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1. Introduction 

In many shallow seas, where the tidal current amplitude is larger than about 0.5 ms - 1
, it is known 

that if the local velocity field is averaged over one or more tidal cycles the result is unequal to zero. 
Many mechanisms may generate such a constant flow (Zimmerman 1981). Here we will study the effect 
of lateral frictional boundary layers. As shown by Yasuda (1980), in a semi-enclosed tida1basin they 
induce a rectified mean circulation with an intense outward flow along the boundary and a weak inward 
flow in the central region. The mechanism, essentially, can be understood as a divergence of the tidal 
averaged flux of vorticity, produced by viscous friction along the side-walls, ultimately balanced by 
viscous vorticity diffusion (Zimmerman 1981). The crucial parameter, on which the strength of the rectif­
ication depends, is the Reynolds number based on the ratio of longitudinal vorticity advection and lateral 
vorticity diffusion. 

Let U be a velocity scale, L the length of the semi-enclosed basin, r the horizontal (turbulent) viscos­
ity and 11 the basic frequency of the tidal flow. Then the lateral boundary layer thickness due to oscilla­
tory flow along the side-walls is 

Hence the Reynolds number reads 

8 = (r I 11)'h • 

U2!L 
Re= --­

rU/82 

U82 

rL 

(1-1) 

u 
11L ' 

(l-2) 

the latter equality following from (1-1). Thus for the dynamics concerned, the Reynolds number is 

equivalent to the ratio of the tidal excursion J!_ and the basin-length L, being the Strouhal number " 
11 

(Zimmerman 1981 ). Yasuda (1980) studied the rectified flow for small Strouhal numbers and found that 
in that case the ratio of the rectified current to the tidal velocity amplitude depends linearly on K. In 
another context however, viz. the generation of rectified flow over varying bottom topography, where 
also the Strouhal number is the crucial parameter, it has been shown (Zimmerman 1978, 1980, see also 
Huthnance 1981) that extrapolating results for small Strouhal numbers to 0(1) or larger can be quite 
misleading. It appeared that for Strouhal numbers much larger than 1 the rectified current, relative to the 
tidal velocity amplitude, becomes inversely proportional to the Strouhal number, implying a resonance 
peak for moderate Strouhal numbers. One of the motivations for the present paper,therefore, is to see 
whether an extrapolation of Yasuda's (1980) results to large Strouhal numbers also shows qualitative 
deviations from the results for the small parameter regime. 

To reach for that we start from the shallow water equations for a homogeneous fluid with 
corresponding boundary conditions, properly scaled in chapter 2. In passing we note that after scaling it 
appears that Yasuda's (1980) solution is incomplete in that an additional rectification mechanism, of the 
same strength as the one discussed by him, cannot be neglected, viz. lateral vorticity advection. We there­
fore recalculate the rectified current velocity field in chapter 3. 

In analyzing the model for larger Strouhal numbers we note a problem, viz. that in contrast to the 
topographical rectification mechanism mentioned above, the present mechanism is a locally strong non­
linear interaction as the velocity perturbations induced by viscous friction in the side-wall boundary 
layers are necessarily of the same order as the undisturbed velocity in the region outside the side-walls. 
For large Strouhal numbers the primitive perturbation procedure of Yasuda (1980) breaks down. In order 
to overcome this difficulty we have devised in chapter 4 a global renormalization procedure, making use 
of the fact that the global (i.e. laterally integrated) vorticity flux is independent of the detailed structure 
of the boundary layer. This procedure enables us to deal with the strength of the rectified flow for large 
Strouhal numbers, albeit at the expense of not being able to reproduce exactly the detailed lateral struc­
ture of the rectified flow. With those provisos the conclusion is that for large Strouhal numbers the ratio 
of the rectified current to the tidal velocity amplitude depends, in an asymptotic sense, exponentially on 
the Strouhal number rather than linearly. This result is derived in chapter 5. Thus our conclusion is that 
the large Strouhal number solution noticeably deviates from the asymptotic solution, although we admit 
that the meruis to arrive at that conclusion has the character of a "brute force." 
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2. Scaling of the basic equations. 

We consider a semi-enclosed basin having a uniform equilibrium depth, H, a length L and a width 
2B. The shallow water equations of motion for a rotating homogeneous fluid read 

~ +u~ +v~ -Jv = -g.Et +r [ a2u + a2u l 
at ax ay ax ax 2 ay2 ' 

(2-1) 

av +u~ +v~ +Ju 
at ax ay 

- g.K + r [ a
2
v + a

2

v l · 
ay ax 2 ay2 (2-2) 

The continuity equation is given by 

~~+a: [<n+nu] + ;Y [<n+nv] = o. (2-3) 

Here u and v are the horizontal components of the velocity vector, assumed to be vertically uniform as 
we have left out vertical turbulent momentum transfer. From Yasuda (1980) it is clear that the inclusion 
of the latter process does not add anything of importance to the dynamics we are concerned with here, 
which is mainly the generation of the vertical vorticity component by side-wall friction, represented by 
the (turbulent) viscosity coefficient r in the right hand side of (2-1) - (2-2). Furthermore f is the coriol­
isparameter, g the acceleration due to gravity and r height of the surface of the fluid above the reference 
level. 

In looking for the dimensionless form of (2-1) - (2-3) we scale x and y by L, t by 0-
1 (o the tidal 

frequency), u and v with a velocity scale U (the velocity amplitude in the middle of the open boundary, 
say), whereas the continuity equation suggests to scale f with UH I oL. We a priori assume that the 

ratios ~ and y are of the order 1. Defining the following nondimensional parameters; 

u 
K (Strouhal number) = - , 

oL 

u 
F (Froude number) = _ ~ , 

vgH 

A. = basin - length = _!!,!::,__ = F K - l 

2'1T·wave-length v'gii ' 
E = viscous boundary layer width 13 

basin - length L ' 

the equations of motion and the continuity equation read 

~ + K [u~ + v au ] - Lv - _l .Et+ E2 [ a
2
u + a

2
u l 

at ax ay 0 A.2 ax ax2 ay2 ' 

-+1e u-+v- + u av [ av av l L 
at ax ay 0 

.K+K [u.Et+v ar l = -(1 +1ef} [~+~] . at ax ay ax ay 

(2-4) 

(2-5) 

(2-6) 

(2-7) 

All variables have to be understood as being dimensionless and scaled according to the scheme given 
above. We search for nontransient solutions, satisfying the boundary conditions 

u = sint at x = 0 

u = 0 at x = 1, y = 0 andy 
2B 

(2-8) 
L' 

=O at x = O,x = lJI = 0 andy 
2B v =1:· 
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From hereon we shall assume that 

E << 1, (2-9) 

giving rise to a singular perturbation problem as E multiplies the highest order derivatives in (2-5) - (2-
7). Furthermore we consider basins having a characteristic length scale which is much smaller than the 
tidal wave-length. From (2-4) it then follows ~ 

A<< 1, 

and as a consequence rotation effects will not be of importance. 

After substitution of the regular expansions 

U(XJ!,l) 

v(XJ!,I) 

f(XJ!,I) 

U0(xJ1,t) 

V0(x tY ,t) 

Z 0(xJ1,t) 

+ EU1(XJ1,I) 

+ EV1(XJ1,t) 

+ EZ 1(x JI ,t) 

+ ..... , 
+ ..... , 
+ ..... , } 

(2-10) 

(2-11) 

it follows that the zeroth order momentum equations can be linearized for any Strouhal number K, since 

K>..2 = AF << 1 , (2-12) 

the estimate following from (2-10) and the assumption that the Froude number is small in order to 
prevent breaking tidal waves. 

Evidently the zeroth order equation in the regular expansion read 

ClZ0 

a1 

ClZo 
-=0 ax 
ClZ0 
-=0 

Cly 

[
ClU0 ClV0 l -(1 + tcZo) a:;- + Cly . 

(2-13) 

Note that we write capitals for the regular expansions. The solution of (2-13), subject to the slip boun­
dary conditions 

reads 

U 0 = sint at x = 0 

U0 = 0 at x = 1 

V 0 = 0 at y = 0 and y 

U0 = (1-x)sint V0 = 0 

Z 
_ -1 +exp(-iccost) 

0 - • 
IC 

2B 

L' 

} 

(2-14) 

(2-15) 

This is the well-known expression for a standing shallow water gravity wave, which is valid under the 
conditions (2-9) and (2-10). In the same way the first order regular system can be solved. For the lateral 
velocity component we obtain 

(2-16) 

which will be used later on. 

As the solution (2-14) does not include the viscous side-wall layers, necessary to bring the tangential 
velocity components to zero along the walls, we have to correct the velocity field near the side-walls by 

~ 



4 

introducing boundary layers. Let 

, L 
y = -y 

8 
(2-17) 

be a lateral stretched coordinate near the boundary y = 0, based on the already dimensionless coordi­

nate y (scaled by L . ), and assume that we have to rescale the lateral velocity component by{ U, as sug­

gested by mass balance in the viscous boundary layer. Then we have the expansions 

u = Uo(x,t) + uo(x/,t) + E{U1(XJ1,t) + u1(x/,t)}+ .... , 

v = Ev' = E v1(x/,t) + ..... , 
t = Zo(t) + to(y',t) + E{Z1(Xi)',t) + t1(x/,t)} + .... , } (2-18) 

where capitals refer to the variables in the regular expansion and small characters to the boundary layer 
corrections. These series should be substituted in the rescaled equations of motion: 

~ + IC [u~ + v' au ]-EJ_v' = __ 1 ar + £2 a2u + a2u 
ot ox ay' (J X2 ox' ox2 ay'2 ' 

£2{ av' + IC [u av' + v' av: l} + EJ_u = __ 1 ar, + £2 {£2 a2v' + a 2 ~'}' (2-19) 
at ax ay a x2 ay ax2 ay 2 

_£{ + IC [u1t_ + v' at, l = -(1 +1Ct) [~ + av: ]· 
at ax ay ax ay 

To zeroth order in E we find, after some manipulations and use of the zeroth order regular equations 
(2-13), that 

auo av1 
-+-, =O 
ax ay 

(2-20) 

showing that to this approximation the rectified velocity field is free of divergence, hence t0(y',t) = 0. 
Thus a streamfunction if; may be introduced, such that 

u - _.2.t_ 
o - ay' 

-~ 
V1 - ax· (2-21) 

and the dynamics will be governed by a vorticity equation. 

First we note that the inviscid regular field (2-15) is free of rotation. Obviously vorticity arises only 
by the presence of frictional boundary layers. Its dimensionless form (scaled by U / 8) reads 

(2-22) 

From the rescaled momentum equation a vorticity equation can be derived. Substitution of the expan­
sions (2-18) gives in zeroth order 

awo [ ] awo awo oUo a
2
wo at +IC Uo + Uo ---a;- + 1CV1 oy' + + ICWo ~ = oy'2 , (2-23) 

where use have been made of (2-16) and (2-20). Writing w0 in terms of the streamfunction by means of 
(2-21) and (2-22) and substituting (2-15) for U0, we finally obtain 

J_ ft - . _£_ft ft - . ft - ft ~ ,2 + IC{l x) Slnt a ,2 + IC j(lf;, ,2 ) IC Slnt ,2 - ,4 . (2-24) 
ut oy x ay ay ay ay 

The Jacobian J has its usual meaning. It describes the advection of vorticity by the boundary layer flow 
and is the cause of the principal nonlinearity of the vorticity equation. 
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In order to have the problem of solving (2-24) fully posed we finally introduce the following boun­
dary conditions: 

1" = 0 at y' = 0, 

:; = (l-x)sint at y' = 0, 

1" = 0 

li-
'2 - 0 

ay 

, B 
at y = - = b 

8 ' 

, B 
at y = B =b. 

(2-25) 

The first one is an obvious choice. The second one is in fact the no-slip condition as the regular velocity 
U 0 and the boundary layer correction together must vanish at the side-wall. The third and fourth condi­
tion naturally arise from the symmetry of the flow about the mid basin-axis at y' = b. 

3. Residual flow for small Strouhal numbers. 

Obviously equation (2-24) describes the generation of vorticity by the no-slip conditions (2-25) at the 
side-walls. Since the latter are periodic in time, the resulting streamfunction will also have a periodic 
character, but, as can be seen in (2-24), all terms proportional to IC may produce higher harmonics as well 
as a rectified time-independent solution. For small IC the latter can be obtained in an approximative way 
by expanding the solution in IC : 

i/l = i/Jo + IC o/1 + ic2o/2 + ····· · (3-1) 

To zeroth order we then have 

(3-2) 

subject to the same boundary conditions for o/o as for if; in (2-25). The solution is straightforward as in 
fact (3-2) describes a nondimensional diffusion of vorticity with periodic boundary conditions. We find 

i/Jo(x ,y',t) = (l - x) <J>o(y',t) , (3-3) 

where 

(3-4) ' 
-sinh[Yt(b-y)J + (1-lj;-)sinh(Ytb) 

</>o = ~~~~~~~~~~~~~~ 
2i{Vt cosh(Yt b) - ! sinh(Yt b)}' 

and the asterix denotes complex conjugation. 

Rectification now arises to first order in IC. To this order the streamfunction obeys 

a a2
o/1 o4

o/1 . a o21"o o21"o . o21"o 
-;-- -,-

2 
- -,-

4 
= -{(1-x)smt-;-- -,-

2 
+ J (o/o, -,-

2
) - smt -,-

2
}, (3-5) 

ut oy oy uX oy oy oy 

subject to the first-, third- and fourth boundary condition in (2-24) for i/Jo, as well as 

<lo/1 ' 
- =O at y =O (3-6) ay' , 

as 1"o already satisfies the second boundary condition of (2-25). 

The time-independent, rectified, part of the solution of (3-5) can be obtained by applying a time­
averaging operator to (3-5). Let this operator be denoted by a bar : ., 
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- 1 2?T 

(.)=-2 j(.)dt. 
'TT 0 

(3-7) 

Then (3-5) reads 

34~1 . 3 32~ 32~ 32~ 
-,-4 = (1-x) smt -;- ~ + J(o/o, ~) - sint ~. ~ (3-8) 
~ uX ~ ~ ~ 

Substituting (3-3) and (3-4) in (3-8), performing the time averaging, integrating over y' and using the 
boundary conditions, we find a rather complicated solution of (3-8), involving hyperbolic- and tri­
goniometric functions of y'. However, this can be simplified if it is assumed that the width of the bay is 
sufficiently greater than the viscous boundary layer width. Then the result is 

where 

and 

o/1 = (I - x ) 4>1 , 

' ' 

4>1 = C 1(1-t)3 + C2(l-t) + V2 {-fe-v'2y' + 

I [ I _ r.::;- ' I _ r.::;- ' ] -tv'2 y' -2 sin(2v2y) + cos(2v2y) e + 

3 I_ r.::;- ' -tv'2y' I v' [ I _ r.::;- ' I _ r.::;- ' ] -tv'2y' 
-

2 
Vib sin ( 2 v 2 y )e + 4(1-b) sin(2 v 2 y )- cos ( 2 v 2 y ) e }, 

c - 6b-11V2 
l - 16 

25V2-6b C2 = __ 1_6 __ 

The corresponding residual current is given by 

3C1 v' 2 C2 1 v'2 · 1 _r.::;-, -tv'2y' 
ii= rc(l-x) {-b- (l-b) + b - 4e- :Y -sin(2v2y)e + 

1 [ I_ r.::;- ' I_ r.::;- ' ] -tv'2y' + Vib cos (2 v2y )-sin(2 v2y) e + 
' I _.r,;-. 

I V 1_r.::;- , -2v2y 
-2(1-[;-) cos (2 v2y )e }. 

(3-9) 

(3-10) 

(3-11) 

(3-12) 

It appears that as soon as b is larger than about 3,25 the difference between the approximative- and 
exact solution is less than 1 %. 

Obviously the intensity of the residual current~is proportional to the Strouhal number as long as re is 
small, and for that matter the residual current velocity in dimensional form is proportional to the square 
of the undisturbed tidal velocity amplitude, a result already derived by Yasuda (1980). However there is 
a qualitative disagreement between our solution and Yasuda's, viz. that an additional term is present in 
(3-12). This can be traced back to the basic equation used here, viz. equation (2-24), and to the one used 
by Yasuda (1980). It appears that the latter author only takes the longitudinal advection of vorticity into 
account. However, as our scaling shows, lateral vorticity advection in the boundary layer is of the same 
order as the former term, and thus has to be taken into account. 

In figure 1 the lateral profiles of both the solution (3-12) and the Yasuda solution are shown for 
b = 15 (a characteristic value for tidal basins). They have the same qualitative behaviour, viz. an out­
ward flux near the side-wall, an inward flux just outside the boundary layer and again an outflux in the 
central region. The difference between them is entirely due to the lateral advection term. Including this 
contribution makes that vorticity is advected laterally over the bay, obviously resulting in a weaker out­
flux in the boundary layer and stronger fluxes in the central region. 
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4. Global renormruization 

The result of the chapter before, showing that the residual velocity is proportional to the Strouhal 
number, is only valid for small Strouhal numbers, for which the perturbation series (3-1) applies. For 
arbitrary values· of IC it is not possible to solve the basic problem (2-24) - (2-25) exactly. This is mainly 
due to the full nonlinear contributions, represented by the Jacobian in (2-24). We may expect to find an 
approximative solution of the problem, provided that this term were to vanish or could be neglected in 
the first instance altogether. Although the first is not to be expected, it is the purpose of this---chapter to 
provide a formal scheme for the exploitation of the second possibility. 

Basically we wish to simplify the complicated equation (2-24) by means of physical constraints, such 
that the resulting equation can be solved. In this case the motivation to get rid of the nonlinear advection 
term follows from consideration of the laterally integrated vorticity advection due to the boundary flow, 
i.e. 

b ft ' - - b 02Uo 02Uo ' f j ( 1/.i, '.l '2 ) dy - f { Uo '.l '.l ' + V 1 '.l '2 }cry ' 
0 

vy 
0 

uxvy vy 
(4-1) 

the latter equality following from (2-21). By means of partial integration and use of the boundary condi­
tions, it follows that 

b ft '­! J(l/.i, '2) dy - 0. 
o oy 

(4-2) 

Thus on a global scale there is only advection of vorticity due to the inviscid regular velocity field. This 
suggests that if we consider the global (i.e. laterally integrated) vorticity balance we may be able to 
approximate the total, nonlinear advection by introducing a renormalized /-independent time-varying 
longitudinal velocity. 

In order to set up our renormalization scheme we introduce a formal expansion parameter £ and a 

renormalized advection velocity amplitude U for the outer velocity, so that (2-24) is recasted as 

_!_ft - - . _!_ft ft_. ft-~ 
'.l ,

2 
+IC {U(l x)smt '.l ,

2 
+ £j(l/.i, ,

2
) smt ,

2
} - ,

4
, (4-3) 

ut~ uX~ ~ ~ ~ 

where now 

U = Vo + £U1 + ~U2 + ..... = I , 
"' = "'° + £ 1"1 + ~ 1"2 + .. . .. . 

} (4-4) 

Of course the variables 1"1>1"2,..... are different from those in expansion (3-1) of the streamfunction for 
small Strouhal numbers. Note that if we put £ = 1 our fully nonlinear basic equation (2-24) appears, 
whereas for£ = 0 its linearized form arises. Now to zeroth order in£ we have 

o o2% [ - . o o2% . o2% ] o41"o 
-;-- -,-

2 
+ IC U 0 (1-x) smt -;- -,-

2 
-smt -,-

2 
- -,-

4 
= 0 , 

ut oy uX oy oy oy 
(4-5) 

which contains an as yet unknown velocity amplitude U 0• To first order in £ we have 

0 0
2
1"1 [- . o 0

2
1"1 . 0

2
1"1 ] 0

4
1"1 -;-- -,-

2 
+ IC U 0(1 - x) smt -;- -,-

2 
-smt -,-

2 
- -,-

4 
= 

ut~ uX~ ~ ~ 

[
- . o o21"o o21"o ] 

= -1C U 1 (1-x) smt -;- -,-
2 

+ J (%, -,-
2 

) · 
uX oy oy 

(4-6) 

If we now truncate our renormalized expansion at this lowest nontrival order and set£ = l, (4-4) gives 

(4-7) 

which may be substituted in ( 4-6). 

In order now to solve for U 0 we introduce a global renormalization condition, stating that the right 
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hand side of equation ( 4-6) should vanish after integration over the half width of the basin. Application 
of ( 4-1) and substitution of ( 4-7) gives 

- . . a fb a21/lo , 
(1- U0) (1-x) smt -;---- -,-

2 
dy = 0 , (4-8) 

vX O oy 

which is satisfied for 

Do = I. (4-9) 

Hence if we neglect the details of the boundary layer profile, controlled by the right hand side of ( 4-6), 
we can investigate the global character of the rectified flow as a function of IC by solving ( 4-5) with 
0 0 = 1, which is equivalent to solving (2-24) for arbitrary IC, neglecting the Jacobian term. Physically 
this means that, for all values of IC, we can investigate the global vorticity influx, necessary to produce a 
residual circulation cell in each of the half-width sections of the basin. The overall strength of the circula­
tion in these cells is clearly independent of the detailed structure of the lateral velocity profile. 

5. Approximate solution for arbitrary Strouhal numbers. 

We now look for a solution of 

a ft [ _ . i_ft_ · ft]_ft · - + IC (1 x) smt '.l ,
2 

smt ,
2 

- ,
4 

, 
ot o/2 vX oy oy oy 

(5-1) 

subject to the boundary conditions (2-25). Note that (5-1) is the zeroth order equation in the renormal­
ized perturbation procedure, but that we have dropped the subscript. Furtheron the subscript will be 
used for denoting a harmonic order. 

We look again for a solution of the form 

if;(x/,t) = (1-x)f[>(Y',t). (5-2) 

Substitution in (5-1) gives 

_E_ft_ . ft_ft 
'.l ,

2 
21C smt ,

2 
- ,

4 
. 

vt oy oy oy 
(5-3) 

This can be transformed into a diffusion equation by setting 

f/>{Y',t) = x(Y',t). exp (-21C cost). (5-4) 

so that x obeys 

_E_ l.X - l.X = 0 
a1 a/2 a/4 

' 
(5-5) 

subject to the first-, third- and fourth boundary condition in (2-24), as for if;, but with a modified no-slip 
condition at the wall: 

s ' , = sint . exp (21Ccost) aty = 0. 
ay (5-6) 

Evidently we again have a linear vorticity diffusion equation driven by a periodic boundary condition. 
But in contrast to the fully linearized equation (3-2) and its boundary conditions, the vorticity advection 
due to the prescribed inviscid regular velocity field gives after transformation an advectionless diffusion 
equation driven by all harmonics of the basic tidal frequency, as can be seen from (5-6) when the right 
hand side is expanded as a Fourier series: 

:: = sint m~oo lm(21C)eimt = 

(5-7) 
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where Im denotes a m 'th order modified Bessel function of the first kind. This suggests expanding x as a 
Fourier series as well: 

00 

X = ~ Xm(y) eimt ' (5-8) 
m=-oo 

which gives after substitution in (5-5) 

. d
2
Xm d

4
Xm 

zm --,
2
- - --,

4
- = 0 . 

dy dy 
(5-9) 

The general solution of (5-9) form = 0 reads 

'3 12 I Xo = Aoy + Boy + Coy + Do, (5-10) 

and for m =foO : 

Xm =A e y;;;y' + B e-v;;;y· + C y' + D m m m m· (5-11) 

The boundary conditions now read 

Xm = 0 at y' = 0 

(5-12) 

dXm 1 --;iy- = 
2

i {/m-1(2rc)-lm+I (2rc)} at y' = 0 

Xm = 0 at y' = b 

at y' = b 

For m = 0 only the trival solution xo = 0 obeys (5-12). Thus we are left with solving for Xm(m::foO). 
The solution that satisfies (5-12) reads , 

lm-1(2rc)-Im +1(2rc) 
Xm = x 

2i { & cosh (v't;;l b )- ! sinh (v't;;l b)} 

x{-sinh{& (b-y')]+ (1-t)sinh(0m b)}. (5-13) 

By (5-8), transforming back by (5-4), our final result reads 

"°' "') ~ p =~~ t.~~ (-1 )'" 1. (2•) x.. +p (y') ~P' ' (5-14) 

where the quantity between brackets is they'- dependent Fourier component of the p'rh harmonic mode. 

We first consider the basic tidal frequency. This can be found by adding the modes p = -1 and 
p = l in (5-14). By application of (5-13) it can be shown that the corresponding streamfunction is given 
by 

(5-15) 

where 

oo { I 1(2rc)- I 1(2rc) } 4'1 = ~ (-1r-1 lm-1(2rc). m- m+l X 
m = - oo 2i [ v't;;l cosh ( v't;;l b) - b sinh ( & b )] 
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' 

X { -sinh [Vim (b -y')] + (1-lj;-) sinh (Vim b )}. (5-16) 

Use of the defiriition of the modified Bessel functions 

00 1 
lm(Z) = 2: I (~)2n+m 

n=O nS(n+m+l) 2 
(5-17) 

shows that in the small IC limit (5-15) - (5-16) reduces to the solution (3-4), obtained by a primitive per­
turbation procedilre. This is to be expected, since in this limit both if; in (3-1) and l[/1> in (5-15) are solu­
tions to the same problem, viz. a diffusion equation with periodic boundary conditions. Therefore (5-15) 
may be conceived as a renormalized extention of the primitive perturbation solution. 

I 
The residual current profile can be obtained from (5-13) by differentiation of the zeroth order stream-

function Fourier mode. Writing out the complex functions we again find a rather complicated solution, 
which may be simplified for large values of b. The result is 

00 

Uo = (1-x) 2: (-l)m lm(21C).{lm-1(21C)-lm+1(21C)}X (5-18) 
m=l 

I . ' -2v2m Y 
X sin(2 v'2m y ) e 

{ 

l_r--. 

1 [ I . ,r,:;-- ' I . ,i;::;-- ' ] -t&y' 1 } v'2m b sin(2 v2my) - cos (z v2my) e - v'lmb . 

The asymptotic form for small Strouhal numbers reads 

. I ' -2 V 2Y 1 . I ' I ' -2 v~y 1 
{ 

l.r-· l.r-• } u0 = 1C(l-x) -sm(2Vly) e + Vlb [sm(2Vly) - cos(2Vly) ]e + Vlb .(5-19) 

In the next chapter this result will be compared with the exact solution for small IC. 

6. Summary I Conclusions 

The dynamics of tidal rectification due to lateral viscous boundary layers in a rectangular basin are 
governed by the vorticity equation (2-24) with boundary conditions (2-25), as long as the parameter E, 
defined in (2-4), is small. For small Strouhal numbers a solution can be constructed as a power series in 
IC. The solution for the basic tidal frequency and the residual current profile are given in (3-3) and (3-12) 
respectively. For larger values of the Strouhal number no general solution of (2-24) can be found, due to 
the full nonlinear terms which describe vorticity advection by the viscous correction field. However, as 
argued in chapter 4, these contributions may be neglected on a global scale, resulting in the renormalized 
vorticity equation (5-1). Its solutions for the first harmonic and for the residual current profile are 
presented in (5-15) - (5-16) and (5-18). 

We now compare the renormalized solution in the small IC limit with the exact solution. In figure 2 
the lateral profile of both the primitive- and renormalized residual current in this limit are plotted for 
b = 15, showing differences in their detailed structure. This can be understood from the governing vorti­
city equations. In fact the renormalized model is a gross simplification of the basic equation (2-24), vor­
ticity now only being advected by the regular inviscid velocity field without lateral structure. But in the 
full model this is counteracted by the longitudinal advection due to the viscous correction field, which is 
locally of the same order in the boundary layer. The situation becomes even more complicated due to the 
lateral vorticity advection; see also figure 1 and the discussion in chapter 3. 

As a consequence both solutions show an outward flux near the side-wall, but the renormalized flux 
is stronger. Furthermore, since the laterally integrated mass transport must be zero, the outward flux has 
to be compensated outside the boundary layer. In this region the renormalized solution shows a weak 
inward flux and a residual current tending to zero at y' = b for large b. Actually however, the neglected 
advective contributions cause an inward flux just outside the boundary layer and again an outward flux 
towards the central axis of the basin, with a nonvanishing residual current at the axis, even if b becomes 
large. 
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However, apart from the detailed differences, both solutions show the same qualitative behaviour. As 
far as the peak of the outward residual current velocity is concerned, both in its position and the order of 
its strength, we may trust the renormalized solution as a first approximation. Actually the result can in 
principle be improved on by adding the first order solution of the renormalized expansion. The pro­
cedure, however, is so cumbersome that we have not attempted to pursue that path here. 

In order to study the behaviour of the residual current for large values of the Strouh~umber we 
consider (5-18) as a function of 1e, since (3-12) must break down. An exact asymptotic result for IC--700 is 
difficult to obtain because of the summation over m. But the well-known asymptotic property of the 
modified Bessel functions of the first kind, 

ez 
lm(z) --7 Vz ; z --7 00 (6-1) 

suggests an exponential rather than a linear dependency. This is indeed confirmed by figure 3, where we 
have plotted the ratio of the residual current to the tidal current amplitude at a fixed position 
(x = 0.5i = b / 40, where b = 15), where an inward velocity is present, for both the primitive pertur­
bation solution and the renormalized solution as a function of the Strouhal number. The linear versus the 
exponential character of the solutions is immediately clear. 
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List of figure captions 

I Figure l. Lateral profiles of the nondimensional longitudinal residual current solution (3-12) 
(solid line), and the Yasuda solution (dashed line); b = 15. 

2 Figure 2. Lateral profiles of the nondimensional longitudinal residual current, obtained by a 
primitive perturbation technique (solid line), and the renormalized nondimensional longitudinal 
residual current solution in the small 1e limit (dashed line) ; b = 15. 

3 Figure 3. Ratio of the longitudinal residual current to the tidal amplitude at 
y' = b / 40(b = 15) as a function of the Strouhal number obtained from the renormalized 
model (solid line), and the primitive perturbation model. (dashed line). 
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Figure I 
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Figure 3 
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