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Tidal Dynamics of the Water Table in Beaches 

PETER NIELSEN 1 

Ocean Technology Group, University of Sydney, Sydney. New South Wales. Australia 

Tidal motions of the water table height inside a sloping beach are investigated via field measure- 
ments and theoretical considerations. Only the movements forced by the tide are considered, so a 
beach with negligible wave activity was chosen for the field measurements. The data show that even 
in the absence of precipitation the time averaged inland water table stands considerably above the 
mean sea level. Also the water table at a fixed point inside the beach is far from sinusoidal even though 
its variation is forced by an essentially sinusoidal tide. This latter effect is due to the boundary 
condition along the sloping beach face which acts as a highly nonlinear filter. The observed behavior 
of the water table is explained in terms of perturbation extensions to the classical "deep aquifer 
solution." One extension deals with the nonlinearity in the interior, the other with the boundary 

condition at the sloping beach face. 

1. INTRODUCTION 

The height of the water table near the coast influences the 
stability of structures founded on soils or sands and it may be 
a limiting factor for agricultural land use because of saltwater 
intrusion. It has therefore been the object of a recent 

investigation carried out by the New South Wales Public 
Works Department. Field measurements have shown that 
even in the absence of significant rainwater input the time 

averaged (averaged over a tidal period) water table tends to 
be elevated significantly above the mean sea level. The 
overheight is largest on the open coast where wave runup 

may cause several meters of super elevation, but also 
protected beaches with negligible wave activity may exhibit 
overheights in excess of half a meter depending on tidal 
range, beach slope, and the drainage characteristics of the 
sand. The emphasis of the present paper is on the tidal 
mechanisms which have been measured on a protected 

beach north of Sydney, Australia. 

Third, the maximum water level in Well 7 is a few 

centimeters higher than the high tide level. 
The first two features result from the nature of tidal flow in 

and out of a sloping beach as explained in the following while 
the slight overheight of Well 7 above the offshore tide level 
at high tide must be due to wave activity. The wind waves 
arriving at the beach had a height of only 5-10 cm, but there 
might have been longer period oscillations (period 1-30 min) 
present as well with similar amplitude. 

Well 11 was situated 10 m landward of Well 7, and by 

comparing the records from the two wells we see that the 
tidal water table wave is dampened considerably over the ! 0 

m and Well 11 is lagging approximately I hour behind Well 7. 
The amplitude and phase lag information from all 11 wells 

determined by harmonic analysis are shown in Table 1, and 
the complete data set is printed in Table 2. Please note that 
the expected absence of rainwater outflow at the test site is 
supported by the fact that the measured mean water levels 
approach a horizontal asymptote on the inland side. 

2. FIELD MEASUREMENTS 3. MATHEMATICAL MODELING 

The water-table was measured every half hour for 25 

hours on Barrenjoey Beach north of Sydney, Australia. At 
the time of the measurements (April 18-19, 1989) the tide 
was almost sinusoidal, semidiurnal with amplitude 0.516 m. 
The measurements were taken in 11 stilling wells placed at 

2.5-m intervals along the normal to the beach. Figure 1 
shows time series of the water table height in two of the wells 

together with the tide. Well number 7 (sand level 0.64 m) was 
the first well landward of the high water mark (sand level 
0.516 m), and it shows three interesting characteristics. 

First, the minimum water level is substantially higher than 

the low tide level (+0.09 m compared to -0.516 m), and 
similarly, the mean water level is 0.25 m higher than the 
mean sea level. 

Second, the variation is far from sinusoidal. The rise is 
much steeper than the decline. 

1Also at Coast and Rivers Branch, Public Works Department, 
Sydney, New South Wales, Australia. 
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Mathematically, the description of tidal water table mo- 
tions in a beach with simple geometry contains two main 

challenges. First, the governing equation for horizontal flow 
below the water table in a beach which has uniform perme- 

ability above a horizontal impermeable boundary is nonlin- 
ear, and this nonlinearity results in a gradual rise of the 
time-averaged water table away from the beach. This effect 
has been studied theoretically by Philip [1973] and Knight 

[1981], and experimentally by Smiles and Stokes [1976]. 
Their work established an asymptotic result for the height of 

the time-averaged water table far from the beach. Knight 
[1981] showed further that although Philip's result was 
derived from Boussinesq's [!903] equation, i.e., under the 

assumption of purely horizontal flow, it holds exactly also 
when the flow is two dimensional [u = it(x, •,, 1)]. Similar 
results hold for other flow characteristics. For example, the 

Dupuit-Forchheimer formula for seepage through a dam is 
exact although originally derived from Boussinesq's equa- 
tion (see Charnyi [1951] •br the original proof or Knight 
[1981]). These findings encourage the use of Boussinesq's 
equation for the initial study of new groundwater problems. 
Section 3.3.2 contains an approximate solution to this equa- 
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0.5. 

sea surface and the beach face, and x is positive landward. 
The beach face forms the angle/5 with the horizontal and it 
is assumed that the sand body is bounded by an impermeable 
layer at depth D below mean sea level. 

It is assumed that the sand is homogeneous and isotropic 
with permeability K and porosity n. Further, we assume that 
the flow velocity [u(x, t)] is essentially horizontal so that the 
pressure distribution is hydrostatic (Dupuit's assumption). 

Under these assumptions, the governing equations for the 
groundwater flow and the local water table height h are 
Darcy's law, 

Oh 

u = -K -- (1) 
Ox 

and the continuity equation 

Fig. 1. Time series of water table heights in Wells number 7 and 
11 together with the tide at Barrenjoey Beach, April 18-19, 1989. 
The distances from the intersection between the mean sea level and 

the beach to these wells are 6.6 m and 16.6 m, respectively. 

tion for the tidal problem. It describes both time dependent 
and averaged effects of the nonlinearity, and the time- 

averaged results agree to the expected order with Philip's 

asymptotic result. 

The second point of interest is the matching of the tidal 

variation along the inclined beach face. This problem has not 

previously been tackled analytically as far as the writer is 
aware. Previous authors have either contended with a solu- 

tion which assumes a practically vertical beach face [e.g, 

Dominick et al., 1971; Philip, 1973; Knight, 1981; Smiles and 
Stokes, 1976] or left the beach face as a black box while 

acknowledging its strong, nonlinear filtering effects on the 

tidal waves [e.g., Lanyon et al., 1982]. These effects include 
a lifting of the time-averaged water table above the mean sea 

level and a skewing of the time dependance in such a way 

that the lag of low water table at a point behind low tide in 

the ocean is longer than the lag of high water table behind 

high tide. In other words, the rise of the water table occurs 

at a faster rate than its fall; see Figure 1. These effects of the 

sloping interface are treated in section 3.3.3. 

3.1. Governing Equations 

We consider the shore normal groundwater flow in a long 

straight beach as shown in Figure 2. 

The origin of the x axis is at the intersection of the mean 

Oh 1 0 

(hu) (2) 
Ot n Ox 

which combine into Boussinesq's equation 

Ot n Ox 
(3) 

3.2. Boundary Conditions 

In order to define uniquely the solution for (3) we need two 

boundary conditions. The first of these is obtained by 
requiring that all oscillations die out far from the beach, i.e., 

Oh 

----• 0 x--• • (4) 
Ot 

Second, the water table is assumed to match the tide at the 

beach face unless the tide is dropping so quickly that the 

seepage point becomes separated from the shoreline by the 

development of a seepage face as in Figure 3. If this 

separation or decoupling occurs, analytical solution is prob- 

ably impractical, but for the cases where it does not occur, 

analytical solutions are both simple and instructive. 

With a given tidal variation htide(0 the boundary condition 
at the beach face (slope angle/5) is 

h([htide- D] cot/3, t) = htide (5) 

provided the water table does not become decoupled by the 
formation of a seepage face. This general boundary condi- 
tion is unusual and somewhat difficult to deal with because 

TABLE 1. Harmonic Constants for Water Table Observations, Barrenjoey Beach April 18-19, 1989 

Well Number 

1 2 3 4 5 6 7 8 9 10 11 Tide 

Horizontal position (x), m 
Sand level, m 

Amplitude, m (period 12.25 hours) 
Time lag [lag l (x)], hours 
Amplitude, m (period 6.125 hours) 
Time lag [lag2(2(x)], hours 
Average water level, m 

-8.4 -5.9 -3.4 -0.9 

-0.72 -0.54 -0.30 -0.11 

0.516 0.510 0.429 0.337 

0 0.01 0.03 0.05 

0.014 0.018 0.063 0.089 

1.27 0.88 0.07 0.01 

0 0.003 0.049 0.112 

1.6 4.1 6.6 9.1 11.6 !4.1 16.6 -- 

0.13 0.38 0.64 0.87 1.12 1.45 1.78 --- 

0.272 0.228 0.192 0.135 0.107 0.087 0.075 0.516 
0.15 0.72 0.78 1.09 1.56 1.71 1.84 0 
0.079 0.066 0.053 0.025 0.018 0.015 0.010 0.014 

-0.10 0.21 0.26 0.73 !.07 1.37 1.51 1.27 
0.170 0.209 0.251 0.263 0.277 0.289 0.287 

The time lags [lag (x)] are defined in accordance with h(x, t) = D + Ampi(x) cos •t - lagl (x)) + AmP2(X) cos 2•t - lag2(x)) where 
is the radian frequency 2•'/12.25 radians per hour. 
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TABLE 2. Water Table Data From Barrenjoey Beach, April 18-19, 1989 

Well Number 

11 !0 9 8 7 6 5 4 3 2 1 

Well top level, m 1.55 1.54 1.10 1.38 1.45 0.86 0.57 0.46 0.69 0.53 
2.10 

Distance from 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 
Well 11 

Sand level, m 1.79 1.46 1.12 0.87 0.64 0.38 0.14 -0.11 -0.30 -0.54 

25.0 

-0.71 

Time, Tide 
EST Level 

Water Table Heights Measured in Wells 

11 10 9 8 7 6 5 4 3 2 

1200 

1230 -0.50 

1300 -0.47 

1330 -0.43 
1400 -0.36 

1430 -0.27 
1500 -0.18 

1530 -0.03 

1600 0.04 

1630 0.22 

1700 0.31 

1730 0.42 

1800 0.52 

1830 0.50 

1900 0.53 

1930 0.54 

2000 0.52 

2030 0.42 

2100 0.31 

2130 0.18 

2200 0.07 

2230 -0.09 

2300 -0.21 

2330 -0.33 

0000 -0.40 

0030 -0.43 

0100 -0.45 

0130 -0.46 

0200 -0.42 

0230 -0.36 

0300 -0.24 

0330 -0.15 

0400 -0.10 

0430 0.09 

0500 0.24 

0530 0.32 

0600 0.38 

0630 0.46 

0700 0.50 

0730 0.48 

0800 0.44 

0830 0.33 

0900 0.22 

0930 0.14 

1000 -0.04 

1030 -0.18 

1100 -0.29 

1130 -0.40 

1200 -0.49 

1230 -0.55 

1300 -0.55 
1330 -0.58 

1400 -0.51 

0.12 -0.05 -0.03 -0.13 -0.29 -0.51 -0.51 
0.12 0.00 -0.04 -0.13 -0.28 -0.47 -0.47 

0.24 0.23 0.12 0.11 0.01 -0.04 -0.13 -0.29 -0.43 -0.43 
0.24 0.22 0.19 0.15 0.09 0.02 -0.05 -0.13 -0.28 -0.38 -0.37 
0.23 0.21 0.19 0.15 0.09 0.02 -0.04 -0.13 -0.27 -0.31 -0.28 
0.23 0.21 0.18 0.16 0.10 0.03 -0.02 -0.10 -0.16 -0.17 -0.19 
0.22 0.20 0.18 0.17 0.12 0.05 0.02 -0.04 -0.03 -0.04 
0.23 0.21 0.19 0.19 0.15 0.08 0.09 0.06 0.07 0.03 
0.23 0.23 0.22 .22 0.19 0.13 0.21 0.21 0.21 0.21 
0.26 0.25 0.24 0.25 0.24 0.22 0.31 0.31 
0.29 0.28 0.28 0.30 0.34 0.34 0.41 
0.31 0.31 0.35 0.44 0.43 0.51 
0.33 0.33 0.34 0.40 0.53 0.50 

0.35 0.35 0.37 0.43 0.54 0.53 

0.37 0.37 0.39 0.45 0.53 0.54 

0.38 0.39 0.41 0.45 0.53 0.53 0.51 

0.38 0.40 0.42 0.44 0.46 0.47 0.41 

0.39 0.40 0.41 0.41 0.38 0.39 0.30 

0.38 0.39 0.39 0.38 0.34 0.31 0.18 0.17 

0.38 0.37 0.37 0.34 0.30 0.25 0.12 0.06 0.07 

0.36 0.35 0.33 0.30 0.26 0.20 0.06 -0.06 -0.09 

0.33 0.31 0.29 0.27 0.22 0.16 0.04 -0.10 -0.20 -0.22 

0.31 0.29 0.27 0.24 0.20 0.13 0.02 -0.10 -0.27 -0.34 

0.29 0.27 0.25 0.22 0.17 0. I 1 0.00 -0.10 -0.28 -0.40 -0.41 

0.27 0.26 0.24 0.20 0.15 0.09 -0.01 -0.12 -0.29 -0.46 -0.44 

0.26 0.25 0.22 0.19 0.13 0.07 -0.02 -0.13 -0.29 -0.46 -0.46 

0.25 0.23 0.21 0.17 0.12 0.05 -0.04 -0.13 -0.29 -0.39 -0.47 

0.24 0.22 0.20 0.16 0.10 0.04 -0.03 -0.13 -0.28 -0.43 -0.43 

0.23 0.22 0.19 0.16 0.10 0.03 -0.04 -0.13 -0.29 -0.39 -0.37 

0.23 0.21 0.19 0.16 0.10 0.03 -0.03 -0.12 -0.25 -0.25 

0.23 0.21 0.18 0.16 0.11 0.05 0.00 -0.08 -0.15 

0.22 0.21 0.19 0.17 0.13 0.07 0.06 -0.00 -0.10 

0.23 0.21 0.19 0.19 0.16 0.11 0.13 0.08 

0.25 0.24 0.23 0.23 0.18 0.18 0.22 0.23 

0.27 0.26 0.25 0.27 0.27 0.28 0.31 

0.28 0.28 0.30 0.30 0.33 0.34 0.37 

0.31 0.31 0.31 0.35 0.42 0.42 0.45 

0.33 0.33 0.33 0.38 0.46 0.46 0.49 

0.34 0.34 0.36 0.40 0.48 0.47 0.47 

0.35 0.36 0.37 0.40 0.45 0.45 0.43 

0.35 0.37 0.38 0.39 0.39 0.40 0.32 

0.36 0.37 0.37 0.37 0.35 0.33 0.21 0.21 

0.36 0.36 0.35 0.34 0.31 0.28 0.16 0.13 

0.34 0.33 0.32 0.30 0.26 0.20 0.08 -0.04 -0.04 

0.32 0.31 0.29 0.27 0.23 0.17 0.06 -0.08 -0.15 -0.19 

0.30 0.28 0.27 0.24 0.20 0.13 0.02 -0.10 -0.26 -0.31 -0.29 

0.28 0.26 0.25 0.21 0.17 0.11 0.01 -0.10 -0.28 -0.4! -0.41 

0.26 0.24 0.23 0.18 0.14 0.07 -0.02 -0.13 -0.27 -0.50 -0.50 

0.25 0.24 0.21 0.17 0.11 0.09 -0.04 -0.13 -0.27 -0.52 -0.56 

0.23 0.22 0.20 0.15 0.09 0.03 -0.06 -0.15 -0.29 -0.52 -0.56 

0.22 0.20 0.18 0.14 0.08 0.02 -0.07 -0.15 -0.29 -0.52 -0.59 

0.21 0.19 0.!7 0.13 0.06 -0.00 0.07 -0.17 -0.29 -0.52 -0.52 
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Permeability 

Mean Sea Level 

i - bride [5 

Fig. 2. Definition sketch. 

the point at which h is prescribed does not have a fixed 
abscissa unless the beach is vertical (cot/3 = 0). 

3.3. Analytical Solutions 

Analytical solutions to (3) with the boundary conditions 
(4) and (5) can only be obtained under further simplifying 
assumptions, and the aim of the following sections is to 
derive some such solutions and discuss their merits and 

limitations. 

3.3.1. Vertical beach and small tidal amplitude. Con- 

sider first the very simplest situation where the beach is 
assumed to be practically vertical. That is, A cot 13/L << 1, 
where A is the tidal amplitude and L is the length of the water 
table wave inside the sand. In that case the boundary 

condition (5) becomes 

h(0, t) = bride (6) 

We assume further that the tidal amplitude is small com- 

pared to D so that Boussinesq's equation becomes the 
diffusion equation 

Oh KD 02h 
-- - (7) 
at n O x 2 

For this highly simplified system a textbook solution is 
available (see, for example, Kovacs [!981]). For htide = D + 
A cos wt the solution is 

h(x, t) = D + A cos (oot - kx)e -kx + Bx (8) 

i.e., essentially a landward traveling wave with exponen- 
tially narrowing envelope. The linear term Bx corresponds to 
any time-averaged flux of water out of the beach caused by 
rainfall, etc. The wave number k is given by 

k= KD 

in terms of the beach parameters and the radian frequency to 
of the tide. For a more complicated tidal variation with the 
Fourier series, 

htide = D + •Aj cos (jwt- cpj) (10) 

the corresponding solution is 

h(x, t) = D + •A d cos (jwt - cpj- 'V/jkx)e -X/Jkx + Bx 
(11) 

An evaluation of the solution (8) can be obtained from the 

observed amplitudes and phase lags of the tidal harmonics 

listed in Table 1. The solution predicts that damping and 
phase lag in radians should both grow as kx. However, least 
squares fits to the data yield different growth rates, i.e., 
different values for k from lags and damping of the semidi- 

urnal component. The damping yields kla = 0.093 m -1 with 
the goodness of fit parameter r = 0.987, while the phase lags 
yield kip = 0.056 m -i with r - 0.971, thus the semidiurnal 
component of the measurements does not behave quite as 
prescribed by (8). Also, the damping and lags of the second 
harmonic (T = 6. !25 hours) are significantly larger than the 

predicted x/r• times those of the fundamental mode. In fact, 
they are both very close to twice the values for the funda- 
mental mode. For the damping of the second harmonic we 

find k2, t = 0.!54 m -1 with r = 0.970 and for the correspond- 
ing phase lags in radians k2p = 0. !29 m - 1 with r = 0.982. The 
fact that the dampin! and lag of the second harmonic are 
closer to 2 than to X/2 times those of the fundamental mode 

indicate that the second harmonic is more like a forced wave 

than a free wave with the form of (8). That is, the deviations 

of the observations from the predictions from (8) are most 

likely due to the nonlinear nature of the problem. The 
regression analysis was based only on the five wells land- 
ward of the high water mark. 

3.3.2. Vertical beach and finite tidal amplitude. It is 

the purpose of the present section to try and explain the 
observations above by investigating the magnitude and char- 
acter of the differences between the solutions to Bouss- 

inesq's equation (3) and to the diffusion equation (7) for 
typical beach conditions. 

When the tidal amplitude is more than a negligible fraction 
of the mean depth D, the nonlinear term of Boussinesq's 
equation start to play a role and the simple solution (8) is of 
course no longer exact. However, it is still useful to use it as 
a starting point and then approximate the exact solution with 
a perturbation expansion in the parameter A/D. 

Apart from perturbation solutions an exact, asymptotic 
solution for the steady part h(x) of h(x, t) can be found by 
using a result from Philip [ 1973]. Philip pointed out that if the 
process is periodic so that 

t+rOh -- dt = 0 (!2) 
Ot 

then it follows from Boussinesq's equation that the mean 

square value h2(x, t) must be a linear function of x because 

Exit Point .......... ii!: ' 
.. 

Fig. 3. For flat beaches and/or large tidal range the water table 
can become decoupled at low tide, i.e., the water table emerges at 
the exit point some distance above the shoreline. When this occurs 
there is no longer direct coupling between the water table and the 
tide. 
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0 2 
• h2(x, t) = 0 (13) 

Hence, for example, with htide = A cos wt + D we must have 

h-2(x, t'i' = (htid½) 2 + Bx = (D + A cos wt) 2 + Bx (14) 

where again, the linear term Bx corresponds to any time- 

averaged flux of water out of the beach. Far from the beach 
where all oscillations have died out so that t•(x, t) = h(x) we 

thus get 

h2(x) = h(x, t) 2 = D 2 + A2/2 + Bx (15) 

and hence 

h(x) • D + A2/4D + Bx/2D kx >> 1 (16) 

Thus Philip's argument shows that the nonlinearity of Bouss- 
inesq's equation leads to an overheight of the water table 
inside the beach even in the absence of a net flux of water 

and that in the absence of such net flux the asymptotic inland 

overheight is approximately A 2/4D. 
This is a useful result, but it only provides information 

about the time average of h(x, t), and only about its 

asymptotic value. In order to investigate the general behav- 
ior of h(x, t), a perturbation approach is adopted. We start 

with writing h(x, t) as an expansion in the relative tidal 

amplitude A/D, 

h(x, t) = D +- hi(x, t) + h2(x, t) +... (17) 
D 

then by inserting this into Boussinesq's equation and sepa- 
rating terms of equal order in A/D we get the following 
system of equations, 

Order A/D 

Ohi KD 02hi 
........ (18) 

Ot n Ox 2 

Order (A/D) 2 

Ot n Ox 2 + -- hi •+ -- • (19) n Ox 2 n 

For simplicity, let us just consider the case with no net flux 
out of the beach (B = 0) in which the boundary conditions 
are 

Oh oh 
.... 0 x = oo (20) 
Ox Ot 

h(0, t) = htid½ = D + A cos tot (21) 

(the beach is still assumed vertical). In this case the solution 

to (18) and (19) is 

hi(x, t) = D cos (wt- kx)e -kx (22) 

D 

h2(x, t) = • [1 - 2 cos 2 (wt - kx)e -2kx 

+ cos (2wt- V/•kx)e -V•'kx] (23) 

or in other terms 

LWM 

1 2J 3 

x x 

X=O HWM 

4 5 6 7 8 9 10 !1 

.,•,, J 
// x 

/ x 

-0-3 

C•2• 

0-1 

MSt 

Fig. 4. Fit of the expression (25) to the shape of the time-averaged 
water table landward of the high water mark. 

A 2 
h(x, t) = D + A cos (tot - kx)e -kx + • [1 - 2 cos 2 (wt 

4D 

- kx)e -2kx + cos (2wt- V•-kx)e-V•-kx] (24) 
We note that the asymptotic value of h(x) from this expres- 

sion agrees (to the order [A/D] 2) with the result (16) which 
was based on Philip's [!973] argument. 

Let us now briefly compare the results of this section with 
the measurements listed in Tables 1 and 2. Based on the form 

of the fundamental mode (22), we can estimate the value of 

the wave number k from the damping and phase lags of those 
wells which are above the high water mark. This was done at 

-1 

the end of section 3.3.1. We adopt the average k = 0.075 m 

and compare the time average of (24): 

A 2 
h(x) = D + • [1 - e -2kx] (25) 

4D 

with the observed rises in average water levels between the 

wells landward of the high water mark (HWM; see Figure 4). 
We find the best fit value of A 2/4D to be 0.13 m correspond- 

ing to D = 0.51 m with A = 0.516 m. 
This value (0.13 m) is less than half of the observed 

overheight of the inland asymptote above mean sea level 
(0.288 m), and only about 0.05 m is actually built up 
landward of the HWM where (25) is strictly valid. Most of 

the observed overheight is accrued between the low water 

mark and the high water mark, where additional and equally 
strong mechanisms to the nonlinearity treated in this section 
must be active. Those mechanisms are the subject of the 

following section. 

3.3.3. Sloping beach and small tidal amplitude. In the 
following it will be shown that the rise of the average water 
table height between the low water mark and the high water 
mark could be due to the asymmetry of the tidal infiltration/ 

draining process for a sloping beach. In popular terms: It is 
much easier for the water to pour into a sloping beach at high 
tide than to drain away at low tide. The same asymmetry 

also results in timewise skewing of the water table variation, 
that is, it makes the rise steep and the decline flat (see Figure 
1). 

The difference between the "vertical beach solution" (8) 

and the more realistic solution which is pursued in the 

present section is outlined in Figure 5. While the simple 
solution (8) matches the tide level along the vertical line x = 
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X=0 

' . ....... .,::,,::•,..:-::,-..,:.,•::,•::..:::;•:;:.. 
....... 

Fig. 5. The solution pursued in the present section is brought to 
match the tide along the beach face between the high and low water 
marks A' and B', that is, it satisfies the boundary condition (5). The 
"vertical beach solution" considered in the previous section fulfils 
the simpler condition (6). The difference between the solutions is 
illustrated by the envelopes e and e'. 

0 and thus matches the high tide level at A and the low tide 

at B, respectively, the new solution is brought to match the 

tide level along the beach face and hence to match high tide 
at point A' and low tide at B'. The curves e and e' are the 

corresponding envelopes. 

For the analysis, assume again that the tidal variation is 
given by 

bride -- D + A cos tot (26) 

and the beach forms the angle /3 with the horizontal. We 
assume further that A << D and hence look for solutions of 

the form 

h(x, t) = ZAj cos (jtot- <pj- •//•kx)e -•kx (27) 
which correspond to the textbook solutions (8) and (11) to 

the diffusion equation. The coefficients Aj must be deter- 
mined so that the water table follows the tide along the 

sloping beach face as expressed by the boundary condition 

(5). Inserting the form of the solution (27) and the assumed 

tidal variation (26) into (5) yields 

•Aj COS (jtot- •j-- '•/)kA cot/3 cos wt)e-VgkA cot/3 cos a,t 
= A cos tot (28) 

where we introduce the perturbation parameter e given by 

e = kA cot/3 (29) 

and get 

•Aj cos (jtot - •pj - 'g/)e cos tot)e-Vge cos ,ot = A cos tot 
(30) 

After writing the exponential as a Taylor expansion in X/) e 
cos tot and separating terms of equal order in e we get 

h(x, t) = D + A cos (tot - kx)e -•x 

+ eA- + • cos (2tot + •r/4 - (31) 
2 2 

which is correct to the first order in e. We see that the 

first-order effects of the finite beach slope are a lifting of the 
mean water table the distance 0.5eA above mean sea level 

and a skewing of the variation with time via the cos 2t0t 
term. If terms of order e- are included, the result is 

h(x, t) = D + A cos (tot- kx)e -i•x 

+ eA- + • cos (2tot + rr/4- 
2 2 

+ e2A(• •)[sin(tot-kx)e -•x 
+ sin (3tot- '•/•kx)e -VSt•x] (32) 

we note that the second-order effects include further steep- 
ening of the rise via the sin 3tot term but no extra overheight 
for the time average h(x). Thus the average overheight 
predicted by the first-order solution is correct to order e 2. 

The approximation (32) is very efficient with respect to 
satisfying the sloping beach boundary condition (5) for a 

beach where shoreline and exit point coincide (no seepage 
face). This is illustrated by Figure 6 where (8), (31) and (32) 
calculated at the shoreline (x = Xs = A cos tot cot /3)are 
compared to the exact tidal elevation A cos tot. The param- 
eters were chosen to match the present field study, i.e., A = 

0.516 m, k = 0.075 m -• and tan/3 = 0.1. This corresponds t0 
e = 0.387, and we see that even for this fairly large value of 

the perturbation parameter, the deviation is at most 0.032 rn 

occurring at low tide. 

The solutions (8), (31) and (32) are compared to the 

measurements from Well 7 in Figure 7. The parameters used 

in the solutions are the same as used in connection with (25) 

and Figures 4 and 6. 

We see that the improvement obtained by using the 
first-order solution (31) instead of the "vertical beach solu- 

tion" (8) is considerable although neither the overheight nor 

the steepening of the rise are strong enough. Addition of the 

second-order terms leads to further though fairly modest 

improvement. 

3.4. Decoupling of the Water Table by Formation 

of a Seepage Face 

From the example shown in Figure 7 we see that the 

greatest discrepancies occur at low tide where the measure- 

ments stay around 0.1 m above MSL while the models 

predict values down to about -0.20 m. The difference 

cannot be explained by the nonlinear effects discussed in 

section 3.3.2. Qualitatively, these are different in that they 

are not concentrated at low tide like the discrepancies in 
Figure 7. Also the nonlinear effects are not big enough. 

Addition of the nonlinear terms of (24) leads to an increase of 

only 0.085 m of the low tide level at Well 7. 

The deviation is therefore mainly due to the fact that the 
water table did get decoupled from the tide at low tide in the 
field experiment while the models assume that it did not, i.e., 

(32) is based on the boundary condition (5) which assumes 

that no seepage face is formed. Figure 8 shows the measure- 

ments of the water table with the exit point about 0.3 m 

above the shoreline at low tide (2300 hours, April 18, 1989). 
The dynamics of a decoupled water table are, as far as the 

writer is aware, unresolved, and the literature on the subject 

is confused. For example, Bear [1972, p. 262] gives a 

"proof" that the water table must be tangent to the seepage 
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Fig. 6. Shoreline elevations h(x, t) from "the vertical beach solution" (8), the first-order sloping beach solution (31) 
and the second-order version (32) compared to the exact values for e = 0.387, corresponding to the parameters of the 
present field study. Considerable improvement is achieved by the first-order version (31), and the second-order solution 
is almost perfect. 
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Fig. 7. Comparison of the solutions (8), (31) and (32) to the 
measurements from Well 7. 
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Fig. 8. During the field experiments a seepage face developed 
approximately 2.5 hours before low tide. The speed of the falling 
tide was about 7 x 10 -5 m/s when this happened. 
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face in the unsteady as well as in the steady case, while the 
data (photographs) by Dracos [1963] clearly show that it is 
not. Thus theoretical knowledge about the behavior of the 

exit point is shaky. That is, not much is known beyond the 

fact that the pressure must be constant along the seepage 
face. 

Dracos proposes a model for the movements of the exit 

point based entirely on the dynamics of an isolated water 

particle on the seepage face, but he does not consider the 

periodic (tidal) problem. Dracos does, however, suggest a 

maximum vertical velocity Vrnax for the exit point 

K 

Z/ma x -- -- sin 2/• (33) 
H 

and thus decoupling is predicted if the speed of the falling 

tide exceeds Vma x. However, this formula predicts for the 
present field conditions a value of Vrnax which is considerably 
higher than the speed of the falling tide observed just before 

the water table became decoupled. In order to apply Dracos' 

formula to the present field conditions we derive a value of 

K/n for the field site by inserting k = 0.075 m- • and D = 0.51 
m into 

insight into the nature and magnitude of the two other effects 
has been achieved. 

The inland overheight due to beach slope is of the order of 
magnitude 0.5kA cot/3, and this result, although being part 
of the first-order solution, is correct to the second order in 
e= kA cot /3. 

The asymptotic inland overheight due to the nonlinearity 
of Boussinesq's equation is of the order A2/4D, and this 
value is approached asymptotically as e -2t•x (see (25)). 

Apart from these time-averaged features, the time depen. 
dence of the water table height at a point has been investi. 
gated, and it has been shown that the sloping beach face acts 

as highly nonlinear filter which causes the water table to rise 
abruptly and drop off slowly compared to the near-sinusoidal 
tide which drives it. This effect is quantified by the results in 
section 3.3.3. 
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k = (34) 

and get K/n = 0.024 m/s. Hence Dracos' formula with sin 

/3 = 0.1 gives Vma x = 2.4 x 10 -4 m/s which is a factor 3.5 
more than the observed value. While it must be acknowl- 

edged that the value of K/n used for this comparison is 

subject to some uncertainty, the data does indicate that 

Dracos criterion for decoupling is conservative, i.e., it would 

not predict the decoupling which occurred for the conditions 

of the present field study. 
From the remarks above it is clear that further research is 

required into the behavior of the exit point on a sloping 

seepage face. However, since this represents a major task of 

its own, it will not be attempted here. 

4. CONCLUSIONS 

Field measurements have been made of water table 

heights inside a beach which had no significant wave activity 
or outflow of rainwater and thus exhibited the effects of tide 

in a pure form. The measurements show that the inland 

average water table was elevated 0.29 m above mean sea 

level for a tidal amplitude of 0.516 m. 

This superelevation is due to three mechanisms: formation 

of a seepage face around low tide, asymmetry of the bound- 
ary condition at the sloping beach face, and finally the 

nonlinearity of the governing equation in the interior. 
While resolution of the behavior of a dynamic exit point 

and seepage face has been left for further study, a clear 
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