

results (red circles and blue rectangles) are consistent with the Drude fitting (red solid lines and 

blue dashed lines). Figure 1c presents the relative errors of tanmeasured by simultaneous and 

non- simultaneous measurements of orthogonal polarizations. The relative errors of tan  

(magenta pentagrams) measured by our system were below 1% over the entire frequency range, 

because of the one-run detection of the two polarized components, which meant that the flicker 

noise of the system was greatly reduced. In contrast, limited by the low dynamic range of the THz 

source in the high frequency range, the relative errors in the normal THz-TDSE increased quickly 

with frequency beyond 1THz. The simultaneous measurements rejected significant common-mode 
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noise from the laser, and it extended reliable THz spectra into the frequency range with a low 

dynamic range of a photoconductive-antenna THz source, which is a fundamental breakthrough 

for reflection-based measurements and overcomes the hurdle of phase uncertainty.  

 

 

Figure 1. (a) Optical diagram of the THz-TDSE. (b) Ellipsometric parameters ( tan  and  ) of the 

Si wafer. The red circles and blue rectangles are experimental data. The red solid lines and 

blue dashed lines are the Drude fitting results. (c) The relative errors of tan  were 

calculated from the simultaneous and non-simultaneous measurements of two orthogonal 

polarizations. The relative error was defined as the relative standard deviation. 
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