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Abstract 
Since sensor data gathering is the primary functionality of 
sensor networks, it is important to provide a fault tolerant 
method for reasoning about sensed events in the face of 
arbitrary failures of nodes sending in the event reports. In 
this paper, we propose a protocol called TIBFIT to diagnose 
and mask arbitrary node failures in an event-driven wireless 
sensor network. In our system model, sensor nodes are 
organized into clusters with rotating cluster heads. The 
nodes, including the cluster head, can fail in an arbitrary 
manner generating missed event reports, false reports, or 
wrong location reports. Correct nodes are also allowed to 
make occasional natural errors. Each node is assigned a 
trust index to indicate its track record in reporting past 
events correctly. The cluster head analyzes the event reports 
using the trust index and makes event decisions. TIBFIT is 
analyzed and simulated using the network simulator ns-2 
and its coverage evaluated with a varying number and 
varying intelligence of the malicious nodes. We show that 
once TIBFIT gathers enough system state, accurate event 
detection is possible even if more than 50% of the network 
nodes are compromised. 
Keywords: Sensor networks, secure and intrusion tolerant 
systems, trust index, arbitrary data faults, event aggregation. 
 
 
1 Introduction 

Recent innovations made in the fields of electronics and 
wireless communication have enabled the advent of sensor 
networks. These networks comprising of thousands of 
inexpensive sensor nodes can be set up with relative ease by 
placing the nodes in predefined locations manually or 
through the use of robots, as well as by random deployment 
of self-organizing nodes. A wide gamut of applications 
ranging from health, home, environmental to military and 
defense make use of sensor nodes for collection of 
appropriate data. The sensor nodes comprising of data 
collecting, processing, and transmitting units are very small 
in size and can be densely deployed owing to their low cost.  

Sensor nodes have serious limitations in available 
resources, such as power, memory, and processing ability[2]. 

The sensor nodes and wireless links are prone to failure, 
while the network is also open to various malicious attacks. 
While significant research has been done in the areas of 
communication architecture, routing, and energy 
conservation in sensor networks, development of fault 
tolerance in this highly volatile scenario remains an 
interesting open research issue. Conventional fault tolerance 
and intrusion tolerance protocols do not translate well to the 
sensor network domain due to its large scale and the 
resource constraints on the sensor nodes. 

In this paper we consider fault tolerance in an event 
driven model for sensing. An event driven model of 
behavior for sensing finds many applications in civilian, 
military as well as industrial scenarios. Examples could be 
seismic monitoring to detect and locate tremors in a given 
area, or military applications to sense any movement within 
a cordoned-off area. The inherent unreliability of sensor 
nodes makes fault tolerance in such an environment an 
important concern. The problem is essentially one of 
aggregating data from multiple sensor nodes to decide if an 
event has occurred and determining the location of the event, 
in the face of natural and malicious failures in both the 
sensing nodes as well as the aggregating nodes. In particular, 
our approach looks at arbitrary faults in the sensor networks, 
whether natural or malicious. Natural arbitrary faults may 
arise suddenly and intermittently in sensor networks, thereby 
causing a node to miss reporting an event (missed alarms) or 
falsely reporting an event that has not occurred (false 
alarms). Malicious faults occur when some nodes in the 
network have been compromised by an adversary. This 
adversary can make the nodes send out corrupt information 
intended to adversely affect the data gathering role of the 
network. These malicious nodes, depending on their level of 
intelligence, may have some knowledge of how the network 
functions and can to behave in a manner to escape detection.  

The goal of the proposed TIBFIT protocol involves event 
detection and location determination in the presence of 
faulty sensor nodes, coupled with diagnosis and isolation of 
faulty or malicious nodes. The accuracy of the system is 
defined in terms of fraction of instances when an event 
occurrence is correctly detected, and its location determined 
within the given error bound.  
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The approach followed by the protocol is to maintain 
state of the sensing nodes in terms of the fidelity of their 
previous sensing actions, and use this information in making 
decisions involving those sensing nodes. Sensor nodes report 
the occurrence and location of events to a data sink, and 
remain silent otherwise. The data sink then decides on 
whether the event occurred and where based on the 
aggregated data. To determine the location of the event the 
data sink must aggregate all reports from nodes within the 
detection radius. The aggregation could be a simple voting 
scheme. However voting is a stateless approach and does not 
reflect on the past performances of the sensing nodes. TIBFIT 
introduces a new parameter called trust index for this 
purpose. The Trust Index (referred to as TI) of a node is a 
quantitative measure of the fidelity of previous event reports 
of that node as seen by the data sink. In a system comprised 
of sensing nodes, the data sink assigns and maintains a TI 
for each node in its domain, and does voting in a stateful 
manner. As the system runs over a longer time, more state is 
built up concerning the performance of the associated 
sensing nodes, and hence tolerance for faults also goes up 
accordingly. So while the simple voting approach falls apart 
when more than 50% of the nodes within detection range of 
the event are corrupted, TIBFIT can tolerate faults in a 
network with more than 50% of its nodes compromised after 
it has built up adequate state of the nodes. 

To demonstrate the effectiveness of TIBFIT, we use an 
event-driven simulation with ns-2. All nodes are considered 
liable to fail, whether in a natural or a malicious manner. We 
group the nodes into four categories: a) non-faulty nodes that 
naturally fault some percentage of the time; b) faulty nodes 
that err randomly; c) malicious nodes working independently 
that err occasionally and attempt to subvert the system but 
also try to remain undetected; d) malicious nodes that 
collaborate and err occasionally and attempt to subvert the 
system but also try to remain undetected. We show through 
simulation that TIBFIT is capable of accurately detecting and 
determining locations of events even when more than 50% 
of the network is compromised. Finally we also simulate a 
system that has a gradually increasing number of malicious 
nodes and analyze the accuracy of the system. 
The main contributions of this paper are the following: 
1. TIBFIT tolerates nodes that fail both naturally and 

maliciously, and makes decisions on event occurrence 
as well as location. Under several scenarios, accurate 
event determination and localization can be done even 
with more than 50% of the network compromised. We 
also demonstrate diagnosis and limited recovery in the 
system. 

2. No nodes are considered immune to failure, whether 
they are sensing nodes or the data sink. 

3. We have come up with an adversary model with 
increasing levels of sophistication and demonstrate the 
effectiveness of the protocol in each case. 

4. The protocol is generic and can be applied to any data 
sensing and aggregation application in sensor networks. 

The rest of the paper is organized as follows. First, we 
discuss the parameters of our system model in Section 2, we 

discuss TIBFIT design in Section 3, the simulation 
implementation and results in Section 4, the analysis of 
TIBFIT in Section 5, related work in Section 6, and 
conclusions in Section 7. 

2 System Model 

All nodes in the network are identical and are arranged 
into disjoint clusters, each with a set of cluster heads (CHs), 
only one of which is active at any point in time. The CH 
serves as the data sink for its particular cluster. The nodes in 
a cluster are within one hop communication of the CH. The 
clusters themselves are formed randomly around the elected 
CHs. The CHs are rotated over time and CH election is 
based on energy-related parameters of the constituent nodes. 
In each cluster, the node that is chosen to be the CH knows 
the topology of the cluster. Nodes that are within the 
detection range of an event are called event neighbors for 
that event. This topology is illustrated in figure 1.  

 
Figure 1: Event detection 

When an event occurs, all the event neighbors are expected 
to report the occurrence of the event to the CH. The CH 
makes a decision on whether the event has occurred based 
on the reports received from the event neighbors and their 
trust indices. A detailed description of the TI model follows 
in Section 3. 

The sensor network is deployed by placing the nodes 
randomly in the network. It is assumed that the nodes have 
the ability to determine their own locations. This can be 
accomplished through GPS mechanisms, deploying nodes 
with deterministic mobility in known locations and using 
triangulation methods to compute their positions as functions 
of time, etc. Further discussion is beyond the scope of this 
paper. The locations of the nodes at a given time are known 
to the CHs, but not necessarily to the non-CH nodes. The 
network could be stationary or mobile, as long as it is 
possible for the CH to estimate the positions of its cluster 
nodes during decision making. The sensor nodes function in 
an event-driven model, that is, they sense the environment 
for occurrence of a particular detection-level event and 
transmit data only if they sense such an event. We will 
assume that the event is typically detectable by multiple 
nodes, which makes our protocol practical. This assumption 
is not unreasonable for many practical sensor deployments.  

We adopt the low energy, adaptive hierarchical 
clustering protocol (LEACH), for cluster formation as well 
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as CH election [3],[4]. This protocol architecture aids in the 
formation of self-organizing clusters, with dynamically 
chosen CHs. Each node is assigned a probability of 
becoming a CH at the beginning of each round, which 
depends on the number of times it has been made CH 
previously and the energy available in the node. These 
properties help spread energy usage equally throughout the 
network. We have also incorporated the TI of the node as an 
additional parameter to be considered for CH election. The 
TI of the node has to be higher than a threshold value to 
ensure that only sufficiently trusted nodes can become CHs. 
This is not a property of the original LEACH protocol.  

Each node independently decides if it wishes to be a CH. 
Once a node decides to become a CH, it broadcasts this 
information. Any node that receives advertisements from n 
different contending CHs, affiliates itself with a single CH 
based on the strength of the signal received. If a node’s TI is 
below a certain threshold, the central base station will cancel 
this node’s effort to become a CH and re-initiate CH election. 
A CH that reaches the end of its leadership period sends the 
aggregate TI information that it has gathered for all nodes in 
its cluster to the base station before ending its leadership. A 
newly CH elected for an existing cluster requests the base 
station for TI information for nodes in its cluster. 

We group event detection into two categories – binary 
event detection and event detection with location 
determination. Binary event detection leads to the system 
recognizing the occurrence of the event with a binary 
decision about whether it happened or not and not being 
concerned with the location of the event. An example could 
be detection of a forest fire based on the temperature 
reaching a critical threshold. Location determination is when 
the coordinates of the event are also reported by the sensing 
node. In the forest fire example, the sensor can detect 
environmental changes such as wind and variation in light 
intensity in a direction and estimate the location of the 
oncoming fire.  

2.1 Failure Model 
The nodes in the network may fail due to accidental 

failures or may be compromised by an adversary and 
therefore exhibit failure due to malicious causes. Three types 
of failure scenarios are possible. A node may have a missed 
alarm where it does not report an event within its sensing 
radius to the data sink within a specified time. A node may 
provide a false alarm where it either reports an event outside 
of its sensing radius or reports an event within its sensing 
radius that did not occur. A node may exhibit a location 
faults where it reports an event but at the wrong location. 
Flooding based denial of service (DoS) attacks are not 
considered in this paper.  

Four categories of sensing nodes are identified. Correct 
nodes are not assumed to be 100% accurate, but are expected 
to make errors within a specified bound referred to as 
natural error rate. Faulty nodes form the superset for nodes 
with natural or malicious failures. A faulty node can exhibit 
naïve behavior in terms of randomly sending out corrupt 
information following no specific pattern. The node lies 

arbitrarily, either in dropping an event report, falsely 
reporting an event, or reporting a faulty location (level 0). A 
smart faulty node is aware partially of the system model and 
tries to retain its TI at a reasonably high level where it 
estimates it will not be detected and isolated. If a malicious 
node’s TI is reaching a level at which it will either be 
dropped from the network or its vote has too little influence 
on the event decision, then the node will stop lying until its 
TI is raised sufficiently. The smart faulty nodes may lie 
independently (level 1) or in collusion (level 2). The 
colluding nodes are assumed to be connected in a way that is 
undetectable by the reliable nodes in the network. 

3 Basic Design 

The goal of the TIBFIT protocol is to determine whether 
an event has occurred from analyzing reports from the event 
neighbors. To combat failures in the reporting nodes, each 
node is assigned a TI, maintained at the CH, to indicate its 
track record in reporting past events correctly. The TI is a 
real number between zero and one and is initially set to one. 
For each report a node makes that is deemed incorrect by the 
CH, the node’s TI is decreased. Similarly, for each report a 
node makes that is deemed correct by the CH, the node’s TI 
is increased, but not beyond one. Thus correctly functioning 
nodes will have a TI approaching one while faulty and 
malicious nodes will have a lower TI.  

We assume that correct nodes are allowed to make 
occasional errors due to natural causes. The rate of these 
errors is denoted the natural error rate (NER). The TI is 
decremented exponentially. Nodes that make mistakes are 
penalized more for earlier mistakes, and find it more 
difficult to regain their previous trust levels. This is 
considered better than a linear model where a node that lies 
50% of the time would still occasionally have the trust index 
value of one. If a node errs more frequently than its NER its 
index decreases, while if it errs less frequently then its index 
increases.  

The TI is calculated as follows. Let the natural error rate 
be fr (<1). A variable v is maintained for each node at the CH. 
Each time a node makes a report deemed faulty by the CH 
its v is incremented by the expression 1-fr. Each time a node 
makes a report deemed to be correct by the CH its v is 
decreased by fr if v is larger than zero. The TI is calculated 
as 

TI = e-λv 
where λ is a proportionality constant that is application 
dependent. An uncompromised node’s TI is expected to 
remain at the same value. It can be expected to suffer a fault 
at the rate of one per every 1/fr events and the expected 
change in v is: 
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The design of the protocol is explained next by successively 
relaxing some simplifying assumptions. 



 4

3.1 Binary Events 
Let us initially assume that event reports are binary in 

nature simply specifying whether the event has occurred or 
not. All the nodes in the cluster, say k, are event neighbors 
for any event detected by the cluster. A sensing node can 
detect the occurrence of an event perfectly for events that 
happen within a radius rs surrounding the node. All the 
nodes within radius rs of an event E are called event 
neighbors for E.  

After the CH receives the first event report, it calculates 
the k event neighbors for the event. The CH then waits for a 
predefined interval of time Tout for event reports to be 
received from these nodes. After Tout has elapsed, the CH 
partitions the event neighbors into two sets R and NR based 
on whether they have reported the occurrence of the event or 
not, respectively. The trust indices of each group are 
summed and the group with the higher cumulative TI (CTI) 
wins out. The trust index values of nodes in the winning 
group are increased while the index values of nodes in the 
losing group are decreased according to the formula given 
above. It should be noted that a smaller group of reliable 
nodes can win the vote against a larger group of unreliable 
nodes based on higher TI for the individual reliable nodes 
earned over past events. This process provides detection, 
diagnosis, and masking of the fault.  

It is evident that we do not need a TI model for a system 
with faulty nodes in the minority. A simple voting would 
suffice to mask the decision of the faulty nodes. However, 
consider a system where the density of faulty nodes 
increases over time. Examples could be batteries of the 
nodes dying out with time, or existing nodes being 
compromised by adversaries. The faulty nodes that have 
been in operation for a while would have had their TIs 
reduced to low values. Hence even when the total number of 
faulty nodes is in a majority, their CTI may still be lower 
than that of the correct nodes. Hence, TIBFIT can lead to 
correct aggregation as well as diagnosis even with more than 
50% of the nodes compromised. It is obvious that if the 
initial condition consists of faulty nodes being in the 
majority, then the protocol will be unsuccessful in tolerating 
faults. After time, the system can identify a faulty node 
when its TI falls below a certain threshold. It can then be 
removed from the network.  

3.2 Location Determination 
In this section we build on the previous model by adding 

location details to the event reports. The event report 
consists of location in terms of (r, Θ) with respect to that 
node. The nodes do not sense the location of the event 
perfectly and the CH must determine the actual location of 
the event. One sensor network problem that can be solved 
through this extension is where a network is attempting to 
track a mobile sensor node that is transmitting a signal as it 
moves throughout the network.  
Simplifying Assumptions: Let us assume there is a time 
difference of at least Tout between any two events to avoid 
overlapping event neighbors. A correct event report sent in 

by a sensing node reports the location of an event to within a 
radius rerror surrounding the event.  

Once time Tout has elapsed after the first event report, let 
there be k other reports that have come in from the nodes in 
the cluster during this time. The CH performs a clustering 
algorithm based on K-Means which groups these k event 
reports into a number of event clusters based on the 
locations indicated by the reports [14]. Each event cluster 
represents a possible location where the event could have 
occurred, as indicated by the reports. The clustering 
algorithm is a heuristic based on K-Means, so as to minimize 
the sum of squares error.  

Goal of the algorithm presented below is to organize the 
event reports into disjoint event clusters of radius rerror. Let C 
be the set of all event clusters consisting of elements {C1, 
C2…Cr}. Let {c1, c2…cr} be the centers around which the 
event clusters {C1, C2…Cr} are formed. Let d(x, y) denote 
the distance between two points x and y. d(ci, cj) > rerror ∀ Ci, 
Cj  ∈ C. Ck.cg (Center of gravity) denotes the average 
location indicated by all event reports in cluster Ck. 

 Event clusters are created using the following procedure.  
(1) The clustering algorithm is started once Tout has elapsed 

after the first event report. The set of all event reports in 
this time Tout is referred to as E. The distances between 
each pair of event reports are computed and sorted in a 
2D array. 

(2) Let E1 and E2 be event reports from the set E with the 
greatest distance between them. Event clusters C1 and 
C2 are created with E1 and E2 as centers, and C1, C2 are 
added to C.  

(3) Condition for any event report Ek to form a separate 
event cluster is that d(Ek, ci) > rerror ∀Ci ∈C. The set E is 
iterated through and the set of all cluster centers are 
identified, so that the remaining event reports are at a 
distance of less than rerror from at least one element in C, 
i.e., the remaining event reports cannot form separate 
event clusters. 

(4) Once the initial set of clusters in C are formed, 
remaining event reports in E are added to one of the 
clusters in C based on which cluster center it is nearest 
to. Ck.cg for the clusters are updated appropriately. 

(5)  If the centers of two or more clusters lie within rerror of 
each other the clustering algorithm is repeated by 
forming a new cluster center at the weighted average of 
these centers. The rounds are executed until no change 
in cluster constituency takes place in a new round.  

The final elements in C represent the set of all events. 
Ck.cg represents the location of the event k. The event 
neighbors can be determined for the location determined and 
a determination of whether an event has occurred is made 
based on the trust indices of the associated nodes as in 
Section 3.1. This design successfully throws out event 
reports from nodes that make a localization error of more 
than rerror.  

3.3 Concurrent Events 
Additions: In this section we build on the previous model by 
assuming that multiple events can occur within Tout of each 
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other (referred to as concurrent events from here on). We 
however assume that concurrent events cannot occur closer 
than a distance of rerror. 
(1) When the CH receives the first event report E1, a 

symbolic circle of radius rerror is drawn around it. A new 
timer E1.Tout is started for the associated event reports 
from other event neighbors to come in. All subsequent 
events that lie within rerror of E1 reported within time 
Tout are added to the same circle.  

(2) If any subsequent event report Ek received lies outside 
this circle, a new circle of radius rerror is formed with 
this event report Ek as its center. Associated Ek.Tout is 
started. 

(3) Once time Ek.Tout has passed from the reception of event 
report Ek that is the center of a circle, all the event 
reports inside this circle are put into a group and the 
clustering algorithm described in the previous section is 
performed on them to determine the location of the 
event.  

(4) However if one or more other circles overlap with this 
circle, then the CH must wait until time Tout has elapsed 
for all such overlapping circles. The clustering 
algorithm is performed on the union of all event reports 
in all the overlapping circles to determine the event 
clusters and thus how many events have actually 
occurred. 

3.4 Unreliable Cluster Heads 
Though the CHs are chosen based on high TI values, it is 

still possible for a selected CH to fail. To combat this 
problem we assign two additional shadow cluster heads 
(SCH) to each cluster such that the SCHs can monitor all 
input and output traffic associated with the selected CH. The 
SCHs themselves may be considered to be reliable as they 
are chosen based on the fact that they have the highest trust 
indices among nodes within one hop of the CH. The SCHs 
listen in to the communication going in and out of the CH 
and perform all the functions as the CH except transmitting 
the aggregated event reports to the base station. On 
perceiving a wrong conclusion being drawn at the CH based 
on the input data, the SCHs also send the result of their own 
computations to the base station. The base station, on 
receiving data from all CHs in the cluster, does a simple 
voting to arrive at the right conclusion. It also prompts CH 
election in that cluster to pick a new CH and reduces the TI 
of the previous faulty CH. Thus, only a single CH failure can 
be tolerated.  

TIBFIT can also be extended to scenarios where the 
sensing nodes are more than one hop away from the data 
sink. The data sink still needs to know the location of the 
constituent node and reliable data dissemination primitive 
needs to be introduced to ensure that the data sent out by the 
sensing nodes reliably reach the data sink without alteration 
[15],[16].  

4 Simulation 

The TIBFIT protocol is simulated using the network 
simulator – ns-2 [6]. A sensing radius of 20 units is 
considered. Events are generated at regular time intervals by 
the event generator, using a uniform random variable to 
generate X and Y coordinates uniformly distributed in the 
network. The event generator informs the event neighbors of 
the event and its location. 

We run three different experiments. In experiment 1 we 
show the accuracy of the binary event model versus 
percentage of the network compromised by level 0 faulty 
nodes. In experiment 2 we show the accuracy of the location 
event model versus percentage of the network compromised 
by level 0, 1, and 2 faulty nodes. In experiment 3 we show 
the accuracy of the location event model versus time, where 
the percentage of the network compromised increases 
linearly over time. 

For each simulation we use either the TIBFIT system that 
uses the trust index, or we use the baseline system, which 
uses majority voting to make event decisions. Experiments 
are run with faulty nodes belonging to only one level for a 
given experiment. Nodes are stationary in all experiments. 

4.1 Experiment 1 – Binary Events 
A cluster of ten nodes is formed, and all nodes are  

considered event neighbors for every randomized event. 
Level 0 faulty nodes are used for the fault model, generating 
both missed alarms and false alarms. The CH makes a 
decision regarding occurrence of the event based on the data 
forwarded to it from the sensing nodes.  

Type of Event Binary Event Model 
Independent Variable Percentage Faulty Nodes: 

varied from 40%-90% 
Correct Nodes NER 0, 1, and 5% 
Faulty Nodes NER Level 0:Missed Alarm 50% 

False alarm 0,10, and 75% 
Size of network 10 sensing nodes, 1 CH 
Number of Event neighbors 10 
Events per simulation 100 
 λ 0.1 
Fault rate (fr) Same as NER 

Table 1: Parameters for Experiment 1 
For this experiment we started simulations with 40% of the 

network compromised. As Section 5 shows, even for the 
baseline system, the probability of failure with less than 40% 
of the network compromised is very small, and therefore not 
simulated. 

The results in figure 2 include only missed alarms. The 
most noteworthy result from this experiment is that the 
network can have 70% of its nodes compromised and still 
maintain over 85% accuracy. This result is superior to the 
analytical results shown in figure 10 in Section 5.  
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Figure 2: Experiment 1 – 50% accurate faulty 
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Figure 3: Experiment 1 – 50% accurate faulty nodes, 

missed alarms and false alarms 
Figure 3 shows the simulation with both false alarms and 

missed alarms from faulty nodes. All correct nodes have 1% 
NER. Again, the network performance starts to degrade with 
70% faulty nodes. The interesting results is that 75% false 
alarms shows the best accuracy when less than 80% of the 
network is compromised, indicating that the excessive false 
alarms lower faulty nodes’ TIs and therefore increase system 
reliability. At 80% faulty nodes with 75% false alarms, 
accuracy falls dramatically, as the system is no longer able 
to tolerate the excessive false alarms. 10% false alarms 
maintains the highest accuracy at this point, indicating that 
occasional false alarms lower faulty nodes’ trust indices 
enough to outperform 0% false alarms.  

4.2 Experiment 2 – Location Determination 
Model 

In the second type of simulation, 100 nodes are placed 
uniformly on a 100X100 grid. The CHs and event generator 
are two other entities present in the network. The CH 
decides on both the occurrence of the event as well as its 
location. The network is a single cluster, and the CH knows 

the positions of all 100 nodes. All nodes can reach the CH in 
a single hop. For location estimation rerror is 5 units. Table 2 
shows various experimental parameters for this experiment. 
Due to the ns-2 wireless model, correct nodes’ packets are 
naturally dropped less than 1% of the time.  

A lower threshold (lowerTI) of 0.5 is used for level 1 and 
level 2 nodes to ensure their trust indices do not fall too low. 
If they reach the lower threshold they behave like a correct 
node until they reach an upper threshold (upperTI) of 0.8, 
after which they begin erring again. Each node reports an 
event with error in both the X and Y directions as dictated 
by a Gaussian random variable with standard deviation σ. 

 
Type of Event Location Determination 

Concurrent or single events 
Independent variable Percentage faulty nodes, 

varied from 10%-58% 
Error rate for correct nodes Location report has std. 

deviation of 1.6 or 2.0 
Error rate for faulty nodes 
(levels 0, 1, and 2) 

Location report has std. 
dev. of 4.25 or 6.0, drop 
packets 25% of the time 

Size of network 100 sensing nodes, 5 CH 
Number of event neighbors Variable on location 
λ 0.25  
Fault rate (fr) 0.1 (different from NER to 

compensate for wireless 
channel model losses) 

Table 2: Parameters for Experiment 2 
The error percentage indicated in Table 2 is calculated as 

the joint probability distribution of the two Gaussian rv’s, 
which are Rayleigh distributed, and it indicates the 
probability a node reports an event more than 5 units away 
from the actual event location. The standard deviation for a 
correct node is much less than that for a faulty node. Level 1 
nodes work independently, while level 2 nodes collude with 
each other and all either send the event report for the same 
location or do not send the event report.  

This experiment initialized a network with a percentage of 
the network compromised by Level 0, 1, or 2 malicious 
nodes. 58% was the upper limit for the compromised 
network as past this point the system did not work with 
much accuracy. The output accuracy metric was the number 
of events detected by the CH within rerror of the actual event. 
Simulations are run with both concurrent and single events. 
The legend format for all the result figures from this point on 
is “Lvl M W-Z [TIBFIT or Baseline]”, where M is the type of 
malicious node used, W is the standard deviation of the 
correct nodes, Z is the standard deviation of the malicious 
nodes, and the final parameter is whether the TIBFIT or the 
baseline model was used.  

The results in figure 4 show that at low percentages of the 
network compromised, the TIBFIT system and the baseline 
system perform similarly. However, after 40% of the 
network is compromised, the TIBFIT model performs better 
than the baseline model by at least 7% percent, and by as 
much as 20% percent. More importantly, TIBFIT has 
accuracy near 80% even with faulty nodes having errors 
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70% of the time. A consequence of the execution of the 
network with TIBFIT is that the trust index values of the 
faulty nodes continue to decrease and once they reach the 
threshold, the nodes can be removed from the network, thus 
eliminating them from causing future damage.   
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Figure 4: Experiment 2 – Level 0 faulty nodes 

Level 1 TIBFIT versus Baseline
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Figure 5: Experiment 2 – Level 1 faulty nodes 
The second graph for location estimation, shown in figure 

5, is for level 1 nodes. The result shows that even with 58% 
of the network compromised, TIBFIT’s accuracy remains 
over 90%. In contrast, the baseline model falls well below 
that level once the network reaches 40% malicious nodes. 
The reason for this trend is that the level 1 nodes lie with 
intention to keep them from being detected. In effect, the 
trust index forces the malicious nodes to lie less frequently 
and therefore helps to improve the accuracy of the event 
determination. 

Figure 6 shows results for level 2 malicious nodes. It 
shows that these nodes dramatically reduce the accuracy of 
the network, although the TIBFIT still outperforms the 
baseline model. It is clear from this figure that even the trust 
index has trouble tolerating level 2 type faults due to the 
collaborative nature of the nodes. 

Figure 7 shows level 0 nodes with concurrent events 
compared to single events, both simulations using TIBFIT. 
The concurrent events occur with uniform distribution 
simultaneously, although never within rerror of each other. 

The graph indicates that tolerating concurrent events does 
not significantly alter the success of the nodes in accurate 
detection of events. 
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Figure 6: Experiment 2 – Level 2 faulty nodes 
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Figure 7. Experiment 2 – Single and Concurrent 

Events 

4.3 Experiment 3 – Decay of Network 
The next simulation increases the percentage of the 

network compromised by malicious nodes linearly over time. 
The network is initialized with 5% of the network 
compromised by level 0 faulty nodes. After every 50 events 
5% more of the network is compromised until 75% of the 
network is compromised. 

Figure 8 and figure 9 show that over time TIBFIT 
outperforms the baseline model in all cases. This occurs 
because the trust indices of the faulty nodes decrease over 
time and the system can then handle the transition of some 
correct nodes to faulty nodes. It is important to compare only 
the lines with the same standard deviation parameters, 
because for some time the baseline model with 1.6-4.25 
outperforms the TIBFIT 2-4.25 case, although after a longer 
period of time the TIBFIT line does better, even though it has 
a higher fault rate in its correct nodes.  What is also notable 
is that the TIBFIT network maintains nearly 80% accuracy 
even with 60% of the network compromised. 
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Accuracy with Linear Increase in Faulty Nodes
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Figure 8: Experiment 3 – Linear increase in number 
of faulty nodes 

Accuracy with Linear Increase in Faulty Nodes
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Figure 9: Experiment 3 – Linear increase in number 
of faulty nodes 

5 Mathematical analysis 

In this section we analyze the probability associated with 
the CH successfully identifying a binary event in the 
presence of faulty nodes.  

Consider a baseline model with no trust indices assigned 
to the nodes. Let us assume that there are N event neighbors, 
of which m are faulty. The probability of a successful report 

from a correct node is p, and the probability of a successful 
report from a faulty node is q. Let X be the random variable 
that is the number of correct reports from correct nodes, and 
Y be the random variable indicating the same for the faulty 
nodes. They are defined: 
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N m
P k p p

k
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P k q q
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Y

− −

−
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The probability that the N-m correct nodes make k or 
more correct reports is therefore the sum of the probabilities 
from k to N-m, and from k to m for faulty nodes. Define the 
random variable Z=X+Y. We wish to know the probability 
that Z has a majority of the N votes, which is the probability 
that the event is successfully identified. The expressions are 
shown in equations 1, 2, and 3. These expressions map to 
Figure 10 with N=10, q=0.5, and p=0.99, 0.95, 0.90, 0.85. 

The accuracy begins to fall off steeply once fifty percent 
of the network is compromised. TIBFIT can tolerate both an 
increase in faulty nodes over time and more initial nodes 
being faulty, and will therefore outperform this baseline case. 
Next we will show how TIBFIT performs over time. 

Consider the TIBFIT model. Assume the network 
initializes with N nodes with 1 faulty node and N-1 correct 
nodes. We will corrupt the nodes in the network at a 
constant rate of one after every k events and show how the 
system still functions with 100% accuracy till N-3 nodes are 
corrupted, thereby outperforming the baseline case which 
drops in accuracy once 50% of the nodes in the system are 
compromised. Without loss of generality, let us assume that 
N is odd. We also make the simplifying assumption that 
correct nodes are always correct and the faulty nodes always 
fail. Let CTIcorrect be the CTI of the set of correct nodes and 
CTIfaulty be the CTI of the set of faulty nodes. 

After every k events a good node is compromised. After 
(N-2)*k rounds, total number of correct nodes is 3, and 
faulty nodes is N-3. CTIcorrect is 3 as correct nodes are always 
correct and each has a TI of one. After the first faulty report, 
the TI of a node becomes e(-λ). Therefore after k rounds, the 
TI of the faulty node would be e(-kλ). So, CTIfaulty for (N–3) 
faulty nodes when the newest addition to the faulty set has 
made k errors would be ( )22 N kk ke e e λλ λ − −− −+ + +K .  
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Figure 10. Expected accuracy of the network as the 

percentage of faulty nodes increases 

 
Figure 11. Variation of k with different λ values 

For the system to be 100% accurate, CTI of correct 
nodes (CTIcorrect) should always be greater than CTI of faulty 
nodes (CTIfaulty). For a correct node to be corrupted, CTIfaulty 
should be infinitesimally close to 1, so that CTIcorrect -1 > 
CTIfaulty+1 (a node is transferred from the good side to the 
bad side). We have the following expression: 

 ( )223 1 1 N kk ke e e λλ λ − −− −− > + + + +K ,     or         
( 1)

( 1)1
2 0 2 1

1

N k
k N k

k

e
e e

e

λ
λ λ

λ

− −
− − −

−

−
= → = − +

−
, which can be 

solved with Matlab.  
Figure 11 shows this expression for several different λ 

values. Wherever a given line crosses the x-axis that is the 
value of k and the number of rounds after which a good node 
can be made into a faulty node. Expectedly as λ increases, 
the frequency of nodes failing that can be tolerated increases 
since the TI degrades more rapidly with failures. It is for this 
reason we chose λ=0.25 for our simulations, so that we 
could create a fair number of data points but without needing 
a very large number of events to show the beneficial effects 
of TIBFIT. 

 The upper limit on k is the k necessary to make three 
good nodes tolerate an additional failure. We stop the 
analysis at two because once the system has two good nodes 
left then the sum of the faulty nodes’ trust indices must be 

less than zero to allow the addition of a bad node, which is 
impossible. When there are 3 good nodes left in the system, 
then 3 > CTIfaulty, where CTIfaulty = 3-ε, ε>0. After kmax 
rounds from this state, let us assume that one more correct 
node can be transferred to the faulty side. Therefore after 
kmax rounds the value of CTIfaulty should be = 1- ε before the 
transfer. Solving 3*e-kmaxλ =1-ε gives us 

max

1
ln 3 as 0k ε

λ
= → . Hence, the maximum number of 

rounds needed to tolerate another faulty node is 
1

ln 3
λ

.  

6 Related Work 

As in any sensor networks problems, we require a great 
deal of related material to ensure that our model accounts for 
the many challenges of creating a functioning wireless 
sensor network.  For instance, [18] gives an algorithm that 
guarantees reliable and fairly accurate output from different 
types of sensors when at most k out of n sensors are faulty. 
[17] gives a fault tolerant way of averaging sensor data, and 
the author also gives a control process to deal with 
individual sensor failures. [19] deals with multi-sensor data 
fusion and assumes that the biggest loss in sensor network 
efficiency is from sensor readings. They propose a method 
of handling sensor failures through substitution of another 
on-board sensor. [20], [21], and [22] provide techniques of 
localization for finding node position, such as triangulation 
and lateration. Nodes within sensing range of this mobile 
node must be able to determine the location of this node. 
Location determination efforts with directional antennas can 
aid in finding the location of such a mobile node. In [13] it is 
shown that given signal strength and attenuation model one 
can estimate sensor location. Given enough fixed anchor 
nodes Bagchi et al. present a technique for finding an 
unknown node within some range of error [12].  

There appears to be a dearth of existing work related to our 
specific topic of data fault tolerance in sensor networks. 
Schaeffer et al. discuss decision making concerned with 
propagating an alert through a network [7]. They set a 
threshold for event propagation, where if a node hears more 
than n nodes announce an alert then that node sounds the 
alert. They analyze the characteristics of this network with 
false alarms and missed alarms, where the evaluation is on 
whether the event notification reaches some data sink. They 
address natural faults exclusively and do not consider cases 
with faulty nodes colluding. 

Wagner discusses aggregation of data in a sensor network 
with malicious intruders in [10]. The author presents a 
mathematical framework for analyzing the vulnerabilities of 
common aggregation functions and then presents the 
mathematical basis for secure aggregation functions, such as 
average with trimming. The work presented here can 
complement this by providing trimming of some failing 
nodes so that the aggregation can work on the remaining 
data set. However, the paper does not address the problem of 
in network aggregation, which is covered here through the 
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analysis of failure prone CHs. It admits that the aggregation 
functions break down with more than half the network 
compromised. Also, the paper presents the case for 
aggregation with redundant deployments of cheap, crude 
sensor nodes.  

Koo shows an upper bound on the tolerance of a broadcast 
decision process as approximately 1/π of the network being 
compromised [1]. This model is proven theoretically with 
arbitrarily powerful malicious nodes.  

7 Conclusions 

We present a protocol called TIBFIT that maintains state 
for event decisions in a sensor network. This protocol can 
handle both binary event detection and event location 
estimation with high accuracy in the face of natural and 
malicious node failures within the network. The protocol 
outperforms the standard voting scheme for event detection. 
We also define two types of intelligent malicious fault 
models that can disrupt a network, and find that using TIBFIT 
malicious nodes acting independently are successfully 
tolerated. However, the accuracy of TIBFIT in a system of 
colluding nodes is not as high though it outperforms the 
baseline voting scheme. 

 There still remains much work to be done with this 
protocol. We would like to further explore the impact of 
different system parameters on performance. We would also 
like to make TIBFIT more robust against level 2 malicious 
nodes. Another step would be to explore more types of 
intelligent models involving different levels of collusion and 
decision sharing amongst malicious nodes. We would also 
like to develop a more extensive theoretical model to 
demonstrate correctness and predict system reliability under 
given constraints. Ultimately, we would like to implement 
the protocol in our hardware testbed of Berkeley motes to 
measure the resource consumption.  
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