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JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 99, NO. C2, PAGES 3321-3336, FEBRUARY 15, 1994 

Tidal propagation in strongly convergent channels 

Carl T. Friedrichs 1 and David G. Aubrey 
Department of Geology and Geophysics, Woods Hole Oceanographic Institution, 
Woods Hole, Massachusetts 

Abstract. Simple first- and second-order analytic solutions, which diverge markedly 
from classical views of cooscillating tides, are derived for tidal propagation in strongly 
convergent channels. Theoretical predictions compare well with observations from 
typical examples of shallow, "funnel-shaped" tidal estuaries. A scaling of the governing 
equations appropriate to these channels indicates that at first order, gradients in cross- 
sectional area dominate velocity gradients in the continuity equation and the friction term 
dominates acceleration in the momentum equation. Finite amplitude effects, velocity 
gradients due to wave propagation, and local acceleration enter the equations at second 
order. Applying this scaling, the first-order governing equation becomes a first-order 
wave equation, which is inconsistent with the presence of a reflected wave. The solution 
is of constant amplitude and has a phase speed near the frictionless wave speed, like a 
classical progressive wave, yet velocity leads elevation by 90 ø, like a classical standing 
wave. The second-order solution at the dominant frequency is also a unidirectional wave; 
however, its amplitude is exponentially modulated. If inertia is finite and convergence is 
strong, amplitude increases along channel, whereas if inertia is weak and convergence is 
limited, amplitude decays. Compact solutions for second-order tidal harmonics quantify 
the partially canceling effects of (1) time variations in channel depth, which slow the 
propagation of low water, and (2) time variations in channel width, which slow the 
propagation of high water. Finally, it is suggested that phase speed, along-channel 
amplitude growth, and tidal harmonics in strongly convergent channels are all linked by 
morphodynamic feedback. 

1. Introduction 1.1. Classical Tidal Cooscillation 

In this paper a new asymptotic solution is presented for 

the barotropic tidal wave in strongly convergent channels. 

The type of wave described here, which paradoxically 

exhibits properties of both standing and progressive waves 
simultaneously, occurs in real tidal estuaries such as the 

Thames and the Tamar in the United Kingdom and the 

Delaware in the United States (Figure 1). Like a classical 

progressive wave, this wave does not appreciabl'y grow or 
decay along channel, and its phase speed is nearly equal to 

the frictionless wave speed. Like a classical standing wave, 

it produces currents which are slack near high and low 

water. Unlike either wave, however, the dynamic balance 

which produces this asymptotic solution is strongly 

frictional. This new solution and its governing equation are 
markedly different from the classical view of damped tidal 

cooscillation, yet some of its properties may be confused 
with classical results. It is useful, therefore, to review 

briefly the classical approach to tidal propagation in 
channels. 

1Now at Virginia Institute of Marine Science, School of 
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In a frictionless, prismatic channel of rectangular cross 
section, the one-dimensional linearized governing equation 
for elevation (0 reduces to the familiar second-order wave 

equation [e.g., Ippen, 1966] 

•}2• C02 (1) 
•}t 2 •}X 2 ' 

where t is time, x is distance, and co is the frictionless 

gravity wave speed. With intertidal storage in tidal flats or 

marsh (Figure 2), 

co = {•_g•-}l/2 = (gA/b)l/2, (2) 
[e.g., Robinson et al., 1983], where w is channel width, b 

is total estuary width including storage regions, A is channel 
cross-sectional area, h = A/w, and overbars indicate still 

water values. If the cross section is rectangular, then w = b, 

and (2) reduces to the more familiar relation co = (gh) 1/2. 
For a sinusoidally forced channel closed at one end, (1) 

produces a standing wave solution characterized by incident 
and reflected waves of equal amplitude which individually 

propagate at co. The incident and reflected waves interact, 
causing tidal amplitude to vary through nodes and antinodes 

and producing a relative phase between cross-sectionally 

averaged velocity (u) and C of 90'. The phase speed, c, 
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Tamar, U.K. 

2km 

Delaware, U.S.A. 

Thames, U.K. 
20 km 

Figure 1. Schematic maps showing locations of tidal elevation 
stations along the Tamar [George, 1975], Delaware [Parker, 
1984], and Thames [Prandle, 1980]. 

which is due to a superposition of the incident and reflected 
waves, is infinite. If the channel has a length of exactly one- 

quarter wave, then the incident and reflected waves cancel 
entirely at the mouth, and resonance occurs within the 
channel. In a sinusoidally forced channel of infinite length, 

(1) produces a single constant amplitude progressive wave 
with c = co, and the relative phase between • and u is 0 ø. 

In his review of tidal dynamics in estuaries, Ippen [1966] 

provides solutions to (1) for several channel geometries and 
forcings and also discusses the more "realistic" case of a 

damped cooscillating tide in a prismatic channel which 
includes the effects of friction. Inclusion of linear friction 

transforms (1) into a damped second-order wave equation: 

•)2• + r = (3) •t2 '•- C02 •X 2 ' 

where r is a constant friction factor. In a channel closed at 

one end, the solution to (3) consists of exponentially 
modified incident and reflected waves which are of equal 

amplitude at the landward reflection point [e.g., Officer, 
1976]. The speeds of the incident and reflected waves are 

equal and, for weak friction, are only slightly less than co. 
However, the presence of friction has the effect of 
weakening resonance and damping the amplitude variation at 
nodes and antinodes. For an infinite channel, amplitude 

decays monotonically along channel, and the relative phase 
of u to •' is between 0 ø and 45 ø depending on the size of r. 

For large r, the second term in (3) dominates the first, and 

(3) ultimately reduces to a time-varying diffusion equation 
[LeBlond, 1978; Friedrichs and Madsen, 1992]. 

In strongly convergent channels, the tidal phase speed (c) 
has been observed to be close to co [Hunt, 1964; Harleman, 

1966]. Thus it is tempting to associate this observation with 

the dynamics of (1) or (3). However, along strongly 
convergent tidal channels the relative phase between • and u 
to has been observed to be nearly constant at ~90 ø [Hunt, 

1964; Wright et al., 1973]; i.e., slack currents nearly 
coincide with high and low water. Equations (1) and (3) can 

only produce a •'- u phase of 90 ø throughout a channel if the 
incident wave is accompanied by a nearly equal amplitude 
reflected wave. But if that is the case, c (which includes the 

incident and reflected wave) will be much greater than co. 

One way to produce realistic first-order solutions for tides in 
many real tidal channels is to consider both friction and 
along-channel variation in cross-sectional area. 

1.2. Previous Solutions for Convergent Channels 
with Friction 

Many authors have derived analytic solutions for 
convergent channels with friction [Perroud, 1959; Le Floch, 
1961; Dronkers, 1964; Hunt, 1964; Prandle and Rahman, 

1980; Parker, 1984; Godin, 1988; Jay, 1991]. With two 

notable exceptions [Hunt, 1964; Jay, 1991], previous 
studies have stressed similarities between classical damped 

cooscillation and tidal propagation in weakly convergent 

channels. In interpreting their solutions as perturbations on 
classical results, these authors emphasized features such as 

nodes and antinodes and the importance of incident and 

reflected waves. With weak convergence, they found 

propagation of tidal elevation to be qualitatively similar to 
that described by (3), except that weak convergence tends to 
counteract the effects of weak friction [Le Floch, 1961; 

Parker, 1984]. Also, in nonprismatic systems resonant 
conditions become a function of the shape of the estuary as a 

whole rather than only a function of length and co [Prandle 
and Rahman, 1980]. 

Hunt [1964] was the first to emphasize the fundamentally 

different nature of tidal propagation along strongly 

convergent channels with friction. Hunt solved the 
linearized one-dimensional equations for exponential 

convergence with trigonometric functions [c.f., Le Floch, 
1961; Parker, 1984; Godin, 1988] and for power-law 

convergence using Bessel functions [c.f., Perroud, 1959; 

• ' b(x,t) ' • r"l I'•' 

__ _ 

A (x) - •(x)•(x) 
t•-- w(x) • 

Figure 2. Diagram of an idealized tidal embayment cross 
section: b is total estuary width (including storage in tidal flats or 
marsh), •' is tidal elevation, h is cross-sectionally averaged 

channel depth, w is channel width (which is equal to estuary 
width at low tide), and A is channel cross-sectional area. 

Overbars indicate time averages. 
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Prandle and Rahman, 1980]. Hunt pointed out that unlike 

solutions for prismatic channels, solutions for strongly 
convergent channels can produce a progression in tidal phase 
along the channel while simultaneously maintaining a relative 
phase of u to • near 90'. He deemphasized the importance 
of incident and reflected waves by expressing his solutions 
as single, exponentially modified, forward-propagating 
waveforms. Finally, Hunt showed his analytic solution to 
be consistent with observations from the Thames. 

Like Hunt [1964], Jay [1991] also emphasized the role of 
channel convergence in producing a waveform which is 

fundamentally different from classical damped cooscillation. 
Jay used a modified Green's Law solution for channels 

having exponentially varying width and depth, but did not 
compare analytic results to observations. For strong 
convergence, Jay also found that a single incident wave in a 
channel with strongly convergent geometry may mimic a 
standing wave by having a relative phase of u to • near 90' 
without the presence of a reflected wave. 

However, neither Hunt [1964] nor Jay [1991] focused on 

the first-order balances which produce this characteristic 
behavior. As shown in this paper, doing so allows a simpler 
first-order solution for tidal propagation which retains and 
clarifies the most important properties of tides in strongly 
convergent systems. Jay [1991] specifically examined the 
asymptotic case of strong convergence with weak friction 
(which he termed "supercritical convergence"), but his 
discussion of strong convergence with strong friction was 
more limited. Also, neither Hunt [1964] nor Jay [1991] 
recognized the morphological constraint which causes c to be 

near co in systems which are both strongly frictional and 
strongly convergent, namely, that the solution which 

minimizes along-channel variations in bottom stress also 

produces c = co. 

Part of the difficulty in interpreting results of previous 
investigators with regard to strongly convergent channels 
stems from the large number of first-order terms they have 
all kept in the equations of motion. Previous investigators of 
convergent systems have assumed (1) that local acceleration 

contributes to momentum at first order, and (2) that 
discharge gradients due to velocity variation contribute to 

continuity at first order. These terms are of secondary 
importance in the strongly convergent channels that are of 
interest to this study. Of course, near-resonant, strongly 
convergent tidal systems do exist where acceleration is more 

important than friction. Examples include the Gulf of Maine 
in the United States and the Bristol Channel in the United 

Kingdom, both of which were examined by Prandle and 
Rahman [1980]. However, these systems are hundreds of 
kilometers in length and many tens of meters deep. 

In the following section a scaling of the equations of 
motion is performed which is appropriate to a more common 
type of strongly convergent tidal channel, namely, those 
having a mean depth on the order of 10 meters or less. 

Disadvantageous scalings may have been applied in the past 
to shallow, strongly convergent channels because of a lack 

of comparison to observations from real tidal channels 

during the scaling process. Parker [1984], who applied data 
from the Delaware Estuary during scaling, did indeed note 
that friction dominates acceleration in the momentum balance 

and that discharge gradients due to channel convergence 
dominate those due to velocity gradients in the mass balance. 

However, Parker did not take advantage of these relations in 
his analytic solution. 

This new scaling leads to a simpler first-order governing 
equation which has the form of a first-order wave equation, 
in contrast to the second-order wave equation which 
characterizes classical damped cooscillation. The solution 

includes all the major properties which distinguish tidal 
waves in shallow, strongly convergent channels, yet is more 
amenable to conceptual interpretation. Finite amplitude 
effects, velocity gradients due to wave propagation, and 
local acceleration (all of which enter the equations at second 
order) then lead to systematic, interpretable perturbations on 
the first-order solution. 

2. Scaling of Equations 

The cross-sectionally integrated, one-dimensional 

equations for a tidal channel with linearly sloping intertidal 
flats (Figure 2) may be expressed as [Speer and Aubrey, 
19851 

Continuity 

Momentum 

b • = _3__ {Au} (4) 
3t 3x ' 

3u 3u 3_•_ F (5) 
37 + = -g ' 

where F represents bottom friction, and other variables are 

as defined in section 1 (see the notation list for a summary of 
all symbols). In addition to the usual assumptions of 
channelized flow, (4) and (5) assume u = 0 on the flats 

[Speer and Aubrey, 1985]. 

In the following paragraphs, the continuity equation is 
scaled to determine which terms must be retained at first and 

second order when examining barotropic tidal propagation in 
estuaries such as the Thames, Tamar, and Delaware. 

Results from continuity are then used to scale the momentum 

equation. For reference, the dimensionless quantities which 
are assumed to be small in this study are summarized in the 
appendix. 

2.1. Scaling of Continuity 

For estuaries represented by Figure 2, continuity may be 
expanded as 

-(1+ u - X au • •X'X -- O(œh) •'{• •X'X + •)•'• } ' (6) 

The small parameters en and et, come from finite amplitude 
and intertidal slope effects and are defined as en = a/h and 

= (b - w)/b, where a is tidal amplitude, and w is both the 

width of the channel and the total embayment width at low 
tide. Overbars indicate time averages such that h = h(1 + 
en •/a), b = b(1 + et, •/a), and A = A(1 + en •/a). Observed 
values for en and et, are given in Table 1. The first term on 

the right-hand side of (6) arises from the along-channel 
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Table 1. Observed and Computed Tidal and Geometric Properties of Three Tidal Estuaries 

P aram eter T am ar Tham es Dela ware 

L(km) 21 95 215 

<a> (m) 2.7_+0.05 (a) 2.2+0.1 (b) 0.83+0.03 (c) 

<h-> (m) 2.9+0.2 (d) 8.5+0.7 (e,f) 5.8+0.3 (c) 

es = <a>/<h-> 0.94+0.07 0.26+0.03 0.143+0.009 

eb = 1 - <w/•> 0.29_+0.09 (d) 0.17+0.02 (f) 

L,,t Ocrn) 5.3+0.2 (d) 18.5_+0.8 (e,f) 38+1(c) 

Lb (km) 4.6+_0.4 (d) 25.0_-+0.8 (e) 40+-1(c) 

LA/Ltj 0.033+-0.013 (d) - 0.067_+0.073 (f,g) - 0.023+-0.025 (c,h) 

Lo (km) 400+-30 (a) 440+-80 (b) 365ñ7 (c) 

ea = LA/L• 0.013+-0.001 0.042+-0.007 0.103_+0.004 

•A = kLA = 2r•LA/Lo 0.083+-0.007 0.26+-0.05 0.65+-0.02 

<A/b> (m) 2.0+-0.2 (d) 7.0+-0.6 (e,f) 5.8+-0.3 (c) 

LA/La 0.028+-0.002 (d,a) - 0.012+-0.032 (e,f,b) 0.071_+0.010 (c) 

c/co = (LdT)(gA lb) ' •/2 2.0+-0.2 1.2+-0.2 1.08+-0.04 

ea, = (La/Lo)(c/co) 2 0.054+0.009 0.060_+0.019 0.121_+0.008 

ea, = kLa(c/co) 2 0.34+-0.06 0.38+-0.12 0.76_+0.05 

3 nr(•'/•')2g 
ca = 1.4+-0.2x10 -3 4.6+-1 lxlO -3 1.7+0.2x10 '3 

8 c enLa2 to ß 

9 '= en- eb 0.65+-0.11 0.090_+0.032 0.143+-0.009 

Ix = &o - eA = kLA(C2/Co 2 - 1) 0.26_+0.04 0.11+-0.04 0.11_+0.01 

Ix = (kLa) '• 0.34+-0.03 - 0.05_+0.12 0.10+-0.02 

Sources are as follows: (a) George [ 1975]' (b) Prandle [1980]; (c) Parker [1984]; (d) Uncles et al. 
[ 1985]; (e) Hunt [ 1964]; (f) USDMA charts 37145 and 37146; (g) Chantler [ 1974]; (h) Harleman [ 1966]. 

Here +- indicates standard errors; angle brackets indicate along-channel average. Parameters are 
further defined in the text and in the notation list. 

gradient of cross-sectional area, the second term is due to the 

along-channel gradient in tidal velocity, and the third term 

comes from higher-order finite amplitude effects. 
In order to scale the terms in (6), b, A, and u are assumed 

to vary as e -x/Lb, e -x/LA, and e x/LU, where Lb, LA, and Lu 
are e-folding lengths of along-channel variation, and x = 0 at 

the forced end of the channel. Figure 3 illustrates the fit of 

observed b, A and U to exponential curves (where U is the 

amplitude of u), and Table 1 lists observed values for Lb, LA 

and LA/Lu. Clearly U does not necessarily follow a simple 

exponential curve over the length of an entire estuary. The 

main purpose here is to illustrate that Lb and LA are of 

similar magnitude and that both are much less than Lu on a 

system-wide scale (evaluated outside of the immediate 

vicinity of x = L, where a zero tidal flow boundary condition 

may exist). 

For systems described by exponential variation in •, •-, 
and U, (6) can be reexpressed in terms of scales as follows: 

(l+,b} aCeA = (l+en} + {et•2+eA}, (7) 
(A/b)U 

where eu 2 and eA together indicate the size of A •u/•x relative 
to udA/dx, and the third term on the right-hand side of (6) 

has been neglected relative to the second. The quantity eu 2 = 
ILn/Lt•I arises from along-channel variation in the amplitude 
of tidal velocity and is raised to the second power because 
LA/Ltt is an order of, smaller than *n in estuaries of interest 

to this study (see Table 1). The quantity *A comes from 
along-channel variation in the phase of tidal velocity due to 
wave propagation. 

Depending on the length- and time-scales chosen to 
parameterize tidal phase, *A is defined either as 

or as 

œA = LA/LO (8) 

œA : kLA, (9) 

where Lo is the tidal wavelength, and k = 2rr/Lo is the 

corresponding wavenumber. The tidal phase speed in (7) is 
given by c = LdT = to/k, where T is the tidal period, and to 
is the tidal radian frequency. The effective tidal wavelength 

is estimated from observations of along-channel tidal phase 

(Figure 4); observed values for Lo and œA are presented in 
Table 1. 

In his scaling of continuity for application to the 
Delaware, Parker [1984] chose to scale/}0t/}t and •u/•x by 
aft and U/Lo, which results in the relation for œA given by 
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Figure 3. Estimates of channel cross-sectional area at midtide, 
time-averaged estuary width, and cross-sectionally averaged 
velocity amplitude_ as a function of distance along the (a) 
Delaware (A and b from Parker [1984], U from Harleman 
[1966]), (b) Thames_(A from Hunt [1964] and USDMA charts 
37145 and 37146, b from Hunt [1964], U from Chantler, 
[1974]), and (c) Tamar (A, b, and U from Uncles et al. [1985]), 
along with least squares log-linear regressions. 

(8). Equation (8) gives eA = 0.10 for the Delaware (and eA 
= 0.042 and 0.015 for the Thames and Tamar, respectively), 
which prompted Parker to conclude that gradients in cross- 
sectional area dominate velocity gradients along the 
Delaware. However, if one scales •/•t and •u/•x by o•a 

and kU, then eA increases by a factor of 2•r, and eA = 0.65, 
0.26, and 0.091 for the three estuaries. In any case, ud•/• 
is significantly larger than A •}u/•}x in (6), even if the latter, 
more conservative scaling is chosen. Therefore the only 
term in (6) that can effectively balance ud•/dx at first order 
is b•}•/•}t (except perhaps for the Delaware if the more 
conservative scaling is applied). Thus at first order, only 
these two terms in (6) are retained. 

The scaling in this section has shown that in tidal estuaries 

of interest to this study, along-channel gradients in discharge 
are dominated by along-channel gradients in cross-sectional 

area. The next most important contribution to the discharge 
gradient, at O(eA), is from along-channel variation in the 
phase of tidal velocity. On a system-wide scale the least 
important contribution to the discharge gradient, at O(cu2), is 
from along-channel gradients in the amplitude of tidal 
velocity. The above ordering is contrary to classical damped 
cooscillation in short prismatic channels, which suggests that 
gradients in the amplitude of velocity should be most 
important and that gradients in cross-sectional area should be 
least important. 

2.2. Scaling of Momentum 

For tides and estuaries described in the previous section, 
momentum may be expressed in terms of scales as 

eAcU + U • {ev2 + eA} ga {ea2 + eA} + F (10) LA LA = •-A ' 

where ea 2 = ILA/Lal , and La scales along-channel variations 
in tidal amplitude in a manner analogous to Lv (see Table 1 
for observed values). At first order, (7) indicates that 

U = acen = gaceA. (11) 
(A/b) CO 2 

Dropping œa 2 and œu 2 relative to eA in (10) and using (11) to 
eliminate U then yields 

eA ½2 + b œh eA 2 C 2 = 1 + FLA (12) 
Co 2 w co 2 gacA ' 

where the terms on the left-hand side of (12) scale local and 
advective acceleration, respectively, and the terms on the 
right-hand side of (12) scale pressure gradient and friction. 

The observed phase speed, c, can be calculated from the 

known tidal frequency and slope of the observed tidal phase 
in Figure 4b. Doing so indicates that c/co = O(1) for the 
Delaware, Thames, and Tamar (Table 1). Thus ea, = 
eA(C/Co) 2, which scales the importance of acceleration 
relative to the pressure gradient, is less than to much less 

than one in these three systems. Following the scaling for 
eA suggested by Parker [1984], ea,-- 0.12, 0.060, and 0.049 
for the Delaware, Thames, and Tamar (Table 1). If one uses 
the more conservative scaling for cA in (9), then ca, = 0.76, 
0.38, and 0.31. The only term in (12) that can balance the 

pressure gradient at lowest order is the friction term (except 
perhaps for the Delaware if one uses the more conservative 

scaling for eA). 

Thus an important result has been derived' If a tidal 

channel is strongly convergent (i.e., en << 1) and the 
observed phase speed is the same order as the frictionless 
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Figure 4. Observed semidiurnal surface tide as a function of 
distance along the Tamar [George, 1975], Thames [Prandle, 
1980], and Delaware [Parker, 1984]: (a) amplitude and (b) 
phase, along with least squares linear regressions. Observations 
from the Thames and Delaware are of the M2 component. 
Synoptic observations from the Tamar are limited to a single 
tidal cycle during spring tide; thus displayed data are derived 
from harmonic analyses of individual tidal cycles. 

wave speed (i.e., c/co = 1), then the lowest-order 
momentum balance must be between pressure gradient and 
friction (i.e., e•o = eA(C/Co) 2 << 1). This conclusion has 
been reached without any a priori knowledge of the depth of 
the channel, the amplitude of tidal velocity, or the magnitude 

of the drag coefficient. Furthermore, if en/en -< O(1) also 
holds, then the local acceleration term can be no more 

important than nonlinearities generated by finite amplitude 
effects in the continuity equation. Finally, (12) indicates that 
the advective acceleration term is 3 orders of e smaller than 

friction. 

The dominant role of friction suggested above is in 

contrast with classic solutions for cooscillating tides in 

prismatic channels, which often neglect friction entirely. 
Other analytic approximations which consider convergent 

channel geometry in the presence of friction have always 
treated friction and local acceleration at the same order. The 

resulting solutions are often expressed in terms of Bessel 

equations or repeated variable transformations, which can 

hamper conceptual interpretation. The scaling presented in 
this section suggests that by neglecting acceleration at first 

order, useful insights may be gained toward our 

understanding of tidal flow in strongly convergent tidal 

channels. This approach simplifies and clarifies the problem 
without sacrificing the fundamental physics. 

3. First-Order Solution 

3.1. Derivation of First-Order Solution 

Retaining only first-order terms, the equations of motion 
in shallow, strongly convergent tidal channels become 

Continuity • • = •'u (13) 
•t LA ' 

Momentum 0 = - g •xx - F. (14) 

In one-dimensional numerical models of channelized tidal 

flow, the friction term is commonly formulated as [e.g., 
Speer and Aubrey, 1985] 

F = ca lul u = ca lul u (15) 
hR h ' 

where ca is a time-independent drag coefficient, and the 

hydraulic radius of the channel, hR, is approximately equal 
to h for channels having w >> h. If velocity is sinusoidal at 

first order, then (15) can be expanded to second order using 
Fourier and binomial expansions as follows [e.g., Parker, 
1984]: 

8 CdS (I-Eh •){U+ •COS (3tot- 3rPU)} (16) F=3• K ' 

where U and •0u are the amplitude and phase angle of u. At 
first order, (16) becomes 

F = 8 ca__•_U u = ru, (17) 
3• • 

where r is a constant friction factor. The assumption that r is 

constant in space is only approximately true because of 

along-channel variations in ca, U, and h. 

Combining (13) and (14) then gives 

• + cø2 • = 0, (18) 
i)t r Ln 

which is a first-order wave equation for tidal elevation, 

markedly different from the second-order wave equation 
which results from neglecting friction in a prismatic channel. 

Assuming sinusoidal forcing of amplitude a at x = 0, the 

solution to (18) is simply 

cos (oot- kx) , (19) 

and the wave speed is given by 

C = to _ C02 - (20) 
k rLA' 
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It is interesting to note that the wave number in (19) and (20) 

is equivalent to the real part of the complex wave number 
derived by Jay [1991] for his "supercritical convergence" 

regime. 

The solution for velocity is found from (13) to be 

u = - U sin (o•t- kx}, (21) 

where U is given by 

U -- LA o•a. (22) 
(A/b) 

Equation (22) is consistent with (11) if CA = kLA, suggesting 

(9) is probably the more appropriate scaling for the 
governing equations. 

3.2. Discussion of First-Order Solution 

The first-order solution for shallow, strongly convergent 

channels diverges from the conventional view of co- 

oscillating estuary tides. As in a classical standing wave, u 

and • are out of phase by 90', yet (19) and (21) individually 

appear progressive. The first-order solution given by (19) is 

independent of the length of the tidal estuary, in sharp 
contrast to the length sensitive quarter-wave resonance of 
frictionless cooscillation. Furthermore, the solution given 

by (19) is of constant amplitude, whereas the amplitude of a 

classical cooscillating tide in a finite channel undulates along 
channel due to the interaction of incident and reflected 

waves. The very nature of (18) is inconsistent with a 

reflected wave because a first-order wave equation allows 

propagation only in the incident direction. 

Equation (20) indicates that as long as r is scaled by the 

dominant tidal component, the phase speed in shallow, 

strongly convergent channels is independent of frequency; 

i.e., the smaller-amplitude wave components are 

nondispersive at first order. Equations (17), (20), and (22) 
allow the phase speed to be predicted with the drag 

coefficient as the only independent parameter: 

m__ = 3zr(•'/•-)2g . (23) 
k 8caœnLA2tO 

Equation (23) indicates that for the dominant frequency, the 

wave is dispersive. Thus in channels dominated by diurnal 
tides, the phase speed will be larger than in an identical 

channel dominated by semidiurnal tides. Equation (23) also 
allows the observed phase speed to be used to solve for ca 

directly. The resulting "observed" values for ca are 

displayed in Table 1. These ca values compare well with 
those previously employed in one-dimensional numerical 

models of strongly convergent tidal estuaries. For example, 
Uncles and Stephens [1989] used ca = 1.6 x 10 -3 in 
modeling the Tamar; Prandle [1974] used ca values between 

2.0 x 10 -3 and 8.7 x 10 -3 in modeling the Thames; and 
Parker [1984] used ca values ranging between 2.0x 10 -3 and 
3.7 x 10 -3 in modeling the Delaware. 

Equation (18) allows only one boundary condition, 

specified at the seaward end of the channel. Thus (18)-(21) 

will not be valid in the immediate vicinity of x = L if a zero 

tidal flow condition exists. However the scaling inherent in 

(13) indicates that an upstream no-flow boundary cannot be 

important to the overall solution. Since the dominant length 
scale of tidal discharge is Ln, a no-flow boundary condition 
at x = L cannot be felt much seaward of x/L = 1 - Ln/L, and 

in tidal estuaries of interest to this study, Ln/L is 

significantly less than 1 (see Table 1). This result has 

important ramifications concerning the potential effect of 
tidal barriers. In strongly convergent channels, the 
installation of a tidal barrier at x = xo should have minimal 

effect on the tidal signal seaward of x = xo- La. This 

finding is consistent with Prandle and Rahman [1980], who 

examined the effect of tidal barriers using Bessel function 

solutions. Upon introduction of barriers into strongly 

convergent channels, Prandle and Rahman found the 
amplitude and phase of elevation and velocity to be altered 

by only a few percent outside the immediate vicinity of the 
barrier. 

The impact of freshwater discharge on the barotropic tide 

is also scaled by LA. Assuming the freshwater velocity at x 

= L is less than or equal to U, then the ratio of freshwater 
velocity to total velocity will be negligible for x/L < ~ 1 - 
Ln/L. Wherever possible, observations used in this study 

are from "low" runoff conditions, further reducing the 

impact of freshwater discharge on tidal propagation. During 

high runoff or along channels that are not strongly 

convergent, river flow will have a more significant effect on 
tidal propagation throughout the channel [e.g., Godin, 1988; 
Parker, 1991 ]. 

4. Second-order Solution 

4.1. Derivation of Second-Order Solution 

At second order (see the appendix), (6) and (7) indicate 
that the following terms are kept in the continuity equation: 

•t Ox 
(24) 

The first-order solution for u may be used in A•u/•x because 
it is a second-order term. Then to O(e), (24) can be 

reexpressed using binomial expansions as 

(25) 

where (9) has been used to define eA. In (25), complex 

notation has been applied in evaluating 3u/3x, and the 
exponential expressions for b and A with LA = Lt, have also 
been used. 

From (10) and (16), the momentum equation at second 
order is 

•u_. •_•_ 
i)t - g i)x 

8 cctU (1- eh•){u+•cos (3•ot-3•u)} . (26) 3• •- 

The cosine term on the right-hand side of (26), which arises 
from a Fourier expansion of ulul in (15), is associated with 

the generation of the third tidal harmonic [e.g., Godin, 1988; 
Parker, 1991]. Yet one-dimensional numerical solutions for 
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tides in shallow channels which employ (15) generally do a 

poor job of reproducing along-channel variations in M6 
[e.g., Prandle, 1980; Parker, 1984; Friedrichs and Madsen, 
1992]. There is little doubt that the friction term is the major 
source of M6 production within semidiurnal tidal channels. 
However, (15) and (26) are derived under the assumption 

that the drag coefficient is time-invariant. 
Field observations suggest that in energetic tidal flows, ca 

can be a complex function of tidal height, tidal velocity, and 
flow direction. By applying observations to the terms in the 
one-dimensional momentum equation and solving for the 

drag coefficient, Lewis and Lewis [1987] and Weisman et 
al. [1990] found ca to vary by 3-4 times over the tidal cycle, 
whereas Wallis and Knight [1984] observed an order of 

magnitude variation in ca. Thus the true M6 produced by 
friction may not closely resemble that predicted by (15) 
unless ca is more properly represented as time-varying. 
Because of the limited ability of (15) (with constant ca) to 

accurately reproduce M6 in shallow, energetic tidal channels, 
the third harmonic will not be considered further in this 

study. 
Tidal modulation of ca could also affect even harmonics. 

If modulation of ca were out of phase with modulation of hR, 

net production of even harmonics by the friction term could 
be reduced. This may be partly why a one-dimensional 
numerical model of the Thames which used (15) [Prandle, 

1980] predicted M4 amplitudes significantly larger than the 
observed values. Yet in a similar one-dimensional model of 

the Delaware, Parker [1984] was able to reproduce along- 

channel variations in M4 amplitude quite well. When Parker 
[1984] examined the various sources of M4 in the model, he 
found that the M4 from nonlinear continuity was 3.7 times 

larger than the M4 from friction. He stated that the various 
contributions to M4 had different phases and that the total M4 

amplitude was less than the sum of the individual 
contributions. Thus his model might have reproduced M4 

just as well without including tidal modulation of h in the 
friction term. In this paper we will replace eh in (26) with 
•Seh, where 0 < •5 < 1, in order to allow leeway in assessing 
the relative importance of time-varying depth on friction. 

After applying the above assumptions, substitution of the 
first-order solution for tidal velocity into the acceleration 

term yields 

g 1 + i era-/Seh --, (27) 
U = - 7 •X 

where era = to/r indicates the strength of acceleration relative 
to friction, and complex notation has been used in evaluating 
•}u/•}t. Using (20) and (8), era can be reexpressed as era = 
(c/co)2en, which is the same ratio that scaled the relative 

importance of acceleration in section 2.2. 
Substituting (27) into (25) to eliminate u then yields a 

single equation for • at O(e): 

•+ c •C=_crC• (28) 
at 1 + i# ax a ax ' 

where the amplitude growth factor is given by 

# = era- eA = eA{{c•00)2-1}, (29) 

the tidal asymmetry factor is given by 

T' = (l +•5)œ h - œb, (30) 

and c is the first-order phase speed. The left-hand side of 
(28), like (18), is a first-order wave equation with only one 

boundary condition at x = 0. However, there is now a 
second-order forcing term on the right-hand side. Because 
the forcing term is second order, it can be evaluated at O(e) 
by substituting in the first-order solution. Application of a 
trigonometric identity then yields 

• + c a; _ _ ac7k sin (2tot- 2kx). (31) 
at 1 + i # ax 2 

The dominant tidal component is given by the real part of 

the homogeneous solution to (31): 

• = a e• cos (tot- kx). (32) 

The quantity •2 is given by the particular solution to (31) 
plus a second term due to the harmonic present at x = 0 (# 
may be neglected when evaluating the O(e) second harmonic 
component): 

•2 = -a r kx sin (2tot- 2kx) 
2 

+ a2 cos (2tot- 2kx- o2), (33) 

where a2 and o2 are the amplitude and phase of •2 at x = 0. 

Velocity is found to O(e) by substituting • = • + •2 into 
(25) and again employing trigonometric identities- 

u• = - Ueta•x sin (tot-kx- eA), (34) 

u2: U---Z{sin (2tot- 2kx) - 2kxcos (2tot- 2kx)} 2 

_ 2a2 U sin (2tot- 2kx- 02). (35) 

The harmonic components given by (33) and (35) are 
derived much more easily than previous perturbation 

expansions for nonlinear tides in shallow tidal channels with 
friction [e.g., Kreiss, !957; Shetye and Gouveia, 1992]. 
The relatively compact form of (33) and (35) stems from the 
simple dynamics which govern tides in strongly convergent 
channels. 

No set-up of tidal elevation or generation of residual 
currents occurs at O(e) in strongly convergent channels. As 

anticipated by Jay [1991 ], this is because the near 90 ø phase 
difference between elevation and velocity generates relatively 

little Stokes drift. At spring tide in the Tamar, for example, 
the cross-sectionally averaged Stokes drift is only about one- 
fifth the amplitude of the cross-sectionally averaged quarter- 
diurnal velocity component [Uncles et al., 1985; 1986]. 
Stokes drift occurs when maximum flood and maximum ebb 

occur at different tidal heights such that maximum velocities 

are not proportional to maximum transports. In strongly 
convergent channels, maximum flood and maximum ebb 
both occur near midtide level. Nonetheless, there is 

significant set-up of the mean water level in the innermost 
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Tamar [George, 1975]. This is largely because low water 

elevation in the Tamar is kinematically truncated by the 
elevation of the channel bottom (see discussion in section 

4.2). 

4.2. Discussion of Second-Order Solution 

4.2.1. Dominant elevation frequency. Equation 
(32) describes a unidirectional wave (i.e., with no reflected 

wave) with the same phase speed as the first-order solution. 

However, the amplitude is modulated by eO•Cx, where the 
amplitude growth factor, #, is given by (29). This result is 
consistent with the observations in Figure 4 (especially for 

the Delaware) which indicate along-channel phase variation 
is more strongly linear than along-channel amplitude 
variation. 

The exponential modulation of tidal amplitude at second 
order is due to the combined, partially canceling effects of 

(1) inertia relative to friction, which is represented by 
and (2) limited convergence, which is represented by 

Conceptually, nonzero e•o indicates inertia has the potential to 
overcome frictional damping and increase tidal amplitude by 
causing an along-channel convergence of energy. This 

phenomenon is analogous to Green's law in the frictionless, 
weak convergence limit and has previously been termed 

"topographic funneling" [Jay, 1991]. Nonzero eA or 

"limited convergence" (i.e., a tendency toward a prismatic 
channel) counteracts topographic funneling because energy 
is concentrated less effectively if convergence is weak. 

If the amplitude growth factor is positive (• > 0), then 

inertia overcomes damping due to friction and limited 

convergence, and tidal amplitude grows along channel. If 

the amplitude growth factor is negative (g < 0), damping due 
to limited convergence and friction overshadows inertia, and 

amplitude decays. Because # is smaller than either e•o or 
the second-order solution for elevation is more like the first- 

order solution than might be predicted from the size of e•o or 

eA alone. Thus the applicability of the first-order scaling, if 

based on the size of g, is extended. This is why the first- 

order solution represents the tide in the Delaware reasonably 
well, even though en and e•o are relatively large. If/• = 0, 

these two second-order effects cancel entirely, and the 
solution at the dominant frequency is identical to the first- 

order case. In strongly convergent channels, the observed 

exponential variation in the amplitude of tidal elevation, 

described by the e-folding length La, should be related to the 

amplitude growth factor by !• = (kLa) '1. Table 1 lists (kLa) 'l 
for the Tamar, Thames, and Delaware, and the 

correspondence to (29) for the Delaware and Thames is 

reasonably consistent within error bars. 
Along the Tamar,/• = e•o- en = 0.22 + 0.05 suggests that 

amplitude should increase with distance along channel, yet 
Figure 4a indicates that amplitude decreases. However, the 
observed spring tidal amplitude along the Tamar is not 
entirely dynamic. Because the amplitude to depth ratio in the 
upper reaches of the Tamar is near unity, low-water 

elevation in the upper Tamar is kinematically constrained by 
the elevation of the channel bottom, and the tidal curve is 

truncated around low water [George, 1975]. If the dynamic 

amplitude along the Tamar is redefined as local high-water 
elevation minus midtide elevation at the seaward gauge (both 

of which were measured relative to a common datum by 

George), amplitude is then observed to increase along 
channel. Figure 5 displays (32) superimposed on 
observations of high-water propagation along the Tamar. 

The only parameter adjusted in the analytic solution is the 
friction factor, r, which determines k and/• via (20) and 

(29). 

The prediction of second-order amplitude and phase 
variation along the Thames and Delaware can be improved 

by dividing each observed channel imo several individual, 
exponemially varying segments. Because (32) describes a 
unidirectional wave, the change in amplitude and phase 

along segment j is given directly by 

ß n•,j = kj xj + •n•,j-• (•j-•), (36) 

where /•j and kj are calculated from the along-channel 
geometry of each segment, and xj = 0 at the beginning of 
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Figure 5. Observed semidiurnal surface tide as a function of 
distance along the Tamar [George, 1975], Thames [Prandle, 
1980], and Delaware [Parker, 1984], along with predictions 
given by the second-order solutions: (a) amplitude, (b) phase. 
Because low-water elevation in the upper Tamar is kinematically 
truncated around low water, observations for the Tamar are 

based on the elevation and phase of high water. In calculating r 
for the second-order solutions, c,tU = 1.1 x 10 -3 m/s for both the 
Tamar and the Delaware and c•tU = 2.8 x 10 -3 m/s for the 
Thames. 
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each segment. The only freely determined parameter is r, 

which is used to determine kj and gj via (20) and (29). The 
boundary condition for each segment is simply the amplitude 

and phase at the end of the previous segment. Unlike 

segmented solutions to wave equations containing second 

derivatives [e.g., Dronkers, 1964; Jay, 1991], there is no 

need to match a reflected wave at the boundary. 

Along-channel variations in observed Ir/ll and •o•l (see 
Figure 4) suggest that an improved representation of the 

Thames requires at least two exponentially fit segments, 
whereas the Delaware requires at least three. Table 2 

displays values of LAj, earl and yj calculated for each 
segment. Where yj > 0, tidal amplitude locally increases 
with distance along channel, and where yj < 0, tidal 
amplitude locally decreases (Figure 5). Successful 

reproduction of second-order perturbations in along-channel 
tidal amplitude and phase suggests that these observed 

undulations are largely the result of deviations from a single 

exponentially convergent geometry. They are not entirely 
due to interactions between incident and reflected waves, as 

commonly presumed through application of classical damped 

cooscillation. Equation (36) reproduces these undulations 
yet includes no reflected wave. 

Other authors have discussed the control of tidal 

amplitude by channel convergence and friction in a more 

qualitative fashion [Allen et al., 1980; Salomon and Allen, 
1983; Nichols and Biggs, 1985]. These authors define an 

estuary to be (1) "hypersynchronous" if strong convergence 
dominates friction and amplitude grows along channel, (2) 

"hyposynchronous" if friction dominates convergence and 

amplitude decays, or (3) "synchronous" if convergence and 
friction balance and amplitude is constant. For stro_ngly 

convergent estuaries of interest to this study, a 

hypersynchronous estuary corresponds to y > 0, a 

hyposynchronous estuary corresponds to • < 0, and a 
synchronous estuary corresponds to • = 0. Allen et al. 

[1980], Salomon and Allen [1983], and Nichols and Biggs 
[1985] all cite the work of Le Floch [1961], who examined 

tidal propagation with friction in an infinite tidal channel of 

constant depth, rectangular cross-section, and width 

decreasing like e -x/œb. For such a channel, Le Floch found 
that tidal amplitude remains constant with distance (i.e., the 
channel is "synchronous") if Lb = co/r. 

Equation (29) indicates that in a synchronous channel, e•o 

= eA and c = co. Using the definitions e•o = •o/r, eA = kLa, 

and c = •o/k, it is easy to show that for a synchronous tidal 
estuary, Ln = co/r. This result is consistent with Le Floch 

[1961], since in systems of interest to this study, La -- Lb. 

Nonetheless, Le Floch emphasized similarities between 

classical cooscillation and tidal propagation in convergent 
channels. He stressed that his synchronous solution only 

applied to idealized infinite channels, and that [Le Floch, 

1961, p.363] "In a real estuary it is always necessary to 

calculate the reflected wave." As shown in this study, 

however, strongly convergent channels represent an 

asymptote where it is not necessary to calculate the reflected 
wave, even in a channel of finite length. Outside of the 

immediate vicinity of x = L (where boundary conditions on 

U may invalidate the required scaling), tidal propagation in 

strongly convergent channels is inherently inconsistent with 

the presence of a reflected wave. Equation (31), which is a 
first-order wave equation, allows propagation only in the 
incident direction. 

4.2.2. Dominant velocity frequency. Like the 

second-order solution for •, (34) also describes a purely 

unidirectional wave, with the same phase speed as the first- 

order wave and with amplitude exponentially modulated by 

the amplitude growth factor. On a system-wide scale, the 
value of y appropriate to the Tamar, Thames, and Delaware 

is only slightly greater than zero, thus lull should vary only 

weakly along the length of these systems. This prediction is 
consistent with observations of cross-sectionally averaged 

velocity presented in Figure 3. Chantler [1974], who 

examined velocity amplitude along six tidal channels, and 
Friedrichs [1993], who examined velocities in 18 tidal 

systems, found that stable tidal channels are characterized by 

velocity amplitudes which are nearly uniform in space. Thus 

the observed tendency for real channels to have • -- 0 may be 

closely linked to natural patterns of morphologic evolution. 
If the amplitude growth factor is significantly different 

from zero, system-wide gradients in the magnitude of 

velocity and of bottom stress will exist, and the large-scale 
channel form may not be stable. Because the bottom stress 

associated with resuspension is typically higher than that 
associated with deposition (due to "scour" and "settling" 

lags, Postrna [1967]), system-wide gradients in bottom 
stress will favor net sedimentation in areas of low stress or 

net erosion in areas of high stress, and sedimentation or 

erosion will favor adjustment of • toward zero. Equation 
(29) indicates that as y --, 0, c --, co. Thus as morphologic 

adjustment causes tidal velocity to become uniform along the 

length of the channel, the tidal phase speed will be 
constrained to be close to the frictionless wave speed. This 

explains why c -- co in strongly convergent tidal channels, 

even though the dynamics in these systems are strongly 
frictional. The above argument is admittedly an 

Table 2. Properties of Exponentially Convergent Segments of Tidal Estuaries 

Estuary Segment x/L LA, km <h>, m eA '- kLA 

Thames 1 0 - 0.8 22 9.5 0.21 0.35 

2 0.8 - 1 12 3.2 0.61 - 0.42 

Delaware 1 0 - 0.22 40 6.8 0.46 0.58 

2 0.22 - 0.68 44 5.3 0.87 - 0.048 

3 0.68 - 1 33 5.6 0.45 0.41 
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oversimplification in that it does not consider the role of tidal 100 

asymmetries. Morphodynamic feedback between tidal 
amplitude growth and tidal harmonics is discussed further in 
section 4.2.4. 80 

Another important feature of (34) is the role played by eA 
in determining the phase by which Ul leads •1: 

= -•- cA, (37) ½½1 - ½ul 2 • 40 

where the phase of Ul is found by reexpressing Ul as lull cos 
(tot- •ul). If eA is vanishingly small, i.e., if along-channel 20 
convergence is infinitely strong, then Ul leads ½1 by 90 ø, 

which is identical to the first-order case. For larger CA, Ul 0 
leads ½1 by a smaller amount. Using eA = kLA and (23), 
(37) may be reexpressed as 

q•{l - q•ul = •r _ • Cd eh to2 LA 3 (38) ß 

2 3 • g (A/b)2 

Equation (38) indicates that in a strongly convergent tidal 
channel, •½•- •u• responds primarily to local geometric 
conditions, in sharp contrast to the classical view of 

frictionally damped cooscillating tides in finite channels. 
Classical theory indicates that in a channel of finite length, 
the relative phase of velocity should be a strong function of 
x/L. For a frictionally damped cooscillating tide in a 

prismatic channel, •½•- •u• -> 90' as x-> L because of 
complete reflection at the head, and •0 ' •u• decreases as x 
-> 0 as the reflected wave becomes more damped with 
respect to the incident wave. 

Figure 6 displays observations of •0' ½ul (based on 
point measurements of u•) as a function of ea superimposed 
on (37). Complete tidal cycles of simultaneous velocity and 
elevation are available for the Tamar at x/L = 0.33 and 0.57 

[George, 1975]. The relative phase of velocity along the 
Delaware is available at x/L = 0 (at the center of the bay 
mouth) [Miinchow et al., 1992] and x/L = 0.39 [Parker, 

1984], which are in the first and second "segments" of the 
estuary, respectively (see Table 2). The three velocity 
records for the Thames are from x/L = 0, 0.38 and 0.73 

[Hunt, 1964], all of which are in the first segment. The 
agreement between observations and (37) is quite good for 
the Delaware, the Tamar, and for two of the three 

observations from the Thames. The poorly matched point is 
for observations at x/L = 0.73 in the Thames, which is 

relatively near the transition to segment 2. The data point in 

parentheses is •0 ' •u• at x/L = 0.73 plotted versus the ea 
value appropriate to segment 2. 

4.2.3. Elevation harmonics and tidal asymmetry. 
The mechanism which produces tidal asymmetry in strongly 
convergent channels may be understood conceptually if (20) 

is allowed to vary with tidal height as a function of overall 
channel depth and estuary width: 

c(t) = cø2(t) = 
r(t)LA 

g w h (1 + en •/a) 
= a (1 + re/a). (39) 

i i 

0 0.2 

+= Delaware 

o = Thames 

x = Tamar 

i i i 

0.4 0.6 0.8 1 

ea = kLa 

= Eq. (37) 

Figure 6. Observed phase of velocity relative to elevation at 
the dominant tidal frequency for the Tamar [George, 1975], 
Thames [Hunt, 1963], and Delaware [Parker, 1984; Manchow 

et al., 1992], along with predictions given by the second-order 
"segmented" solution as a function of eA = kLA. The poorly 
matched point for the Thames is in segment 1, but relatively near 
the transition to segment 2. Parentheses indicate the same point 
plotted using the geometry of segment 2. 

If 7> 0, c(t) is greater around high water than it is around 
low water; high water "catches up" with low water, and the 
rising tide is of shorter duration. If 7 < 0, c(t) is greater 

around low water, and the result is a shorter-falling tide. 

The asymmetry factor, 7= (1 + 8)ca- œb, synthesizes the 

competing effects of time variations in channel depth and 

time variations in total estuary width. If ,n = O(1) >> et,, a 
much smaller channel cross-sectional area is available around 

low water to pass a given volume of water (due to nonlinear 

continuity effects), and propagation of low water is slower. 

In addition, the depth dependence of r causes the friction 

term to be stronger around low water, further slowing its 

propagation. If et, = O(1) >> en, a much larger volume of 

water around high water must pass though a given channel 
cross section, and propagation of high water is slower. 

The Tamar, Thames, and Delaware all have positive 
asymmetry factors and rising tides of shorter duration. 

Estuaries with 7 < 0 are also common, although they tend 

not to be strongly convergent [Friedrichs and Madsen, 

1992]. Analogous results based on numerical modeling of 

shallow prismatic channels are provided by Speer and 
Aubrey [1985] and Friedrichs and Aubrey [1988]. Other 

authors have attributed observations of shorter-rising tides in 
shallow convergent channels directly to time variation of co, 

as would be the case in an infinite, prismatic, frictionless 
channel [McDowell and O'Connor, 1977; Salomon and 

Allen, 1983]. Since the observed phase speed in real tidal 

channels is often near co, it is not surprising that previous 
authors have looked to the frictionless wave speed for an 
explanation. From (39), however, it is clear that 

perturbations around c due to time-varying depth and width 
in shallow, strongly convergent channels are proportional to 

c02, not co. Furthermore, the dynamics involved are related 
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to strong convergence and strong friction and are distinctly 
different from propagation in prismatic frictionless channels. 

The net effect of different propagation speeds around high 
and low wat'6r is represented in the second-order solution by 
the superposition of •2 and •1. The amplitude ratio 1•2/•'ll 
indicates the absolute distortion of the tidal curve and, for a 

given relative phase, increases directly with the degree of 
asymmetry [Friedrichs and Aubrey, 1988]. Neglecting #, 
the ratio of •2 to •1 is found from (32) and (33) to be 

•-• = - -•-7kx sin 02 + . (40) a 2 | 

For a2 = 0, (40) reduces simply to 

Irl •1 = -•- kx . (41) 

Equations (40) and (41) predict that asymmetry will increase 
linearly along channel (assuming a2 is small), which is 
qualitatively consistent with the effect of different phase 
speeds around high and low water in (39). 

The phase of •2 relative to •1, defined by 2½ 
indicates whether an asymmetric tidal cycle has a rising tide 
of shorter duration or a falling tide of shorter duration [e.g., 
Friedrichs and Aubrey, 1988]. Shorter-rising tides have 

2½0- ½•'2 between 0 and • (or 0 ø and 180ø), whereas 
shorter-falling tides have 2½ 0 - ½½ between -• and 0 (or 
-180' and 0'). Neglecting g, 2½ 0 - ½½ is found from (32) 
and (33) to be 
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Figure 7. Observations of (a) amplitude and (b) phase of the 
second harmonic relative to the dominant component of tidal 
elevation as a function of distance along the Delaware [Parker, 
1984], Tamar [George, 1975], and Thames [Hunt, 1964], along 
with predictions given by the second-order solution. 

where the four quadrant arctangent is evaluated. For a2 = 0, 
(40) reduces to 

7 
171 ' 

(43) 

For relatively small a2, (42) and (43) predict the tide will be 

shorter rising if 7 is positive and shorter falling if 7 is 
negative, which is the same pattern predicted by (39). As 

internally generated •2 becomes more important, 2• 0 - •C2 
asymptotically approaches +90'. 

Figure 7 compares (40) and (42) to observations of 1•2/•'ll 

and 2• 0 - ½½ using first-order values for k derived from 
Figure 4b (see Table 1). Observations of 1•2/•'11 and 2½ 0 - 
½½ for the Tamar and Delaware are from data of George 
[1975] and Parker [1984]. Observations of M2 and M4 

phases for the Thames presented by Prandle [1980], 
however, are relative to separate constants and thus are in a 

form inconsistent with the application of (40), (42) and (43). 
Less extensive observations, derived from harmonic 

analyses of individual tidal cycles in Hunt [1964], are 

displayed instead. Since Hunt's observations are for spring 
tides, eh and et, are each slightly higher (at 0.30 and 0.20) 
than the mean values appropriate to Prandle's observations. 

Otherwise 7is derived from values of eh and et, displayed in 
Table 1. A good fit to the observations is achieved with 6 = 
0.6 for the Tamar, 6 = 0.3 for the Thames, and 6 = 0 for the 

Delaware (which gives 7= 1.1, 0.19, and 0.11 for the three 

estuaries, respectively). Thus the net nonlinear effect of time 

variations in depth in the friction term appears to decrease as 
eh decreases and as acceleration becomes more important in 
the momentum balance. In general, nonlinear friction 

appears to be less important than nonlinear continuity, a 
result which is consistent with the findings of Parker [1984, 
1991]. 

Equations (40) and (42) capture both the order of 

magnitude and the along-channel trend in 1•2/•'11 and 2½ 0 - 
½q2. In particular, the analytic solutions capture the 
transition from •2 dominated by external forcing to •2 

dominated by internal nonlinear generation. Observed 2½ 0 - 
½½ asymptotically approaches 90 ø in the inner Thames and 
Delaware as predicted by (42) and (43). Equations (40) and 
(42) underpredict observed 1•2/•'11 and overpredict observed 

290 - ½½ in the innermost Tamar because the tidal curve is 
kinematically truncated by the elevation of the channel 

bottom [George, 1975]. Harmonic analyses of severely 
truncated tidal curves typically produce large •2 to •1 ratios 
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(-0.3-0.4) and low •2 to •l relative phases (-30') [Speer et 

al., 1991]. However the kinematics of this process are not 

represented by the dynamics of (40) to (43). 
4.2.4. Velocity asymmetry and morphodynamic 

feedback. If the rising tide is of shorter duration than the 

falling tide (y > 0) and high and low water nearly coincide 
with slack water, then continuity arguments require that 

velocity during the flood be greater than velocity during the 
ebb. Similarly, if the falling tide is of shorter duration (y < 

0), then velocity during the ebb will be greater. Because 

tidally generated residual currents are negligible in strongly 

convergent channels, flood or ebb dominance is represented 
at second order entirely by the superposition of u2 and ul. 

Explicit analytic expressions for lu2/ull and 2•Ou]- •Ou2, 
which can be derived from (34) and (35), are much messier 

than analogous expressions for 1•'2/•'ll and 20,½•- '/'½2. 
Because of their complicated form and the dearth of high- 

quality observations with which to compare them, they are 

not presented here. 
Because of the difficulties inherent in simultaneously 

measuring velocity over an entire cross section, time series 

of cross-sectionally averaged velocity are available only for 

the Tamar [Uncles et al., 1985]. Although no simultaneous 

observations of elevation are available to provide appropriate 
values of C• and C2 for forcing at x = 0, Figure 8 nonetheless 

compares u2 + u• (calculated from (34) and (35)) to the 
available observations of cross-sectionally averaged velocity. 

The analytic solution uses the same geometric and forcing 

parameters listed in Table 1 and used in Figure 7. The 
velocity observations are from individual nonsynoptic spring 

tidal cycles and include the effects of runoff and diurnal 
inequalities. Furthermore, it is not clear that reference tidal 

phase is consistent among the three time series. Despite 
these limitations, the analytic solution for u captures the 

following important features of the observed time series: (1) 

the correct overall degree of distortion, (2) weak ebb 

dominance near the mouth of the estuary, and (3) 

increasingly strong flood dominance with increased 
landward distance. The analytic solution disagrees with the 

time series most strongly around low-water slack tide, which 

is when kinematic truncation of the tidal cycle by the channel 

bottom is most significant. 

Flood dominance in the inner portions of shallow, 

strongly convergent tidal channels may provide a 

morphodynamic explanation for why the amplitude growth 
factor (/• = eto- eA) tends to be slightly greater than zero 

along these systems (see Table 1). Flood dominance tends 

to transport sediment in a landward direction, favoring 
channel shoaling as sediment collects in the inner estuary 

[e.g., Aubrey, 1986]. Thus flood-dominant tidal channels 
will not attain a stable form over the long term unless a 

physical mechanism simultaneously exists which favors 
seaward transport. As discussed in section 4.2.2, system- 

wide gradients in the magnitude of maximum velocity also 

cause net transport of sediment due to scour lag and settling 
lag [Postma, 1967]. If kt > 0, velocity amplitude will 

increase landward, and scour lag and settling lag will favor 

seaward sediment transport. 

One might imagine the morphologic evolution of a 

shallow, exponentially convergent tidal channel to proceed 

(a) 1.5 ..... 
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Co) •.5 
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lu)l 0 
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-1.5 

0 2 4 6 8 10 12 

Hours 

Figure 8. Time series of cross-sectionally averaged velocity at 
spring tide for the Tamar, normalized by the amplitude of ul at x 
= 0 (or the most seaward cross section). (a) Analytic solutions at 
x = 0, 0.2, 0.4, 0.6 and 0.8; (b) observations from Uncles et al. 
[1985] taken at x = 0.10, 0.38, and 0.57. 

as follows: Assuming the asymmetry factor is positive, 
flood dominance will cause sediment to collect in the inner 

portion of the estuary. If kt < 0, scour lag and settling lag 
will enhance the landward movement of sediment. As 

sediment collects in the landward reaches of the estuary, 

however, the cross section will become more strongly 

convergent and/• will increase. Eventually the amplitude 
growth factor will become positive and the amplitude of tidal 

velocity will increase in a landward direction. With/• > 0, 
scour lag and settling lag will tend to move sediment in a 

seaward direction. The larger the asymmetry factor, the 

larger 3t will grow before a balance is reached between 

landward and seaward transport. The estuaries examined in 

this study support this relationship: •,and # are both largest 
for the Tamar, which is also the one channel where the 

amplitude of tidal velocity unambiguously increases in a 
landward direction. Morphodynamic feedback between 

spatial and temporal asymmetries in bottom stress is 
discussed in more detail by Friedrichs [1993] and is the 

subject of ongoing research. 

5. Summary and Conclusions 

A scaling of the continuity equation appropriate to 

shallow, strongly convergent channels (such as the Thames 

and Tamar in the United Kingdom and the Delaware in the 

United States) indicates gradients in tidal discharge are 

dominated at first order by gradients in cross-sectional area. 
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Finite amplitude effects and gradients in velocity due to tidal 

phase enter at second order, and gradients in the amplitude 
of tidal velocity enter at third order. A scaling of the 

momentum equation then indicates that the first-order 

balance will be between pressure gradient and friction if the 
ratio of the observed phase speed to the frictionless wave 

speed is order one. Local acceleration contributes to 
momentum at second order, and advective acceleration enters 

only at fourth order. 

Applying the above scaling, the first-order governing 
equation for elevation in strongly convergent channels 
becomes a first-order wave equation, in contrast to the 

classical second-order equation which results from low 

friction and a prismatic channel. The first-order wave 

equation allows wave propagation only in the incident 
direction and is inconsistent with the presence of a reflected 
wave. The first-order solutions for elevation and velocity 

are both constam amplitude waves with velocity leading 

elevation by 90'. Like a classical progressive wave, phase 

increases linearly along channel, and like a classical standing 
wave, currents are slack near high and low water. Yet 

unlike either classical wave, the dynamic balance is strongly 
frictional. Furthermore, the solutions are independent of the 

length of the estuary, in sharp contrast to the length-sensitive 
quarter-wave resonance of classical tidal estuary theory. 

Second-order solutions for elevation and velocity at the 

dominant frequency are also unidirectional waves with the 
same phase speed as the first-order solution. However, the 
amplitudes of elevation and velocity are both modulated by 
e •, where k is the first-order wave number, and # is the 

amplitude growth factor. The amplitude growth factor 
synthesizes the partially canceling effects of (1) local 
acceleration relative to friction and (2) limited convergence. 

If inertia is finite and convergence is strong, energy is 

concentrated along channel and amplitude increases with 
distance (# > 0). If inertia is weak and convergence is 

limited, friction causes amplitude to decay (# < 0). Because 

# also determines the growth or decay of velocity (and 
bottom stress) with distance, # should be near zero in 

channels which are morphologically stable. The second- 
order solution indicates that when # = 0, the wave speed (c) 

is exactly equal to the frictionless wave speed (co). This 

explains why c is usually close to co in convergent channels, 
despite the dominance of friction at first order. 

Compact second-order solutions for harmonics of 

elevation and velocity are both scaled by the tidal asymmetry 
factor, 7. The asymmetry factor synthesizes the partially 
canceling effects of (1) time variations in channel depth, 
which slow the propagation of low water and (2) time 
variations in estuary width, which slow the propagation of 

high water. If 7 > 0 (as is the case for the Thames, Tamar, 
and Delaware), the wave crest propagates faster than the 

trough, and the rising tide is of shorter duration. Away from 
the immediate vicinity of the channel mouth where external 

forcing may dominate, the elevation harmonic grows linearly 

with distance along channel, and the relative phase of the 

elevation harmonic asymptotically approaches 90'. If the 

tide is shorter rising, conservation of mass requires the tide 
within the inner estuary to be flood dominated. Since flood 
dominance favors the collection of sediment in the inner 

estuary, channel form may not be stable over the long term 
unless a physical mechanism simultaneously exists which 

favors seaward sediment transport. A slightly positive 

amplitude growth factor (which is the case over most of the 
Thames, Tamar and Delaware) may provide such a 

mechanism by increasing bottom stress in the inner estuary. 

Appendix: Small Terms Used in Scaling 
Governing Equations and in Approximating 
Solution 

Formally second order, O(e) quantities are as follows: 

eh = a/h 

,t, = 1- w/b 

eu = ILA/Lu 11/2 

eA = kLA 

ea --ILA/La 11/2 

e•o = eA(C/Co) 2 TM to/r 

r =(l+•)eh-œb 

# = œa•- eA 

Other informally small quantities: h/w; (LA -Lt,)/Ln; LA/L 
(L/dL is important only in vicinity of landward boundary). 

Notation 

a amplitude of tidal elevation at x = 0. 

a2 amplitude of second elevation harmonic at x = 0. 
A cross-sectional area of channel. 

A overbar indicates time average (holds for all variables). 

b estuary width, including flats. 

c phase speed of tidal wave. 

ca bottom friction drag coefficient. 

co frictionless shallow water wave speed. 

F friction term in momentum equation. 

g acceleration of gravity. 

h cross-sectionally averaged channel depth. 

hR hydraulic radius. 

_j signifies value of variable _ for jth channel segment. 
k tidal wave number. 

L length of tidal channel. 

La e-folding length of variation in tidal amplitude. 

Ln e-folding length of cross-sectional area convergence. 

Lt, e-folding length of estuary width convergence. 

Lit e-folding length of variation in velocity amplitude. 

Lo tidal wavelength. 
r linearized friction factor. 

t time. 

u cross-sectionally averaged velocity. 

Um mth harmonic of tidal velocity. 

U amplitude of tidal velocity. 
w channel width. 

x along-channel coordinate. 
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xt, location of tidal barrier. 

7 tidal asymmetry factor. 

6 scales relative importance of nonlinear friction. 

• tidal elevation. 

•m ruth harmonic of tidal elevation. 

o2 phase of second elevation harmonic at x = 0. 

e signifies second-order term. 

ea 2 length scale ratio of convergence to amplitude change. 
en length scale ratio of convergence to tidal wavelength. 

et, intertidal parameter. 

eh finite amplitude parameter. 

eu 2 length scale ratio of convergence to velocity change. 

e•o ratio of acceleration to pressure gradient or friction. 

# amplitude growth factor. 

½um phase angle of ruth harmonic of tidal velocity. 

½•m phase angle of ruth harmonic of tidal elevation. 
to radian tidal frequency. 
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