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Abstract
TIme Constant Equilibration Reduction (TICER) is a novel RC
reduction method tailored for extract/reduce CAD tools.
Geometry-minded extraction tools fracture nets into parasitics
based on local changes in geometry.  The resulting RC circuits
can have a huge dynamic range of time-constants; by
eliminating the extreme time-constants, TICER produces
smaller, less-stiff RC networks.  It produces realizable RC
circuits; can retain original network topology; scales well to
large networks (~107 nodes); preserves dc and ac behavior;
handles resistor loops and  floating capacitors; has controllable
accuracy; operates in linear time on most nets.

Introduction
Rigorous accounting of metal R and C parasitics is desirable
during final IC timing verification, especially in deep-submicron
designs, because of  the large delays attributable to interconnect.
Fortunately, there has been striking progress in RC reduction
technology during the last decade, beginning with AWE by
Pileggi and Rohrer in 1990 [1].  The dominant trend has been
towards projection techniques; see [2][3][4][5][6][7].

However, a disadvantage of most published methods is that
the reduced circuit is not realizable.  True, the methods preserve
electrical properties at the ports.  But what starts as an RC
network becomes a mathematical macro-model--a set of poles
and residues, for example.   A related drawback is that the
resulting macro-models presume special, often non-standard
simulator capabilities [8][9].

Meanwhile, the problem of realizable reduction— that is,
RC-in-RC-out methods--has been largely neglected in the
literature. [10] describes how to realize a driving point
admittance as an RC Cauer filter; but the ideas have not been
extended to multiports.   [11] presents a reduction scheme in
which subcircuits are progressively merged (using an algorithm
reminiscent of [12]) so as to match zero and first order
moments.  A weakness here is the lack of a mechanism for error
control.

Unsatisfied with these limitations, we set out to devise a RC
reduction technique that met the needs of commercial extrac-
tion/reduction.  A practical method, we felt,  had to:
1. yield a realizable RC network,
2. keep designated internal nodes,
3. scale to very-large (~107 element) networks,
4. preserve dc as well as ac characteristics,
5. control accuracy.
The outcome of our research is TICER--TIme Constant
Equilibration Reduction.  This novel approach uses 'time-
constant equilibration' to achieve realizable reduction.

Nodal Time-Constants
Consider an N-terminal star network.  The center of the star

is node N, and the N terminals are labeled 0 to N-1 (0 being
ground).  A branch consisting of a conductance and capacitance
in parallel--denoted by giN and ciN for the i'th branch--joins each
terminal to the central node.  Some elements may be absent, in
which case the corresponding giN or ciN is zero.

The response of the central node when a step voltage is
applied to the i'th terminal, all other terminals being grounded,
is given by
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The general response of node N to arbitrary signals at the N-1
other  terminals can be found by superposition of equations like
(1.1).  For our purposes, the key observation is that node N
responds with a characteristic time constant
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and this time-constant is independent of which neighbor or
combination of neighbors is agitated.  We may therefore speak
of the time constant of a node in a circuit.  The time-constant
of a node is the total capacitance from the node  to other nodes
and to ground divided by the sum of conductances from the node
to other nodes and ground.

Consider now an arbitrary RC network which we want to
reduce so as to preserve its behavior within a certain frequency
range.  We classify each node of a circuit into one of three
categories according to whether a node's time-constant is less
than, greater than, or between the min and max time-constants
defining the frequency range of interest.1  We refer to a node as
quick, slow, or normal according to this criteria.

The importance of this classification comes from the fact
that both quick and slow nodes can be eliminated from the
network without significantly altering its behavior--at least not
in the frequency range of interest.  We call this process--
reducing a circuit to a smaller one by eliminating quick and
slow nodes--time constant equilibration.  Whereas the time-
constants in the original circuit may span a very wide dynamic

                                                       
1 The conversion of a range of time-constants to a range of frequencies, of course,
can only be done approximately, using an expression like f=4/τ.  Great precision is
not required here.
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range, those in the equilibrated circuit will be clustered around
the time-scale (frequency range) of interest.

Node Elimination
In this section we present the detailed procedure for

eliminating quick and slow nodes.  We arrive at our goal most
easily by beginning from the nodal equations of an RC circuit in
the Laplace domain:
( )Cs G v Yv J+ = = (2.1)

where s is the complex frequency, C∈RNxN and G∈RNxN are the
nodal capacitance and conductance matrices, v∈RN is the vector
of nodal voltages, and J∈RN is the vector of current sources at
the nodes.

For simplicity, assume that the node we wish to eliminate is
the last node N.  Writing (2.1) as a block system
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we can solve for vN from the second block equation and
substitute it into the first block equation to obtain
(
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In these equations γN and χN are defined analogously to our
previous discussion, i.e.,
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with some terms in the sums possibly being zero.  We also
assume there is no current source at the eliminated node, so that
jN and F are zero.

Quick Nodes

First suppose s N Nχ γ<< ;  the eliminated node is a quick node,
and we approximate the element Eij arising from elimination by
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this expression being obtained from (2.4) by expanding in
powers of s and retaining terms up to the first order. The second
term in the parentheses is negligible by assumption; hence,
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This last equation can be translated into a procedure for
physically modifying the circuit.  To eliminate a quick node N
from a network, first remove all resistors and capacitors
connecting other nodes to node N.  Then insert new resistors
and capacitors between former neighbors of N according to the
following two rules.  If nodes i and j had been connected to N
through conductances giN and gjN, insert a conductance
g giN jN N/ γ  from i to j; if node i had a capacitor ciN to N, and

node j had a conductance gjN to N, then insert capacitor
c giN jN N/ γ between i and j.  It is easy to verify that the

admittance matrix of the circuit thus modified is given by (2.3)
and (3.2).  Remember in applying these rules that ground is
treated just like other neighbors of N.

The above elimination rules corresponds to the condition
that node N in the original circuit is always fully relaxed--that
is, its voltage at all times is determined by being in dc
equilibrium with its neighbors, i.e.
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If this condition holds, the current flowing from node i to node
N through giN can be shown to equal
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Similarly, when the central node is fully relaxed, the net charge
on a capacitor ciN can be shown to equal
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Interpreting each term in (3.4) and (3.5) as a resistor or
capacitor between i and j leads again to the elimination rules
described above.

Slow Nodes

Next suppose s N Nχ γ>> ;  the eliminated node is a slow node,
and we approximate the element Eij arising from elimination by
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This equation comes from  substituting the expansion
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 into (2.4) and retaining terms containing s; however, to
preserve dc characteristics, g giN jN N/ γ  is used in place of

whatever constant terms come from the expansion.
From this we get the following slow-node elimination

procedure.  To eliminate a slow node N from a network, first
remove all resistors and capacitors connecting any nodes to node
N.  Then, as before, if nodes i and j had been connected to N
through conductances giN and gjN, insert
conductance g giN jN N/ γ  from i to j; if node i had a capacitor

ciN to N, and node j had a capacitance cjN to N, insert capacitor
c ciN jN N/ γ between i and j.

These slow-node rules corresponds to the condition that node
N in the original circuit is, from the point of view of the
capacitors,  a floating node.

Properties of TICER
The method of reducing an RC circuit by successively

finding quick or slow nodes in the circuit and then eliminating
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them by the preceding rules is called TIme Constant
Equilibration Reduction or TICER.  Mostly quick nodes are
eliminated in practice. Nodes that are neither quick nor slow are
left in tact, as are nodes with too many neighbors or those
designated to be kept by the users--so called fixed nodes.

TICER has a number of desirable properties.  Foremost,
perhaps, is the property that the reduced circuit is a realizable
RC circuit; the desirability of this in a parasitic extraction
setting is clear since it cannot be assumed that the down-range
simulator can handle special macro-models.  Being an RC
circuit, the output is passive, so stability is also not an issue.
Resistor loops or floating capacitors are not problematic. DC
characteristics are exactly preserved; this is important for
calculating operating points and load currents when connecting
to non-linear devices.   Total capacitance to ground or between
nets is also preserved, under lax assumptions.2  Thus, down-
range tools that use total capacitance for driver-table loading
calculations or for crosstalk estimates get the same answer from
the reduced and original circuits. Finally, judicious assignment
of fixed nodes can preserve essential network topology.

These features collectively argue that TICER might well be
the tool of choice for general-purpose parasitic extraction
applications.

Because the closest counterpart to TICER in the literature is
probably the S-parameter method in [11], it may help to
compare these more closely.   Both methods produce realizable
circuits.  Both proceed by eliminating internal nodes of
subcircuits.  Both match, or nearly match, zero and first order
moments. (One matches S-parameter moments, the other Y-
parameter moments; but this is equivalent).  Such are the
similarities.

But the differences--especially in the way the two methods
view the circuit--are far reaching.  [11] views the circuit as a
dynamic set of multiport sub-networks, pairs of which are
progressively merged.  TICER, by contrast, focuses on a
particular node and its neighbors, temporarily regards these as
an multiport, eliminates the internal node, then returns to a
flattened view of the circuit before selecting another node for
elimination.  This leads to a simpler data structure--adjacency
lists versus a list of multiports.  More importantly, TICER's
approach controls accuracy through its choice of the time-
constant boundaries that separate quick, normal, and slow
nodes.  Wider boundaries mean greater accuracy but less
reduction; narrower boundaries mean the opposite.   [11] blindly
follows geometry.

Preservation of Elmore Delays
TICER has another elegant property: it preserves Elmore

delays bidirectionally through RC ladders--at least if one
eliminates only internal, quick nodes.   To see this, consider a
R1-C-R2 T network.  If you remove the central node using the
quick-node rules presented earlier, the result is a π network with
capacitive legs R2C/(R1+R2) and R1C/(R1+R2) and a bridge
resistance R1+R2.  For this circuit, the Elmore delay from node 1
                                                       
2 The stipulation for capacitance to ground or between nets to be preserved is that
(1) slow nodes and (2)  nodes with shunt resistances to ground are not eliminated.

to 2 is R C1  and the delay from 2 to 1 is R C2 ; but these are the
same as the Elmore delays of the original T network.    By
induction, the Elmore delays of arbitrary RC ladders are
unchanged when any or all internal quick nodes are eliminated.

Examples
Having laid out the method and its more important

properties, let us now look at a few examples in order to be able
to judge its effectiveness in practice. 

Figure 1 plots the distribution of nodal time-constants before
and after reduction for a small IC design composed of 397
nets/5650 nodes.  Coupling capacitance was not included in the
extraction.  The original design had nodal time constants
spanning more than 8 decades!
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Figure 1 Distribution of nodal time-constants

Looking at the figure, we see how TICER's equilibration process
has removed most of the extremely small time constants.  For
instance, before reduction, the design had 3721 nodes with time
constants at or below 10-16 seconds; after reduction, only 121
such nodes.  (About 1100 nodes in the original circuit were
purely 'resistive' nodes with τ=0.0; these, all of which were
eliminated by TICER, do not appear in the plot.)

Table 1

net size
(nodes)

number
of nets

percent
reduction

number
of ports

avg. peak
error (V)

1-5 75 30% 2.44 0.00011
6-10 121 60% 3.16 0.00131
11-20 138 72% 3.92 0.00256
21-40 42 81% 4.59 0.00489
41-100 21 86% 5.76 0.00645

For this same design, Table I gives average statistics for nets
in various size ranges.  For example, there were 42 nets in the
design whose sizes were between 21 and 40 nodes.  Of these
nets, the average reduction in node count was 81%; the nets had
an average of 4.59 ports (ports were fixed and could not be
eliminated); the average peak error when original and reduced
nets were simulated side by side was 4.89 mV, when a 1V, 0.2ps
ramp was applied to one of the ports. 
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Figure 2. Response of a 96-node network

Figure 2 plots the response of the largest net in the design,
superimposing the waveforms of the net before and after
reduction.   The before and after waveforms are optically
indistinguishable--differing by a maximum of 0.0012V. TICER
reduced the net from 96 to 17 nodes.
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Figure 3. Coupled RC lines

Although our sample design did not include coupling
capacitance, TICER also works well with coupled nets.  To see
this, consider a 20-section capacitively coupled RC ladder
network representing two neighboring 1cm lengths of metal 4
traces in 0.18 micron technology [13].   Figure 3 compares the
simulated waveforms of the 42 node original (solid) and 12 node
reduced(dashed) networks.  Again, the results are optically
almost indistinguishable.

Conclusion
Since TICER sequentially eliminates one node at a time,

optionally giving preference to nodes of low degree, the
calculations involve only local modifications of the network
graph.  Hence, the run-time performance is O(n) on sparse
graphs, where n is the number of nodes eliminated.

TICER is particularly suited for use with geometric
extraction tools.  These tools are triggered to insert nodes
wherever geometry changes--at corners, vias, or spacing shifts.
The granularity of extraction, therefore, can be quite irregular,
with many minute parasitics and relatively few larger ones.
Guided by nodal time-constants, TICER systematically pinpoints

the smallest parasitics and eliminates them, thereby compacting
the netlist into a more uniformly fractured, less stiff, circuit.
This is done with little loss in accuracy.

In our view, TICER complements rather than replaces other
reduction methods (e.g. those based on orthogonal projection
using moments).  Other methods may produce higher
compression in some cases.  TICER, for example, is not
particularly effective on dense meshes, since as mesh junctions
are eliminated, the degrees of remaining nodes increases such
that little overall compression occurs.  On most other topologies,
however, TICER works excellently.  Its salient advantage is this:
RC-in, RC-out. Gone is the burden of non-portable macro-
models.  If realizable circuits are needed, or controllable
accuracy, or approximate topology preservation or preservation
of total coupling or grounding capacitance, then TICER is the
clear choice.
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