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Abstract

Gravitational waves from the coalescence of two neutron stars were recently detected for the first time by the
LIGO–Virgo Collaboration, in event GW170817. This detection placed an upper limit on the effective tidal
deformability of the two neutron stars and tightly constrained the chirp mass of the system. We report here on a
new simplification that arises in the effective tidal deformability of the binary, when the chirp mass is specified. We
find that, in this case, the effective tidal deformability of the binary is surprisingly independent of the component
masses of the individual neutron stars, and instead depends primarily on the ratio of the chirp mass to the neutron
star radius. Thus, a measurement of the effective tidal deformability can be used to directly measure the neutron
star radius. We find that the upper limit on the effective tidal deformability from GW170817 implies that the radius
cannot be larger than ∼13km, at the 90% level, independent of the assumed masses for the component stars. The
result can be applied generally, to probe the stellar radii in any neutron star–neutron star merger with a measured
chirp mass. The approximate mass independence disappears for neutron star–black hole mergers. Finally, we
discuss a Bayesian inference of the equation of state that uses the measured chirp mass and tidal deformability from
GW170817 combined with nuclear and astrophysical priors and discuss possible statistical biases in this inference.
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1. Introduction

The first detection of gravitational waves from a neutron
star–neutron star merger (GW170817; Abbott et al. 2017a)
marks the start of a new era in the study of neutron stars, their
associated transient events, and the dense-matter equation of
state (EOS). The electromagnetic counterpart that accompanied
the event (Abbott et al. 2017b) has confirmed neutron star
mergers as the sources of at least some short-duration gamma-
ray bursts, as has long been theorized (Eichler et al. 1989;
Narayan et al. 1992; Berger 2014), as well as the source of
kilonovae, predicted to be powered by the radioactive decay of
merger ejecta (Li & Paczyński 1998; Metzger et al. 2010).
Information about the component neutron stars and their
underlying EOS is encoded in the waveform itself, which was
observed by the two LIGO and one Virgo detectors for ∼3000
orbital cycles prior to the merger (Abbott et al. 2017a).

Several studies have already placed constraints on funda-
mental neutron star properties using these observations. For
example, Margalit & Metzger (2017) used the combined
gravitational-wave and electromagnetic signals to set an upper
limit on the maximum neutron star mass, which is a sensitive
constraint on the EOS at high densities (Özel & Psaltis 2009).
In another work, Rezzolla et al. (2017) inferred the maximum
neutron star mass from the event without relying on models of
the electromagnetic signal, instead using only the quasi-
universal relations that describe neutron stars and simple
models of kilonovae.

The observed gravitational waveform can also be used to
place direct constraints on the neutron star EOS. In one of the
first quantitative studies exploring EOS effects on the wave-
form from the coalescence of two neutron stars, Read et al.
(2009b) showed that a realistic waveform would deviate
significantly from a point-particle waveform and that this could
be observed with Advanced LIGO. The degree of the deviation
depends on the underlying EOS and, as a result, could be used

to differentiate between EOS that differ in radius by only
∼1km (Read et al. 2009b, 2013; Lackey & Wade 2015).
The magnitude of the deviation is strongest at later times in

the inspiral and during the merger, i.e., in the phases where
numerical relativity would be necessary to model the wave-
forms. Nevertheless, Flanagan & Hinderer (2008) found that
the early phase of the inspiral depends cleanly on a single EOS-
dependent parameter: the tidal Love number, λ. The tidal Love
number measures the ratio of the star’s tidally induced
quadrupolar deformation, Q(tid), to the tidal potential caused
by a binary companion, ε(tid), i.e.,
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where R is the radius of the neutron star and M is its mass.
Following the convention of Flanagan & Hinderer (2008), we
call k2

(tid) the tidal apsidal constant. The tidal apsidal constant
depends both on the equation of state and the compactness
(GM/Rc2) of the particular star. For realistic, hadronic
equations of state, k2

tid( ) has been constrained to lie in the
range ∼0.05–0.15 (Hinderer 2008; Hinderer et al. 2010;
Postnikov et al. 2010).
The individual Love numbers for the two stars, Λ1 and Λ2,

cannot be disentangled in the observed gravitational waveform.
Instead, what is measured is an effective tidal deformability
of the binary, L

~
, which is a mass-weighted average of Λ1 and

Λ2 that we describe in detail in Section 2. The expectation is
thus that L

~
would measure a mass-weighted compactness for

the two neutron stars. Similarly, the two component masses are
not measured directly, rather the chirp mass is.

The Astrophysical Journal Letters, 857:L23 (6pp), 2018 April 20 https://doi.org/10.3847/2041-8213/aabcbf
© 2018. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0002-1798-6668
https://orcid.org/0000-0002-1798-6668
https://orcid.org/0000-0002-1798-6668
https://orcid.org/0000-0003-4058-2837
https://orcid.org/0000-0003-4058-2837
https://orcid.org/0000-0003-4058-2837
https://doi.org/10.3847/2041-8213/aabcbf
http://crossmark.crossref.org/dialog/?doi=10.3847/2041-8213/aabcbf&domain=pdf&date_stamp=2018-04-24
http://crossmark.crossref.org/dialog/?doi=10.3847/2041-8213/aabcbf&domain=pdf&date_stamp=2018-04-24


We report here on a new simplification that arises in the
effective tidal deformability of the binary when the chirp mass
is measured accurately. We find that L

~
depends primarily on

the ratio of the chirp mass to the neutron star radius. Thus, we
find that L

~
can be used as a direct probe of the neutron star

radius, rather than of the compactness as is typically assumed.
In Section 2, we describe the measured properties of

GW170817. We show in Section 3 that the effective tidal
deformability is approximately independent of the component
masses, when the chirp mass is specified. In Section 4, we use
the Newtonian limit to show analytically that the mass
independence arises from an inherent symmetry in the
expression for the effective tidal deformability. Finally, in
Section 5, we perform an example Bayesian inference of the
neutron star EOS from the measured tidal deformability and
chirp mass and a limited number of prior physical constraints
and discuss important statistical biases that can occur in such
inference schemes.

2. Properties of GW170817

The properties of GW170817 were inferred by matching the
observed waveform with a frequency-domain post-Newtonian
waveform model (Sathyaprakash & Dhurandhar 1991), with
modifications to account for tidal interactions (Vines et al.
2011), point-mass spin–spin interactions (Mikóczi et al. 2005;
Arun et al. 2011; Bohé et al. 2015; Mishra et al. 2016), and
effects due to spin–orbit coupling (Bohé et al. 2013). The
LIGO analysis using these models is summarized in Abbott
et al. (2017a) and references therein.

One of the most tightly constrained properties that was
inferred is the chirp mass, defined as
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where m1 and m2 are the masses of the primary and the
secondary neutron stars, respectively, and we have introduced
the mass ratio, q≡m2/m1. The chirp mass was constrained to

M1.188c 0.002
0.004 = -

+
 at the 90% confidence level, indepen-

dent of the particular waveform model or priors chosen (Abbott
et al. 2017a).

By assuming low-spin priors, as is consistent with the binary
neutron star systems that have been observed in our Galaxy,
the component masses were inferred from the chirp mass to
lie within the ranges m M1.36, 1.601 Î ( ) and m2 Î

M1.17, 1.36 ( ) , with a mass ratio of q 0.7, 1.0Î ( ), all at
the 90% confidence level (Abbott et al. 2017a). These masses
are consistent with the range of masses observed in other
neutron star systems (see Özel & Freire 2016 for a recent
review of neutron star mass measurements).

GW170817 also provided constraints on the effective tidal
deformability of the system, defined as
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(Flanagan & Hinderer 2008; Favata 2014). In Equation (2), we
saw that the dimensionless tidal Love number depends only on
the stellar compactness and the tidal apsidal constant, which in
turn depends on the equation of state and compactness.
Combining these expressions, we can explicitly write the

dependence of the effective tidal deformability on neutron star
properties as L

~
= L

~
(m1, m2, R1, R2, EOS).

Abbott et al. (2017a) constrain the effective tidal deform-
ability for GW170817 to be L

~
�800 at the 90% confidence

level, which disfavors EOS that predict the largest radii stars. In
the following analysis, we will show that this measurement can
also be used to directly constrain the radii of the individual
neutron stars, independently of the component masses.

3. Effective Tidal Deformability for GW170817

We start with a simple illustration of our key result. Figure 1
shows the effective tidal deformabilities as a function of the
stellar radii for a number of realistic EOS. For each EOS, we
calculated these tidal deformabilities for various values of m1

that lie within the mass range inferred for GW170817 (shown
with different symbols). The corresponding values for m2 are
calculated assuming a fixed chirp mass, M1.188c = . The
results shown are very similar, whether we use the radius of the
primary or the secondary star.
We find that L

~
is almost entirely insensitive to the mass of

the component stars for the relevant mass range and depends
instead primarily on the radius of the star. In particular,
L
~

changes by nearly an order of magnitude between
R=10km and R=15km, but, for a given radius, changes
negligibly for masses spanning the full range
of m M1.36 1.61 = – .
An upper limit of 800L

~
immediately excludes radii

above ∼13km at the 90% confidence level, without requiring
detailed knowledge of m1. As shown in Figure 1, this rules out
the EOS that predict the largest radii, such as the hyperonic
EOS H4 (Lackey et al. 2006) and the field theoretic nucleonic
EOS with a low symmetry energy of 25MeV, MS1b (Müller
& Serot 1996).
The trend found in Figure 1 is for a sample of six EOS.

However, this result is more general, as we will now show. It

Figure 1. Effective tidal deformability of the binary system as a function of the
radius of the primary neutron star. The tidal deformability is calculated for
various primary masses (corresponding to the different symbols) using several
proposed equations of state (corresponding to the different colors). The mass of
the secondary neutron star is found assuming the chirp mass, c =1.188M,
from GW170817. The observed 90% confidence upper limit on 800L

~
is

shown as the dotted line. The narrow band (which is indistinguishable from a
single curve) shows the range for q=0.7–1.0 from Equation (9). We find that
L
~

is relatively insensitive to m1 but scales strongly with radius, and that the
upper limit for GW170817 implies R13 km.
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has been reported previously that the individual tidal
deformabilities of neutron stars obey a universal relationship
with stellar compactness (Yagi & Yunes 2013). In particular,
Yagi & Yunes (2017) found that the relationship can be
written as

C a a aln ln , 50 1 2
2= + L + L( ) ( )

where C≡GM/Rc2 is the compactness and the coefficients
were fit to be a0=0.360, a1=−0.0355, and a2=0.000705.
The relation holds to within 6.5% for a wide variety of neutron
star EOS (Yagi & Yunes 2017).

To see if the trend we have found between L
~

and R holds
generically for a wide range of EOS, we use the universal
relation of Equation (5) to calculate the individual tidal
deformabilities, Λ1 and Λ2. We then calculate the effective
tidal deformability for the binary system, shown as the solid
lines in Figure 2 for three different radii. We find that when we
use this universal relation to represent a much larger sample of
EOS, the trend holds. The effective tidal deformability of the
binary depends extremely weakly on the component masses but
strongly on the radii of the stars.

The weak dependence of L
~

on the component masses is
surprising and has not been explored before (see, however,
Wade et al. 2014 for an earlier discussion on how L

~
can be cast

into a radius-like parameter. See also a discussion of the EOS
dependence of L

~
for a fixed c in Figure 8 of Kawaguchi

et al. 2018). This weak dependence on component masses
renders L

~
a direct probe of the neutron star radius, rather than

of the compactness as is typically assumed. We turn now to an
analytic explanation of the origin of this result.

4. Effective Tidal Deformability in the Newtonian Limit

In order to see why the dependence on mass in Equation (4)
for L

~
is so weak, we turn to the Newtonian limit. Yagi & Yunes

(2013) showed that the Newtonian expression for the tidal
Love number of a star governed by a polytropic EOS with
index n=1 (which is appropriate for the majority of realistic

EOS) is simply
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The full relativistic expression for the tidal deformability of a
star is given by Damour & Nagar (2009) for a given
compactness and a parameter y, which is the logarithmic
derivative of a metric function, H, at the stellar surface. The full
expression is far more complicated than what we have
introduced so far, but we find that a relatively simple metric
correction to ΛN qualitatively reproduces the universal results
computed for more realistic EOS. We call this correction the
“quasi-Newtonian” expression and define it as
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This corresponds to Equation (96) of Damour & Nagar (2009)
with β≈1. We find that this choice of β produces better
agreement with realistic EOS than the exact n=1 polytrope
value of β=3.
We can combine this with Equation (4) to write the quasi-

Newtonian effective tidal deformability as
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where we have assumed that the radii for the two neutron stars
are the same, as is approximately true for n=1 polytropic
EOS. Finally, we can eliminate m1 in favor of c and q using

Equation (3), yielding an expression for qNL
~

in terms of only q,
c , and R.
This quasi-Newtonian form of qNL

~
is much simpler to work

with, but is it a good enough approximation? We show L
~

and

qNL
~

as functions of m1 in Figure 2 as the solid and dashed lines,
respectively, for fixed radii of R=10, 11, and 12km and fixed

M1.188c = . We find that the quasi-Newtonian approx-
imation provides a reasonable approximation of the full
expression for L

~
, calculated using the quasi-universal relations.

We can, therefore, use qNL
~

to understand its dependence on the
masses.
Expressing qNL

~
as a series expansion around q=1, we find
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as an “effective compactness.”

Figure 2. Effective tidal deformability of the binary system as a function of the
primary mass, m1, when the chirp mass is held fixed at M1.188c = . We
calculate L

~
for three fixed radii, R=10, 11, and 12km, shown in purple, blue,

and green, respectively. The solid lines show the tidal deformability calculated
using the empirically fit universal relation between the tidal deformability of
each neutron star and its compactness from Yagi & Yunes (2017), while the
dashed lines show the quasi-Newtonian approximation for iL from
Equation (7). The quasi-Newtonian approximation is a good approximation
to the fully relativistic result.
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We note that expanding near q=1 is not a restrictive
choice. The known population of neutron stars is observed to
have a relatively small range of masses and the observed mass
distribution of double neutron stars is even narrower,
suggesting that most astrophysical merger scenarios will have
q near unity (see Özel & Freire 2016).

From Equations (9)–(12), we see that the effective tidal
deformability of the binary, L

~
, scales approximately as R5 for a

given c . When the mass ratio is close to unity, the individual
masses add only a small correction. For the measured chirp
mass of GW170817, we calculate the expansion coefficients for
a few radii in Table 1. We note that the mass dependence only
enters at order (1−q)2. Furthermore, the weak dependence on
mass becomes even weaker as the radius increases. Even for
R=10km, the mass-dependent term adds at most a ∼4%
correction to qNL

~
for the mass ratio range inferred for

GW170817.
We show this quasi-Newtonian expansion for a range of q

values, q 0.7, 1.0Î ( ), as the narrow gray band in Figure 1 and
find that it does recreate the trend observed in that sample
of EOS.

4.1. Black Hole–Neutron Star Mergers

Black hole–neutron star mergers are another source of
gravitational waves that may contain information about the
neutron star EOS. The tidal Love number of a non-rotating
black hole is zero (Binnington & Poisson 2009; Damour &
Nagar 2009), which greatly simplifies the effective tidal
deformability of Equation (4). However, this simplification
also destroys the inherent symmetry in Equation (4), which is
the source of the mass independence in the neutron star–
neutron star merger scenario. Without this symmetry, a series
expansion of L

~
, as in Equation (9), includes a correction term

of order (1−q).
Due to the lower-order terms of q1 -( ), there persists a

stronger dependence on the mass of the components. Thus, the
effective tidal deformability measured from a neutron star–
black hole merger does not directly probe the radius, as in the
case of a neutron star–neutron star merger. Instead, a
measurement of L

~
will primarily probe the neutron star

compactness.

5. Bayesian Inference of the Radius

In Figure 1, we showed that L
~

can be used to directly probe
the neutron star radius. The measurement from GW170817 of

800L
~

, at the 90% confidence level, already implies that the
radii of the neutron stars should be 13km. However, in order
to place more robust constraints on the neutron star radius or to

place comprehensive constraints on the underlying EOS, we
need to incorporate prior physical constraints and other
observations within a full Bayesian framework.
Read et al. (2009a) and Özel & Psaltis (2009) introduced the

use of piecewise polytropic EOS to convert the observations of
neutron stars into constraints on the EOS in a statistically
robust way. In Raithel et al. (2016), we showed that an optimal
parameterization of the neutron star EOS, given the expected
accuracy of measurements in the near future, requires five
piecewise polytropes. In Raithel et al. (2017), we further
developed the statistical framework with which to perform a
Bayesian inference of the pressures of our parametric EOS. In
our inference here, we incorporate a variety of astrophysical
and nuclear physics priors, including that the EOS is
microscopically stable and causal at all pressures, that the
lowest two pressures exceed the limit placed by two-nucleon
interaction, and that all EOS must produce a neutron star of at
least 1.97M, in order to be within 1σ of the measurements of
the most massive neutron stars (Antoniadis et al. 2013; Fonseca
et al. 2016). We assume a uniform prior on the pressures. In
order not to overparameterize the EOS, while still allowing the
possibility of complex behavior to be inferred, we also include
a Gaussian regularizer over the second derivative of the
pressure (λ=2), which penalizes sharp phase transitions. For
further details on the setup of our Bayesian inference, see
Raithel et al. (2017).
In addition to the above priors, which were extensively

studied in Raithel et al. (2017), we also place an upper limit on
the maximum mass, M M2.33max < , which is the upper limit
of the 90% credibility level found in Rezzolla et al. (2017).
This maximum mass was inferred from GW170817 assuming
only the quasi-universal neutron star relations and simple
models of kilonovae and is thus fairly model independent.
Our goal is to perform a sample Bayesian inference, using

the type of data that came from GW170817. Unfortunately,
because only an upper limit on L

~
was provided by the LIGO–

Virgo Collaboration, rather than the full posterior information,
we can only perform example inferences at this point.
For the sample inference here, we take the constraint on

800L
~

to correspond to a Gaussian distribution, centered at
400obsL =

~
with a dispersion of 243s =L

~ . We also use the
inferred chirp mass from GW170817, which is constrained
to M1.188c 0.002

0.004 = -
+

.
The likelihood of a particular EOS is given by

P P PEOS , EOS , EOS , 13c cpr L = L
~ ~( ∣ ) ( ) ( ∣ ) ( )

where Ppr(EOS) represents the set of the priors on the EOS,
which we describe above. Because of the high accuracy in the
measurement of the chirp mass, we fix it to the observed value,
and use that to set m2 for any given m1. Then, Equation (13)
can be written as

P PEOS EOS
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where m mEOS ,1 2L
~

( ) is the effective tidal deformability for a
particular set of the two masses, m1 and m2, of each EOS that
maximizes the likelihood. We choose to use the maximum
likelihood, rather than integrating over all combinations of m1

Table 1

qNL
~

Expansion Terms for the Chirp Mass Measured from GW170817

Radius 0L
~ Expansion

R=10km 143.4 1 0.041 q q1

1 0.7

2 1

1 0.7

3
+ +-

-
-
-( ) ( )

R=11km 268.0 1 0.029 q q1

1 0.7

2 1

1 0.7

3
+ +-

-
-
-( ) ( )

R=12km 465.8 1 0.020 q q1

1 0.7

2 1

1 0.7

3
+ +-

-
-
-( ) ( )

R=13km 764.6 1 0.014 q q1

1 0.7

2 1

1 0.7

3
+ +-

-
-
-( ) ( )
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and m2 to avoid biasing our results, as discussed in Raithel
et al. (2017).

To populate the posteriors in Equation (14), we run
a Markov Chain Monte Carlo (MCMC) simulation with
∼106 points. For each EOS that is tested in our MCMC, we
also calculate the corresponding mass–radius relation using the
standard TOV equations. In the left panel of Figure 3, we show
the mass–radius relations corresponding to the highest-like-
lihood solutions from our MCMC. The solid magenta line
shows the most likely solution, while the pink shaded band
corresponds to the range of EOS with probabilities within

e1 of the maximum value. Figure 3 also shows, as the black
dashed line, the radius that corresponds to the most likely value
of 400L =

~
using the quasi-universal relation of Equation (9).

Both our analytic expansion of the L
~
-radius relationship and

the full Bayesian inference presented here imply radii of
∼11.7km, for these sample data. This Bayesian method can be
used to robustly infer the EOS as additional measurements of L

~

and c are made from future neutron star merger events.
As a note of caution, we show in the middle and right panels

of Figure 3 the results of our MCMC after they have been
marginalized in mass–radius space, as is frequently presented
in some other studies (e.g., Steiner et al. 2017; Most
et al. 2018). This method of marginalization involves
calculating the posteriors over radius in a fixed grid of masses.
However, because there are far more large-radii EOS that
produce a 2M neutron star, marginalizing in this way
effectively weights the large-radii solutions much more heavily
than any other priors, or even than the data. This can be seen in
the middle panel of Figure 3, which shows that the margin-
alized solution leads to an inferred radius of ∼12.2km, even
though the maximum-likelihood solution occurs at ∼11.7km.
To further illustrate the point, we show in the right panel of
Figure 3 the marginalized posteriors for an inference with only
priors and no data at all. The marginalized posteriors with no

data are effectively identical to the marginalized posteriors for the
inference that incorporated data from a 400L =

~
centered

Gaussian. This method of marginalization weights the 2M
prior so heavily that the data are effectively ignored. We suspect
that this bias also affects the posteriors presented in other works,
e.g., Most et al. (2018). For further discussion of the bias
introduced by such a marginalization, see Raithel et al. (2017).

6. Conclusions

In this Letter, we found that the effective tidal deformability
is approximately independent of the component masses for a
neutron star–neutron star merger, when the chirp mass is
specified. Because this surprising result is difficult to see
analytically in the fully relativistic case, we introduce a quasi-
Newtonian approximation that closely reproduces the results
found in full general relativity. In the quasi-Newtonian limit,
we find that the masses of the stars only enter at order

q1 2 -(( ) ), where q is the mass ratio. We find that, for the
chirp mass measured from GW170817, this introduces at most
a 4% mass correction to the effective tidal deformability for the
entire range of mass ratios. Thus, the effective tidal deform-
ability can be considered as approximately independent of the
neutron star masses. This makes L

~
a direct probe of the neutron

star radius. For GW170817, we find that the 90% upper limit
on L

~
implies that the neutron star radius must be 13km.

In the case of a neutron star–black hole merger, we find that
the vanishing Λ for the black hole breaks the symmetry in L

~

and makes it depend more strongly on the component masses.
Thus, a measurement of L

~
for a neutron star–black hole merger

probes the compactness of the neutron star, but cannot be used
as a direct probe of the radius.
Finally, we incorporate other astrophysical priors and

constraints from nuclear physics in order to perform an
example Bayesian inference of the pressures in a parametric
EOS, from the c value inferred in GW170817 and a sample

Figure 3. Left: mass–radius relations corresponding to the most-likely EOS in our Bayesian inference, with a sample distribution for L
~

centered at 400L =
~

and a
fixed chirp mass of M1.188c = . The solid magenta line corresponds to the most-likely EOS, while the pink band corresponds to the range of EOS with posteriors
within e1 of the maximum value. The black dashed line shows the analytic prediction from our L

~
–R relation of Equation (9). We find excellent agreement

between our L
~
–R prediction and the full Bayesian inference. Middle: same as the left panel, but showing, in addition, the marginalized posteriors over the neutron

star radii for a fixed grid of masses. These marginalized likelihoods are shown in blue. By marginalizing the posteriors in this way, the results are skewed to higher
radii and away from the maximum-likelihood solution. Right: marginalized likelihoods for an inference with only the priors and no data. These marginalized posteriors

are nearly identical to the marginalized posteriors from the inference that incorporated data from a 400L =
~

centered Gaussian. This method of marginalization
overweights the prior on the EOS pressures imposed by the observation of a 1.97M neutron star. The results of the marginalization are less sensitive to the input data
and are not reliable.
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interpretation of the reported upper limit on L
~
. We find that,

even when such priors are included, we infer a mass–radius
relation that is consistent with the analytic prediction from our
L
~
−R universal relationship. We show that significant biases

can be avoided by robustly examining the maximum-likelihood
solutions in the multi-dimensional parameter space, rather than
introducing a marginalization in mass–radius space. The
marginalization tends to weight particular priors more heavily
than the actual data, which causes the resulting answer to skew
systematically toward larger radii.

Using the methods we have developed in this Letter, future
gravitational-wave events can be used to directly and robustly
constrain the neutron star radius, providing new constraints on
the EOS.
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