
 1

 TIBFIT: Trust Index Based Fault Tolerance for Arbitrary Data Faults in Sensor
Networks

Mark Krasniewski, Padma Varadharajan, Bryan
Rabeler, Saurabh Bagchi

Dependable Computing Systems Lab
School of Electrical and Computer Engineering,

Purdue University
Email:{mkrasnie,pvaradha,brabeler,sbagchi}

@purdue.edu

Y.Charlie Hu
Distributed Systems & Networking Lab

School of Electrical and Computer Engineering,
Purdue University

Email: ychu@purdue.edu

Abstract
Since sensor data gathering is the primary functionality of
sensor networks, it is important to provide a fault tolerant
method for reasoning about sensed events in the face of
arbitrary failures of nodes sending in the event reports. In
this paper, we propose a protocol called TIBFIT to diagnose
and mask arbitrary node failures in an event-driven wireless
sensor network. In our system model, sensor nodes are
organized into clusters with rotating cluster heads. The
nodes, including the cluster head, can fail in an arbitrary
manner generating missed event reports, false reports, or
wrong location reports. Correct nodes are also allowed to
make occasional natural errors. Each node is assigned a
trust index to indicate its track record in reporting past
events correctly. The cluster head analyzes the event reports
using the trust index and makes event decisions. TIBFIT is
analyzed and simulated using the network simulator ns-2
and its coverage evaluated with a varying number and
varying intelligence of the malicious nodes. We show that
once TIBFIT gathers enough system state, accurate event
detection is possible even if more than 50% of the network
nodes are compromised.
Keywords: Sensor networks, secure and intrusion tolerant
systems, trust index, arbitrary data faults, event aggregation.

1 Introduction

Recent innovations made in the fields of electronics and
wireless communication have enabled the advent of sensor
networks. These networks comprising of thousands of
inexpensive sensor nodes can be set up with relative ease by
placing the nodes in predefined locations manually or
through the use of robots, as well as by random deployment
of self-organizing nodes. A wide gamut of applications
ranging from health, home, environmental to military and
defense make use of sensor nodes for collection of
appropriate data. The sensor nodes comprising of data
collecting, processing, and transmitting units are very small
in size and can be densely deployed owing to their low cost.

Sensor nodes have serious limitations in available
resources, such as power, memory, and processing ability[2].

The sensor nodes and wireless links are prone to failure,
while the network is also open to various malicious attacks.
While significant research has been done in the areas of
communication architecture, routing, and energy
conservation in sensor networks, development of fault
tolerance in this highly volatile scenario remains an
interesting open research issue. Conventional fault tolerance
and intrusion tolerance protocols do not translate well to the
sensor network domain due to its large scale and the
resource constraints on the sensor nodes.

In this paper we consider fault tolerance in an event
driven model for sensing. An event driven model of
behavior for sensing finds many applications in civilian,
military as well as industrial scenarios. Examples could be
seismic monitoring to detect and locate tremors in a given
area, or military applications to sense any movement within
a cordoned-off area. The inherent unreliability of sensor
nodes makes fault tolerance in such an environment an
important concern. The problem is essentially one of
aggregating data from multiple sensor nodes to decide if an
event has occurred and determining the location of the event,
in the face of natural and malicious failures in both the
sensing nodes as well as the aggregating nodes. In particular,
our approach looks at arbitrary faults in the sensor networks,
whether natural or malicious. Natural arbitrary faults may
arise suddenly and intermittently in sensor networks, thereby
causing a node to miss reporting an event (missed alarms) or
falsely reporting an event that has not occurred (false
alarms). Malicious faults occur when some nodes in the
network have been compromised by an adversary. This
adversary can make the nodes send out corrupt information
intended to adversely affect the data gathering role of the
network. These malicious nodes, depending on their level of
intelligence, may have some knowledge of how the network
functions and can to behave in a manner to escape detection.

The goal of the proposed TIBFIT protocol involves event
detection and location determination in the presence of
faulty sensor nodes, coupled with diagnosis and isolation of
faulty or malicious nodes. The accuracy of the system is
defined in terms of fraction of instances when an event
occurrence is correctly detected, and its location determined
within the given error bound.

 2

The approach followed by the protocol is to maintain
state of the sensing nodes in terms of the fidelity of their
previous sensing actions, and use this information in making
decisions involving those sensing nodes. Sensor nodes report
the occurrence and location of events to a data sink, and
remain silent otherwise. The data sink then decides on
whether the event occurred and where based on the
aggregated data. To determine the location of the event the
data sink must aggregate all reports from nodes within the
detection radius. The aggregation could be a simple voting
scheme. However voting is a stateless approach and does not
reflect on the past performances of the sensing nodes. TIBFIT
introduces a new parameter called trust index for this
purpose. The Trust Index (referred to as TI) of a node is a
quantitative measure of the fidelity of previous event reports
of that node as seen by the data sink. In a system comprised
of sensing nodes, the data sink assigns and maintains a TI
for each node in its domain, and does voting in a stateful
manner. As the system runs over a longer time, more state is
built up concerning the performance of the associated
sensing nodes, and hence tolerance for faults also goes up
accordingly. So while the simple voting approach falls apart
when more than 50% of the nodes within detection range of
the event are corrupted, TIBFIT can tolerate faults in a
network with more than 50% of its nodes compromised after
it has built up adequate state of the nodes.

To demonstrate the effectiveness of TIBFIT, we use an
event-driven simulation with ns-2. All nodes are considered
liable to fail, whether in a natural or a malicious manner. We
group the nodes into four categories: a) non-faulty nodes that
naturally fault some percentage of the time; b) faulty nodes
that err randomly; c) malicious nodes working independently
that err occasionally and attempt to subvert the system but
also try to remain undetected; d) malicious nodes that
collaborate and err occasionally and attempt to subvert the
system but also try to remain undetected. We show through
simulation that TIBFIT is capable of accurately detecting and
determining locations of events even when more than 50%
of the network is compromised. Finally we also simulate a
system that has a gradually increasing number of malicious
nodes and analyze the accuracy of the system.
The main contributions of this paper are the following:
1. TIBFIT tolerates nodes that fail both naturally and

maliciously, and makes decisions on event occurrence
as well as location. Under several scenarios, accurate
event determination and localization can be done even
with more than 50% of the network compromised. We
also demonstrate diagnosis and limited recovery in the
system.

2. No nodes are considered immune to failure, whether
they are sensing nodes or the data sink.

3. We have come up with an adversary model with
increasing levels of sophistication and demonstrate the
effectiveness of the protocol in each case.

4. The protocol is generic and can be applied to any data
sensing and aggregation application in sensor networks.

The rest of the paper is organized as follows. First, we
discuss the parameters of our system model in Section 2, we

discuss TIBFIT design in Section 3, the simulation
implementation and results in Section 4, the analysis of
TIBFIT in Section 5, related work in Section 6, and
conclusions in Section 7.

2 System Model

All nodes in the network are identical and are arranged
into disjoint clusters, each with a set of cluster heads (CHs),
only one of which is active at any point in time. The CH
serves as the data sink for its particular cluster. The nodes in
a cluster are within one hop communication of the CH. The
clusters themselves are formed randomly around the elected
CHs. The CHs are rotated over time and CH election is
based on energy-related parameters of the constituent nodes.
In each cluster, the node that is chosen to be the CH knows
the topology of the cluster. Nodes that are within the
detection range of an event are called event neighbors for
that event. This topology is illustrated in figure 1.

Figure 1: Event detection

When an event occurs, all the event neighbors are expected
to report the occurrence of the event to the CH. The CH
makes a decision on whether the event has occurred based
on the reports received from the event neighbors and their
trust indices. A detailed description of the TI model follows
in Section 3.

The sensor network is deployed by placing the nodes
randomly in the network. It is assumed that the nodes have
the ability to determine their own locations. This can be
accomplished through GPS mechanisms, deploying nodes
with deterministic mobility in known locations and using
triangulation methods to compute their positions as functions
of time, etc. Further discussion is beyond the scope of this
paper. The locations of the nodes at a given time are known
to the CHs, but not necessarily to the non-CH nodes. The
network could be stationary or mobile, as long as it is
possible for the CH to estimate the positions of its cluster
nodes during decision making. The sensor nodes function in
an event-driven model, that is, they sense the environment
for occurrence of a particular detection-level event and
transmit data only if they sense such an event. We will
assume that the event is typically detectable by multiple
nodes, which makes our protocol practical. This assumption
is not unreasonable for many practical sensor deployments.

We adopt the low energy, adaptive hierarchical
clustering protocol (LEACH), for cluster formation as well

Transmission range of N2

Node N2

Event to be detected

Cluster Head

Event Neighbors

Other nodes in the cluster

Event detection range

 3

as CH election [3],[4]. This protocol architecture aids in the
formation of self-organizing clusters, with dynamically
chosen CHs. Each node is assigned a probability of
becoming a CH at the beginning of each round, which
depends on the number of times it has been made CH
previously and the energy available in the node. These
properties help spread energy usage equally throughout the
network. We have also incorporated the TI of the node as an
additional parameter to be considered for CH election. The
TI of the node has to be higher than a threshold value to
ensure that only sufficiently trusted nodes can become CHs.
This is not a property of the original LEACH protocol.

Each node independently decides if it wishes to be a CH.
Once a node decides to become a CH, it broadcasts this
information. Any node that receives advertisements from n
different contending CHs, affiliates itself with a single CH
based on the strength of the signal received. If a node’s TI is
below a certain threshold, the central base station will cancel
this node’s effort to become a CH and re-initiate CH election.
A CH that reaches the end of its leadership period sends the
aggregate TI information that it has gathered for all nodes in
its cluster to the base station before ending its leadership. A
newly CH elected for an existing cluster requests the base
station for TI information for nodes in its cluster.

We group event detection into two categories – binary
event detection and event detection with location
determination. Binary event detection leads to the system
recognizing the occurrence of the event with a binary
decision about whether it happened or not and not being
concerned with the location of the event. An example could
be detection of a forest fire based on the temperature
reaching a critical threshold. Location determination is when
the coordinates of the event are also reported by the sensing
node. In the forest fire example, the sensor can detect
environmental changes such as wind and variation in light
intensity in a direction and estimate the location of the
oncoming fire.

2.1 Failure Model
The nodes in the network may fail due to accidental

failures or may be compromised by an adversary and
therefore exhibit failure due to malicious causes. Three types
of failure scenarios are possible. A node may have a missed
alarm where it does not report an event within its sensing
radius to the data sink within a specified time. A node may
provide a false alarm where it either reports an event outside
of its sensing radius or reports an event within its sensing
radius that did not occur. A node may exhibit a location
faults where it reports an event but at the wrong location.
Flooding based denial of service (DoS) attacks are not
considered in this paper.

Four categories of sensing nodes are identified. Correct
nodes are not assumed to be 100% accurate, but are expected
to make errors within a specified bound referred to as
natural error rate. Faulty nodes form the superset for nodes
with natural or malicious failures. A faulty node can exhibit
naïve behavior in terms of randomly sending out corrupt
information following no specific pattern. The node lies

arbitrarily, either in dropping an event report, falsely
reporting an event, or reporting a faulty location (level 0). A
smart faulty node is aware partially of the system model and
tries to retain its TI at a reasonably high level where it
estimates it will not be detected and isolated. If a malicious
node’s TI is reaching a level at which it will either be
dropped from the network or its vote has too little influence
on the event decision, then the node will stop lying until its
TI is raised sufficiently. The smart faulty nodes may lie
independently (level 1) or in collusion (level 2). The
colluding nodes are assumed to be connected in a way that is
undetectable by the reliable nodes in the network.

3 Basic Design

The goal of the TIBFIT protocol is to determine whether
an event has occurred from analyzing reports from the event
neighbors. To combat failures in the reporting nodes, each
node is assigned a TI, maintained at the CH, to indicate its
track record in reporting past events correctly. The TI is a
real number between zero and one and is initially set to one.
For each report a node makes that is deemed incorrect by the
CH, the node’s TI is decreased. Similarly, for each report a
node makes that is deemed correct by the CH, the node’s TI
is increased, but not beyond one. Thus correctly functioning
nodes will have a TI approaching one while faulty and
malicious nodes will have a lower TI.

We assume that correct nodes are allowed to make
occasional errors due to natural causes. The rate of these
errors is denoted the natural error rate (NER). The TI is
decremented exponentially. Nodes that make mistakes are
penalized more for earlier mistakes, and find it more
difficult to regain their previous trust levels. This is
considered better than a linear model where a node that lies
50% of the time would still occasionally have the trust index
value of one. If a node errs more frequently than its NER its
index decreases, while if it errs less frequently then its index
increases.

The TI is calculated as follows. Let the natural error rate
be fr (<1). A variable v is maintained for each node at the CH.
Each time a node makes a report deemed faulty by the CH
its v is incremented by the expression 1-fr. Each time a node
makes a report deemed to be correct by the CH its v is
decreased by fr if v is larger than zero. The TI is calculated
as

TI = e-λv
where λ is a proportionality constant that is application
dependent. An uncompromised node’s TI is expected to
remain at the same value. It can be expected to suffer a fault
at the rate of one per every 1/fr events and the expected
change in v is:

0*11)1(][=

−−−=∆ r

r
r f

f
fvE

The design of the protocol is explained next by successively
relaxing some simplifying assumptions.

 4

3.1 Binary Events
Let us initially assume that event reports are binary in

nature simply specifying whether the event has occurred or
not. All the nodes in the cluster, say k, are event neighbors
for any event detected by the cluster. A sensing node can
detect the occurrence of an event perfectly for events that
happen within a radius rs surrounding the node. All the
nodes within radius rs of an event E are called event
neighbors for E.

After the CH receives the first event report, it calculates
the k event neighbors for the event. The CH then waits for a
predefined interval of time Tout for event reports to be
received from these nodes. After Tout has elapsed, the CH
partitions the event neighbors into two sets R and NR based
on whether they have reported the occurrence of the event or
not, respectively. The trust indices of each group are
summed and the group with the higher cumulative TI (CTI)
wins out. The trust index values of nodes in the winning
group are increased while the index values of nodes in the
losing group are decreased according to the formula given
above. It should be noted that a smaller group of reliable
nodes can win the vote against a larger group of unreliable
nodes based on higher TI for the individual reliable nodes
earned over past events. This process provides detection,
diagnosis, and masking of the fault.

It is evident that we do not need a TI model for a system
with faulty nodes in the minority. A simple voting would
suffice to mask the decision of the faulty nodes. However,
consider a system where the density of faulty nodes
increases over time. Examples could be batteries of the
nodes dying out with time, or existing nodes being
compromised by adversaries. The faulty nodes that have
been in operation for a while would have had their TIs
reduced to low values. Hence even when the total number of
faulty nodes is in a majority, their CTI may still be lower
than that of the correct nodes. Hence, TIBFIT can lead to
correct aggregation as well as diagnosis even with more than
50% of the nodes compromised. It is obvious that if the
initial condition consists of faulty nodes being in the
majority, then the protocol will be unsuccessful in tolerating
faults. After time, the system can identify a faulty node
when its TI falls below a certain threshold. It can then be
removed from the network.

3.2 Location Determination
In this section we build on the previous model by adding

location details to the event reports. The event report
consists of location in terms of (r, Θ) with respect to that
node. The nodes do not sense the location of the event
perfectly and the CH must determine the actual location of
the event. One sensor network problem that can be solved
through this extension is where a network is attempting to
track a mobile sensor node that is transmitting a signal as it
moves throughout the network.
Simplifying Assumptions: Let us assume there is a time
difference of at least Tout between any two events to avoid
overlapping event neighbors. A correct event report sent in

by a sensing node reports the location of an event to within a
radius rerror surrounding the event.

Once time Tout has elapsed after the first event report, let
there be k other reports that have come in from the nodes in
the cluster during this time. The CH performs a clustering
algorithm based on K-Means which groups these k event
reports into a number of event clusters based on the
locations indicated by the reports [14]. Each event cluster
represents a possible location where the event could have
occurred, as indicated by the reports. The clustering
algorithm is a heuristic based on K-Means, so as to minimize
the sum of squares error.

Goal of the algorithm presented below is to organize the
event reports into disjoint event clusters of radius rerror. Let C
be the set of all event clusters consisting of elements {C1,
C2…Cr}. Let {c1, c2…cr} be the centers around which the
event clusters {C1, C2…Cr} are formed. Let d(x, y) denote
the distance between two points x and y. d(ci, cj) > rerror ∀ Ci,
Cj ∈ C. Ck.cg (Center of gravity) denotes the average
location indicated by all event reports in cluster Ck.

 Event clusters are created using the following procedure.
(1) The clustering algorithm is started once Tout has elapsed

after the first event report. The set of all event reports in
this time Tout is referred to as E. The distances between
each pair of event reports are computed and sorted in a
2D array.

(2) Let E1 and E2 be event reports from the set E with the
greatest distance between them. Event clusters C1 and
C2 are created with E1 and E2 as centers, and C1, C2 are
added to C.

(3) Condition for any event report Ek to form a separate
event cluster is that d(Ek, ci) > rerror ∀Ci ∈C. The set E is
iterated through and the set of all cluster centers are
identified, so that the remaining event reports are at a
distance of less than rerror from at least one element in C,
i.e., the remaining event reports cannot form separate
event clusters.

(4) Once the initial set of clusters in C are formed,
remaining event reports in E are added to one of the
clusters in C based on which cluster center it is nearest
to. Ck.cg for the clusters are updated appropriately.

(5) If the centers of two or more clusters lie within rerror of
each other the clustering algorithm is repeated by
forming a new cluster center at the weighted average of
these centers. The rounds are executed until no change
in cluster constituency takes place in a new round.

The final elements in C represent the set of all events.
Ck.cg represents the location of the event k. The event
neighbors can be determined for the location determined and
a determination of whether an event has occurred is made
based on the trust indices of the associated nodes as in
Section 3.1. This design successfully throws out event
reports from nodes that make a localization error of more
than rerror.

3.3 Concurrent Events
Additions: In this section we build on the previous model by
assuming that multiple events can occur within Tout of each

 5

other (referred to as concurrent events from here on). We
however assume that concurrent events cannot occur closer
than a distance of rerror.
(1) When the CH receives the first event report E1, a

symbolic circle of radius rerror is drawn around it. A new
timer E1.Tout is started for the associated event reports
from other event neighbors to come in. All subsequent
events that lie within rerror of E1 reported within time
Tout are added to the same circle.

(2) If any subsequent event report Ek received lies outside
this circle, a new circle of radius rerror is formed with
this event report Ek as its center. Associated Ek.Tout is
started.

(3) Once time Ek.Tout has passed from the reception of event
report Ek that is the center of a circle, all the event
reports inside this circle are put into a group and the
clustering algorithm described in the previous section is
performed on them to determine the location of the
event.

(4) However if one or more other circles overlap with this
circle, then the CH must wait until time Tout has elapsed
for all such overlapping circles. The clustering
algorithm is performed on the union of all event reports
in all the overlapping circles to determine the event
clusters and thus how many events have actually
occurred.

3.4 Unreliable Cluster Heads
Though the CHs are chosen based on high TI values, it is

still possible for a selected CH to fail. To combat this
problem we assign two additional shadow cluster heads
(SCH) to each cluster such that the SCHs can monitor all
input and output traffic associated with the selected CH. The
SCHs themselves may be considered to be reliable as they
are chosen based on the fact that they have the highest trust
indices among nodes within one hop of the CH. The SCHs
listen in to the communication going in and out of the CH
and perform all the functions as the CH except transmitting
the aggregated event reports to the base station. On
perceiving a wrong conclusion being drawn at the CH based
on the input data, the SCHs also send the result of their own
computations to the base station. The base station, on
receiving data from all CHs in the cluster, does a simple
voting to arrive at the right conclusion. It also prompts CH
election in that cluster to pick a new CH and reduces the TI
of the previous faulty CH. Thus, only a single CH failure can
be tolerated.

TIBFIT can also be extended to scenarios where the
sensing nodes are more than one hop away from the data
sink. The data sink still needs to know the location of the
constituent node and reliable data dissemination primitive
needs to be introduced to ensure that the data sent out by the
sensing nodes reliably reach the data sink without alteration
[15],[16].

4 Simulation

The TIBFIT protocol is simulated using the network
simulator – ns-2 [6]. A sensing radius of 20 units is
considered. Events are generated at regular time intervals by
the event generator, using a uniform random variable to
generate X and Y coordinates uniformly distributed in the
network. The event generator informs the event neighbors of
the event and its location.

We run three different experiments. In experiment 1 we
show the accuracy of the binary event model versus
percentage of the network compromised by level 0 faulty
nodes. In experiment 2 we show the accuracy of the location
event model versus percentage of the network compromised
by level 0, 1, and 2 faulty nodes. In experiment 3 we show
the accuracy of the location event model versus time, where
the percentage of the network compromised increases
linearly over time.

For each simulation we use either the TIBFIT system that
uses the trust index, or we use the baseline system, which
uses majority voting to make event decisions. Experiments
are run with faulty nodes belonging to only one level for a
given experiment. Nodes are stationary in all experiments.

4.1 Experiment 1 – Binary Events
A cluster of ten nodes is formed, and all nodes are

considered event neighbors for every randomized event.
Level 0 faulty nodes are used for the fault model, generating
both missed alarms and false alarms. The CH makes a
decision regarding occurrence of the event based on the data
forwarded to it from the sensing nodes.

Type of Event Binary Event Model
Independent Variable Percentage Faulty Nodes:

varied from 40%-90%
Correct Nodes NER 0, 1, and 5%
Faulty Nodes NER Level 0:Missed Alarm 50%

False alarm 0,10, and 75%
Size of network 10 sensing nodes, 1 CH
Number of Event neighbors 10
Events per simulation 100
 λ 0.1
Fault rate (fr) Same as NER

Table 1: Parameters for Experiment 1
For this experiment we started simulations with 40% of the

network compromised. As Section 5 shows, even for the
baseline system, the probability of failure with less than 40%
of the network compromised is very small, and therefore not
simulated.

The results in figure 2 include only missed alarms. The
most noteworthy result from this experiment is that the
network can have 70% of its nodes compromised and still
maintain over 85% accuracy. This result is superior to the
analytical results shown in figure 10 in Section 5.

 6

Accuracy of Detection

40

60

80

100

40 50 60 70 80 90

Percentage Network Compromised

A
cc

ur
ac

y

NER = 0% NER = 1% NER = 5%

Figure 2: Experiment 1 – 50% accurate faulty
Nodes, missed alarms only

Accuracy of Detection, NER=1%

40

60

80

100

40 50 60 70 80 90
Percentage Network Compromised

A
cc

ur
ac

y

0% False Alarms 10% False Alarms
75% False Alarms

Figure 3: Experiment 1 – 50% accurate faulty nodes,

missed alarms and false alarms
Figure 3 shows the simulation with both false alarms and

missed alarms from faulty nodes. All correct nodes have 1%
NER. Again, the network performance starts to degrade with
70% faulty nodes. The interesting results is that 75% false
alarms shows the best accuracy when less than 80% of the
network is compromised, indicating that the excessive false
alarms lower faulty nodes’ TIs and therefore increase system
reliability. At 80% faulty nodes with 75% false alarms,
accuracy falls dramatically, as the system is no longer able
to tolerate the excessive false alarms. 10% false alarms
maintains the highest accuracy at this point, indicating that
occasional false alarms lower faulty nodes’ trust indices
enough to outperform 0% false alarms.

4.2 Experiment 2 – Location Determination
Model

In the second type of simulation, 100 nodes are placed
uniformly on a 100X100 grid. The CHs and event generator
are two other entities present in the network. The CH
decides on both the occurrence of the event as well as its
location. The network is a single cluster, and the CH knows

the positions of all 100 nodes. All nodes can reach the CH in
a single hop. For location estimation rerror is 5 units. Table 2
shows various experimental parameters for this experiment.
Due to the ns-2 wireless model, correct nodes’ packets are
naturally dropped less than 1% of the time.

A lower threshold (lowerTI) of 0.5 is used for level 1 and
level 2 nodes to ensure their trust indices do not fall too low.
If they reach the lower threshold they behave like a correct
node until they reach an upper threshold (upperTI) of 0.8,
after which they begin erring again. Each node reports an
event with error in both the X and Y directions as dictated
by a Gaussian random variable with standard deviation σ.

Type of Event Location Determination

Concurrent or single events
Independent variable Percentage faulty nodes,

varied from 10%-58%
Error rate for correct nodes Location report has std.

deviation of 1.6 or 2.0
Error rate for faulty nodes
(levels 0, 1, and 2)

Location report has std.
dev. of 4.25 or 6.0, drop
packets 25% of the time

Size of network 100 sensing nodes, 5 CH
Number of event neighbors Variable on location
λ 0.25
Fault rate (fr) 0.1 (different from NER to

compensate for wireless
channel model losses)

Table 2: Parameters for Experiment 2
The error percentage indicated in Table 2 is calculated as

the joint probability distribution of the two Gaussian rv’s,
which are Rayleigh distributed, and it indicates the
probability a node reports an event more than 5 units away
from the actual event location. The standard deviation for a
correct node is much less than that for a faulty node. Level 1
nodes work independently, while level 2 nodes collude with
each other and all either send the event report for the same
location or do not send the event report.

This experiment initialized a network with a percentage of
the network compromised by Level 0, 1, or 2 malicious
nodes. 58% was the upper limit for the compromised
network as past this point the system did not work with
much accuracy. The output accuracy metric was the number
of events detected by the CH within rerror of the actual event.
Simulations are run with both concurrent and single events.
The legend format for all the result figures from this point on
is “Lvl M W-Z [TIBFIT or Baseline]”, where M is the type of
malicious node used, W is the standard deviation of the
correct nodes, Z is the standard deviation of the malicious
nodes, and the final parameter is whether the TIBFIT or the
baseline model was used.

The results in figure 4 show that at low percentages of the
network compromised, the TIBFIT system and the baseline
system perform similarly. However, after 40% of the
network is compromised, the TIBFIT model performs better
than the baseline model by at least 7% percent, and by as
much as 20% percent. More importantly, TIBFIT has
accuracy near 80% even with faulty nodes having errors

 7

70% of the time. A consequence of the execution of the
network with TIBFIT is that the trust index values of the
faulty nodes continue to decrease and once they reach the
threshold, the nodes can be removed from the network, thus
eliminating them from causing future damage.

Level 0 TIBFIT versus Baseline

40

50

60

70

80

90

100

10 20 30 40 50 55 58
Percentage Network Compromised

A
cc

ur
ac

y

Lvl 0 2-6 Baseline Lvl 0 2-6 TibFit
Lvl 0 1.6-6 Baseline Lvl 0 1.6-6 TibFit

Figure 4: Experiment 2 – Level 0 faulty nodes

Level 1 TIBFIT versus Baseline

40

50

60

70

80

90

100

10 20 30 40 50 55 58

Percentage Network Compromised

A
cc

ur
ac

y

Lvl 1 2-6 without TI Lvl 1 2-6 with TI
Lvl 1 1.6-6 without TI Lvl 1 1.6-6 with TI

Figure 5: Experiment 2 – Level 1 faulty nodes
The second graph for location estimation, shown in figure

5, is for level 1 nodes. The result shows that even with 58%
of the network compromised, TIBFIT’s accuracy remains
over 90%. In contrast, the baseline model falls well below
that level once the network reaches 40% malicious nodes.
The reason for this trend is that the level 1 nodes lie with
intention to keep them from being detected. In effect, the
trust index forces the malicious nodes to lie less frequently
and therefore helps to improve the accuracy of the event
determination.

Figure 6 shows results for level 2 malicious nodes. It
shows that these nodes dramatically reduce the accuracy of
the network, although the TIBFIT still outperforms the
baseline model. It is clear from this figure that even the trust
index has trouble tolerating level 2 type faults due to the
collaborative nature of the nodes.

Figure 7 shows level 0 nodes with concurrent events
compared to single events, both simulations using TIBFIT.
The concurrent events occur with uniform distribution
simultaneously, although never within rerror of each other.

The graph indicates that tolerating concurrent events does
not significantly alter the success of the nodes in accurate
detection of events.

Level 2 TIBFIT versus Baseline

30

40

50

60

70

80

90

100

10 20 30 40 50 55 58
Percentage Network Compromised

A
cc

ur
ac

y

Lvl 2 2-6 Baseline Lvl 2 2-6 TibFit
Lvl 2 1.6-6 Baseline Lvl 2 1.6-6 TibFit

Figure 6: Experiment 2 – Level 2 faulty nodes

Level 0 Concurrent vs. Single Events

70

75

80

85

90

95

100

10 20 30 40 50

Percentage Network Compromised

A
cc

ur
ac

y

Lvl 0 1.6-4.25 Single Lvl 0 1.6-4.25 Concurrent
Lvl 0 2-4.25 Single Lvl 0 2-4.25 Concurrent

Figure 7. Experiment 2 – Single and Concurrent

Events

4.3 Experiment 3 – Decay of Network
The next simulation increases the percentage of the

network compromised by malicious nodes linearly over time.
The network is initialized with 5% of the network
compromised by level 0 faulty nodes. After every 50 events
5% more of the network is compromised until 75% of the
network is compromised.

Figure 8 and figure 9 show that over time TIBFIT
outperforms the baseline model in all cases. This occurs
because the trust indices of the faulty nodes decrease over
time and the system can then handle the transition of some
correct nodes to faulty nodes. It is important to compare only
the lines with the same standard deviation parameters,
because for some time the baseline model with 1.6-4.25
outperforms the TIBFIT 2-4.25 case, although after a longer
period of time the TIBFIT line does better, even though it has
a higher fault rate in its correct nodes. What is also notable
is that the TIBFIT network maintains nearly 80% accuracy
even with 60% of the network compromised.

 8

Accuracy with Linear Increase in Faulty Nodes

0.2

0.4

0.6

0.8

1

50 150 250 350 450 550 650 750

Number of Events that have Occurred

A
cc

ur
ac

y

Lvl 0 1.6-6 Baseline Lvl 0 2-6 Baseline
Lvl 0 2-6 TibFit Lvl 0 1.6-6 TibFit

Figure 8: Experiment 3 – Linear increase in number
of faulty nodes

Accuracy with Linear Increase in Faulty Nodes

0.5

0.6

0.7

0.8

0.9

1

50 150 250 350 450 550 650 750

Numbers of Events that have Occurred

A
cc

ur
ac

y

Lvl 0 2-4.25 Baseline Lvl 0 1.6-4.25 Baseline
Lvl 0 1.6-4.25 TibFit Lvl 0 2-4.25 TibFit

Figure 9: Experiment 3 – Linear increase in number
of faulty nodes

5 Mathematical analysis

In this section we analyze the probability associated with
the CH successfully identifying a binary event in the
presence of faulty nodes.

Consider a baseline model with no trust indices assigned
to the nodes. Let us assume that there are N event neighbors,
of which m are faulty. The probability of a successful report

from a correct node is p, and the probability of a successful
report from a faulty node is q. Let X be the random variable
that is the number of correct reports from correct nodes, and
Y be the random variable indicating the same for the faulty
nodes. They are defined:

()

()

{ } 1

{ } 1

N m kk

m kk

N m
P k p p

k

m
P k q q

k

X

Y

− −

−

−
= = −

= = −

The probability that the N-m correct nodes make k or
more correct reports is therefore the sum of the probabilities
from k to N-m, and from k to m for faulty nodes. Define the
random variable Z=X+Y. We wish to know the probability
that Z has a majority of the N votes, which is the probability
that the event is successfully identified. The expressions are
shown in equations 1, 2, and 3. These expressions map to
Figure 10 with N=10, q=0.5, and p=0.99, 0.95, 0.90, 0.85.

The accuracy begins to fall off steeply once fifty percent
of the network is compromised. TIBFIT can tolerate both an
increase in faulty nodes over time and more initial nodes
being faulty, and will therefore outperform this baseline case.
Next we will show how TIBFIT performs over time.

Consider the TIBFIT model. Assume the network
initializes with N nodes with 1 faulty node and N-1 correct
nodes. We will corrupt the nodes in the network at a
constant rate of one after every k events and show how the
system still functions with 100% accuracy till N-3 nodes are
corrupted, thereby outperforming the baseline case which
drops in accuracy once 50% of the nodes in the system are
compromised. Without loss of generality, let us assume that
N is odd. We also make the simplifying assumption that
correct nodes are always correct and the faulty nodes always
fail. Let CTIcorrect be the CTI of the set of correct nodes and
CTIfaulty be the CTI of the set of faulty nodes.

After every k events a good node is compromised. After
(N-2)*k rounds, total number of correct nodes is 3, and
faulty nodes is N-3. CTIcorrect is 3 as correct nodes are always
correct and each has a TI of one. After the first faulty report,
the TI of a node becomes e(-λ). Therefore after k rounds, the
TI of the faulty node would be e(-kλ). So, CTIfaulty for (N–3)
faulty nodes when the newest addition to the faulty set has
made k errors would be ()22 N kk ke e e λλ λ − −− −+ + +K .

()

/ 2

1

mi

2

() 1 , now let (1)
2 2 2

() * 1 * * (1)

N

j

N m kk i m i

N
k j m

N N N
P success P Z P Z j i j k

N m m
P success p p q q

k i

=

− − −

= + −

= ≥ + = = + = + −

−
= − −

∑

()

n ,
/ 2 2

1

min ,
/ 2 2

1 ()
2

 (2)

() * 1 * * (1) (3)

N
j N m

N

j

N
j m

N
m kk i N m i

Nj k j N m

m N m

m N m
P success q q p p m N m

k i

+ −

=

+

− − −

= = + − −

≤ −

−
= − − > −

∑ ∑

∑ ∑

K

K

 9

Figure 10. Expected accuracy of the network as the

percentage of faulty nodes increases

Figure 11. Variation of k with different λ values

For the system to be 100% accurate, CTI of correct
nodes (CTIcorrect) should always be greater than CTI of faulty
nodes (CTIfaulty). For a correct node to be corrupted, CTIfaulty
should be infinitesimally close to 1, so that CTIcorrect -1 >
CTIfaulty+1 (a node is transferred from the good side to the
bad side). We have the following expression:

 ()223 1 1 N kk ke e e λλ λ − −− −− > + + + +K , or
(1)

(1)1
2 0 2 1

1

N k
k N k

k

e
e e

e

λ
λ λ

λ

− −
− − −

−

−
= → = − +

−
, which can be

solved with Matlab.
Figure 11 shows this expression for several different λ

values. Wherever a given line crosses the x-axis that is the
value of k and the number of rounds after which a good node
can be made into a faulty node. Expectedly as λ increases,
the frequency of nodes failing that can be tolerated increases
since the TI degrades more rapidly with failures. It is for this
reason we chose λ=0.25 for our simulations, so that we
could create a fair number of data points but without needing
a very large number of events to show the beneficial effects
of TIBFIT.

 The upper limit on k is the k necessary to make three
good nodes tolerate an additional failure. We stop the
analysis at two because once the system has two good nodes
left then the sum of the faulty nodes’ trust indices must be

less than zero to allow the addition of a bad node, which is
impossible. When there are 3 good nodes left in the system,
then 3 > CTIfaulty, where CTIfaulty = 3-ε, ε>0. After kmax
rounds from this state, let us assume that one more correct
node can be transferred to the faulty side. Therefore after
kmax rounds the value of CTIfaulty should be = 1- ε before the
transfer. Solving 3*e-kmaxλ =1-ε gives us

max

1
ln 3 as 0k ε

λ
= → . Hence, the maximum number of

rounds needed to tolerate another faulty node is
1

ln 3
λ

.

6 Related Work

As in any sensor networks problems, we require a great
deal of related material to ensure that our model accounts for
the many challenges of creating a functioning wireless
sensor network. For instance, [18] gives an algorithm that
guarantees reliable and fairly accurate output from different
types of sensors when at most k out of n sensors are faulty.
[17] gives a fault tolerant way of averaging sensor data, and
the author also gives a control process to deal with
individual sensor failures. [19] deals with multi-sensor data
fusion and assumes that the biggest loss in sensor network
efficiency is from sensor readings. They propose a method
of handling sensor failures through substitution of another
on-board sensor. [20], [21], and [22] provide techniques of
localization for finding node position, such as triangulation
and lateration. Nodes within sensing range of this mobile
node must be able to determine the location of this node.
Location determination efforts with directional antennas can
aid in finding the location of such a mobile node. In [13] it is
shown that given signal strength and attenuation model one
can estimate sensor location. Given enough fixed anchor
nodes Bagchi et al. present a technique for finding an
unknown node within some range of error [12].

There appears to be a dearth of existing work related to our
specific topic of data fault tolerance in sensor networks.
Schaeffer et al. discuss decision making concerned with
propagating an alert through a network [7]. They set a
threshold for event propagation, where if a node hears more
than n nodes announce an alert then that node sounds the
alert. They analyze the characteristics of this network with
false alarms and missed alarms, where the evaluation is on
whether the event notification reaches some data sink. They
address natural faults exclusively and do not consider cases
with faulty nodes colluding.

Wagner discusses aggregation of data in a sensor network
with malicious intruders in [10]. The author presents a
mathematical framework for analyzing the vulnerabilities of
common aggregation functions and then presents the
mathematical basis for secure aggregation functions, such as
average with trimming. The work presented here can
complement this by providing trimming of some failing
nodes so that the aggregation can work on the remaining
data set. However, the paper does not address the problem of
in network aggregation, which is covered here through the

 10

analysis of failure prone CHs. It admits that the aggregation
functions break down with more than half the network
compromised. Also, the paper presents the case for
aggregation with redundant deployments of cheap, crude
sensor nodes.

Koo shows an upper bound on the tolerance of a broadcast
decision process as approximately 1/π of the network being
compromised [1]. This model is proven theoretically with
arbitrarily powerful malicious nodes.

7 Conclusions

We present a protocol called TIBFIT that maintains state
for event decisions in a sensor network. This protocol can
handle both binary event detection and event location
estimation with high accuracy in the face of natural and
malicious node failures within the network. The protocol
outperforms the standard voting scheme for event detection.
We also define two types of intelligent malicious fault
models that can disrupt a network, and find that using TIBFIT
malicious nodes acting independently are successfully
tolerated. However, the accuracy of TIBFIT in a system of
colluding nodes is not as high though it outperforms the
baseline voting scheme.

 There still remains much work to be done with this
protocol. We would like to further explore the impact of
different system parameters on performance. We would also
like to make TIBFIT more robust against level 2 malicious
nodes. Another step would be to explore more types of
intelligent models involving different levels of collusion and
decision sharing amongst malicious nodes. We would also
like to develop a more extensive theoretical model to
demonstrate correctness and predict system reliability under
given constraints. Ultimately, we would like to implement
the protocol in our hardware testbed of Berkeley motes to
measure the resource consumption.

8 References

[1] C-Y Koo. “Broadcast in Radio Networks Tolerating Byzantine
Adversarial Behavior.” In PODC 2004.

[2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci.
“A Survey on Sensor Networks.” IEEE Communications
Magazine, pp. 102-114, Aug. 2002.

[3] W. Heinzelman, J. Kulik, and H. Balakrishnan. “Adaptive
Protocols for Information Dissemination in Wireless Sensor
Networks.” ACM Mobicom 99.

[4] W. Heinzelman, A.P. Chandrakasan, and H. Balakrishnan.
“An Application-Specific Protocol Architecture for Wireless
Microsensor Networks.” IEEE Transactions on Wireless
Communications, Oct 2002.

[5] J. Lu, T. Suda. “Coverage-aware Self-scheduling in Sensor
Networks.” IEEE Computer Communications Workshop, Oct
2003.

[6] http://www.isi.edu/nsnam/ns.
[7] S. E. Schaeffer, J. C. Clemens, P. Hamilton. “Decision Make

in a Distributed Sensor Network.” In Proceedings of the Santa
Fe Institute Complex Systems Summer School, Santa Fe, NM,
USA, 2004. Santa Fe Institute. To appear.

[8] G. J. Pottie and W. J. Kaiser. “Wireless Integrated Network
Sensors.” Communications of the ACM, vol. 43 no. 5, May
2000, pp. 51-58.

[9] E. Shih, S.-H. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, A.
Chandrakasan. “Physical layer driven protocol and algorithm
design for energy-efficient wireless sensor networks.”
MobiCOM, 2001. pp. 272-287.

[10] D. Wagner. “Sensor networks: Resilient aggregation in sensor
networks.” ACM Workshop on Security of ad hoc and sensor
networks, 2004. pp. 78-87.

[11] Hoblos G., Staroswiecki M., Aitouche A. “Optimal Design of
Fault Tolerant Sensor Networks” IIII Int’l Conf. Cont. Apps.
Anchorage, AK, Sept 2000, pp. 467-72.

[12] S. Cabuk, N. Malhotra, L. Lin, S. Bagchi, and N. Shroff,
“Analysis and evaluation of topological and application
characteristics of unreliable mobile wireless ad-hoc network,”
In Proceedings of the 10th Pacific Rim Dependable
Computing Conference, March, 2004 (PRDC 04), March
2004.

[13] J. Hightower, R. Tower, and G. Borriello, “SpotON: An
indoor 3d location sensing technology based on RF signal
strength,” Technical Report of the University of Washington,
Computer Science Department, February 2000.

[14] Sanjiv K. Bhatia, “Adaptive K-Means Clustering” In
Proceedings of Florida Artificial Intelligence Research
Symposium, 2004

[15] Gunjan Khanna, Saurabh Bagchi, and Yu-Sung Wu, "Fault
Tolerant Energy Aware Data Dissemination Protocol in
Sensor Network," In Proceedings of the IEEE Dependable
Systems and Networks Conference (DSN 2004), pp. 739-748,
June 28-July 1, 2004, Florence, Italy.

[16] "Design and Analysis of Hierarchical Key Management for
Scalable and Energy Efficient Secure Communicationon
Sensors," Issa Khalil, Ness Shroff, and Saurabh Bagchi.
Submitted to AD HOC NETWORKS JOURNAL
(ELSEVIER). Also available as CERIAS Tech Report TR-
2003-33.

[17] Loren Schwiebert, Sandeep K.S. Gupta, “Research challenges
in wireless networks of biomedical sensors” ACM Sigmobil
7/01 Rome Italy.

[18] K. Marzullo, “Tolerating failures of continuous valued
sensors,” ACM Transactions on Computer Systems, vol. 8, no.
4, pp. 284-304, November 1990.

[19] F. Koushanfar, M. Potkonjak, A. Sangiovanni-Vincentell,
“Fault tolerance techniques for ad-hoc sensor networks,”
Proceedings of IEEE Sensors, vol. 2, pp. 1491-1496, June
2002.

[20] Jeffrey Hightower and Gaetano Borriello, “Location sensing
techniques,” Technical Report of the University of
Washington Computer Science Department, UW-CSE-01-07-
01, July 2001.

[21] J. Hightower and G. Borriello, “Location systems for
ubiquitous computing,” IEEE Computer, pages 57-66, August
2001.

[22] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low cost
outdoor localization for very small devices,” IEEE Personal
Communications Magazine, pages 28-34, October 2000.

