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ABSTRACT

The radiative flux of internal wave energy (the “tidal conversion”) powered by the oscillating flow of a
uniformly stratified fluid over a two-dimensional submarine ridge is computed using an integral-equation
method. The problem is characterized by two nondimensional parameters, A and B. The first parameter, A,

is the ridge half-width scaled by �h, where h is the uniform depth of the ocean far from the ridge and � is
the inverse slope of internal tidal rays (horizontal run over vertical rise). The second parameter, B, is the
ridge height scaled by h. Two topographic profiles are considered: a triangular or tent-shaped ridge and a
“polynomial” ridge with continuous topographic slope. For both profiles, complete coverage of the (A, B)
parameter space is obtained by reducing the problem to an integral equation, which is then discretized and
solved numerically. It is shown that in the supercritical regime (ray slopes steeper than topographic slopes)
the radiated power increases monotonically with B and decreases monotonically with A. In the subcritical
regime the radiated power has a complicated and nonmonotonic dependence on these parameters. As A →

0 recent results are recovered for the tidal conversion produced by a knife-edge barrier. It is shown
analytically that the A → 0 limit is regular: if A � 1 the reduction in tidal conversion below that at A � 0
is proportional to A2. Further, the knife-edge model is shown to be indicative of both conversion rates and
the structure of the radiated wave field over a broad region of the supercritical parameter space. As A

increases the topographic slopes become gentler, and at a certain value of A the ridge becomes “critical”;
that is, there is a single point on the flanks at which the topographic slope is equal to the slope of an internal
tidal beam. The conversion decreases continuously as A increases through this transition. Visualization of
the disturbed buoyancy field shows prominent singular lines (tidal beams). In the case of a triangular ridge
these beams originate at the crest of the triangle. In the case of a supercritical polynomial ridge, the beams
originate at the shallowest point on the flank at which the topographic slope equals the ray slope.

1. Introduction

The passage of the barotropic tide over submarine
topography is a main source of the mechanical energy
required to power the internal gravity wave field and
mix the stably stratified ocean (Ledwell et al. 2000;

Munk and Wunsch 1998). Satellite altimetry has shown
deep-sea tidal energy losses concentrated at submarine
ridges and island arcs (Egbert and Ray 2001; Ray and
Mitchum 1996). Observational and modeling studies
have focused on the Hawaiian Ridge as an accessible
site at which these processes might be investigated
(Merrifield and Holloway 2002; Rudnick et al. 2003).
Thus, there is a powerful motivation to understand the
factors that control the tidally powered radiation of in-
ternal gravity waves (the “tidal conversion”) from a
realistically steep and tall ridge.
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The main theoretical approach to this tidal conver-

sion problem uses ideas developed first by Bell

(1975a,b; see also Khatiwala 2003; Llewellyn Smith and

Young 2002; St. Laurent and Garrett 2002). In Bell’s
work the crucial approximations are that topographic

slopes are small relative to the slope of internal tidal

beams, and that the height of the topography is much

less than the depth of the ocean. With these two restric-

tions, the bottom boundary condition can be applied

approximately at a flat surface, say z � 0. This simpli-

fication allows the linear superposition of different to-

pographic sinusoids and the application of Fourier

analysis so that the conversion rate is obtained in terms

of the topographic spectral density. We refer to the two

approximations introduced by Bell as the weak topog-

raphy approximation (WTA).

Independent of Bell, in 1973 P. G. Baines developed

a procedure that avoids linearization of the bottom

boundary condition around z � 0. At first, Baines also

restricted consideration to the subcritical case, in which

the slope of the topography is everywhere less than the

slope of the tidal beams (referred to by Baines as “flat

bump” topography). In 1982, Baines dealt with the

complementary case of supercritical topography

(“steep” topography). Thus, using the method of

Baines (1973, 1982) one can, in principle, deal with ar-

bitrary topography, but the calculations are difficult,

particularly for the supercritical case, where Baines was

forced to make some additional approximations. In this

article we will develop a fresh approach to the problem

of tidal generation by a submarine ridge. Our method,

based on results of Robinson (1969) and Llewellyn

Smith and Young (2003), works in both the sub- and

supercritical cases and results in compact estimates of

the radiated tidal energy.

We consider several idealized models of a submarine

ridge (see Fig. 1) and attempt a broad survey of param-

eter space. But we also have in mind the specific ex-

ample of the Hawaiian Ridge. The height of the Ha-

waiian Ridge is comparable to the depth of the ocean,

and the slope of the flanks is significantly steeper than

the slope of internal wave rays (i.e., the Hawaiian

Ridge is strongly supercritical). For both these reasons,

the WTA is inapplicable to Hawaii. The most relevant

Hawaiian example from the work of Baines is the “sym-

metric cosine ridge” (Baines 1973). However, Baines’s
results for the symmetric cosine are restricted to the

subcritical case.

Recent work by St. Laurent et al. (2003) provides the

first theory that comes to grips with the strongly super-

critical topography characteristic of Hawaii. Two rel-

evant topographic profiles from St. Laurent et al. are

the “knife-edge barrier” and the “top-hat ridge.” In the

case of the knife edge, a two-dimensional ridge of width

�a � x � a and height 0 � z � b is replaced by a knife

edge (zero width) of the same height, b. The knife edge

is the most extreme example of a strongly supercritical

ridge and can be regarded as the end member of a

family of topographic profiles in which a → 0 with b

fixed. This knife-edge model is particularly useful be-

cause it can be solved analytically (Llewellyn Smith and

Young 2003). St. Laurent et al.’s solution of the top-hat

ridge shows that broadening the knife into a flat-topped

block makes only a small increase in the conversion

rate above that of a knife edge with the same height.

This anticipates one of our results based on the profiles

in Fig. 1: the seemingly pathological knife edge pro-

vides quantitatively accurate estimates of the conver-

sion produced by strongly supercritical ridges of finite

width. Moreover, aside from interesting details close to

the ridge, the radiation pattern of the knife edge is very

similar to that of finite-width ridges (see Fig. 1). A limi-

FIG. 1. Snapshots of the total buoyancy field, N2z � � in (2.8),

associated with the internal tide radiation from three idealized

supercritical ridges, all with b/h � 3/5. (top) The knife-edge ridge

with C � a/�b � 0. (middle) The triangular ridge in (2.1) with C

� a/�b � 1/3. (bottom) The “polynomial” ridge in (2.2) with C �

a/�b � 1/3. This figure uses nondimensional coordinates in which

the depth of the ocean is 0 � Z � � and tidal rays travel at 45°
paths. The tidal beams are the prominent linear singularities origi-

nating at, or near, the ridge crest. The nondimensional conversion

factor M, defined in (1.3), varies by less than 7% among the three

different cases.
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tation of the abrupt topographies analyzed by St. Lau-

rent et al. (2003) is that one cannot study the transition

from sub- to supercritical topography by continuously

varying the slope of the ridge flanks. This is a motiva-

tion for studying the profiles in the lower panels of Fig.

1: with fixed height one can start in the knife-edge limit

and smoothly increase the width of the ridge. During

this process the slope of the flanks decreases monotoni-

cally and continuously, and at a particular width the

ridge becomes completely subcritical; that is, the topo-

graphic slopes are everywhere less than the ray slopes

of internal gravity waves. Thus, the super- to subcritical

transition is captured. Provided that the ridge height is

much less than the ocean depth, further increases in the

width move one into the domain of validity of the

WTA.

We focus exclusively on the two-dimensional prob-

lem and represent the tidal flow as

U � U cos	�t
x̂, 	1.1


where x̂ is a unit vector in the x direction. This oscilla-

tory flow impinges on a ridge of height b and width 2a.

The ocean has total depth h so that the gap above the

ridge crest is h � b (see Fig. 2). In addition to the tidal

frequency � there are two other important frequencies

in this problem: the Coriolis frequency f and the buoy-

ancy frequency N (assumed to be uniform). From these

three frequencies, and the internal wave dispersion re-

lation, we obtain the inverse slope (run over rise) of

internal tidal rays in terms of the dimensional param-

eter1:

� �
N

��2 � f 2
. 	1.2


Consider parameters roughly matching Hawaii: f � 5


 10�5 s�1 and � � 2.8f (corresponding to a 12.4-h tidal

period). For the buoyancy frequency we use the vertical

average of N near Hawaii, estimated by Llewellyn

Smith and Young (2003) as close to one cycle per hour,

or N � 35f. With these numbers, � � 13.5. Thus a tidal

beam rises vertically through 1 m for every 13.5 m of

horizontal excursion. Realistic topographic slopes can

easily be steeper than one part in 13.5. One of our

conclusions is that in both the sub- and supercritical

cases the converted tidal power is best written in terms

of the external dimensional variables as

C �
�

4
b2�U2N�1 �

f 2

�2

 M�b

h
,

a

�h
,

�

N
,

U

�a
,· · ·�,

	1.3


where � is the average density of seawater and M is a

dimensionless function. The dimensions of C are watts

per meter of ridge. The expression in (1.3) is con-

structed so that the strongest dependence of C on the

external parameters is contained in the dimensional

prefactor.

As a numerical example, take b � 4500 m, � � 1000

kg m�3, and U � 0.01 m s�1. For the frequencies we use

values of (�, N, f ) in the previous paragraph. Then the

dimensional prefactor in (1.3) is

�

4
b2�U2N�1 �

f 2

�2
� 2.6 
 103 	W m�1
.

	1.4


If the length of the ridge is 2000 km then the total

conversion is 5.2 
 M GW. Llewellyn Smith and Young

(2003) showed that in a realistically stratified ocean,

with N being a strong function of z, a more accurate

estimate is obtained by using N evaluated at the ridge

crest, z � b, in formulas such as (1.3). If the ridge

penetrates the thermocline this can easily increase (1.4)

by a factor of 2 or 3.

It is interesting to compare (1.4) with observational

estimates of energy flux. Near the Hawaiian Ridge es-

timated fluxes are in the range 6 to 15 
 103 W m�1

(Ray and Mitchum 1996; Kang et al. 2000; Egbert and

Ray 2001; Merrifield et al. 2001; Merrifield and Hollo-

way 2002). For the Mendocino Escarpment, a recent

1 Because N � � the hydrostatic approximation is formally jus-

tified. We make this simplification in (1.2) and throughout the

paper. However, N � � does not ensure that the hydrostatic

approximation is uniformly valid: the radiated wave field develops

very small length scales within the internal tidal beams. These

singularities result in density inversions and localized failure of

both the hydrostatic approximation and the linearization assump-

tion (see section 6).

FIG. 2. Geometry of the triangular ridge. The height of the ridge

is b, and the width at the base is 2a; the total depth of the ocean

is h. The nondimensional inverse slope is C � a/�h, where � is the

inverse slope of internal tidal rays given in (1.2).
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estimate is 7 
 103 W m�1 (Althaus et al. 2003). For the

Aleutian Ridge, Cummins et al. (2001) estimate a flux

of 3 
 103 W m�1.

In (1.3), C depends quadratically on the height of the

ridge through the factor b2. This quadratic dependence

on the ridge height b is apparent in Baines’s (1973)

results for the subcritical symmetric cosine ridge (see

his Fig. 6). There is some weaker residual dependence

on b contained in the function M. Moreover, the stron-

gest dependence of M on the various nondimensional

groups is through the first two: b/h and a/�h. The suc-

cessive arguments, �/N, U/(�a), and so on, are all small

parameters. For brevity we will suppress reference to

these small parameters and regard M mainly as a func-

tion of the nondimensional ridge height b/h and the

nondimensional half-width a/�h.

Thus, one of our main goals is to understand quan-

titatively the tidal conversion produced by the idealized

ridges of Fig. 1 by calculating the function M(b/h, a/�h).

There are two limiting cases already understood from

earlier investigations. The first case is the WTA, ob-

tained from the limit

MWTA� a

�h
� � lim

b�h→0
M�b

h
,

a

�h
�. 	1.5


The upper panel of Fig. 3 shows the functions MWTA(a/�h)

corresponding to the triangular and the polynomial to-

pographic profiles in the lower panels of Fig. 1. These

results are obtained using the formulas in either Khati-

wala (2003) or Llewellyn Smith and Young (2002) [see

(2.6) and (2.7) below].

The second analytic case is that of a knife-edge bar-

rier, corresponding to

Mknife�b

h
� � lim

a��h→0
M�b

h
,

a

�h
� 	1.6


(St. Laurent et al. 2003). In this instance, Llewellyn

Smith and Young (2003) have shown that

Mknife�b

h
� �

4

�B2 �
0

B

Z� 1 � cosZ

cosZ � cosB
dZ,

	1.7


where B � �b/h is the nondimensional height of the

ridge. The right-hand side of (1.7) is shown in the lower

panel of Fig. 3. Notice that M is defined so that

Mknife(0) � 1 and Mknife(b/h) increases monotonically

with b/h. However, the rise is gradual and it is not until

b/h � 0.92 that Mknife reaches 2. Again, this emphasizes

FIG. 3. (top) The function MWTA(A) defined by the right-hand sides of (2.6) and (2.7) for

triangular and polynomial ridges, respectively. Note that limA→0MWTA(A) � 8 ln2/�2 � 0.562

for the triangle and 64/9�2 � 0.721 for the polynomial ridge. (bottom) The function Mknife(B)

defined by the right-hand side of (1.7).
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that the main dependence of C on the ridge height b is

through the factor b2 on the right-hand side of (1.3).

The domain of validity of the approximation MWTA

has no overlap with that of Mknife. Indeed, Fig. 3 shows

that the limits in (1.5) and (1.6) do not commute. This

is obvious physically: taking first a/�h → 0 we bid adieu

forever to the WTA. One of goals here is to “fill in” the

parameter space between the two analytic cases, MWTA

and Mknife, shown in Fig. 3. In an earlier discussion of

this issue, St. Laurent et al. (2003) emphasized that the

conversion produced by a knife-edge ridge with B � 1

is just 2 times that of a witch of Agnesi ridge with the

same height but a small slope. In other words, the

WTA, extrapolated recklessly to A � 0, is in error by a

factor of 2. For the triangular and polynomial ridge

profiles used here, this reckless extrapolation gives

1/0.562 � 1.78 and 1/0.721 � 1.39, rather than 2. Thus,

an annoying open issue concerns the behavior of M in

the gap between the knife-edge limit and the WTA: as

A increases with B fixed does M have an intermediate

maximum, or does M decrease monotonically? Our re-

sults show that in the supercritical regime, M decreases

monotonically as A increases with B fixed. While the

form of this transition is interesting, and rather sensi-

tive to the topographic profile, there is no intermediate

maximum. In the subcritical regime, M has complicated

nonmonotonic structure.

In section 2 we formulate the problem of tidal con-

version by a ridge using a method originally developed

by Robinson (1969). Robinson obtained an analytic ex-

pression for the Green’s function, or “vortex solution,”
of the internal gravity wave equation. This Green’s
function represents waves propagating away from a

point source in an ocean of finite depth h. By super-

posing these singular solutions along the surface of the

ridge with a weight function, one can enforce the topo-

graphic boundary condition and so transform the prob-

lem into an integral equation. The solution of this in-

tegral equation is the weight function. For the knife

problem this was the approach taken by Llewellyn

Smith and Young (2003). In that case the integral equa-

tion was solved analytically and resulted ultimately in

(1.7). In the present problem, with nonzero half-width,

a, the integral equation is more complex, and a numeri-

cal solution in section 3 is our main approach. Results

are presented in section 4. In section 5, we investigate

the limit of a narrow ridge with an arbitrary profile. We

show that the knife edge is obtained as a regular limit

by taking the nondimensional half-width, A � �a/�h, to

zero. We present conclusions in section 6. Appendix A

contains formulas and details underlying our numerical

solution of the integral equation. In appendix B we

investigate the limit in which the faces of the triangular

ridge are almost critical, that is, the topographic slope

b/a is almost equal to the ray slope ��1. This “critical”
ridge presents challenges to the numerical method of

section 4, so the analytic results of appendix B establish

a useful landmark in the parameter space.

2. Formulation

a. The ridge

We idealize the ocean as a rotating, inviscid fluid

layer in which the tide sloshes to and fro along the x

direction, as in (1.1); z denotes the vertical. We assume

that the ridge is symmetric about x � 0. We use two

main models of the submarine topography: the trian-

gular ridge

z � �b	1 � |x|�a
, if |x| � a,

0, otherwise,
	2.1


and a “polynomial ridge”

z � �b�1 � 	x�a
2�2, if |x| � a,

0, otherwise.
	2.2


The geometry of the triangular ridge is illustrated in

Fig. 2. In both cases the maximum height of the topog-

raphy is b and the ridge width at the base is 2a. For

subsequent developments it is convenient to write the

bottom boundary in the form

x � �q	z
, 	2.3


where the function q(z) decreases monotonically with

increasing z, from q(0) � a to q(b) � 0. For the trian-

gular ridge in (2.1),

q	z
 � a�1 �
z

b
�, 	2.4


and for the polynomial hump in (2.2),

q	z
 � a�1 ��z

b
. 	2.5


We record here some results obtained by applying

the WTA to the idealized ridges in (2.1) and (2.2). This

approximation is valid if both b/h � 1 and �b/a � 1.

Then the formulas in either Khatiwala (2003) or

Llewellyn Smith and Young (2002), applied to the tri-

angular ridge, give

MWTA� a

�h
� �

32

�2A2 �
n�1

	

n�3 sin4�nA

2 �, 	2.6


where A � �a/�h is a nondimensional half-width of the

ridge. The right-hand side of (2.6) is the solid curve in

the upper panel of Fig. 3. Figure 3 also shows the con-
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version in the WTA limit for polynomial ridge in (2.2).

In this case

MWTA� a

�h
� �

512

�2A8 �
n�1

	

n�9�	n2A2 � 3
 sinnA

� 3nA cosnA�2. 	2.7


For the triangular ridge, (2.6) shows that M vanishes

when A is a multiple of 2�—the first of these zeroes is

apparent in Fig. 3. At these special values of the ridge

width there is destructive interference and no tidal con-

version; no internal waves are radiated, and instead the

disturbance is confined to the neighborhood of the

ridge. We shall see that for the triangular ridge these

“null” points survive in the general case; that is, the

zeroes of M are not artifacts of the WTA. For the poly-

nomial hump, M never exactly vanishes. But (2.7) is

also very small when A is close to multiples of 2�.

b. Governing equations

The density is written as

� � �0	1 � g�1N2z � g�1

, 	2.8


where N is the uniform buoyancy frequency and �(x, z,

t) is the buoyancy of the disturbance. Because the to-

pography is independent of y, so too is the disturbance

created by tidal action. The governing equations for the

induced velocity (u, �, w), rescaled pressure p, and

buoyancy � are

ut � f� � px � 0,

�t � fu � 0,

pz � 
,


t � N2w � 0, and

ux � wz � 0. 	2.9


In these equations f is the Coriolis frequency.

The velocity in the (x, z) plane can be represented

using a streamfunction �(x, z, t): (u, w) � (��z, �x).

The problem then reduces to solving the internal grav-

ity wave equation,

�zztt � f2�zz � N2�xx � 0. 	2.10


The bottom boundary condition is

���q	z
, z� � Uz cos	�t
. 	2.11


The condition in (2.11) ensures that the total stream-

function, �Uz cos(�t) � �, vanishes on the bottom.

c. The steady-state wave field

We consider the steady-state wave conversion by

looking for time-periodic solutions with the tidal fre-

quency: we introduce � � �r � i�i, where

� � Uℜ	e�i�t

 � U	
r cos�t � 
i sin�t
.

	2.12


The function � satisfies the hyperbolic equation

N2
xx � 	�2 � f 2

zz, 	2.13


with the boundary conditions


��q	z
, z� � z and 
	x, h
 � 0. 	2.14


The mathematical problem is completed by insisting

that the energy flux is away from the ridge. This radia-

tion condition ensures that � has both a real and an

imaginary part.

Because the ridge is symmetric about x � 0, the so-

lution �(x, z, t) reverses sign every half period: �(x, z, t

� �/�) � ��(�x, z, t). This symmetry implies that the

solution of (2.13) and (2.14) is an even function of x:


	x, z
 � 
	�x, z
. 	2.15


The main quantity of interest is the conversion rate

of barotropic tidal energy into internal gravity waves.

To calculate the conversion rate we begin with the en-

ergy equation obtained from (2.9):

1

2
	u2 � �2 � N�2
2
t � �xpz � �zpx � 0.

	2.16


For the periodic flow, the average of (2.16) over the

tidal cycle implies that

� · J � 0, 	2.17


where J is the phase average of the energy flux (�pz,

��px); using (2.12) this phase-averaged flux can be

written as

J �
iU2�0

4�
�N2	

*x � 
*
x
, �	�2 � f 2
	

*z � 
*
z
�.

	2.18


d. The Green’s function

The main tool used in this work is Green’s function

G(x � x�, z, z�), found by Robinson (1969). This fun-

damental function is defined by

N2
Gxx � 	�2 � f 2
Gzz � 	iN2��
�	x � x�
�	z � z�
,

	2.19


with the boundary conditions that

G	x � x�, 0, z�
 � G	x � x�, h, z�
 � 0. 	2.20
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The definition of G is completed by requiring that there

is only outgoing radiation. Explicitly, this Green’s func-

tion is

G	x � x�, z, z�
 �
1

� �n�1

	

n�1 sinnZ sinnZ�ein|X�X�|,

	2.21


where (X, Z) are nondimensional coordinates defined by

X �
�x

�h
and Z �

�z

h
. 	2.22


Notice that the nondimensional depth of the ocean is �

and that tidal beams travel at 45° in the (X, Z) plane.

e. The integral equation

Using the Green’s function G we represent the solu-

tion of (2.13) as a linear superposition of singularities

located on both the positive and negative sides of the

ridge. If the density of singularities is �(z) then the

representation is


	x, z
 �
1

2 �0

b

�	z�
{G �x � q	z�
, z, z��

� G �x � q	z�
, z, z��} dz�. 	2.23


Notice that to enforce the symmetry (2.15) we have

used the same density, �(z), on both x � �q(z). [For an

asymmetric ridge one would use different densities

��(z) on x � q�(z).]

Evaluating (2.23) on the topography, x � �q(z), pro-

duces our integral equation

z � �
0

b

�	z�
R	z, z�
 dz�. 	2.24


Using the notation q� � q(z�), the kernel is

R	z, z�
 �
1

2
G	q � q�, z, z�
 �

1

2
G	q � q�, z, z�
,

	2.25


where G is the Green’s function in (2.21). If q � q� � 0

this integral equation collapses to that solved by

Llewellyn Smith and Young (2003).

The kernel R is a complex function with the symme-

try R(z, z�) � R(z�, z). An explicit expression for R

based on the series in (2.21) is

R	z, z�
�
1

2� �n�1

	

n�1 sinnZ sinnZ��ein	Q�Q�
 � ein|Q�Q�|�,

	2.26


where Q(Z) � �q(z)/�h is the nondimensional bottom

function.

For the models in (2.4) and (2.5) the nondimensional

bottom functions are

Q	Z
 � A�1 �
Z

B
� and Q	Z
 � A�1 ��Z

B
,

	2.27


where A � �a/�h and B � ��z/h.

f. Energy flux and conversion

We obtain the conversion, C in (1.3), most simply by

calculating the total outgoing energy flux at a large dis-

tance from the ridge:

C � 2�
0

h

J	x � a, z
 · x̂ dz, 	2.28


where J is the flux in (2.18), and the factor of 2 on the

right-hand side accounts for the energy radiated to x � 0.

If x is positive and large (the far field) then the rep-

resentation in (2.23) condenses to


	x, z
 �
h

� �n�1

	
�n

n
sinnZ einX, 	2.29


where

�n �
1

�
�

0

B

�	Z�
 sinnZ� cos�nQ	Z�
� dZ�.

	2.30


Inserting (2.30) into (2.28) gives

C �
1

2�
�U2h2�1 �

f 2

�2
N �

n�1

	
�n�*n

n
. 	2.31


The function M defined by (1.3) is then

M �
2

B2 �
n�1

	
�n�*n

n
. 	2.32


Substituting (2.30) into (2.32) and exchanging summa-

tion with integration gives

M �
2

�B2 �
0

B

dZ�
0

B

dZ��	Z
�*	Z�
R r	Z, Z�
,

	2.33


where R r(Z, Z�) is the real part of R(Z, Z�) in (2.26).

Using the integral equation in (2.24) and the symmetry

R(Z, Z�) � R(Z�, Z), we can eliminate the double in-

tegral in (2.33) and show that
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M �
2

�B2 �
0

B

�r	Z
Z dZ, 	2.34


where �r(Z) is the real part of �(Z). In (2.32), (2.33),

and (2.34) we now have three different expressions for

the function M defined in (1.3). We will use each of

these representations for different purposes in the se-

quel.

3. Solving the integral equation

The integral equation in (2.24), rewritten in terms of

nondimensional variables, is

Z � �
0

B

R	Z, Z�
�	Z�
 dZ�, 	3.1


where the kernel R is defined by the series in (2.26).

This is a Fredholm integral equation of the first kind.

We discretize the coordinate 0 � Z � B using a grid

Zn, n � 0, 1, . . . , N. We used both the “Chebyshev

grid,” Zn � B sin(�n/2N), and the “squared Chebyshev

grid,” Zn � B sin2(�n/2N). Both grids increase resolu-

tion near the crest of the ridge. The second also in-

creases resolution near the base of the ridge. The mid-

point of the nth interval is Zn � (Zn � Zn�1)/2, and the

grid spacing is �n � Zn � Zn�1. In interval n, where

Zn�1 � Z � Zn, we represent the topography as

Q	Z
 � Q̃n � SnZ, 	3.2


where

Q̃n �
ZnQn�1 � Zn�1Qn

Zn � Zn�1

, 	3.3


with Qn � Q(Zn) and Sn � �(Qn � Qn�1)/�n. Since

Q(Z) is monotonically decreasing, our definition en-

sures that Sn � 0. This positivity simplifies subsequent

absolute value signs.

To ensure that the discretization maintains the sym-

metric structure of the kernel we integrate (3.1) from

Z � Zn�1 to Z � Zn and obtain

1

2
	Zn

2 � Zn�1
2 
 � �

0

B

R n	Z�
�	Z�
 dZ�, n � 1, . . . , N,

	3.4


where

R n	Z�
 � �
Zn�1

Zn

R	Z,Z�
 dZ. 	3.5


Next, we discretize the Z� integral in (3.4) to obtain a

set of N linear equations for the unknowns �k � �(Zk):

1

2
	Zn

2 � Zn�1
2 
 � �

k�1

N

Wnk�k, n � 1, . . . , N,

	3.6


where

Wnk � �
Zn�1

Zn

dZ�
Zk�1

Zk

dZ�R	Z, Z�
. 	3.7


Notice that the N 
 N matrix Wnk is symmetric but not

Hermitian. The linear system (3.6) can be solved with

standard techniques to yield �k, and then M is obtained

from the discretized version of (2.34):

M �
2

�B2 �
k�1

N

ℜ	�k
Zk�k. 	3.8


The calculation of the matrix Wnk is detailed in appen-

dix A. Table 1 summarizes the numerical parameters

used to obtain the results in this paper.

The numerical solution of Fredholm integral equa-

tions of the first kind is not entirely straightforward.

The numerical procedure described above reduces the

integral equation to the matrix equation in (3.6), and

the difficulty is that the matrix Wnk is sometimes ill

conditioned (i.e., nearly singular). We were unprepared

for this possibility because in the earlier case of the

knife-edge barrier (C � 0) the kernel of the integral

equation is so singular that (3.6) is well conditioned.

Unpleasantly, this is not characteristic of the general

case C � 0. Thus, while the numerical solution to (3.6)

exists, it sometimes (depending on A and B) contains

small-scale noise that does not disappear as the resolu-

tion N is increased. Some examples are shown in Fig. 4.

TABLE 1. Parameters used in the numerical solution of the in-

tegral equation. Here N is the number of grid points, e.g., for the

Chebyshev grid Zn � B sin(�n/2N ). To calculate the matrix Wnk

in (3.7) using the method described in appendix A we truncate the

series in (A.4)–(A.7) at p � P. In the neighborhood of C � 1 for

the triangle and C � 1.5 for the polynomial ridge, the series is

slowly convergent, and we increase P as indicated above.

Figures N P

1, 6, 8 320 5000

4 320 300 000 for C � 1.5 and 20 000

for C � 1.75

5, 9 (top) 40 300 000 for 0.95 � C � 1.05;

20 000 otherwise

7, 9 (bottom) 40 300 000 for 1.1 � C � 1.5;

20 000 otherwise

11 20 20 000
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However, the conversion rate is an integral of the

weight function, given by the sum (3.8) in the numerical

formulation. Because integration is a smoothing opera-

tion, M converges as the resolution is increased, despite

the noise in �. Similarly, the field �(x, y) is also an

integral of the weight function, as in (2.23), and this

integral is also forgiving of small-scale noise in �(z).

Nevertheless, in plots of the buoyancy field, values of �

very close to the peak of the topography were ne-

glected. In addition, we used a filter to smooth Gibbs’s
phenomena from the solution.

4. Results

The density �(z) is obtained by solving the integral

equation in (2.24). We discretize the interval 0 � z � b

using the procedure outlined in section 3. With �(z) in

hand, the function M is most conveniently calculated

using (3.8).

a. The triangular ridge

In the top panel of Fig. 5, M for the triangular ridge

is plotted as a function of the variable

C �
A

B
�

a

�b
, 	4.1


where C is the ratio of the inverse ridge slope, a/b, to

the inverse ray slope � � N/��2 � f 2. At C � 0 we re-

cover the limit of a knife-edge barrier. As C increases

the knife opens into a triangular ridge so that if 0 � C

� 1 then the triangular ridge is supercritical. At C � 1

the slope of the triangular ridge is critical and if C � 1

the slope is subcritical.

Using the inverse slope parameter C, rather than the

nondimensional half-width A, collapses the curves in

the top panel of Fig. 5 in the supercritical regime 0 � C

� 1 for low values of b/h. At the critical condition, C �

1, the function M seems to have a break in slope but

remains continuous. Once C � 1 the ridge is subcritical

and the WTA limit of a gently sloping ridge is ap-

proached, provided C is large enough. However, for

practical purposes “large enough” is simply C � 1: the

WTA result shown in the top panel of Fig. 5 is tolerably

accurate once C � 1. This reinforces the conclusion of

Balmforth et al. (2002) that the WTA works through-

out the entire subcritical regime.

FIG. 4. Weight functions, �(Z ), for the polynomial ridge. The vertical coordinate is 0 � Z

� B � 0.8�. Solid curves: real part of �(Z ); dotted curves: imaginary part of �(Z ). (left) A

worst case; (right) a best case. The small-scale noise in the left-hand panel arises because the

matrix Wnk in (3.6) is nearly singular.
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Also shown in the top panel Fig. 5 is the point o

obtained in appendix B with an analytic reduction of

(2.24) pivoted around C � 1 and B � 1. Because the

numerical procedure struggles when C is close to 1, this

landmark is useful as an indication of the magnitude of

possible numerical errors in Fig. 5 at the critical condi-

tion. The bottom panel of Fig. 5 shows a wider view of

the (A, B) parameter space. When A is greater than

about 3 or 4 the function M has a rather complicated

and nonmonotonic dependence on both A and B. How-

ever, in the supercritical regime, with 0 � C � 1, the

structure of M is both simple and in accord with the

intuition that M increases monotonically with B and

decreases monotonically with A.

The isopycnal displacements around the triangular

ridge are shown in Fig. 6. Prominent disturbances form-

ing the classic “X” of internal wave beam geometry are

emitted from the crest of the triangular ridge. Much

weaker disturbances also emanate from the corners at

the bottom of the ridge. These faint corners in the

isopycnals are visible in the C � 0.625 panel of Fig. 6.

The panel with C � 1.25 shows a subcritical case. The

conversion is weaker, and the secondary beams ema-

nating from the basal corners are clear. Isopycnals be-

tween the beams are strongly distorted. The panel with

C � 1.5 is a parameter setting at which M � 0; the

snapshot in Fig. 6 is at an instant when there is no

displacement. The panel with C � 1.75 shows a case in

which the ridge is so wide that the main beams origi-

nating at the ridge crest reflect off the flanks before

escaping.

b. The polynomial ridge

We now turn to the polynomial ridge with the profile

defined in (2.2). As a nondimensional measure of the

inverse slope we continue to use C � a/�b to charac-

terize the polynomial ridge. Because the topographic

slope changes continuously, the geometry of the poly-

nomial ridge is slightly more complicated than that of

the triangular ridge. The inflection points of the poly-

nomial ridge are at

X � �A��3. 	4.2


FIG. 5. (top) Function M as a function of C for the triangular ridge in (2.1). The line

indicated by the times signs is the A → 0 limit of the WTA series on the right-hand side of

(2.6), viz., MWTA(0) � 8 ln2/�2 � 0.562. The open-circle point at (1, 16/27 � 0.593) is predicted

using a perturbation expansion pivoted round b/h � 1 and C � 1 (see appendix B). (bottom)

Function M as a function of A for the triangular ridge. This presentation of the results shows

the structure of the WTA approximation when A is large. With the height b/h fixed, M

generally decreases as the nondimensional half-width, A, increases. However, the decrease is

nonmonotonic, and the curve with b/h � 0.9 has a null point at which M � 0 (indicating no

conversion) at around A � 3.45. For more discussion of null points see section 4d.
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Using the nondimensional coordinates (so that the ray

slope is unity) the topographic slope at these inflection

points is 8/(3�3C). Because the maximum slope is at

the inflection points, if C � 8/3�3 � 1.54 then the

flanks of the polynomial ridge are subcritical every-

where. On the other hand, if C � 8/3�3 then the to-

pographic inflection points in (4.2) are surrounded by

supercritical topographic slopes. The supercritical sec-

tion of the flank is bounded by a both a shallow critical

point and a deep critical point.

Figure 7 shows the function M in (1.3) for the poly-

nomial ridge. The critical condition C � 8/3�3 is close

to an inflection point of M as a function of the inverse

slope C. However, the critical condition is not as strik-

ing as the break at C � 1 that is evident in Fig. 5. The

lower panel of Fig. 7 shows a wider view of the (A, B)

parameter space of the polynomial ridge.

Figure 8 shows snapshots of the isopycnals’ displace-

ments around the polynomial ridge. The upper three

panels of Fig. 8 are all supercritical cases. In particu-

lar, the panel with C � 1.5 � 8/3�3 is slightly super-

critical. The beams are emitted from the uppermost

points on the ridge flank at which the topographic slope

is critical. The conversion is decreasing as the beams

start to merge. In the subcritical case (C � 1.75) the

conversion is weak, as are the beams. These results are

relevant to observational results such as those of Rud-

nick et al. (2003), who observe enhanced internal tide

activity in locations above the Hawaiian Ridge and at-

tempt to deduce its region of origin. Our results show

that for the supercritical polynomial ridge the beams

originate at the shallow critical points on the ridge

flanks.

The top three panels of Fig. 8 illustrate some inter-

esting differences between tidal conversion at the Ha-

waiian Ridge and at the Mendocino Escarpment. The

Mendocino Escarpment is so steep that the internal

tidal beams radiating from the crest strike the bottom

without hitting the flanks on the way down (Althaus et

al. 2003). The top panel of Fig. 8 shows an analogous

example of a very steep ridge that is supercritical nearly

all the way to the basement. Indeed, this is just the

situation envisaged by the knife-edge model of St. Lau-

rent et al. (2003). On the other hand, the simulations of

conversion at Hawaii shown by Merrifield at al. (2001,

2002) show an internal tidal beam generated at the rim

of the ridge crest that travels downward and reflects off

the lower part of the flank where the slope is subcritical.

The third panel of Fig. 8 shows this more complicated

case in which the rays generated at points with super-

critical slope subsequently reflect off a subcritical sec-

tion of the flanks.

c. The modal split

Using the series, in (2.32) the cumulative fraction of

energy flux carried by the first n modes is

Fn � �
k�1

n

k�1�k�*k��
k�1

	

k�1�k�*k. 	4.3


Figure 9 shows F1 through F4 as a function of C at b/h

� 0.8. At C � 0 (the knife), 70% of the energy is in

mode 1. In both panels the fraction of energy flux in

mode 1, F1, decreases to below 0.4 as C increases to

about 1.2. This result is relevant to interpreting mea-

surements made using satellite altimetry (Ray and

Mitchum 1996), which only detects mode 1. The de-

FIG. 6. Snapshots of the isopycnal patterns around a triangular

ridge. In all cases b/h � B/� � 0.8. The width of the ridge is

controlled by the dimensionless parameter C � A/B � a/�b; M is

the dimensionless factor in (1.3). The critical condition is C � 1,

so the top panel is supercritical and the lower three panels are

subcritical. The third panel, C � 1.5, shows an example of a non-

radiating ridge (see section 4d). Nonradiating ridges have the spe-

cial property that at some phase of the tidal cycle the isopycnal

disturbances vanish.
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crease in F1 from 0.7 to below 0.4 over the range, 0 � C

� 1.2, shows that satellite altimetry could be systemati-

cally low by 50%.

d. Null points of the ridges

In the (A, B) parameter space of the triangular ridge

there are “null points” at which the conversion vanishes

exactly. The WTA equation in (2.6) shows that M � 0

at (A, B) � (2n�, 0). Each of these points lies on a

curve that extends into the (A, B) plane for nonzero B.

For instance, the third panel of Fig. 6, with C � 1.5 and

(A, B) � (4�/5, 6�/5), shows another nonradiating tri-

angular ridge with M � 0. Another example is the curve

b/h � 0.9 in the lower panel of Fig. 5: that curve has a

null point (M � 0) at around A � 3.45.

There is a simple geometric construction, illustrated

in Fig. 10, that determines these curious nonradiating

solutions of the triangular ridge. In order for the con-

version to vanish, the upward ray leaving the crest, B, of

the triangular ridge must reflect off the surface at S and

arrive precisely at the slope break located at X � A in

Fig. 10. Some geometry shows that this requires

A � B � 2�. 	4.4


This condition determines the null curve with n � 1.

The nth null curve is determined by a ray leaving B in

Fig. 10 and making n reflections at the surface before

arriving at A. This geometry leads to a complicated nth

order polynomial relation between A and B not pre-

sented here.

Turning now to the case of the polynomial ridge,

there are also special values of A and B at which there

is very little radiation: this is already apparent in the

WTA equation in (2.7), which predicts very small con-

version when A is a multiple of 2�. In the lower panel

of Fig. 7 the dotted curve with b/h � 0.9 has conspicu-

ous dips (i.e., deep minima of M) at certain values of A.

These minima are polynomial-ridge analogs of the non-

radiating triangular ridge. The impression one has is

that when C is large rays generated near the crest of the

ridge bounce off the flanks before escaping. The ensu-

ing destructive interference is responsible for non-

monotonic dependence on ridge width in both the poly-

nomial and triangular cases.

5. The knife-edge limit

In this section we use perturbation theory to calcu-

late the conversion for a narrow peak that, in the limit

C → 0, becomes the knife-edge barrier considered by

St. Laurent et al. (2003) and Llewellyn Smith and

Young (2003). Although the knife-edge case has been

solved exactly, this solution has been greeted with some

skepticism. Clearly there is a considerable idealization

involved in reducing the width of the ridge to zero while

FIG. 7. (top) Function M in (1.3) as a function of the inverse slope C � a/�b for the

polynomial ridge in (2.2). The times sign denotes the A → 0 limit of the WTA result in (2.7),

viz., MWTA(0) � 64/9�2 � 0.721. (bottom) Function M as a function of A in order to display

the WTA limit.
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fixing the height. The narrow-peak expansion in this

section shows that this limit is not singular and more-

over provides compact expressions for the first correc-

tions to the results of St. Laurent et al. (2003) and

Llewellyn Smith and Young (2003). We find that the

knife edge is a good approximation to a ridge of finite

half-width, a, provided that a � �b, that is, provided

that the flanks of the ridge slope more steeply than the

internal wave rays. In physical terms, this condition en-

sures that downward-traveling internal waves, gener-

ated at or near the crest of the ridge, stay well clear of

the flanks.

To take the limit a → 0 with b fixed we write the

nondimensional topography function as Q(z) �

CQ1(Z) and take C → 0. The numerical results of the

previous section strongly suggest that in this limit the

conversion function can be expanded as a power series

in C 2:

M � Mknife	B
 � C2M2	B
 � O	C4
, 	5.1


where Mknife(B) is the defined on the right-hand side of

(1.7) and M2(B) is a negative definite function of the

ridge height, B. The numerical solution gives no indi-

cation of singular terms involving, for instance, |C| or

ln|C|.

Our goal is to confirm the regular perturbation ex-

pansion (5.1) by explicitly calculating M2 for the trian-

gular profile, Q1(Z) � B � Z, and for the polynomial

ridge Q1(Z) � B�1 � �Z/B. We proceed by solving

(2.24) perturbatively with C � 1. We expand the kernel as

R	Z, Z�
 � R 0	Z, Z�
 � iCR 1	Z, Z�
 � C2
R 2	Z, Z�


� O	C3
, 	5.2


where R n is obtained formally from (2.26):

R 0	Z, Z�
 �
1

2�
log�sin�Z � Z�

2 ��sin�Z � Z�

2 ��,
	5.3


R 1	Z, Z�
 �
1

2
Q1	Z
�	Z � Z�
, and 	5.4


R 2	Z, Z�
 � �
1

2�
�Q1

2	Z
 � Q1
2	Z�
�


 �
n�1

	

n sin	nZ
 sin	nZ�
, 	5.5


where R 0 is the kernel for the knife case and both R 1

and R 2 are distributions. Note that these kernels are

real and symmetric. The density is also expanded as

�(z) � �0(z) � iC�1(z) � C2�2(z) � O(C3), where each

�n is real.

Introducing the expansions above into the integral

equation and collecting powers of C we obtain the hi-

erarchy

�
0

B

R 0	Z, Z�
�0	Z�
 dZ� � Z, 	5.6


�
0

B

R 0	Z, Z�
�1	Z�
 dZ� � ��
0

B

R 1	Z, Z�
�0	Z�
 dZ�,

	5.7


and

�
0

B

R 0	Z, Z�
�2	Z�
 dZ� � �
0

B

R 1	Z, Z�
�1	Z�
 dZ�

� �
0

B

R 2	Z, Z�
�0	Z�
 dZ�.

	5.8


FIG. 8. Isopycnal patterns around a polynomial ridge. In all

cases b/h � B/� � 0.8. The width of the ridge is controlled by the

dimensionless parameter C � A/B � a/�b; M is the dimensionless

factor in (1.3). The critical condition is C � 8/[2(3)1/2] � 1.54; thus

the upper three panels are supercritical and the bottom panel is

subcritical.
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The first equation, (5.6), was solved for �0(z) by Llewel-

lyn Smith and Young (2003):

�0	Z
 � 2� 1 � cosZ

cosZ � cosB
. 	5.9


At first glance it seems that we need to solve the two

equations in (5.7) and (5.8) in order to use either (2.33)

or (2.34) to obtain M2. Fortunately there are some re-

markable simplifications that make the calculation of

M2 rather straightforward: manipulating (but not solv-

ing) (5.6)–(5.8) we obtain

M2 �
1

�B2 �
0

B

Q1	Z
�0	Z
�1	Z
 dZ

�
2

�B2 �
0

B

dZ�
0

B

dZ��0	Z
�0	Z�
R 2	Z, Z�
.

	5.10


With (5.10) we do not need to explicitly calculate �2(z).

Key results leading to (5.10) are (using an abbrevi-

ated notation)

���0	Z�
R 0	Z, Z�
�2	Z
 � �0	Z�
R 1	Z, Z�
�1	Z


� �0	Z�
R 2	Z, Z�
�0	Z
 � 0 	5.11


and

���1	Z�
R 0	Z, Z�
�1	Z
 � �1	Z�
R 1	Z, Z�
�0	Z
 � 0.

	5.12


The results above are deduced from (5.6)–(5.8) using

the symmetry R n(Z, Z�) � R n(Z�, Z). An extra simpli-

fication comes in the case of the triangle, where we can

show that for the final term in (5.10)

�
0

B �
0

B

�0	Z�
R 2	Z, Z�
�0	Z
 dZ dZ� � 0.

	5.13


FIG. 10. The geometric construction above gives the condition

(4.4) that determines the first null curve in the (A, B) plane. The

bottom is LBAM.

FIG. 9. (top) Fractions F1 through F4 for the triangular ridge as a function of C. (bottom)

Fractions F1 through F4 for the polynomial ridge. In both cases b/h � 0.8. Note the different

vertical scales in the two panels. The triangular ridge (top) has M � 0 at C � 1.5. Near this

null point, the energy flux is no longer carried dominantly by the lowest modes.

1066 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 36



This identity above, which we first discovered numeri-

cally, can be proved by differentiating (5.6) twice with

respect to Z, using also (2.26) and (5.3). For the tri-

angle, hence, we do not need to handle the distribution

R 2(Z, Z�), which is defined only by a divergent series in

(5.5). For the polynomial ridge, however, we need the

full result (5.10) since the smoothness of Q1(Z) near

Z � B is such that the operations required to pass from

(5.6) to (5.13) are not permitted.

To calculate M2 using (5.10) we must solve (5.7) for

�1(z). Because of the � function in R 1 this integral equa-

tion for �1 simplifies to

�Q1	Z
� 1 � cosZ

cosZ � cosB
� �

0

B

R 0	Z, Z�
�1	Z�
 dZ�,

	5.14


where we have used (5.9) for �0(z). After specifying a

topographic profile via Q1(Z), (5.14) must usually be

solved numerically. As an example, Fig. 11 compares

M(B, C) calculated from the two-term expansion based

on (5.10) and (5.14) (curves) with the numerical solu-

tion of the complete integral equation in (2.24) (sym-

bols). The agreement is very good. The final panel in

FIG. 11. (top left) Function M for the triangular ridge with b/h � 0.8, 0.5, 0.3, and 0.1 plotted

as a function of C. Symbols: numerical results. Curves: small-C approximation (5.1). Lower

dots: limit b � h. (top right) Results for the polynomial ridge. (bottom) Curvature �M2/Mknife

for the triangular ridge.
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Fig. 11 shows the behavior of the curvature �M2/Mknife

as a function of B.

Isolated analytic results based on solving (5.14) are

possible. For example, using the triangular profile,

Q1(Z) � B � Z, with B � 1, we managed to obtain

�1(Z) and M2. The final result is

M2 � �
1

3 �1 �
24

�2
ln2	ln2 � 1
	� �0.1609.

	5.15


This is the small-B limit of the curve in the top left-hand

panel of Fig. 11.

6. Conclusions

We have calculated the conversion due to a subma-

rine ridge, concentrating on two topographic profiles:

the triangular ridge and the polynomial ridge. Our re-

sults agree in the limit of a narrow ridge with those of

St. Laurent et al. (2003) and Llewellyn Smith and

Young (2003) for the knife-edge barrier. In the limit of

gentle slopes and low barriers we recover the WTA

results. From Figs. 5 and 7, we conclude that one can

obtain a good rough estimate of the tidal conversion by

using the knife-edge result for a supercritical ridge and

the WTA result if the ridge is subcritical. In other

words, these analytic cases apply to broad and comple-

mentary regions of the (A, B) parameter space. Many

open questions remain, of which probably the most

compelling is the effect of three-dimensionality.

Another issue concerns the physical processes that

heal the singularities and inversions evident in the

buoyancy field shown in Figs. 1, 6, and 8. The small-

scale features and density inversions within, and close

to, the internal tidal beams are not an artifact of the

hydrostatic approximation: the nonhydrostatic (but

subcritical) solutions of Balmforth et al. (2002) show

that this singularity develops as the critical slope con-

dition is approached. And Robinson (1969) showed

that the buoyancy perturbation diverges like |�|�1/2,

where � is the normal distance from the tidal beam.

Because the linear theory predicts that the disturbance

diverges within the beams, the density field inevitably

becomes inverted close to the singularity even if the

incident velocity, U in (1.1), is very small. This singu-

larity of linear, inviscid, and nondiffusive theory indi-

cates missing physics and leads one to wonder if our

estimates of the conversion rate are compromised.

There are several reasons for optimism. First, Rob-

inson (1969) gave a local analysis of these beams and

showed that there is no flux of mass, momentum, or

energy into the singularity. In this sense tidal beams are

“less singular” than, for instance, hydraulic jumps (i.e.,

there is a flux of energy into a hydraulic jump). Second,

we have shown that the first few vertical modes contain

a large fraction of the converted energy (see Fig. 9).

Thus, small-scale mixing, localized within the beams,

may not affect the energy-containing modes. Di Loren-

zo et al. (2006) have compared the analytic formulas in

this paper with energy conversion obtained using a non-

linear primitive equation ocean model. They find satis-

factory quantitative agreement between the numerical

model and the theory presented here. Moreover, the

model results are insensitive to large variations in the

explicit viscosity and diffusivity. This supports the

rough argument made above that dissipation can heal

the tidal singularity without significantly affecting the

energy carried by the first few vertical modes.
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APPENDIX A

Calculation of Wnk

The most unpleasant task is calculating the matrix

Wnk in (3.7)—the integrand in (3.7) is potentially sin-

gular, so midpoint or trapezoidal approaches are not

recommended. After trying various alternatives we de-

cided that the most straightforward approach is also the

best: we substitute the series in (2.26) into (3.7) and

exchange summation and integration. This gives

Wnk � Wnk
	1
 � Wnk

	2
, 	A.1


where

Wnk
	1
 �

1

2� �p�1

	

p�1�
Zn�1

Zn

dZ�
Zk�1

Zk


 dZ� sinpZ sinpZ�eip	Q�Q�
 	A.2


and

Wnk
	2
 �

1

2� �p�1

	

p�1�
Zn�1

Zn

dZ�
Zk�1

Zk


 dZ� sinpZ sinpZ�eip|Q�Q�|. 	A.3


The matrix W
(1)
nk factors neatly into

Wnk
	1
 �

1

2� �p�1

	

p�1eip	Q̃k�Q̃n
Un	p
Uk	p
, 	A.4


where Q̃k is defined in (3.3) and
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Un	p
 � �
Zn�1

Zn

sinpZe�ipSnZ dZ, �
1

ip
�eip	1�Sn
Z̃n

1 � Sn

sin�1

2
p�n	1 � Sn
	�

e�ip	1�Sn
Z̃n

1 � Sn

sin�1

2
p�n	1 � Sn
	
 .

	A.5


If n � k we can also factor W
(2)
nk . Suppose n � k, so that

Z � Z� and |Q � Q�| � Q� � Q. [We assume that Q(Z)

decreases monotonically with increasing Z, from Q(0)

� A to Q(B) � 0.] Then

Wnk
	2
 �

1

2� �p�1

	

p�1eip	Q̃k�Q̃n
U*n	p
Uk	p
, if n � k.

	A.6


To get the terms with n � k we use the symmetry W
(2)
nk

� W
(2)
kn . Next, consider the diagonal terms, W

(2)
nn :

Wnn
	2
 �

1

2� �p�1

	

p�1Jp	n, Sn
, 	A.7


where

Jp	n
 � �
Zn�1

Zn

dZ�
Zn�1

Zn

dZ� sinpZ sinpZ�eipSn|Z�Z�|.

	A.8


After some calculation

Jp	n
 �
1

4
�n

2�Kp	n
 � Lp	n
�, 	A.9


where

Kp	n
 � �
0

2

	2 � �
 cos��ei�Sn� d�, �

�Sn
2 � 1 � 2i�Sn	Sn

2 � 1
 �
1

2
	Sn � 1
2e2i�	Sn � 1
 �

1

2
	Sn � 1
2e2i�	Sn � 1
	

�2	Sn
2 � 1
2

and

Lp	n
 � 2 cos	2pZn
�
0

2

d�ei�Sn��
0

1���2

d� cos2��, � cos	2pZn

cos2� � iSn sin2� � e2i�Sn

�2	Sn
2 � 1


.

In the above, � � p�n/2.

APPENDIX B

A Nearly Critical Triangular Ridge

In this appendix we outline the calculation that leads

to the point (C, M) � (1, 16/27), indicated by o in Fig.

5. We need Robinson’s (1969) result that the sum of the

series in (2.21) is

G	x � x�, z, z�
 �
1

4�
ln��, 	B.1


where

��	X � X�, Z, Z�
 �

sin� |X � X�| � Z � Z�

2 � sin� |X � X�| � Z � Z�

2 �
sin� |X � X�| � Z � Z�

2 � sin� |X � X�| � Z � Z�

2 � . 	B.2


The argument of the logarithm might be negative, in

which case one must use the branch determined by the

radiation condition:

G	x � x�, z, z
 �
1

4�
ln|��| �

i

4
L	��
, 	B.3


where the function L is equal to 0 or �1, as in Fig. B1.

Notice that ln(xy) � ln(x) � ln(y) (e.g., consider x � y

� �1). Using (B.2) in (2.25) we have an alternative to

the series representation of R in (2.26).

We now suppose that C is close to 1 with C2 � 1 � �

and work in the limit (�, B) � 1. We take the expression

for the kernel R based on (B.2) and make some simpli-

fications, for example, expanding the various sines in

the Taylor series. After some working the resulting re-

duction of the integral equation in (2.24) is
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8�� � �
0

1

�	��
�ln� 1 � � � ��

	1 � �
	1 � ��
	
� ln�� 4���

�	� � ��
2
	
 d��, 	B.4


where  � z/b � Z/B. Recalling the branch of the loga-

rithm in (B.3), this integral equation becomes

8�� � �
0

1

�	��
�ln� 1 � � � ��

	1 � �
	1 � ��
�� ln� 4���

�	� � ��
2
�	d��

� i��
1��

1

�	��
 d�� � i�H	�
�
0

1

�	��
 d��, 	B.5


where H(�) is the step function. Differentiating with

respect to  and rearranging,

8� �
1

�	1 � �

�

0

1

�	��
d��

� �
0

1 � 1

1 � � � ��
�

2

� � ��
��	��
d�� � i��	1 � �
.

	B.6


At this point � has disappeared from the problem. This

suggests that !1
0 �( ) d � 0 in order for � to drop out of

(B.5).

We now put (B.6) into a standard form by defining

 � (1 � y)/2 and  � � (1 � t)/2. We also define "(t) by

�	t
 � ��1 � t

2 �. 	B.7


Notice that the definition above implies that

�	1 � �
 � ��1 � y

2 � � �	�y
. 	B.8


Then (B.6) becomes

8� �
2

1 � y2 �
�1

1

�	t
 dt � �
�1

1 � 1

y � t
�

2

t � y
��	t
 dt

� i��	�y
. 	B.9


Last, we let y � �x so that

8� �
2

1 � x2 �
�1

1

�	t
 dt � �
�1

1 � 2

t � x
�

1

t � x
��	t
 dt

� i��	x
. 	B.10


For now we assume, and this can be verified a poste-

riori, that the solution satisfies the two following con-

ditions:

�
�1

1

�	t
 dt � 0, �	�x
 � ��*	x
. 	B.11


Introducing "r and "i, the real and imaginary part of

", and using (B.11) we can write (B.10) as the two

coupled equations

8�

3
� �

�1

1 �r	t


t � x
dt �

��i	x


3
and

0 � �
�1

1 �i	t


t � x
dt � ��r	x
. 	B.12


We introduce S�(t) � "r(t) � "i(t)/�3, which satisfies

8�

3
� �

�1

1 S�	t


t � x
dt #

�S�	x


�3
. 	B.13


These two equations can be transformed into a Rie-

mann problem and solved analytically (Pipkin 1991),

giving

S�	x
 �

4�x #
1

3�
�3	1 � x2
1�3	1 # x
1�3

. 	B.14


The solution of (B.10) is hence

�	x
 �
4

�3	1 � x2
1�3


 �ei��3

x �
1

3

	1 � x
1�3
� e�i��3

x �
1

3

	1 � x
1�3�.

	B.15


We can now compute the conversion. The simplest

approach is to use the expression (2.34) in the small-B

limit. Then

FIG. B1. The imaginary part of G (x � x�, z, z�) in (B.3) is shown

above. The source is at (x�, z�). This figure corrects inconsequen-

tial errors in both Fig. 1 of Robinson (1969) and in Fig. 3 of

Llewellyn Smith and Young (2003).
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M �
2

�
�

0

1

�r	�
� d� �
1

��3
�

�1

1 ��1 � x

1 � x
�2�3�x �

1

3�
� �1 � x

1 � x
�1�3�x �

1

3�	 dx . 	B.16


This gives M � 16/27 � 0.593. This is the point o in the

upper panel of Fig. 5 that falls slightly below the nu-

merical curves. For convergence near C � 1 the nu-

merical formulation requires many terms in the series

(A.4) and (A.7), and thus there is some uncertainty in

the Fig. 5 curves near C � 1. The proximity of o to these

curves is therefore reassuring. The numerical curves,

and the calculation in this appendix, suggest that M is

continuous at C � 1, but that dM/dC → $ as C → 1

from below.
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