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ABSTRACT 
The tidal torque on an early-type star is concentrated near the boundary between the convective core and 

radiative envelope and a train of gravity waves is excited there. The angular momentum which the torque 
removes from the fluid is transported outward by the gravity waves, which carry negative angular momentum. 
Before the surface layers are despun to synchronous rotation, the gravity waves propagate to just below the 
photosphere where they suffer radiative damping and are partially reflected. It is here that the negative 
angular momentum is deposited and the primary tidal despinning takes place. The surface layers cannot be 
spun down below synchronous rotation because as a train of gravity waves approaches a corotation reson­
ance its group velocity and wavelength tend to zero, its amplitude diverges, and it is completely absorbed. 
Thus, tidal despinning to synchronous rotation proceeds from the outside toward the inside of the star. Our 
picture provides a neat explanation for the otherwise puzzling discovery by Giuricin, Mardirossian, and Mez­
zetti that Zahn's theory for tidal evolution in early-type close binaries seems to be compatible with the 
observed rates of orbit circularization while significantly underestimating the observed rates of spin synchro­
nization. 
Subject headings: stars: binaries- stars: early-type- stars: rotation- wave motions 

I. INTRODUCTION 

The plan of this paper is as follows. In § II we present a brief 
description of the best theory of tides in early-type stars, that of 
Zahn (1975, 1977). Next, we summarize the current status of 
the comparison between the theory and the observations. This 
leads to the identification of a major difficulty, namely, the 
theory seems to provide reasonable time scales for circular­
ization but to severely overestimate the time scales for syn­
chronization, or pseudosynchronization. We apply a theorem 
proved in a companion paper (Goldreich and Nicholson 1989; 
hereafter Paper I) to resolve this puzzle by reinterpreting 
Zahn's theory. Because the theorem of Paper I is somewhat 
abstract, and also because all published treatments of tidal 
perturbations in early-type stars are rather imposing, we 
present a heuristic description of these perturbations in § III. 
This description provides a more concrete basis for our reinter­
pretation of Zahn's work. We also use it to clarify some points 
raised by Savonije and Papaloizou (1983) in their reexamin­
ation of Zahn's theory. Finally, in§ IV we discuss some thorny 
issues related to differential rotation in stars that are being 
tidally despun and outline prospects for their resolution by 
future investigations. 

ll. ZAHN'S THEORY 

convective core. The latter torque is negligible because the time 
scales of the dominant convective motions in the core are very 
long in comparison to the periods of tidal forcing. The situ­
ation is quite different in late-type stars. These stars have con­
vection zones in their outer envelopes and the convective time 
scales are short enough that turbulent viscosity is likely to be 
the dominant process of tidal dissipation. One may quibble 
about the details, but the general picture of tidal dissipation 
presented by Zahn (1977) seems likely to be correct. In this 
paper we are only concerned with tidal friction in early-type 
stars, and so we mostly ignore the effects of turbulent viscosity. 

Gravity waves are evanescent in the convectively unstable 
core and propagate in the stably stratified radiative envelope. 
The boundary between the core and envelope is a turning 
point where the WKBJ wavelength of gravity waves is formally 
infinite. Throughout the rest of the envelope the radial wave­
length of tidally excited gravity waves is very short compared 
to the stellar radius. Thus, the tidal potential, which varies 
radially on the scale of the stellar radius, couples best to the 
gravity waves near the core envelope boundary. Indeed, vir­
tually the entire net tidal torque is exerted in the immediate 
vicinity of this boundary. In§ III we show that the angularly 
averaged tidal torque density is an oscillatory function of 
radius, with the net torque concentrated in a thin region, no 
more than a few wavelengths in width, near the outer bound­
ary of the convective core. 

We owe to Zahn (1966a, b, c, 1975, 1977) much of our under- In a uniformly rotating star the tidally excited gravity waves 
standing of the mechanisms of tidal friction in stars. In particu- propagate out through the stellar envelope to the atmosphere 
lar, he showed that tidal forcing of an early-type star excites where they suffer radiative damping and are thus only partially 
gravity waves at the boundary between the convective core reflected. Zahn's calculations relate the radiative damping of 
and radiative envelope. Zahn argued convincingly that the the waves to the tidal torque. He then goes on to derive 
torque associated with the excitation of gravity waves is much approximate formulae for the rates at which early-type stars in 
greater than that associated with turbulent viscosity in the binaries despin and their orbits circularize. 
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a) Current Status 

Giuricin, Mardirossian, and Messetti (1984a, b, c) have col­
lected and discussed observational evidence that bears on the 
rates of orbital circularization and spin synchronization in 
early-type binaries. They used published data and attempted to 
separate unevolved and evolved systems so that they could 
identify samples of binaries whose stars have not yet under­
gone mass exchange. Their study of circularization, based on a 
sample of "'200 eclipsing and double-lined binaries, leads 
them to conclude that Zahn's theory "appears to be substan­
tially compatible" with the observed distributions of orbital 
eccentricity. Although binaries with large separations show a 
wide range of orbital eccentricity, including essentially circular 
orbits, there are virtually no eccentric orbits in systems with 
fractional radius (the ratio of primary stellar radius to orbital 
radius), r > 0.25. Giuricin et al. (1984b) "emphasize that this 
finding appears to be substantially consistent with Zahn's 
theoretical predictions." They go on to conclude that near cir­
cular orbits with r ~ 0.25 reflect the initial distribution of 
eccentricities, which they suggest has a maximum at e = 0. 
This picture is in accord with tidal evolution, which implies an 
absence of eccentric orbits in very close binaries but does not 
require that widely separated binaries necessarily have 
nonzero eccentricities. However, the authors conclude that 
Zahn's theory does not predict the high degree of synchro­
nization, or pseudosynchronization, they find. In their words, 
it "appears to be clearly incompatible" with data from a 
sample of 140 eclipsing binaries and "inadequate to account" 
for the strong tendency for synchronization seen in a sample of 
80 double-lined spectroscopic binaries. 

The preceding paragraph summarizes the views of Giuricin 
et al. regarding the success of Zahn's tidal theory as applied to 
early-type binaries. However, it is clear that the existence of 
circular orbits for numerous binaries having r ::;; 0.20 or 
r::;; 0.15 (40% or 31 %) still requires an explanation. Giuricin et 
al. (1984b) advance the hypothesis that this reflects the initial 
distribution of orbital eccentricity, presumably at the time the 
stars first reach the main sequence. Of course, their hypothesis 
is just speculation. It is possible that a more powerful mecha­
nism than that advocated by Zahn drives tidal evolution in a 
fraction of early-type binaries. 

The mixed review that Zahn's theory receives when con­
fronted by the observations is puzzling. Its success when 
applied to orbital circularization suggests that it is probably 
basically correct. Since observations of stellar spin rates all 
refer to photospheric layers, perhaps these spin down more 
rapidly than the stellar interiors. In the following subsection 
we argue that this is indeed likely. 

b) Reinterpretation ofZahn's Theory 

In the previous subsection we raised the possibility that 
while Zahn's theory of tidal evolution may be basically correct, 
it could be missing some critical ingredient. To investigate this 
possibility, we examine in more detail the manner in which 
tidal spin-down proceeds in early-type stars. 

We have stated that the net tidal torque is concentrated near 
the boundary of the convective core, and that the gravity 
waves it excites propagate out through the radiative envelope 
toward the atmosphere. How then does the star despin? The 
answer to this question follows immediately from a theorem on 
tides in rotating fluids which we prove in Paper I. The theorem 
states that, in the absence of dissipation and away from corota-

tion, tidal forcing does not produce any secular variation of the 
angular momenta of fluid elements. Both viscous and radiative 
damping of tidally excited gravity waves are expected to be 
negligible in the stellar interior. Moreover, corotation reson­
ances are not involved in the initial stages of the despinning of 
those stars which begin life rotating at above the synchronous 
rate. 1 Under these conditions our theorem implies that the 
gravity waves transport all of the negative angular momentum 
which the tidal torque deposits near the boundary of the con­
vective core out to the stellar atmosphere. Only there, where 
the waves suffer radiative damping and are partially reflected, 
does the primary despinning occur. 

lll. HEURISTIC DERIVATION OF TIDAL PERTURBATIONS 

We consider the tidal forcing of an early-type star of mass 
M 1 by a companion of mass M 2 • To keep the exposition as 
simple as possible, we work to order of magnitude only and 
assume that M 1 ~ M 2 . We denote by Q the spin angular veloc­
ity of the primary star. The relative orbit is taken to be circular 
and equatorial. The orbital radius, a, and angular velocity, w, 
are related by 

(J) = (G::1ri3 (1) 

The fluid particles are tidally forced at the Doppler-shifted 
frequency 

u = 2(Q - w) . (2) 

We neglect the effect of the Coriolis acceleration on the tidal 
dynamics. Strictly speaking, this limits the applicability of our 
considerations to nonrotating stars for which u = - 2w. 
However, we maintain the distinction between u and - 2w, 
and even pretend that u > 0. 2 

We are primarily concerned with low frequency tides, those 
for which 

(3) 

where p(R) is the mean density of the primary star. 3 In this 
limit the tidal forcing frequency is much lower than the funda­
mental oscillation frequency of the star, and the tidal pertur­
bation decomposes naturally into an equilibrium and a 
dynamical component. The equilibrium tide, which is the 
entire tide in the limit u = 0, is a prolate spheroidal distortion 
whose symmetry axis points toward the companion. The 
dynamical tide is a train of gravity waves which is excited at 
the boundary of the convective core and propagates outward. 
For the moment we make the simplifying assumption that the 
gravity waves are totally absorbed near the stellar surface, so 
there is no reflected, inward propagating wave train. 

a) Tidal Disturbance 

We assume an adiabatic tidal disturbance, which is likely to 
be valid everywhere except very near the stellar surface. The 

1 The role of corotation resonances in the later stages of tidal despinning is 
discussed in§ IV. 

2 The dynamical effects of the Coriolis acceleration on the tidal forcing of 
early-type stars are described by Nicholson (1978). 

3 Henceforth, we denote mean density by p without specifying a radius r. 
Local densities are denoted by p. 
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tidal perturbation of a nonrotating star is governed by the 
linearized, Eulerian, perturbation equations 

{Jp + v . (p~ = 0 ' (4) 

02~ 
p ot2 = -VlJp- lJpg- pVU' (5) 

and 

(6) 

which express the conservation of mass, momentum, and 
entropy. We denote by {J Eulerian perturbations of quantities 
with non vanishing equilibrium values, and by ~ the vector field 
giving the displacements of fluid elements from their unper­
turbed positions. The perturbed gravitational field of the 
primary star has been neglected in equation (5). Its principal 
effect could be included by multiplying the tidal potential, U, 
by_ a. function of r which is slightly larger than unity. However, 
this IS too fine a point to worry about here. Last, we assume the 
dependence P~{cos 0) exp (i2t/> - iut) for all perturbation vari­
ables. 

i) Equilibrium Tide 

The equilibrium tidal perturbation is obtained by setting 
u = 0 and solving in succession the angular and then the radial 
c~mponent of the momentum equation {5), the entropy equa­
tion (6), and finally, the continuity equation (4). For the leading 
quadrupole-type term in the tidal potential, we find: 

and 

lJp•q = -pU' 

lJp•q = u op 
g or' 

~·q=- u 
r g ' 

(7) 

(8) 

(9) 

(10) 

The subs~ript .l denotes the projection of a vector, or vector 
operator, m the plane orthogonal to r. 

ii) Dynamical Tide 

The dynamical tide in the radiative envelope is a train of 
grav:ity waves. The properties of gravity waves are deduced by 
solv1_ng the perturbation equations with U = 0. A great simpli­
fication results from making the approximation rk ~ 1 where 
k, is the radial wavevector of the gravity waves. ' ' 

Eliminating~. from equations (4) and {5), and making use of 
equation (3), we obtain 

[Jpd ~ -i ~ [Jpd; 
g 

(11) 

that is, the radial force balance is essentially hydrostatic. Sub­
stituting this relation into the equation of state yields 

J;d,...., .krs.d 
'or """ -I pN2 up ' (12) 

where 

(13) 

is the square of the Brunt-Vaisala frequency. The angular com­
ponent of equation (5) implies 

d 1 d 
~1. = -2- v 1. {Jp • 

up 
(14) 

The dispersion relation follows from inserting equations 
(11)-(14) into the continuity equation {4) and using Vi [Jpd = 
-6lJpd/r2. It reads 

(15) 

T~e displace~ent associated with the gravity wave is pre­
dommantly honzontal. From equations (12), (14), and (15), we 
find 0(~~/~i)""" ufN ~ 1. 

The radial component of the group velocity of the gravity 
waves, 

au u 
vg = ok = - k , (16) 

r r 

is of equal magnitude but opposite sign to the radial com­
ponent of the phase velocity. Note that the group velocity 
vanishes and the radial component of the wave vector diverges 
at a corotation resonance, i.e., as u -+ 0. Thus the waves can 
never reach the corotation resonance, but are damped by diffu­
sive effects. 

In massive main-sequence stars N 2 rises approximately lin­
early from 0 at the boundary of the convective core, r = r , 
until it approaches -g/H for r;:;::; 1.5rc. Here, H is the loc~l 
pressure scale height.4 This implies that the wavelength drops 
from 

A. """ - r (u2)1/3 
1 GjJ 

(17) 

just outside the core to 

(u2)1/2 
A.{r) """ Gp r (18) 

for r;:;::; 1.5rc. A simple calculation shows that the time it takes 
to cross a wavelength while moving at the group speed is of 
order -1/u, independent of position in the radiative envelope. 

Next, we turn our attention to the manner in which the 
amplitudes of the perturbations associated with the gravity 
waves vary in the radiative envelope. We use a tilde- to dis­
tinguish the amplitude of a perturbation variable, which is a 
function of r only, from the complete perturbation variable, 
which is a function of r, 0, q,, and t. 

Gravity waves carry a conserved luminosity of wave action.5 

Both the energy and the angular momentum density of a wave 
are proportional to its action density.6 

The energy luminosity, LE, may be expressed as due to the 
radial transport of kinetic energy density at the group speed,7 

(19) 

or alternately as due to the energy flux associated with p - v 
work. 

(20) 

4 We replace H by r except for near-surface layers. 
5 Luminosity is flux multiplied by r 2 and integrated over solid angle. 
6 The Jacobi relation implies that the ratio of the energy density to the 

angular momentum density is ro, the pattern speed of the tidal potential. 
7 Recall that ~.I. ;~:> ~ •• 
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Using equations (11)--(14) it is easy to verify that the two 
expressions for LE are equivalent. 

Introducing the dispersion relation given by equation (15) 
into the linearized perturbation equations (4)--(6), and elimi­
nating all the dependent variables in favor of ~.L• we obtain the 
WKBJ amplitude relation 

r2(!d)2 
P k .L = constant . 

r 

(21) 

Equation (21) expresses the conservation of the luminosity of 
wave action. A comparison of equations (19) and (21) reveals 
that the former is just - u3 times the latter. We use equation 
(21) to obtain the radial variation of the gravity wave ampli­
tude. 

In Figure 1, a sample numerical solution for the dynamical 
tide in a nonrotating, 5 M 0 main-sequence star is shown, after 
Nicholson (1978), together with the analytic, constant­
luminosity, WKBJ amplitude given by equation (21). Note that 
the full WKBJ amplitude is reached within about one wave­
length from the core-envelope boundary. 

b) Tidal Torque 

To evaluate the angular momentum luminosity, LH = LJw, 
sarrieg by the train of tidally forced gravity waves, we set 
~i "' ~lq at a distance "'A.1 outside the core boundary. 8 This 
yields 

- s 2 wutt/3 (M 2)2 
LH"' - pr w (Gp)7i3 M 1 

In writing equation (22) we have used Kepler's law to write 

- M2 2 2 u--w r 
Mt 

(22) 

(23) 

and grouped the dimensional factors in the first term. The 
negative sign in equation (22) implies that the gravity waves 
transport negative angular momentum density.9 Zahn (1975, 
1977) equates -LH to the tidal torque, TT, acting on the 
primary star. Our expression is a good approximation to his. 

The tidal synchronization time, assuming that the star main­
tains a state of uniform rotation as it despins, is then of order 

(24) 

where I = fM 1 R 2 is the moment of inertia of the primary star. 
It reduces to the more transparent expression 

Q(Gp)113 (M 1) 2 

fsyn "' OJ3 111113 M 2 f · (25) 

Of course, our point, elaborated upon in § Hie, is that the 
surface layers are despun first, and therefore that the observed 
rate of synchronization is more rapid than implied by this 
equation. In this context, we note that the tidal torque depends 
upon the tidal frequency, u, evaluated at the core-envelope 
boundary, and thus vanishes only when the interior regions of 
the star have been despun. 

8 A rigorous justification of this procedure requires solving the inhomoge­
neous differential equation that describes the forcing of gravity waves by the 
tidal potential. This was first accomplished by Zahn (1975). 

9 Of course, this statement is only true if u > 0. 
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FIG. !.-Numerical solution of the linearized equations of motion for the 
dynamical tide in a nonrotating 5 M 0 main-sequence star. The core-envelope 
boundary is denoted by r,. The stellar radius is 1.88 x 1011 em; the tidal 
frequency u = 2 x 10- 5 s- 1. Only the homogeneous solution is shown; that is, 
U = 0. The radial displacement and pressure perturbations are denoted by e, 
and (;p. The dashed curves indicate the WKBJ amplitudes obtained from 
equation (21) and are fitted to the numerical solution at large r (after Fig. 7 of 
Nicholson 1978). 

c) Subsurface Reflection of Gravity Waves 

Close to the photosphere g approaches its surface value and 
His just a few times larger than the depth, z. Gravity waves are 
evanescent for HI k,.l ;S 1. Thus, outward propagating gravity 
waves are reflected where 

(26) ---R Gp 

Since the depth of the reflecting layer is proportional to u2 , 

radiative damping of the dynamic tide increases in importance 
with decreasing frequency. Note also that gravity waves of 
sufficiently low frequency, u 2/Gp ~ H(R)/R, do not have an 
outer reflecting layer and propagate into the optically thin 
layers above the stellar photosphere where they become non­
linear and damp. 

d) Comments on Savonije and Papaloizou (1984) 

Savonije and Papaloizou (1984) state that the oscillatory 
tidal torque density gives rise to a complicated state of differen­
tial rotation in the radiative envelope. This contention is in 
conflict with the theorem we proved in Paper I. Here we expose 
its flaw. 

The total tidal torque may be written as 

TT = - iR drr2 f d!l <5p(x) a~~x) . (27) 
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We define the radial tidal torque density to be 

ffT(r) = - r2 f dQ bp(x) au T(X) . 
8¢ 

(28) 

The Eulerian density perturbation bp = bpeq + (;pd. Since bpeq 
is Orthogonal tO OU joc/J Upon integration OVer c/J, ffT(r) ariseS 
entirely from bpd. It exhibits an almost harmonic oscillation 
with phase J' dr'k,(r') superposed on a slowly varying envelope. 

Savonije and Papaloizou's tidal torque density is compatible 
with ours. However, they err in assuming that this is the only 
torque density which acts in the star. In fact, the fluid in the 
primary star is subject to internal stresses associated with its 
velocity and pressure fields. 

The divergence of the ¢-component of the Reynold's stress 
contributes a torque density 

g;_e = -r :r f dQ sin 8(r2pv, vq,) . (29) 

The dominant contribution to g;_e is obtained by inserting veq 
and v~ into equation (29), and applying the partial derivati;e 
with respect to r to the latter. Using equations (9), (11), and 
(12), and with a small amount of massaging, this term may be 
case in the form 

ff ~ r2 f dQ bp(X) au T(X) 
Re oc/J , (30) 

which is just the negative of ffT. Thus, to leading order the 
torque density associated with the Reynold's stress cancels that 
due to the external potential. 

The torque density due to the perturbed pressure vanishes 
because 

ff = r2 fd£"\ obp = 0 
p •• 8¢ . (31) 

e) Spin Synchronization 
We now have a clearer picture of the principal features of the 

tidal perturbation, at least in regions of the stellar envelope 
which are dissipation free. The tidal potential raises a large­
scale equilibrium tide, and also excites a train of gravity waves 
at the boundary of the convective core. The tidal potential 
acting on the density perturbation associated with the gravity 
waves produces a tidal torque density, ffT, that is a rapidly 
oscillating function of r. This is cancelled by another torque 
density, g;_e, due to the divergence of the ¢-component of the 
Reynold's stress, pv, vq,; thus, as demanded by the theorem of 
Paper I, there is no secular variation of the angular momentum 
density in the fluid. The dominant contribution to g;_ comes 
from the mixed term pv;qv~. Another term, pv~v~, is responsible 
for the angular momentum luminosity, 4f, carried by the 
gravity waves. This quantity rises from zero to its full value, 
- TT, within a distance of order A. 1 from rc. The angular 
momentum transferred to the star is ultimately deposited in 
the fluid where the gravity waves damp. 

Of course, the surface layers account for but a small fraction 
of the star's moment of inertia so they are rapidly des pun. The 
precise rate depends upon the fractional absorption of the inci­
dent gravity waves and the efficiency at which angular momen­
tum is transported outward by magnetic stresses and 
instabilities excited by differential rotation. At first sight it 
might appear that subsynchronous, or even retrograde, rota­
tion of the surface might result. However, the group velocity of 

gravity waves vanishes at corotation so the waves cannot reach 
the surface after it has despun to synchronous rotation. As the 
waves approach the synchronously rotating layers from below 
their group velocity slows, their wavelengths diminish and 
their amplitudes increase. The net result is that the waves are 
absorbed and deposit all of their negative angular momentum 
below the synchronously rotating layers. The situation is 
simpler than before the surface reaches synchronous rotation 
because the waves are completely absorbed and there is no 
reflected component (see discussion following eq. [16]). 

All this leads to a rather bizarre conclusion. The tidal torque 
is exerted deep inside the star at the boundary between the 
convective core and radiative envelope. However, the star 
spins down toward synchronous rotation from the outside in. 

IV. DISCUSSION 

A complete picture of the action of tides in early-type stars 
must await further advances in our understanding of the evolu­
tion of differential rotation in stellar interiors. Differential rota­
tion may be limited by several processes which are hard to 
identify let alone to quantify. Dynamical instabilities 
undoubtedly occur if the differential rotation is sufficiently 
large. However, the static stability of the radiative layers sup­
presses such instabilities unless the inertial forces associated 
with the differential rotation are comparable to the gravita­
tional acceleration. Weaker instabilities, which rely on radi­
ative diffusion to mitigate static stability, arise for weaker 
differential rotation. Unfortunately, their nonlinear behavior is 
not well understood, so it is difficult to predict how efficient 
they are in transporting angular momentum out from the 
stellar interior. Finally, the Maxwell stress associated with an 
internal magnetic field, if present, might dominate the trans­
port of angular momentum in differentially rotating regions. 

It is plausible to expect that during tidal despinning a star 
will pass through a stage where its surface layers rotate more 
slowly than its interior. 10 The demonstration by Giuricin, 
Mardirossian, and Messetti (1984a, b, c) that the tendency for 
synchronization, or pseudosynchronization, is really very 
much stronger than a straightforward application of Zahn's 
theory would predict supports this view. In some cases, signifi­
cant despinning of the photosphere is found for stars whose 
lifetimes are more than two orders of magnitude shorter than 
the time scale over which the tidal torque would have been 
expected to enforce synchronous rotation throughout their 
interiors. 

Future progress in understanding tidal despinning of early­
type stars is likely to be slow. However, we can think of two 
possible qualitative advances which might occur. 

The first involves numerical simulation. There are many fea­
tures of the hydrodynamics of tidal despinning of early-type 
stars which make it an attractive problem to study numeri­
cally. At first, we could learn a lot from two-dimensional 
studies. However, three-dimensional simulations will ultima­
tely be required to follow the turbulence which may be excited 
by instability in regions oflarge differential rotation. 

The second hope for a qualitative improvement in under­
standing comes from stellar seismology, a field which is now in 
its infancy. At present, we have no way of predicting the levels 
to which the normal modes of oscillation of early-type stars are 
excited. Should they prove to be excited to observable levels, 
determination of their frequency splittings by stellar rotation 

10 This explanation was anticipated by Zahn (1984). 
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might be possible. These splittings would reveal the internal 
rotation and provide a direct test of the hypothesis advanced in 
this paper. 
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