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Abstract
In the United States, ticks transmit the greatest diversity of arthropod-borne pathogens and are responsible for the most
cases of all vector-borne diseases. In recent decades, the number of reported cases of notifiable tick-borne diseases has
steadily increased, geographic distributions of many ticks and tick-borne diseases have expanded, and new tick-borne
disease agents have been recognized. In this review, we (1) describe the known disease agents associated with the most
commonly human-biting ixodid ticks, (2) review the natural histories of these ticks and their associated pathogens,
(3) highlight spatial and temporal changes in vector tick distributions and tick-borne disease occurrence in recent decades,
and (4) identify knowledge gaps and barriers to more effective prevention of tick-borne diseases. We describe 12 major tick-
borne diseases caused by 15 distinct disease agents that are transmitted by the 8 most commonly human-biting ixodid ticks
in the United States. Notably, 40% of these pathogens were described within the last two decades. Our assessment
highlights the importance of animal studies to elucidate how tick-borne pathogens are maintained in nature, as well as
advances in molecular detection of pathogens which has led to the discovery of several new tick-borne disease agents.
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Introduction
Ticks, particularly ixodid (hard) ticks, are among the most medic-
ally important arthropods in the United States. They are unique
among arthropods in the United States in the diversity of

pathogens of humans and domestic animals they transmit,
including protozoa, bacteria (including different species of rickett-
siae and spirochetes), and viruses (Jongejan and Uilenberg 2004).
Among the nearly 50,000 cases of autochthonous (locally
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acquired), nationally notifiable human vector-borne diseases re-
ported annually to the Centers for Disease Control and Prevention
(CDC) from states and the District of Columbia, approximately
95% are caused by pathogens vectored by ticks (Adams et al. 2016;
Paddock et al. 2016). Moreover, in recent decades, the number of
reported cases of notifiable tick-borne diseases has steadily in-
creased, geographic distributions of many tick vectors and tick-
borne diseases have expanded, and new tick-borne disease agents
have been recognized (Paddock et al. 2016).

Of the 84 species of ticks known to occur in the United States,
fewer than 10 species from 2 families (Ixodidae [hard ticks] and
Argasidae [soft ticks]) commonly bite humans (Merten and
Durden 2000). Soft ticks in the genus Ornithodoros are important
vectors of relapsing fever Borrelia spirochetes. In the United
States, tick-borne relapsing fever is endemic in the western
United States; cases occur infrequently and are commonly asso-
ciated with exposures in rustic settings (Dworkin et al. 2008).
This review will focus only on common human-biting hard tick
species, since they are responsible for the vast majority of tick-
borne illnesses that occur in the United States. The most import-
ant ixodid tick vectors include: Amblyomma americanum (the lone
star tick), A. maculatum (the Gulf Coast tick), Dermacentor andersoni
(the Rocky Mountain wood tick), D. occidentalis (the Pacific coast
tick), D. variabilis (the American dog tick), Ixodes pacificus (the
western blacklegged tick), I. scapularis (the blacklegged tick or
deer tick), and Rhipicephalus sanguineus sensu lato (the brown dog
tick). These ticks take single blood meals from vertebrate hosts
in all of their three active life stages: larva, nymph, and adult.
The major human disease agents transmitted by each of these
tick species and the most important natural vertebrate pathogen
reservoirs are listed in Table 1.

The objectives of this review are to (1) describe the known
human disease agents associated with the most commonly
human-biting ixodid ticks, (2) review the natural histories of
these ticks and their associated pathogens, (3) highlight spatial
and temporal changes in vector tick distributions and tick-
borne disease occurrence in recent decades, and (4) identify
knowledge gaps and barriers to more effective prevention of
tick-borne diseases.

Blacklegged Ticks (Ixodes scapularis) and
Western Blacklegged Ticks (Ixodes pacificus)
Associated Human Disease Agents

The blacklegged tick, I. scapularis, is the primary vector to
humans in the eastern United States of a diverse array of patho-
gens including: Lyme disease spirochetes, Borrelia burgdorferi and
Borrelia mayonii; a relapsing fever spirochete, Borrelia miyamotoi;
other bacterial agents causing anaplasmosis (Anaplasma phagocy-
tophilum) and ehrlichiosis (Ehrlichia muris euclairensis); a proto-
zoan causing babesiosis (Babesia microti); and the deer tick virus
lineage of Powassan encephalitis virus (Family: Flaviviridae)
(Dolan et al. 1997, 2016; Ebel 2010; Johnson et al. 2015; Karpathy
et al. 2016; Krause et al. 2015; Piesman and Eisen 2008; Pritt et al.
2011, 2016a, 2016b, 2016c; Teglas and Foley 2006). A closely re-
lated species, the western blacklegged tick, I. pacificus, is the pri-
mary vector to humans in the far western United States of Bo.
burgdorferi and A. phagocytophilum, and most likely also of Bo.
miyamotoi (Krause et al. 2015; Lane et al. 1994; Padgett et al. 2014;
Teglas and Foley 2006).

Some Ixodes-borne pathogens were described long before they
were recognized as etiological agents of disease in humans.
Babesiosis (Texas fever) of cattle was the first disease of

vertebrates that was experimentally shown to be caused by an
agent (a protozoan originally named Pyrosoma bigeminum but now
known as Babesia bigemina) transmitted by ticks (Smith and
Kilborne 1893). Nearly a century later, Ba. microtiwas recognized as
a tick-borne agent causing human babesiosis in the northeastern
United States (Spielman 1994). Similarly, A. phagocytophilum was
first described in sheep in the 1930s but not recognized to cause
human disease until the 1990s (Dumler et al. 2005). Another case
in point is Bo. miyamotoi, which was first described from Ixodes
ticks in the United States in 2001, but not associated with human
disease until more than a decade later (Krause et al. 2015).

By contrast, description of the etiological agents of other
Ixodes-borne diseases lagged clinical recognition of illness. For
example, although certainly present in the United States earl-
ier, Lyme disease emerged along with babesiosis in the eastern
United States during the 1970s (Spielman 1994); however, the
etiological agents of Lyme disease in the United States were
not described until 1982 (Bo. burgdorferi) and 2016 (Bo. mayonii)
(Burgdorfer et al. 1982; Pritt et al. 2016b). The E. muris-like agent
was described recently as a cause of ehrlichiosis, and subse-
quent to identification in human clinical samples, the organism
was identified in I. scapularis ticks (Pritt et al. 2011). Powassan
virus was first described as a human pathogen in the 1950s, but
more recent effort has better defined the genetic diversity of
closely-related genotypes that are linked to distinct enzootic
transmission cycles (Ebel 2010).

Geographic Distribution of Tick Vectors

Although both ticks are generally found in dense brush and heav-
ily forested woodlands (Lane et al. 1994), I. scapularis and I. pacificus
have nonoverlapping geographic ranges (Figure 1). Owing largely
to their need for high humidity, neither species is found in the
arid Rocky Mountains or Inter-Mountain West (Colorado, Idaho,
Montana, New Mexico, and Wyoming). Recently, I. scapularis has
been reported from all states to the east and I. pacificus has been
reported from all states west of this region (Eisen et al. 2016a). The
current widespread distribution of I. scapularis likely represents a
reemergence of the tick, which is believed to have been estab-
lished across the eastern United States prior to the late 1800s.
Because of the close association between I. scapularis, white-tailed
deer (Odocoileus virginianus), and woodlands, deforestation and
suppression of white-tailed deer populations in the late 1800s and
early 1900s led to severe restrictions in the tick’s distribution and
abundance. Reforestation and rebounding deer populations dur-
ing the second half of the 20th century yielded ecological condi-
tions that were conducive for the reemergence of I. scapularis
(Dennis et al. 1998; Lane et al. 1991; Spielman et al. 1985). Over the
past two decades, the geographic range of I. scapularis has contin-
ued to expand markedly, while the geographic range of I. pacificus
remained unchanged (Eisen et al. 2016a). The number of counties
in which I. scapularis is considered to be established more than
doubled from 1996 through 2015. The greatest expansion in the
tick’s range was observed in the north-central and northeastern
states, while the distribution in the southeastern states remained
relatively stable. Range expansion has been attributed to reforest-
ation, the increasing abundance of white-tailed deer, and increas-
ingly warmer temperatures (Lee et al. 2013; Ostfeld and Brunner
2015; Spielman 1994; Spielman et al. 1985).

Tick Life Cycles/Enzootic Pathogen Transmission

Both I. scapularis and I. pacificus are three-host ticks that host-
seek openly (as opposed to nidicolous ticks, which remain in
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animal nests) and are considered host generalists. The human
pathogens described above are acquired through blood feeding
on reservoir hosts, or via co-feeding transmission from infected
to noninfected ticks feeding in proximity to each other on res-
ervoir or nonreservoir hosts (Costero and Grayson 1996; Dolan
et al. 2016; Ebel 2010; Karpathy et al. 2016; Mather and Mather
1990; Piesman et al. 1987; Teglas and Foley 2006). However, Bo.
miyamotoi and Powassan virus also can be transmitted transo-
varially from an infected female to her offspring (Costero and
Grayson 1996; Rollend et al. 2013).

Although humans can be bitten by all life stages, bites by
nymphs and adults are most commonly reported; humans
serve as incidental tick hosts and do not contribute to pathogen
transmission (Bishopp and Trembley 1945; Merten and Durden
2000). Larvae and nymphs feed on a wide range of hosts,
including lizards, birds, insectivores, rodents, lagomorphs, and
ungulates (Brinkerhoff et al. 2011; Eisen et al. 2004a; LoGiudice
et al. 2003; Salkeld and Lane 2010). However, these blood meal
hosts differ in their ability to serve as pathogen reservoirs by
providing a source of infection for feeding ticks. For example,
some lizard species are zooprophylactic (Lane and Quistad 1998),
clearing Lyme disease spirochetes from feeding ticks, while
others, such as the white-footed mouse (Peromyscus leucopus) or
the western tree squirrel (Sciurus griseus), are highly competent

reservoirs of Bo. burgdorferi and infect large numbers of feeding
ticks (Mather et al. 1989; Salkeld and Lane 2010). Although adult
ticks feed on a variety of medium- and large-sized mammals,
I. scapularis and I. pacificus feed primarily on white-tailed deer
and Columbian black-tailed deer (O. hemionus columbinanus),
respectively (Furman and Loomis 1984; Piesman et al. 1979). Key
vertebrate reservoirs of the pathogens listed above are shown in
Table 1.

Tick Seasonality and Host-Seeking Behavior

As recently reviewed in more detail (Eisen et al. 2016b), depend-
ing on the geographic region and weather conditions, the ticks’
life cycles are completed in 2 to 4 years (Hamer et al. 2012;
Padgett and Lane 2001; Yuval and Spielman 1990). In the north-
eastern and north-central United States during the warm
months from spring through autumn, I. scapularis larvae and
nymphs typically seek hosts from the top of leaf litter or twigs
near the ground, whereas adults actively seek hosts by ascend-
ing vegetation (Hamer et al. 2012; Yuval and Spielman 1990). In
the Southeast, the seasonality of host-seeking is poorly defined.
Notably, in this region, I. scapularis nymphs are less likely than
those in the North to ascend vegetation (leaf litter) to seek
hosts, thus reducing the likelihood of humans encountering

Table 1 Summary of major tick-borne diseases of humans in the United States and their etiological agents, primary vectors and vertebrate
reservoirs

Disease Etiological agent(s) Primary vector(s) Vertebrate reservoir(s)

Anaplasmosis Anaplasma phagocytophilum Ixodes scapularis
Ixodes pacificus

Peromyscus leucopus, Sciurus spp.,
Neotoma spp., Tamias spp., Blarina
brevicauda1

Babesiosis Babesia microti Ixodes scapularis Peromyscus leucopus2

Borrelia miyamotoi disease Borrelia miyamotoi Ixodes scapularis, Ixodes pacificus Peromyscus leucopus3/ not determined/
(transovarial transmission)

Colorado tick fever Colorado tick fever virus
(coltivirus)

Dermacentor andersoni Spermophilus lateralis4

Ehrlichiosis Ehrlichia muris eauclairensis Ixodes scapularis Not determined
Ehrlichia chaffeensis Amblyomma americanum Odocoileus virginianus5

Ehrlichia ewingii Amblyomma americanum Odocoileus virginianus6

Heartland virus disease Heartland virus (phlebovirus) Amblyomma americanum Not determined
Lyme disease Borrelia burgdorferi Ixodes scapularis, Ixodes pacificus Peromyscus leucopus, Sciurus griseus,

Tamias spp.7

Borrelia mayonii Ixodes scapularis Not determined
Powassan encephalitis Powassan virus (flavivirus) Ixodes scapularis Peromyscus leucopus8

Rickettsia parkeri rickettsiosis Rickettsia parkeri Amblyomma maculatum Not determined9

Rocky Mountain spotted fever Rickettsia rickettsii Dermacentor variabilis, Dermacentor
andersoni, Rhipicephalus
sanguineus s. l.

(transovarial transmission), Microtus
spp., Spermophilus spp., Sylvilagus,
Tamias spp.10

Pacific Coast tick fever Rickettsia philipii Dermacentor occidentalis Not determined11

Tularemia Francisella tularensis Amblyomma americanum
Dermacentor variabilis
Dermacentor andersoni

Various terrestrial and aquatic
mammals12

1(Foley and others 2008; Keesing and others 2012; Nieto and Foley 2009; Telford and others 1996).
2(Telford and Spielman 1993).
3(Barbour et al. 2009; Castillo and others 2015).
4(Burgdorfer 1977).
5(Lockhart et al. 1997a).
6(Yabsley et al. 2002).
7(Lane et al. 2005; Mather et al. 1989).
8(Ebel 2010).
9(Paddock and Goddard 2015).

10(Burgdorfer 1977).
11(Padgett et al. 2016).
12(WHO 2007).
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nymphal ticks in the South (Arsnoe et al. 2015; Diuk-Wasser
et al. 2012; Stromdahl and Hickling 2012).

In northern California, I. pacificus are active year-round with
adults host-seeking in cooler months from late autumn
through early spring and immature life stages host-seeking
from early spring through summer or early autumn (Eisen et al.
2003, 2004b; Lane et al. 2007). In southern California, the tick’s
life cycle is truncated compared with northern populations;
adult host-seeking begins later and ends earlier and immature
life stages generally terminate host-seeking behavior earlier in
the season. Similar to I. scapularis in the Southeast, I. pacficus
nymphs rarely ascend emergent vegetation and are seldom en-
countered using methods that aim to assess human risk of en-
counters with ticks, with the exception of leaf litter habitats
without emergent vegetation (MacDonald and Briggs 2016).

Frequency, Seasonality, and Geographic Distribution of
Ixodes-Borne Diseases

Collection and collation of data on occurrence of nationally notifi-
able conditions under the National Notifiable Diseases
Surveillance System is the nation’s most comprehensive and sys-
tematic means of conducting public health surveillance (Centers
for Disease Control and Prevention 2016c). In 1991, Lyme disease
became the first Ixodes-associated illness to become a nationally
notifiable condition. Since that time, anaplasmosis, Powassan
virus disease, and babesiosis were added as notifiable conditions
in 2000, 2002, and 2011, respectively. The incidence and geo-
graphic range of these infections have steadily increased since
national reporting was initiated (Figure 2).

Lyme disease is the most commonly reported vector-borne
disease in the United States. Although underreporting in public
health surveillance is well documented, the annual number of
human Lyme disease cases reported to the public health system
has increased from approximately 10,000 to 30,000 cases between
the early 1990s and mid-2010s (Figure 2) (Adams et al. 2016;
Centers for Disease Control and Prevention 2016b). Nonetheless,
the true magnitude of Lyme disease is considerably greater, with

current estimates of 240,000 to 440,000 cases annually based on
commercial laboratory test results. National numbers mask the
highly focal nature of the illness, with 96% of all cases coming
from just 14 states in the Northeast, mid-Atlantic, and upper
Midwest (Figure 3) (Adams et al. 2016; Centers for Disease Control
and Prevention 2016b; Hinckley et al. 2014). Human infection is
sporadic in the far western United States. Importantly, Lyme dis-
ease cases have started occurring in new places as endemic foci
have expanded over time. The number of counties with high
Lyme disease incidence has increased by approximately 300%
since the mid-1990s (Kugeler et al. 2015). The expansion of areas
with high incidence of Lyme disease mirrors the geographic
expansion of I. scapularis in the eastern United States, as de-
scribed above (Eisen et al. 2016a, 2016b). In addition to the pri-
mary Lyme disease agent in the United States, Bo. burgdorferi, a
second spirochete also belonging to the Bo. burgdorferi sensu lato
complex, Bo. mayonii, was recently recognized as a cause of Lyme
disease in the upper Midwest (Pritt et al. 2016b). This spirochete
has yet to be detected from other parts of the eastern United
States. Incidence of infection with Bo. mayonii is unknown, and
Lyme disease cases may not be able to be differentiated by etio-
logic agent in national surveillance. Therefore, special studies are
needed to better define the clinical course, geographic distribu-
tion, and frequency of human infection with Bo. mayonii.

The geographic distribution of anaplasmosis, Powassan virus
disease, and babesiosis mirror that of Lyme disease, although fre-
quency of human infection is several orders of magnitude lower
(Figures 1 and 3). The number of reported anaplasmosis cases in-
creased from 348 in 2000 to 2800 in 2014, with geographic expan-
sion of areas reporting cases (Centers for Disease Control and
Prevention 2016a; Dahlgren et al. 2015). Although Powassan virus
disease became a notifiable condition in 2002, case reports were
submitted to CDC and published in the literature before that time.
These compiled sources indicate that cases of this rare illness
have increased in frequency since the pathogen was first de-
scribed, from an average of 0.7 cases recorded annually during
1958–1998 to an average of 7 cases per year since 2006 (Adams
et al. 2016; Centers for Disease Control and Prevention 2016d;

Figure 1 Generalized distributions of key human biting ticks in the United States These maps provide general insight into the expected distribution of common

human-biting ticks in the contiguous United States. Populations of these ticks may be found outside noted areas. The maps are not meant to represent risk for tick-

borne diseases. The brown dog tick, Rhipicephalus sanguineus, is found throughout the continental United States and in Hawaii. The geographic distribution of the

Pacific Coast tick, Dermacentor occidentalis, has not been assessed in recent years and is not shown.
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Hinten et al. 2008). Powassan virus infections in North America
appear to be transmitted primarily by I. scapularis and occur in
Northeast and upper Midwest states, where nymphal ticks more

commonly bite humans compared with the southeastern United
States (Stromdahl and Hickling 2012). Since babesiosis became a
notifiable condition in 2011, between 900 and 1800 cases have been
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Figure 2 Reported human cases in the United States of Lyme disease, 1992–2014 (A); tularemia, 1944–2014 (B); and anaplasmosis (diagonal lines), ehrlichiosis

(stippled), and spotted fever group rickettsioses (black) 2000–2014 (C).
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reported annually (Adams et al. 2016). A few cases of babesiosis
caused by species other than Ba. microti have been documented
from the western United States, although the reservoirs and vec-
tors of these species have yet to be elucidated (Vannier et al. 2015).

Similar to Bo. mayonii, the E. muris-like agent was described
recently from the north-central United States, and human infec-
tions appear to be limited to that geographic region (Johnson
et al. 2015; Pritt et al. 2011, 2016b). The incidence of human infec-
tions is largely unknown, because they are not easily differen-
tiated in national surveillance counts for ehrlichiosis and
anaplasmosis (Dahlgren et al. 2016). Likewise, there is no stand-
ard surveillance for Bo. miyamotoi disease and frequency of hu-
man infection is unknown. In an assessment among banked
samples from the northeastern United States, 3.9% of samples
from healthy persons and 9.8% of those with suspected acute
Lyme disease demonstrated reactivity to a Bo. miyamotoi-specific
target (Krause et al. 2014). Additionally, acute coinfections with
Bo. miyamotoi and Bo. burgdorferi were documented by seroconver-
sion to antigens from both pathogens. Human illness has also
been documented in the upper Midwest, and human infection
along the Pacific Coast is likely given evidence that Bo. miyamotoi
has been found in I. pacificus ticks in multiple locations in
California (Cook et al. 2016; Jobe et al. 2016; Mun et al. 2006;
Padgett et al. 2014). Nevertheless, the frequency of asymptomatic
infection is unknown and the overall importance of Bo. miyamotoi
as a human pathogen remains unclear.

Discordance between the broad distribution of I. scapularis
and I. pacificus in the United States and the focal nature of

associated human diseases is multifactorial (Figures 1 and 3).
As described above, the host-seeking behaviors of immature
I. scapularis and I. pacificus do not favor human exposure to the
nymphal stages of these ticks in the southern United States. In
addition, prevalence of B. burgdorferi infection is substantially
lower in ticks collected from the South compared with the
North (Lane et al. 2013; Stromdahl and Hickling 2012). While
human tick-borne illnesses under surveillance are reported
from most states, these cases are reported according to the pa-
tient’s location of residence rather than the probable location
where the infected tick was encountered. Cases of Lyme dis-
ease reported from low-incidence areas may reflect exposure to
focal areas of transmission in otherwise low-risk places; none-
theless, cases reported from these states often represent travel
to highly endemic areas and possible misdiagnosis due to high-
er likelihood of false positive test results in these settings
(Forrester et al. 2015; Lantos et al. 2015).

Nymphal stage I. scapularis are responsible for most human
Lyme disease, babesiosis, and anaplasmosis, as deduced from
the late spring through early summer peak in human disease
occurrence, which coincides with peak nymphal host-seeking
activity that is distinct from the peak host-seeking activity peri-
od for adult female ticks. Although adult ticks typically have
higher rates of infection with Lyme disease, babesiosis, and
anaplasmosis agents than nymphs, bites by female ticks
account for a smaller fraction of human illness, presumably
due to less frequent outdoor high-risk behaviors in the fall and
early spring when the female ticks are most active, and adult

Figure 3 Reported distribution of key tick-borne diseases in the United States, 2014 Each dot represents one case. Cases are reported from the infected person’s county

of residence, not necessarily the county of exposure. During 2014, babesiosis was reportable in Alabama, California, Connecticut, Delaware, Illinois, Indiana,

Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Montana, Nebraska, New Hampshire, New Jersey, New York, North Dakota, Ohio, Oregon, Rhode

Island, South Carolina, South Dakota, Tennessee, Texas, Utah, Vermont, Washington, West Virginia, Wisconsin, and Wyoming. CDC was not notified through the

national surveillance system of cases in other states. In 2014, no cases of tick-borne illness were reported from Hawaii. In 2014, Alaska reported eight travel-related

cases of Lyme disease.
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ticks’ larger size compared with nymphs, which makes them
easier to detect. Prompt detection and removal of ticks reduces
risk of infection with A. phagocytophilum, Ba. microti, and Bo.
burgdorferi owing to the documented time lag post-tick attach-
ment before infectious organisms are transmitted from the tick
to the host (Hodzic et al. 1998; Hojgaard et al. 2008; Piesman
and Spielman 1980). Although data on human Bo. miyamotoi in-
fections are still limited, transovarially infected larvae appear
to play a role in transmission to humans, based on peak dis-
ease onset in July-August, which coincides with the peak period
of host-seeking activity for larval stage I. scapularis (Molloy et al.
2015; Scoles et al. 2001). The roles of different tick life stages as
vectors of Bo. mayonii, the E. muris-like agent, and Powassan
virus to humans are not well understood.

Lone Star Tick (Amblyomma americanum) and
Gulf Coast Tick (Amblyomma maculatum)
Associated Human Disease Agents

The lone star tick, A. americanum, was the first tick species de-
scribed in the United States in 1754, yet, until the early 1990s it
was considered primarily a nuisance species (Childs and
Paddock 2003). It is now recognized as a primary vector of the
etiological agents of tularemia (Francisella tularensis), ehrlichio-
sis (Ehrlichia chaffeensis and Ehrlichia ewingii), and Heartland
virus (Family: Bunyaviridae) (Anziani et al. 1990; Ewing et al.
1995; Godsey et al. 2016; Hopla 1953, 1955). Southern tick-
associated rash illness has been associated with the bite of A.
americanum, but despite thorough investigation since its first
description in the 1980s, an etiologic agent has not been linked
to this condition, suggesting the possibility of a noninfectious
cause (Masters et al. 1998; Wormser et al. 2005).

The disease now known as tularemia was first described in
Japan in the 19th century. The causative agent, F. tularensis, was
first identified among California ground squirrels in 1910 and
linked to human illness in the United States shortly thereafter
(Francis 1925; McCoy 1911). The highly infectious organism has
been shown to infect hundreds of animal species and also to
survive in water and soil; multiple tick species are likely in-
volved in maintenance of F. tularensis in nature (Hopla 1974;
Jellison 1974; Parker et al. 1951). Tick bites are one of several
possible modes of transmission of F. tularensis to humans, and
A. americanum nymphs and adults have been implicated as
important vectors in the south-central United States (Brown
et al. 2011; Eisen 2007a).

Beginning in the 1980s, additional A. americanum-borne hu-
man pathogens were increasingly recognized, particularly in
Arkansas and Missouri. The first case of human monocytic ehr-
lichiosis was recognized in 1986 in a patient presumably ex-
posed to A. americanum bites in Arkansas (Maeda et al. 1987).
The etiological agent was later described as E. chaffeensis
(Anderson et al. 1991; Dawson et al. 1991). In 1999, E. ewingii,
initially described from four patients from Missouri, was recog-
nized as another cause of ehrlichiosis in humans (Buller et al.
1999). In 2009, Heartland virus, the first pathogenic tick-borne
phlebovirus in the United States, was described from two pa-
tients in northwestern Missouri and later detected in field col-
lected A. americanum ticks (McMullan et al. 2012; Savage et al.
2013, 2016).

Rickettsia parkeri was first reported to cause spotted fever
rickettsiosis in humans in 2004 (Paddock et al. 2004), but the
disease agent had been described decades prior in association
with the Gulf Coast tick, A. maculatum (Lackman et al. 1965,

1949). Rickettsia parkeri has now been detected in A. maculatum
ticks from Alabama, Arizona, Delaware, Florida, Georgia,
Kentucky, Louisiana, Maryland, Mississippi, North Carolina,
Oklahoma, Tennessee, Texas, and Virginia, approximating the
geographic distribution of human cases. Current estimates of
infection rates of host-seeking adult ticks with R. parkeri range
from 8% to 56%, remarkably higher than for any other recog-
nized tick-borne rickettsial pathogen in the United States
(Herrick et al. 2016; Paddock and Goddard 2015). Amblyomma
maculatum ticks infected with R. parkeri have been collected
from various species of wildlife, including feral pigs, white-
tailed deer, cotton rats, and coyotes (Sumner et al. 2007; Trout
and Steelman 2010), although a definitive vertebrate reservoir
has not yet been identified.

Geographic Distribution of Tick Vectors

Similar to I. scapularis and I. pacificus, A. americanum is primarily
a woodland-associated tick but also seeks hosts in fields and
meadows. It is most common in second growth forests with
dense understory vegetation (Hair and Howell 1970). The core
of the lone star tick’s distribution is in the southern parts of the
eastern United States, but it occurs along the Atlantic coastline
as far north as Maine, and sporadically in the upper Midwest
(Figure 1) (Childs and Paddock 2003; Springer et al. 2014).
Review of historical records suggest a continuing northward
range expansion of this tick (Childs and Paddock 2003; Paddock
and Yabsley 2007; Springer et al. 2014). Range expansion and
increasing abundance of A. americanum is largely attributed to
the increasing range and abundance of white-tailed deer, the
primary host for A. americanum (Childs and Paddock 2003;
Paddock and Yabsley 2007).

Largely because of its ability to effectively regulate water
balance, compared with the lone star tick, the Gulf Coast tick is
associated with more xeric habitats including grasslands and
scrub communities, upland and coastal prairies (Needham and
Teel 1991; Teel et al. 2010). During the first half of the 20th cen-
tury, A. maculatum was known to be distributed primarily
within 100 to 150 miles inland from the Gulf Coast spanning
from Texas to the Atlantic Coast as far north as South Carolina
(Bishopp and Trembley 1945). The distribution of the Gulf Coast
tick extends northward along the Atlantic coast to Delaware, as
well as >250 miles inland from historically recognized habitats
along the Gulf of Mexico and the Atlantic Ocean. Established
populations of A. maculatum also now exist in several noncoast-
al states, including Arkansas, Kansas, Kentucky, and Oklahoma
(Figure 1). Range expansion has been attributed to the expand-
ing range of white-tailed deer and movement of infested cattle,
feral swine, and migratory birds and is also possibly linked to
restoration of inland grassland and savannah habitats
(Paddock and Goddard 2015; Teel et al. 2010).

Tick Life Cycles/Enzootic Pathogen Transmission

Amblyomma americanum and A. maculatum are non-nidicolous,
three-host ticks that are considered host generalists and, due
to their very active host-seeking behavior, aggressive biters of
humans (Childs and Paddock 2003; Merten and Durden 2000;
Paddock and Goddard 2015; Paddock and Yabsley 2007;
Stromdahl and Hickling 2012; Teel et al. 2010). Humans serve as
incidental hosts of both ticks and do not contribute to trans-
mission of their associated pathogens. All life stages of A. amer-
icanum commonly bite humans, whereas human encounters
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with A. maculatum are primarily with the adult life stage
(Bishopp and Trembley 1945; Merten and Durden 2000).

Although A. americanum will feed on a wide range of hosts,
they are highly dependent on large mammals to complete their
life cycle. Adults feed primarily on white-tailed deer and other
medium- and large-sized mammals (Bishopp and Trembley
1945; Childs and Paddock 2003; Kollars et al. 2000; Paddock and
Yabsley 2007). Larval A. americanum are not known to transmit
any human pathogens (Stromdahl and Hickling 2012) and are
likely to acquire infections during blood feeding. Larvae and
nymphs infest ground-feeding birds, medium- and large-sized
mammals, and less frequently parasitize small mammals
(Bishopp and Trembley 1945; Childs and Paddock 2003). White-
tailed deer are naturally infected with E. chaffeensis and E. ewin-
gii, and because all life stages of A. americanum feed commonly
on this host, it is considered the primary reservoir of these
pathogens (Table 1) (Childs and Paddock 2003; Lockhart et al.
1997a, 1997b; Yabsley et al. 2002). The potential role of other
mammals as reservoirs of E. chaffeensis was reviewed previ-
ously by Childs and Paddock (2003).

Host feeding preferences of A. maculatum were recently re-
viewed by Teel et al. (2010). Adult ticks feed commonly on
large-sized wild and domestic mammals, primarily ungulates
and carnivores. By contrast, larvae and nymphs feed more
commonly on birds and rodents. Although A. maculatum has
been implicated as the vector of R. parkeri, little is known about
how this pathogen is maintained in enzootic transmission cy-
cles (Paddock et al. 2004).

Tick Seasonality and Host-Seeking Behavior

The host-seeking phenology of A. americanum is similar across
the species range from New Jersey (Schulze et al. 1986) to
Missouri (Kollars et al. 2000) and Georgia (Davidson et al. 1994).
Adult ticks are host-seeking as early as March or April and
reach peak abundance from March to July, with the peak occur-
ring earlier in the South compared with the North. In each of
the three locations, larval abundance peaks in September, but
larvae are active as early as March and as late as October.
Nymphs are active as early as March and as late as September,
with the longest period of activity observed in Georgia. In
Georgia, peak nymphal activity spans from March to May,
whereas in Missouri and New Jersey, peak nymphal activity oc-
curs in June.

Seasonal activity of A. maculatum differs by geographic
region, with inland populations active from spring to summer
and coastal populations from fall to spring. In coastal commu-
nities of Texas, adults are active primarily in September fol-
lowed by peak activity of larvae and nymphs in January and
February, respectively. By contrast, in inland communities in
Oklahoma, with a more temperate climate, the peak of adult
activity occurs during late April to early June, followed by peak
activity of larvae and nymphs in July and August, respectively
(Teel et al. 2010).

Frequency, Seasonality, and Geographic Distribution of
Amblyomma-Borne Diseases

In the early to mid-20th century, human tularemia was a notifi-
able condition in many states and data were reported through
systems predating current public health surveillance mechan-
isms. During that time, the disease occurred much more com-
monly than it does today, with >1000 cases reported annually
during the 1940s (Jellison 1974). These numbers contrast with

an average of 125 tularemia cases reported in recent years
through National Notifiable Diseases Surveillance System
(Figure 2) (Centers for Disease Control and Prevention 2002,
2013, 2016e). Human cases have been reported from all states
other than Hawaii; however, frequency is often highest in the
south-central states of Arkansas, Missouri, and Oklahoma
(Figure 3). The decline in frequency of tularemia cases over
time has been associated with decreased rabbit hunting, a
food-gathering practice thought to account for a large propor-
tion of human cases via direct transmission resulting from
handling of infected rabbits (Eisen 2007a; Jellison 1974). The
transition away from hunting exposures is also evident in the
shifting seasonality of human cases over the decades. A once
predominantly wintertime disease in the United States has
transitioned to one that occurs primarily during the warmer
months when ticks and other arthropod vectors of F. tularensis
are most active (Centers for Disease Control and Prevention
2013; Centers for Disease Control and Prevention 2016e; Eisen
2007a). The proportion of human tularemia cases in the United
States explicitly linked to tick bites remains substantial, par-
ticularly in south-central states (Eisen 2007a).

Ehrlichia chaffeensis and E. ewingii infections are nationally
notifiable conditions in the United States. During 2008–2012,
there were 4668 reported cases of ehrlichiosis and approxi-
mately 99% were attributable to infection with E. chaffeensis.
The incidence of these infections in the United States during
this period was 3.2 cases per 1 million persons, which repre-
sented a 4-fold increase since 2000 (Figure 2). States that
consistently report the highest incidence include Arkansas,
Missouri, Oklahoma, Tennessee, and Virginia (Figure 3)
(Dahlgren et al. 2011; Heitman et al. 2016). Approximately two-
thirds of all cases are reported during May to July. The geo-
graphical distribution of ehrlichiosis mirrors the distribution of
the principal vector, the lone star tick (Figure 1), and increasing
numbers of cases have been identified recently well beyond the
historical range of A. americanum, to reflect the dynamic and ex-
panding distribution of this medically important tick (Cortinas
and Spomer 2013; Maegli et al. 2016).

Through 2015, approximately 40 cases of R. parkeri rickett-
siosis have been identified from 10 states (Centers for Disease
Control and Prevention 2016a; Herrick et al. 2016; Paddock et al.
2008). Confirmed infections have resulted from bites of
nymphal and adult stage Gulf Coast ticks. Recognized infec-
tions have occurred from April through October with approxi-
mately 80% during July through September. Approximately 75%
of the known case patients are men. In contrast to Rocky
Mountain spotted fever (RMSF), there are no published descrip-
tions of R. parkeri rickettsiosis in young children; indeed, most
patients with this infection are considerably older and the
median age from case reports is 53 years (range, 23–83 years)
(Paddock and Goddard 2015).

American Dog Tick (Dermacentor variabilis),
Rocky Mountain Wood Tick (Dermacentor
andersoni), and Pacific Coast Tick (Dermacentor
occidentalis)
Associated Human Disease Agents

The American dog tick, D. variabilis, has historically been impli-
cated as a major vector to humans in the eastern United States
of Rickettsia rickettsii, the etiological agent of RMSF (Burgdorfer
1975). However, more recent investigations have shown that
D. variabilis is rarely infected with pathogenic R. rickettsii and
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instead more frequently harbors nonpathogenic spotted fever
group rickettsia (Stromdahl et al. 2011). Although D. variabilis is
capable of transmitting F. tularensis (Reese et al. 2011) and has
been associated with local tularemia outbreaks, its overall
importance as a vector to humans remains unclear (Petersen
et al. 2009; Stromdahl and Hickling 2012).

In the Rocky Mountains and Inter-Mountain West, the
Rocky Mountain wood tick, D. andersoni, has been implicated as
a major vector to humans of R. rickettsii (Burgdorfer 1975).
However, R. rickettsii has been shown experimentally to cause
mortality in infected ticks, thus resulting in low prevalence of
infection in ticks (Niebylski et al. 1999). This tick species is also
a vector of F. tularensis; however, like D. variabilis, its import-
ance as a vector to humans is poorly defined (Petersen et al.
2009). Finally, D. andersoni also serves as the primary vector
to humans of Colorado tick fever virus (Family: Reoviridae)
(Burgdorfer 1977).

In the Pacific Coast states, D. occidentalis, the Pacific Coast
tick has long been associated with transmission of the agents
of tularemia, RMSF, and Colorado tick fever virus (Brown et al.
2005). More recently, its significance in the transmission of the
agent of Pacific Coast tick fever has been elucidated (Padgett
et al. 2016). Originally described as “Rickettsia 364 D,” R. philipii,
a spotted fever group rickettsia that is closely related to R. rick-
ettsii, was first isolated from D. occidentalis in 1966 (Padgett et al.
2016; Lane et al. 1981b). In 2008, the first confirmed human
infection with R. philipii was described from a patient in north-
western California (Shapiro et al. 2010).

Geographic Distribution of Tick Vectors

Dermacentor variabilis is found primarily in old fields and ecotones
comprised of old fields and woodlands, and is rarely found in
heavily forested areas (Bishopp and Trembley 1945; Campbell
and MacKay 1979; Sonenshine and Stout 1968). It is broadly dis-
tributed east of the Rocky Mountains, with a limited distribution
in Pacific Coast states, making it one of the most widely distribu-
ted ticks in the United States (Figure 1) (Bishopp and Trembley
1945; James et al. 2015). Because of the tick’s dependence on high
humidity, D. variabilis is not found in the Rocky Mountains and
Inter-Mountain West (James et al. 2015). During the last 70 years,
the geographic range of the American dog tick in the United
States has changed less than many other medically important
tick species. However, more recent collection records of D. varia-
bilis have been reported from Washington and Idaho where the
tick had not been reported in early surveys (Bishopp and
Trembley 1945; James et al. 2015).

In striking contrast, D. andersoni is found primarily in semi-
arid and mountainous areas, favoring habitats comprised
mostly of grasses and shrubs (Bishopp and Trembley 1945;
Eisen 2008; James et al. 2006; Lane et al. 1981a). Its range is re-
stricted to the Rocky Mountains and Inter-Mountain West and
it is largely found in areas that are uninhabitable to D. variabilis
(Figure 1) (Bishopp and Trembley 1945; James et al. 2006, 2015).
The geographic range of D. andersoni appears to have remained
relatively stable since 1932 (James et al. 2006).

Dermacentor occidentalis is most commonly encountered in
woody and brushy habitats (Brown et al. 2005). Its range is re-
stricted to Oregon, California, and northern Baja California in
Mexico, but, based on abundance, its core distribution appears
to be in the Coastal Ranges and Cascade Range in California
and southern Oregon (Bishopp and Trembley 1945; Furman and
Loomis 1984).

Tick Life Cycles/Enzootic Pathogen Transmission

All three Dermacentor vector species are three-host, non-
nidicolous ticks that feed primarily on small mammals as larvae
and nymphs and on a larger hosts as adults (Bishopp and
Trembley 1945). While immature D. andersoni and D. occidentalis
feed on a wide range of rodents and other small mammals, D.
variabilis has a more narrow host range, feeding most commonly
on voles (Microtus spp.) and white-footed mice (Peromyscus spp.)
(Bishopp and Trembley 1945; Burgdorfer 1977). As adults, all
three species feed on a wide range of large domestic and wild
mammals; however, domestic dogs are common hosts for adult
D. variabilis (Bishopp and Trembley 1945; Burgdorfer 1977).
Similar to the other tick species described above, humans are
incidental hosts of D. variabilis, D. andersoni, and D. occidentalis;
the vast majority of human bites are by the adult life stage
(Bishopp and Trembley 1945; Merten and Durden 2000).

Because of their high susceptibility to R. rickettsii infection and
because they are commonly infested by D. andersoni and D. varia-
bilis, small mammals including chipmunks (Tamias spp.), voles
(Microtus spp.), ground squirrels (Spermophilus spp.), and cottontail
rabbits (Sylvilagus spp.) are considered important amplifying hosts
(Table 1) (Burgdorfer 1977; Niebylski et al. 1999). Rickettsia rickettsii
also is maintained through transovarial transmission and
through simultaneous feeding on a common host by infected and
noninfected ticks. Despite multiple mechanisms of transmission
that predict a high infection rate in ticks, prevalence of R. rickettsii
in Dermacentor spp. ticks is typically <1% (Burgdorfer 1977;
Stromdahl et al. 2011). Low infection prevalence may be explained
in part by detrimental effects of infection on the survival and
fecundity of the vector (Niebylski et al. 1999).

Colorado tick fever virus is maintained through horizontal
transmission with infected D. andersoni nymphs maintaining
the virus through winter, then infecting small mammal hosts
in the spring, which then infect feeding larvae. Although
Colorado tick fever virus has been isolated from numerous
small mammal species, golden-mantled ground squirrels and
chipmunks appear to be key hosts based on their ability to har-
bor high viral loads that are infectious to feeding ticks and due
to their heavy infestation rates with immature D. andersoni
(Table 1) (Burgdorfer 1977; Marfin and Campbell 2005). Local
infection rates with Colorado tick fever virus in host-seeking
D. andersoni can vary dramatically over short distances, but a
recent study from Wyoming showed that 23% of females col-
lected from Grand Teton National Park and Bridger-Teton
National Forest carried this virus (Geissler et al. 2014).

Tick Seasonality and Host-Seeking Behavior

The host-seeking phenology of D. variabilis differs across its geo-
graphic range. For example, in Virginia, adults are actively host-
seeking as early as April with peak abundance occurring in late
June or early July and adult activity continues through August.
Larval host-seeking commences in the early spring of the follow-
ing year. Peak larval abundance typically is observed in April and
declines rapidly after the peak, but larval activity persists at low-
er levels for an additional 2 to 3 months postpeak. Nymphs are
typically active from spring through summer, with peak activity
lagging behind the larval peak by 4 to 6 weeks (Sonenshine 1993).
Further north in the tick’s range, larval host-seeking activity pre-
cedes nymphal activity as it does in the South; however, in con-
trast to the unimodal peaks observed in the South, in the North
larval and nymphal host-seeking activities peak in the spring and
their abundance often increases again in late summer. Adults are
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active from April throughmid-August with peak activity in May or
June (Garvie et al. 1978; Smart and Caccamise 1988). In contrast, in
Oklahoma larval activity reportedly spans from June through
September, with peak activity in June (Gage et al. 1992).

Although there are subtle regional differences in host-seeking
behavior of D. andersoni, adults are generally active from February
through November, with peak activity occurring between April
and June. Larvae and nymphs are typically active from March
through October, with peak host-seeking activity in May and June
(Bishopp and Trembley 1945; Eads and Smith 1983; Easton et al.
1977; James et al. 2006; Sonenshine et al. 1976).

In California, adult D. occidentalis have been collected during
all months of the year, but their activity peaks from March to
May. Larvae and nymphs are active during the spring and sum-
mer, but peak activity is typically in July and August (Furman
and Loomis 1984; Padgett et al. 2016).

Frequency, Seasonality, and Geographic Distribution of
Dermacentor-Borne Diseases

RMSF is the most lethal tick-borne disease in the United States,
and during the decade preceding discovery of effective anti-
microbial therapy for RMSF, the aggregate mortality attribut-
able to this disease was approximately 23%. Throughout most
of the United States, RMSF is sporadic and uncommon relative
to most other tick-transmitted infections. Cases of spotted fe-
ver have been reported from each of the 48 contiguous states
and the District of Columbia; nonetheless, its distribution and
frequency generally parallel the distribution and abundance of
D. variabilis in central and eastern states and D. andersoni in
western states (Biggs et al. 2016). In this context, Arkansas,
Missouri, North Carolina, Oklahoma, and Tennessee demarcate
a broad band of higher incidence states in the eastern and cen-
tral United States, accounting for 63% of spotted fever cases
during 2008–2012 (Figure 2). Montana and Wyoming report the
highest state-wide incidence of RMSF in the western United
States (Drexler et al. 2016). Approximately 70% of reported cases
occur from May through August; however, sporadic cases of
RMSF are reported during all months of the year (Lange et al.
1982). Endemic foci for RMSF have been documented to persist
for decades within small regions or communities (Burgdorfer
1977; Hazard et al. 1969), and family clusters of RMSF involving
as many as six persons have been described (Jones et al. 1999).

Through 2015, 14 cases of laboratory-confirmed Pacific Coast
tick fever have been identified from 5 counties in California.
Twelve (86%) of these cases occurred during July and August,
corresponding to the peak host-seeking activity of nymphal
stage D. occidentalis (Padgett et al. 2016). There are no known
deaths attributable to this infection, but some patients had
moderately severe illnesses and required hospitalization. The
range of D. occidentalis also includes southern Oregon, but all
known cases of Pacific Coast tick fever have been limited to
California.

Colorado tick fever (CTF) occurs where humans come into
contact with tick vectors of the causative virus, primarily D. an-
dersoni (Emmons 1988). CTF has been reported from 11 western
states, including California, Colorado, Idaho, Montana, Nevada,
New Mexico, Oregon, South Dakota, Utah, Washington, and
Wyoming, where it occurs predominantly in mountainous
highland habitats from approximately 4000 to more than 10,000
feet elevation and where vegetation comprising sagebrush,
juniper, and pine with moderate grass cover predominates.
Recent studies suggest that the risk of acquiring CTF may be
greatest at elevations above 7000 feet (Geissler et al. 2014).

Approximately two-thirds of all cases of CTF reported during
1995–2012 occurred in male patients, and the highest age-
specific incidence was in people ≥50 years of age (Brackney
et al. 2010; Yendell et al. 2015). The majority of cases occur
during May to July and reflect the peak of host-seeking adult
D. andersoni ticks (Eisen 2007b; Spruance and Bailey 1973).
Fatalities occur only rarely. Reported cases of CTF have de-
clined dramatically since the early 1980s when more than 200
cases were reported each year (Emmons 1988). By comparison,
a median of 55 cases of CTF were reported annually during
1987–2001, and the median annual number dropped to 5 dur-
ing 2002–2012. These changes could be influenced by recent
changes in reporting practices in some historically high-
incidence states such as Colorado, which removed CTF from
its list of reportable diseases in 1997 (Yendell et al. 2015).

Brown Dog Tick (Rhipicephalus sanguineus
Sensu Lato)
Associated Disease Agents

Investigators in the 1930s determined that Rh. sanguineus s. l. was
a competent experimental vector of R. rickettsii (Parker 1933);
nonetheless, a conclusive role for this tick in the natural history
of RMSF in the United States was not documented until 2005,
when the brown dog tick was identified as the sole vector respon-
sible for epidemic levels of RMSF in several tribal communities in
Arizona (Demma et al. 2005; Nicholson et al. 2006a, 2006b).
Environmental assessments of the affected communities revealed
high rates of infection with R. rickettsii in adult ticks, including
approximately 5% and 10% of the nonengorged specimens and
engorged specimens, respectively (Eremeeva 2012). The taxo-
nomic status of R. sanguineus sensu stricto is unresolved, and cur-
rent data indicate that ticks identified collectively as R. sanguineus
comprise a group of genetically distinct taxa that likely includes
multiple sibling species. Because distinct populations of R. sangui-
neus s. l. often differ in vector competence with other infectious
agents, it is possible that certain populations of R. sanguineus s.
l ticks vary in efficiency as vectors of R. rickettsii (Dantas-Torres
and Otranto 2015). The brown dog tick is also a vector of
Rickettsia massiliae, a moderately pathogenic spotted fever group
Rickettsia species, and Ehrlichia canis, an important bacterial
pathogen of domestic dogs. Each of these agents is associated
with disease in humans in other parts of the world and has
been detected in Rh. sanguineus s. l. ticks and domestic dogs in
several regions of the United States (Beall et al. 2012; Beeler
et al. 2011; Eremeeva et al. 2006); nonetheless, there have been
no confirmed cases of human illness caused by R. massiliae or E.
canis in the United States.

Geographic Distribution

The brown dog tick is one of the most widely distributed hard
tick species worldwide and is found approximately between
the latitudes of 50°N and 30°S. In the United States collection
records of Rh. sanguineus s. l. exist from all 50 states (Walker
et al. 2000).

Tick Life Cycles/Enzootic Pathogen Transmission

Multiple biological and ecological features of Rh. sanguineus s. l.
contribute to its role as a formidable vector of R. rickettsii. This
three-host tick is predominantly monotropic and domesticated
dogs serve as the principal hosts for all life stages. Because of
its host preference, Rh. sanguineus s. l. is extremely well adapted
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to peridomestic and endophilic habitats and is also remarkably
resistant to desiccation (Koch and Tuck 1986). Brown dog ticks
spend most of their life span off of their hosts, concealed in
cracks and crevices of walls in kennels, homes, and other peri-
domestic harborages. Because of the cryptic behavior and small
size of larvae and nymphs, low-level peridomestic infestations
can escape attention, allowing populations to increase rapidly
(Eiden et al. 2015). The duration of the brown dog tick life cycle
is temperature dependent, but under favorable conditions, Rh.
sanguineus s. l. can complete 2 generations or more per year. In
the United States, brown dog ticks are most active from late
spring through early fall (Dantas-Torres 2008). The parasitism
by Rh. sanguineus s. l. of hosts other than domestic dogs is gen-
erally uncommon but can occur in heavily infested environ-
ments, and all three feeding stages can bite humans (Dantas-
Torres 2010). Nonetheless, ticks can acquire R. rickettsii bacteria
from infected mammalian hosts at each feeding stage and rick-
ettsiae are transmitted to subsequent stages as well as transo-
varially to the eggs of infected female ticks (Costa et al. 2011;
Labruna et al. 2008; Parker 1933; Piranda et al. 2011). Although
filial infection rates are typically <50%, female ticks can ovi-
posit as many as 4000 eggs (Koch 1982), and survival rates
among R. rickettsii-infected Rh. sanguineus s. l. ticks are generally
greater than observed for other recognized vector species
(Labruna et al. 2008; Piranda et al. 2011).

Frequency, Seasonality, and Geographic Distribution of
Rh. sanguineus s. l.-Borne Rocky Mountain Spotted Fever

Among several American Indian reservations in eastern and
southern Arizona, large populations of free-roaming dogs sup-
port enormous numbers of Rh. sanguineus s. l. that serve as effi-
cient vectors for R. rickettsii and perpetuate extraordinarily high
rates of RMSF (Demma et al. 2005; Nicholson et al. 2006b).
During 2003–2013, approximately 300 cases of RMSF, including
20 deaths, were reported from tribal lands in Arizona compared
with 3 RMSF cases reported from the entire state during the
previous decade (Biggs et al. 2016). During 2009–2012, the aver-
age annual incidence of RMSF for the three most affected com-
munities in Arizona was approximately 1360 cases per 1
million persons, more than 150 times the average for the
United States (Drexler et al. 2014; Drexler et al. 2016).

Prevention Strategies
Human vaccines are currently lacking for all tick-borne patho-
gens that occur in the United States. Avoiding habitats where
ticks occur is a first line of defense against tick-borne diseases;
however, because some important tick vectors, such as I. scapu-
laris, are abundant in peridomestic settings, this may be
impractical and alternative strategies are required (Hayes and
Piesman 2003). Prevention efforts focus on (i) minimizing the
risk of tick bites through personal protective measures (e.g.,
using tick repellents on skin or clothing, wearing permethrin-
treated clothing, and placing outdoor clothes into a dryer on
high heat for 10 minutes to kill ticks lingering on the clothing),
(ii) reducing the risk of pathogen transmission by prompt
detection and removal of attached ticks (checking one’s body
daily for attached ticks and showering or bathing within two
hours after spending time in tick habitat), and (iii) environmen-
tally based tick/pathogen control methods aimed at reducing
the overall density of infected host-seeking ticks (e.g., land-
scape and vegetation management to reduce tick habitat and
decrease the risk of tick bites on residential properties,

suppression of host-seeking ticks with synthetic or natural
product-based chemical acaricides or fungal biological agents,
use of rodent reservoir-targeted topical acaricides to disrupt
tick feeding and reduce enzootic pathogen transmission, and
reduction of the availability of deer as tick hosts via deer culling
or topical application of acaricide) (Connally et al. 2009; Eisen
and Dolan 2016; Nelson et al. 2016).

Despite the availability of these various measures, preven-
tion and control of tick-borne diseases have not, with the
notable exception of RMSF associated with the brown dog
tick (described below), met with great success in the United
States. For example, no single personal protective measure or
environmental tick/pathogen suppression method has con-
sistently been shown to reduce Lyme disease cases, and no
integrated strategy that combines two or more approaches
has yet been evaluated with Lyme disease cases as an out-
come measure (Eisen and Gray 2016; Hinckley et al. 2016).
Indeed, there is an urgent need for strengthening the evi-
dence base for the potential of existing personal protective
measures and environmentally based control methods to
reduce cases of tick-borne diseases, particularly when used
in strategic combinations.

In addition to the lack of human vaccines, there are several
other root causes that hinder the control and prevention of
Amblyomma-, Dermacentor-, and Ixodes-transmitted infections.
These vector ticks typically feed on a wide range of vertebrate
hosts as immatures, often including multiple species that serve
as pathogen reservoirs. Some of the vector ticks are largely
dependent on deer as hosts for the adult stage, likely represent-
ing the weakest link in their life cycle, but deer populations have
exploded in the eastern United States with limited potential for
reducing deer densities to the very low levels required for sub-
stantial impact on tick populations (Eisen and Dolan 2016;
Kugeler et al. 2016). Moreover, some of the most important tick
vectors are ubiquitous both in natural environments and perido-
mestic settings, which makes these difficult to avoid. Although
personal protective measures can be effective, they require
extreme diligence and are highly inconvenient if the risk habitat
includes your own backyard. Environmental suppression of ticks
remains the responsibility of individual homeowners, leading to
mosaics of treated and nontreated properties rather than larger
tracts of treated area: this is a major difference between control
of vector ticks and vector mosquitoes in the United States, and
most likely part of the explanation for the greater success in con-
trolling mosquito-borne diseases.

In contrast, efforts to curb outbreaks of RMSF associated
with the brown dog tick have been largely successful, because
all three feeding stages of Rh. sanguineus s. l. rely predominantly
on one host species, the domesticated dog. The combination of
an easily accessible tick host and clearly defined and readily
accessible habitats for host-seeking brown dog ticks in and
around homes set the stage for a successful campaign to con-
trol RMSF on American Indian reservations in Arizona. In year
one of a two-year campaign known as the RMSF rodeo, all dogs
in the community were outfitted with long-acting tick collars,
acaricides were applied to yards monthly, and modifications to
animal care practices (e.g., spaying and neutering and tethering
of dogs) were encouraged. In year two, tick reduction efforts
focused on the long-acting tick collar alone. Compared with
control communities, tick infestations were significantly re-
duced in treated communities in years 1 and 2 of the study.
Overall, incidence of RMSF decreased in treated and control
communities. Although a more substantial decrease was ob-
served in the treated community compared with the control,
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the significance and attribution of the decrease require further
scrutiny (Drexler et al. 2014).

Conclusions
We described 12 major tick-borne diseases, caused by a total of
15 distinct disease agents that are transmitted by the 8 most
commonly human-biting ixodid ticks in the United States
(Table 1). Remarkably, only within the last two decades, 6 (40%)
of these 15 pathogens (Bo. mayonii, E. muris euclairensis,
Heartland virus, E. ewingii. R. parkeri, and R. philipii) have been
recognized to cause illness in humans. This observed trend is
attributable in part to improved diagnostic capabilities, astute
clinical observations, and increased awareness of tick-borne
pathogens by researchers and clinicians. Several of these etio-
logical agents were described many years before recognition of
confirmed infections of humans, while others are newly recog-
nized agents of previously characterized diseases. Use of ani-
mal models has allowed for the rapid confirmation of tick
vector competence for these newly discovered pathogens, and
field studies have elucidated key tick species and vertebrate
host species involved in the enzootic maintenance of the
pathogens. Epidemiological surveillance has documented a
marked increase in the incidence and geographic range of
numerous tick-borne illnesses, particularly those associated
with I. scapularis, A. americanum, and A. maculatum. Although
vector surveillance is not standardized or routine in the United
States, studies have revealed geographic expansion of several
vectors in recent decades (notably, I. scapularis, A. americanum,
and A. maculatum). Recognizing which reservoir hosts and tick
vectors are critical to enzootic maintenance of these pathogens,
which tick species and life stages serve as bridging vectors to
humans, and where and when humans are at greatest risk for
exposure are all critical in designing effective prevention
measures.
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