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Estuaries show dynamic patterns of channels and bars, which are also valuable habitats, while channels provide

access to harbours. In contrast with bars in rivers, we still lack explanations, theory and classifications for bars

in estuaries. Theories for river bars show bar properties to be strongly dependent on channel width-to-depth

ratio. For estuaries, only two physics-based theories are available. One predicts bar length to increase with flow

velocity and tidal excursion length and the other with flow velocity and estuary width. However, these theories

have not been tested for lack of data and experiments. Our objective is to determine bar shape and dimensions

in funnel shaped alluvial estuaries and to provide predictive relations for bar shapes and dimensions. We present

a newdatasetmeasured in imagery and bathymetrywith bar lengths spanning from centimetres (in experiments)

to tens of kilometres. We visually identified and classified 190 bars and measured their width, length, height and

number of cross-cutting barbs channels. Estuarine geometry and tidal characteristicswere obtained from available

databases and literature.We found that many compound bars can be seen as simple linear bars partly cut by barb

channels, where partitioning of barwidth collapses the data of bar length-to-width ratio. This is in agreementwith

the transverse wave form of bars assumed in linear stability theories that are supported by data in fluvial and

coastal environments. Our empirical trend shows that sand bars in estuaries have similar length-to-width ratios

as river bars but are more elongated. This trend was also found to hold for bars in numerical models and scaled

laboratory experiments. Bar height is linearly related to localwater depth. Natural bar length, barwidth and braid-

ing index are strongly correlated to estuary width. This relation is also evident in published data of bars in rivers

and numerical models of rivers. The theoretical braiding index of tidal bars indeed depends on local width-to-

depth ratio and is reasonably well predicted for our dataset. However, the theoretical models for tidal bar wave

length and width surprisingly lack this correlation with estuary width and overpredict by an order of magnitude,

pointing at a need to revisit tidal bar theory. The empirical relations provide ameans of estimating bar dimensions

when limited data are available and in order to evaluate results from numerical models and physical experiments.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

An estuary is a body of water that has inflow of river water at the

landward boundary and an open connection to the sea. Many defini-

tions and classifications have been proposed for estuaries, whichmostly

depend on their application (Pritchard, 1967; Hume and Herdendorf,

1988; Davidson and Council, 1991; Dalrymple et al., 1992; Perillo,

1995; Townend et al., 2000; Townend, 2005; Savenije, 2006). In most

cases, estuaries were defined based on the relative influence of tides,

waves, rivers, sediment types, sediment supply, vegetation, geology or

time (see Savenije, 2006, for review).

Here we focus on funnel shaped alluvial estuaries that are

characterised by complicated patterns of dynamic channels and sand

bars, often flanked by tidal mud flats and salt marshes. Savenije

(2006) defined alluvial estuaries as estuaries with erodible beds, influ-

enced by both river flow and tidal flow from the sea. Therefore, the sed-

iment bed of alluvial estuaries comprises both sediment types: the

coarser fluvial sand and finer marine mud. Depending on the relative

Fig. 1. Aerial photographs of bars in estuaries. Sidebar with barb channel in the (a) Nyfer estuary (UK) and (b) Gannel estuary (UK); linear bar in the (c) Dovey estuary (UK) and (d)

Gironde estuary (Fr); u-shaped bar in the (e) Dovey estuary (UK) and (f) St. Helena estuary (USA); compound bar in the (g) Dovey estuary (UK) and (h) Netarts Bay (USA). In all

cases flood flow is from left to right. Google Earth, accessed May–September 2015.
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importance of the hydrodynamic processes, one can further discrimi-

nate between river-dominated and tidal-dominated estuaries. Never-

theless, data to assess this are often lacking and if data is available, the

question rises what defines for example the threshold for fluvial domi-

nance. Dynamic sand bar patterns can form when the estuary received

sufficient fluvial sediments. Our main question is: what determines

the bar pattern in funnel shaped alluvial estuaries?

The understanding of bar patterns is relevant for themanagement of

channels,which are used as shipping fairways, andbars or shoals,which

are valuable ecological habitats (Wang et al., 2012; Coco et al., 2013).

Furthermore, tidal sand bar deposits form large and complicated hydro-

carbon reservoirs of which architecture is difficult to reconstruct from

limited data (Wood, 2004).

Sand bars, also called shoals, occur in a wide variety of shapes: from

long and narrow to circular or squared, and in a variety of size, fromme-

ters to kilometres (Fig. 1). In contrast with estuaries, detailed classifica-

tions exist for river bars (Fig. 2), alongwith a description of the forming

mechanisms (Cant and Walker, 1978; Bridge, 1993; Ashworth et al.,

2000; Bridge, 2003; Sambrook Smith et al., 2006; Kelly, 2006; Rice et

al., 2009; Kleinhans and van den Berg, 2011; Schuurman et al., 2013).

Most classifications discriminate between simple unit bars and com-

pound bars. Unit bars are small (100–300 m) bars with a lobate shape

that have their highest point at the downstream end followed by a

steep face (e.g. Sambrook Smith et al., 2006). Compound bars comprise

multiple amalgamated unit bars and formed by several stages of erosion

and deposition (e.g. Bridge, 2003; Ashworth et al., 2000; Schuurman et

al., 2013). Therefore, they occur in awider variety of shapes and are gen-

erally larger than unit bars, for example forming sidebars and bars with

a u-shape (Fig. 2).

It is unknown to what extent tidal bars in estuaries have similar di-

mensions, shapes and forming mechanisms as bars in estuaries. For es-

tuaries, van Veen (1950) and Dalrymple and Choi (2007) defined three

different types: linear bars, u-shaped bars and sidebars (Fig. 3). All other

bars in estuaries, which aremore complex bars that probably amalgam-

ated from other bars, we define here as compound bars (Fig. 1g,h) in

analogy with rivers.

In all these definitions we describe bars as discrete recognisable ele-

ments on what is essentially a continuous field of bed elevation that

changes over time. In contrast to the situation of merging bars, of

which the history is captured by the term amalgamated or compound

bar, one bar can become two bars when a channel cuts through it

with sufficient depth, meaning that the history of these bars being one

bar is lost. In rivers such deep channels are called chute channels.More-

over, an intermediate stage is recognised as cross-bar channels, which

Fig. 2. Aerial photographs of river bars in the Saskatchewan river near Outlook (Canada):

(a) side bar; (b) compound bar amalgamated from a few smaller unit bars; (c) chute bars;

(d) compound mid-channel bar. Compare respectively to Fig. 1a,b, c,d, e,f, g,h. Google

Earth, accessed May–September 2015.

Fig. 3. Sketches of bar types recognised in literature. (a, b, c) Mutually evasive ebb- and

flood-dominated channels separated by bars [after van Veen, 1950]; (d, e, f, g) Variation

in the morphology of elongated sand bars in estuaries [after Dalrymple and Choi, 2007].

Solid arrows: ebb-dominated channels, dashed arrows: flood-dominated channels.
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generally have smaller dimensions than the main channel, but may en-

large over time, forming a chute channel (Bridge and Tye, 2000; Bridge,

2003; Sambrook Smith et al., 2006). For estuaries, Swinkels et al. (2009)

described similar channels as smaller connecting channels that may in-

crease or diminish over time.

The presence of mutually evasive ebb- and flood-dominated tidal

channels is unique in tidal environments. These channels develop

around the sand bars (van Veen, 1950; Dalrymple and Choi, 2007;

Hibma et al., 2003; Kleinhans et al., 2015b). When they meet head-on,

either they evade each other laterally (Fig. 3a,c,e,g) or one of the chan-

nels bifurcates and a u-shaped bar forms between the channels (Fig.

3b,f). The tails of a u-shaped bar embrace a barb channel (Fig. 1e,f),

which is a one-ended channel that partly crosscuts the bar and becomes

shallower in the direction of flow (Dalrymple and Choi, 2007). Com-

pound bars and side bars are often dissected by barb channels (Fig.

1h), while linear bars lack barb channels. Possible interpretations for

barb channels are that they either form by the convergence of bedload

around an initial bar core, as was previously described for rivers

(Sambrook Smith et al., 2006), or that they are failed chute cutoff chan-

nels that are remnants of cross-bar channels, where successful chute

cutoffs would increase the braiding index.

Dalrymple and Choi (2007) hypothesised that estuary width and

curvature determine both the shape and the number of bars in cross-

section, which is also expected by analogy with rivers (Kleinhans and

van den Berg, 2011). Here, we define local estuary width as the width

between the vegetated marshes or banks at the location of the mea-

sured bar, including the sand bars (see Fig. 1e). Only two analytical

physics-based models are currently available for tidal systems. These

theories predict bar length to increase with estuary width (Seminara

and Tubino, 2001) or with flow velocity and tidal excursion length

(Schramkowski et al., 2002), which is the distance that a water particle

travels in half a tidal cycle. In contrast, theory for rivers predict bar prop-

erties to be mainly determined by channel width-to-depth ratio (see

Kleinhans and van den Berg, 2011, for review). Toffolon and Crosato

(2007) validated the prediction of braiding index of Seminara and

Tubino (2001) for theWestern Scheldt, which supported the earlier hy-

potheses that the braiding index increases with width-to-depth ratio.

Numerical modelling showed that the braiding index and bar length

scale with estuary width-to-depth ratio (Hibma et al., 2003). However,

these hypotheses on sand bar properties in estuaries have not been val-

idated against a larger set of field data. Therefore, we still lack a full ex-

planation for the shapes and dimensions of bar patterns in natural

estuaries. Moreover, a classification scheme for bar pattern in estuaries

is absent, in contrast with bar patterns in river systems.

The objectives of this study are (1) to quantify bar shapes and di-

mensions in natural estuaries while accounting for water level effects

on bar visibility on imagery, (2) to investigate relations between bar di-

mensions and hydrodynamic and geometrical properties of estuaries,

and (3) to test physics-based bar theories.

This paper is organised as follows: first, we review bar theories for

rivers and estuaries. Then we present data of 190 bars in 45 estuaries

collected from imagery and explain methods of characterisation and

analysis. We test effects of water level variation on emergent bar

shape and pattern in bathymetric data of three cases. This is followed

by discussion of our data compared to known river bar properties and

possible applications of the novel empirical relations.

2. Bar theory

Stability analysis predicts the initial formation of bar patterns

through a mathematical method to study wave lengths and migration

of periodic patterns. It has proven to be a powerful technique with pre-

dictive capability used to gain basic understanding of the mechanisms

causing such patterns and their dimensions. The stability models gener-

ally consist of a system of equations for momentum, continuity, sedi-

ment transport and bed evolution (Dodd et al., 2003). Simplification of

the equations, because the nonlinear effects are ignored, allows an ana-

lytical solution that does not have the potential problems of numerical

models, for instance when bars grow to amplitudes approaching the

water depth (Dodd et al., 2003). Initial and boundary conditions are

also simplified: bar theories used in this paper assume a long straight

channel with constant width, non-erodible banks and an erodible sedi-

ment bed. However, despite such simplifications, stability analysis was

successfully applied inmany types of systems (Dodd et al., 2003), for ex-

ample, river bars (Struiksma et al., 1985; Kleinhans and van den Berg,

2011), offshore sand ridges (Hulscher et al., 1993; Komarova and

Hulscher, 2000), bedforms (Colombini, 2016) and sand waves

(Blondeaux and Vittori, 2016). Part of what we know about river bars

comes from these theories and given these past successes and that rel-

atively little is known about tidal bars, it is of interest to test the few

available theories for tidal bars. To set a frame of reference and link to

the successful application in river bars that occur upstream of estuaries,

we also include a theory for bars in rivers (Struiksma et al., 1985).

Our aim is to understand which factors influence bar patterns in the

stability analyses and to obtain hypotheses for bar dimensions and

braiding index in natural estuaries. Below, we first describe how linear

stability analysis generally works in bar theory. Subsequently, we detail

themainmodel components and compare the underlying assumptions.

We show how the predicted bar dimensions and braiding index depend

on the input parameters. After that, the results of all three theories are

compared for a range of velocities (0.5–2.0 m s−1) and channel widths

(50–4000 m) found frequently in nature. In a sensitivity analysis, we

systematically vary model input for Struiksma et al. (1985) and

Schramkowski et al. (2002), because only these theories were originally

applied to the full range of channel widths that are considered in this

study. For detailed descriptions of the model set-up or derivations of

the solutions, the reader is referred to the original papers.

The models are applicable to converging estuaries despite the as-

sumption of constant width because of what this assumption means

in the context of linear stability theory. The stability analyses of

Seminara and Tubino (2001) and Schramkowski et al. (2002) are local

models, valid under the assumption that horizontal length scales are

much smaller (i.e. an order of magnitude) than the length of the basin,

the tidal wavelength, and the length scale of width variations of the

basin (de Swart and Zimmerman, 2009). In other words, as long as the

length scale of the tidal bars ismuch smaller than the length of estuaries

and the tidal wavelength, and the channel width is not varying too

abruptly due to constructions or geological constraints, bar patterns

can be predicted for every point along an estuary, given the local geom-

etry and set of flow conditions at that point. Model predictions are thus

dependent on the local estuarywidth forwhich they predict bar pattern

formation. Therefore this is how we applied the theory to natural sys-

tems: we use the measured estuary width at the measured bar location

to predict the local bar pattern formation.

In all stability models, first the basic state is determined, which is a

channel without any bar patterns (Dodd et al., 2003). Second, a small

spatially periodic perturbation (h′) is applied to the bed, resulting in

local water depth variations that represent the initial bars and channels

(Fig. 4). The evolution of these patterns over time is determined. In lin-

ear stability analysis, it is assumed that the perturbation height h′ is

small with respect to the equilibrium water depth and is given by:

h
0
x; yð Þ ¼ ah0e

ωt cos
2πx

L

� �

cos
mπy

W

� �

ð1Þ

where ah′ is the amplitude of the perturbation, L is the wave length of

the perturbation and L/2 is thus the bar length, W is the width of the

channel and m is the cross-channel mode number. The growth rate of

a perturbation (ω) is in principle a complex number, but it has only a

real part in the studies discussed here. The growth rate ω determines

whether the configuration with perturbations persists (ω = 0), grows

(ω N 0) or disappears (ω b 0) for fixed model parameters. For each
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wave length L andmode numberm, the growth rate is determined. The

configuration with the highest growth rate determines the dominant

bar pattern,which ismost likely to evolve in the river or estuarine chan-

nel. Bar mode relates to the braiding index BI as

BI ≡
m−1

2
þ 1 ð2Þ

Here, we used the resulting analytical relations for Struiksma et al.

(1985), the numerical solution for Schramkowski et al. (2002) and the

data presented in Seminara and Tubino (2001, their Fig. 10).

2.1. Theory for bars in rivers

While many predictive theories for river bar dimensions are avail-

able (Schielen et al., 1993; Kleinhans and van den Berg, 2011), we

limit our review to bar theory of Struiksma et al. (1985), which proved

effective for a large dataset of various river patterns. On the basis of

Struiksma et al. (1985), Crosato and Mosselman (2009) derived a pre-

dictor for bar length and braiding index. Struiksma et al. (1985) calcu-

lated the adaptation length of flow (λw) and bed (λs), where λw is the

longitudinal distance needed for the water to adapt to a perturbation

of the bed and λs is the longitudinal distance needed for the down-

stream bed to adapt to a forced upstream bed perturbation. The ratio

λs/λw predicts whether bars dampen out or excite (Crosato and

Mosselman, 2009; Kleinhans and van den Berg, 2011). Crosato and

Mosselman (2009) calculated that for the theory of Struiksma et al.

(1985) the fastest growth rate ω occurs for:

λs

λw
¼

2

p−3ð Þ
ð3Þ

where p is the non-linearity of sediment transport (p= 4 for sand) and

λw and λs are given as:

λw ¼
1

2

h

c f
ð4Þ

λs ¼
h

mπð Þ2
W

h

� �2

f θð Þ ð5Þ

which is the equation by Struiksma et al. (1985), adapted for higher

mode bars (m N 1) (see also Parker, 1976), in which the transverse

bed slope function is given by

f θð Þ ¼
θmbs

rbs
ð6Þ

with parameters rbs (typically 0.56) andmbs (typically 0.5). θ is defined

as

θ ¼
τnl

ρs−ρð ÞgD50
ð7Þ

in which

τnl ¼ ρc f u uj j ð8Þ

where ρs is the sediment density, ρ is thewater density, h is the channel

depth, g is the gravitational constant, D50 is the median grain size, cf is

the friction coefficient, u is the depth-averaged river flow velocity, juj

the magnitude of the flow velocity and τnl is the non-linear bed shear

stress. Sediment transport consists of only bed load transport with neg-

ligible sorting effects: the equation of Engelund and Hansen (1967) was

used and adapted for bed slope effects.

Crosato and Mosselman (2009) reformulated the linear model of

Struiksma et al. (1985) to directly define an estimator for the number

of bars in cross section – rather than defining stable and unstable bar

configurations as was previously done by Struiksma et al., 1985. They

derived an expression for bar mode and bar length from Struiksma et

al. (1985). The mode is given by the floor to the nearest integer of

m ¼
W

hπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p−3ð Þ f θð Þc f

q

ð9Þ

The growing bed perturbation is harmonic in downstream direction

(Crosato and Mosselman, 2009), which results in an equation for bar

wavelength:

Lp ¼
4πλw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pþ 1ð Þ
λw

λs
−

λw

λs

� �2

−
p−3

2

� �2
s ð10Þ

2.2. Theory for bars in estuaries

Seminara and Tubino (2001) used a linear 3-dimensional model,

while Schramkowski et al. (2002) used a linearised 2-dimensional

(depth-averaged) model for bars. Both studies prescribed M2 tidal

flow velocities and used a rigid lid approximation, which implies that

only tide-induced flow velocities are taken into account while water

level variations are neglected. In contrast with Seminara and Tubino

(2001), Schramkowski et al. (2002) retained local inertia terms in the

momentum equations. The bottom was considered time independent

for timescales on the order of a tidal period. Seminara and Tubino

(2001) used the same expression for bed shear stress as Struiksma et

al. (1985) (Eq. (8)). Bed shear stress was linearised in Schramkowski

et al. (2002), such that the amount of dissipated energy by friction dur-

ing a tidal cycle is equal to the situationwith non-linear bottom friction:

τlin ¼ ρ
8

3π
c fU

� �

u tð Þ
	

	

	

	

	

	 ð11Þ

where U is a typical magnitude of flow velocity, assumed to be constant

(typically 1 m s−1) and juðtÞj is the tidal flow velocity over time.

Sediment transport consists of both bed-load and suspended-load

transport in Seminara and Tubino (2001). In contrast, Schramkowski

et al. (2002) only used the bed slope induced part of the bed-load

Fig. 4. Examples of the applied periodic perturbations, which in this case have the same

wavelength and different cross-channel modes or braiding indices.
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transport (Sb,SC) and calculated suspended load transport. In Seminara

and Tubino (2001), bed-load transport was calculated with the Meyer-

Peter and Müller (1948) equation and adapted for bed slope effects:

Q
→

b;ST ¼ Q
→

b;cur þ Q
→

b;bsl ð12Þ

inwhichQb,cur is the tidal current induced transport andQb,bsl is bed slope

induced, defined as

Q
→

b;cur ¼ 8 θ0−θc

 �1:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RgD50
3

q

ð13Þ

Q
→

b;bsl ¼ −Q
→

b;cur

W

2h

rbs
θmbs

0;

∂h

∂y

� �

ð14Þ

where R is the relative submerged density and ∂h
∂y

is the transverse bed

slope. See Seminara and Tubino (2001) for constitutive equations for θ′

and θc. Shear stress is calculated from flow velocity and skin friction

(van Rijn, 1984). For bed-load transport, Schramkowski et al. (2002)

only used the part that accounts for the bed slope effect:

Q
→

b;SC ¼ −Q
→

b;cur

W

2h

rbs
θmbs

∂h

∂x
;

∂h

∂y

� �

ð15Þ

in which ∂h
∂x
is the along-channel bed slope. Bed slope transport was inde-

pendent offlow conditions and channel geometry in Schramkowski et al.

(2002) and set to a constant value λ. For comparison (Section 2.3), we

tuned λ such that the bed slope effect is equal at peak tidal velocity for

both theories.

For suspended load, Schramkowski et al. (2002) used the advection-

diffusion equation of van Rijn (1993):

Ct þ uC−μCxð Þx þ vC−μCy


 �

y
¼ S ≡ α u2 þ v2


 �

−γC ð16Þ

where C is the volumetric depth-integrated concentration [m3/m3], μ is

the horizontal coefficient for sediment diffusion, S is erosionminus sed-

imentation,α is an erosion constant (typically 10−5 s m−1). The settling

parameter γ is equal to ws
2/kv, in whichws is the settling velocity (typi-

cally 10−2 m s−1) and kv is the depth-averaged vertical eddy diffusivity

(typically 0.09 m2 s−1). Seminara and Tubino (2001) used a similar

time-dependent equation for sediment concentration in 3D in which

horizontal dispersion is neglected. The major difference between

Seminara and Tubino (2001) and Schramkowski et al. (2002) is the for-

mulation of the sediment entrainment. In Seminara and Tubino (2001),

S is proportional to the difference between the local sediment concen-

tration and the near-bed concentration at equilibrium (Ceq in [m3/m3])

with the local flow. The equilibrium concentration is calculated with

van Rijn (1984):

Ceq ¼ 0:015
D50

0:01h

θ0

θc−1

� �1:5

R−0:3
p ð17Þ

where Rp is the Reynolds particle number, which is given as:

Rp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RgD50
3

ν

s

ð18Þ

where ν is the kinematic viscosity.

2.3. Comparison

For a fair comparison between Seminara and Tubino (2001) and

Schramkowski et al. (2002), it is necessary to determine the value of

the settling parameter (γ) and the erosion constant (α) for which the

sediment concentration is equal in both models. For γ, we used the

depth-averaged eddy diffusivity (kv) of Seminara and Tubino (2001)

and a constant settling velocity. Subsequently, α was chosen such that

the model is in morphological equilibrium for a steady flow (S = 0 in

Eq. (16)):

α ¼
γC

u2
ð19Þ

where C is the depth-integrated sediment concentration over depth h of

Schramkowski et al. (2002) for a certain flow velocity, given by

C ¼

Z h

0
Czdz ¼

Z h

0
Ceq exp

−ws

kv
z

� �

dz ð20Þ

where Ceq is the near bed sediment concentration of Seminara and

Tubino (2001) given by Eq. (17).

Bar width was in all cases determined as half the estuary width di-

vided by the braiding index. Furthermore, it should be remarked that

flow velocity for river models is constant and unidirectional while the

indicated flow velocity for estuaries is a peak velocity and bidirectional.

We calculated themaximumgrowth rate of perturbations for the the-

ory of Schramkowski et al. (2002) (SC) and compared thiswith the results

of Seminara and Tubino (2001) (ST) and the predictor derived from

Struiksma et al. (1985) by Crosato andMosselman (2009) (CM).We var-

ied the flowvelocities in CMand the amplitude of tidal flow velocity in SC

from 0.5–2.0 m s-1 and applied channel widths varying from 50–2000 m.

The default parameters of ST were used for comparison (Table 1).

The most important result is that bar length depends mainly on the

amplitude of tidal flow velocity in SC and ST, while in river theory it

also depends on river width (Fig. 5). All theories predict bar length in

the same order ofmagnitude for systemswith the samewidth and ampli-

tude of tidalflowvelocity (Fig. 6). CMpredicts bar lengths a factor 3 larger

than tidal theory for small channels. For wide channels (N103 m), bar

wavelength becomes independent of increasing braiding index (Fig. 5a,c).

Barwidth increaseswith estuarywidth for all theories.When the es-

tuary width exceeds the threshold for a higher bar mode, bar width re-

duces (Fig. 5). Predicted bar widths are 3–40 times shorter than bar

length (Fig. 5).

The braiding index increases with estuary width and width-to-

depth ratio (Fig. 5c,f) for SC and CM. For narrow channels, the braiding

index is 1, which is the alternate barmode. Forwide channels, the braid-

ing index increases with higher flow velocities and sediment mobility

(Fig. 5c,f). When a higher bar mode excites, bar length reduces until

the channel width is further increased.

Concluding, SC and ST predict that bar length increaseswith flowve-

locity, thus tidal excursion length. Channel geometry determines the

braiding index, with higher braiding indices for wider channels. Theory

also implies that relatively long and narrow bars form under high flow

Table 1

The values Default were used in the comparison of bar theory and sensitivity analysis.

Values are based on the defaults of Seminara and Tubino, 2001. Range indicates the range

over which was varied in the sensitivity analysis. Tidal frequency is not applicable in the

case of river theory.

Name Symbol Default Range Unit

Non-linearity sed. transport n 4 –

Friction coefficient cf 2.5 · 10−3 0.6–10 · 10−3
–

Density sediment ρs 2650 kg m−3

Density water ρ 1000 kg m−3

Median grain size D50 1 · 10−4 0.25–4 · 10−4 m

Kinematic viscosity ν 1 · 10−6 m2 s−1

Eddy diffusivity kv 0.09 m2 s−1

Settling velocity ws 1 · 10−2 Varied with D50 m s−1

Tidal frequency σ 1.4 · 10−4 0.35–5.6 · 10−4 s−1

Bed slope parameter rbs 0.56 0.14–2.24 –

Bed slope parameter mbs 0.5 –

Water depth h 5 2.5–40 m

Erosion constant α 1 · 10−5 s m−1

Estuary/river width W 1000 50–4000 m
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velocities in narrow channels, while wide and shorter bars form inwide

channels with low flow velocities. These results are partly in contrast

with the hypothesis of Dalrymple and Choi (2007) and river theory

that bar dimensions and braiding index relate to channel width. The

theoreticalmodels described here are comparedwith data of natural es-

tuaries in Section 4.4.

2.4. Sensitivity analysis

The default values and the range of varied values for the sensitivity

analysis are given in Table 1. In the comparison, we calculated erosion

constant α based on equal sediment concentrations in Seminara and

Tubino (2001) and Schramkowski et al. (2002). In the sensitivity analy-

sis, we set α to the default constant of Schramkowski et al. (2002),

which is 10−5 [s m−1].

The sensitivity analysis shows that predicted bar length and braiding

index are most sensitive to friction (cf) and channel geometry. Larger

friction increases braiding index and decreases bar length (Fig. 7a,b).

Increasing grain size (D50), and coupled increasing settling velocity, re-

sults in lower braiding indices and shorter bars (Fig. 7e,f). For SC, the

braiding index remains constant and the only effect is a decrease in

bar length (Fig. 7e,f). D50 mainly influences bed slope effect in CM,

which may explain a similar trend in sensitivity to D50 as to bed slope

parameter r. Increasing bed slope effect reduces the braiding index,

while bar length remains in the same order of magnitude (Fig. 7i,j).

When the braiding index shifts towards a lower value, bar length in-

creases. For constant braiding index and increasing bed slope effect,

bar length decreases.

We varied width-to-depth (aspect) ratio in three manners: (1) by

increasing channel depth while keeping width constant (Fig. 7c,d), (2)

by increasing width with constant depth (Fig. 7g,h) and (3) by increas-

ing width and depth according to the width and depth ratios found in

natural estuaries (Fig. 7m,n):

h ¼ 2:27W0:2 ð21Þ

Fig. 5. Prediction of bar length, bar width and braiding index by the stability analyses of Crosato and Mosselman (2009) (a, b, c), Schramkowski et al. (2002) (d, e, f) and Seminara and

Tubino (2001) (g, h, i). Note that the scale of colour bars differs between theories and the range of channel widths shown for Seminara and Tubino (2001) is smaller.
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Here, we used an estimation of the width-averaged estuary depth

and the measured local estuary width of the natural estuaries in our

dataset as described in Section 3.2. Thedata are given in the Supplemen-

tary material. Fig. A.17c shows the data used for this regression. The

goodness of fit (R2 = 0.17) is sufficient for the purpose of a sensitivity

analysis, but explains only part of the variance in estuary geometry as

indicated by the confidence limits that plot approximately a factor 3

above and below the regression (Fig. A.17c).

Increasing the aspect ratio results in all cases in higher braiding indi-

ces. The braiding index decreases to 1 when width is fixed and depth is

increased (Fig. 7d). Similarly, the braiding index is very sensitive to in-

creasing width when depth is constant (Fig. 7h). When width and

depth are coupled (Eq. (21)), the braiding index still increaseswith larger

aspect ratios (Fig. 7n). Bar length increaseswith increasingdepth (Fig. 7c).

Tidal period and tidal current velocity both influence the tidal excur-

sion length. Therefore,we assessed the sensitivity to tidal period and cur-

rent velocity in two ways (Fig. 7k,l,o,p). The dashed lines in Fig. 7k,l,o,p

show the cases for which either tidal period or current velocity was var-

ied, thus allowing the tidal excursion length to vary. In the other cases, a

change in tidal period was compensated by an opposite change in cur-

rent velocity in order to exclude the possible effect of varying tidal excur-

sion length (solid lines in Fig. 7k,l,o,p). Increasing tidal current velocities

resulted in lower braiding indices and longer bars in all the cases men-

tioned above. This includes the cases where tidal excursion length was

kept constant by decreasing tidal period when tidal current increased

(Fig. 7k,l,o,p). Braiding index was insensitive to tidal period (Fig. 7p).

Increasing the tidal excursion length by increasing the tidal period only

resulted in longer bars when tidal current velocity was kept constant

(Fig. 7o). Therefore, we concluded that bar dimensions are determined

by tidal current velocity rather than tidal excursion length.

3. Data collection

3.1. Selection of estuaries

Satellite imagerywas used tomeasure the shapes and dimensions of

190 bars in 45 estuaries all over the world (see Appendix A). We select-

ed 45 funnel shaped alluvial estuaries with substantial tidal sand bars in

order to be able to visually measure bar dimension from aerial images.

Ideally, only laterally unconstrained estuaries sensu Townend (2012)

would have been selected, analogous to the approach for rivers of

Kleinhans and van den Berg (2011), excluding estuaries confined by ge-

ology, dams, groynes, artificial cutoffs or other local human interference.

However, the sparsity of data on the hydrological and physical proper-

ties forced us to select the estuaries for which data were available. The

dataset includes some estuaries with local constrains by human inter-

ference or by bedrock geology. In these cases, it was recorded in the

dataset (see Appendix B). In addition, the presence of vegetation and

the climate were recorded. All estuaries, except one, were located in

temperate climate. Vegetation was present on 29 out of 190 tidal bars.

3.2. Data collection

Based on Google Earth images (accessedMay–September 2015), we

classified 190 bars and measured their dimensions. We used four clas-

ses: linear, u-shaped, compound and sidebars. The former three classes

were in most cases completely surrounded by water, whereas sidebars

were not. Bars were classified as sidebars if the length over which the

bar was connected to the side of the estuary was larger than the bar

width. Long bars with a relatively small width were classified as linear.

The compound class was assigned when the bar was neither linear nor

u-shaped (for examples, see Figs. 1 and 3).

For all bars we measured maximum bar length (l), maximum bar

width (w), perimeter and surface area (Fig. 9). Furthermore, we record-

ed the along-channel distance from the estuary mouth, the local width

(W) of the estuary and the local braiding index (BI). In this study, local

estuary width is defined as the width between the vegetated marshes

or banks at the location of the measured bar including the sand bars.

Moreover, we used this definition, because the timescale over which

tidal marshes form is much larger than the timescale for the

morphodynamic equilibrium of the bars in cross-section of the estuary

(Kleinhans et al., 2015a). Measured local width is thus independent of

the tidal elevation. On the other hand, measurements of individual

bars were dependent on tidal elevation.

Bars were generally measured from aerial photographs between

mean sea level (MSL) and low water level (LWL). The precise water

Fig. 6. Predicted bar length (a, b) plotted as a function of estuarywidth (a) or Shields sedimentmobility parameter (b) for a range of velocities (a) or channelwidth-to-depth ratios (b). The

ratio between bar length and channel width for rivers (Leopold and Wolman, 1960) is drawn for comparison.
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level with respect to mean sea level was unknown for the moment at

which an aerial photograph was taken. To investigate the likely mea-

surement error arising from the unknown flow stage, we quantified

the possible error for individual bars using high-resolution bathyme-

tries of three estuaries. The following estuaries were used: Western

Scheldt (NL), Dovey estuary (Wales) and Broad River estuary (USA).

Within each estuary, hypsometric curves were calculated for four bars

that were surrounded by channels and troughs. The root of the total

area above a given elevation was used to obtain a characteristic mea-

surement of length for each bar (Fig. 8a).We calculated the typicalmea-

surement of length for each bar at the water level exactly between MSL

and LWL (Fig. 8b). The deviation of measurements taken at MSL or at

LWL from the typical measurement of area0.5 gave the uncertainty in

bar measurements (Fig. 8c).

Bar height was measured in the three estuaries for which high-reso-

lution bathymetrywas available and eight additional estuaries in theUK

for which lidar data are available from the UK government. These addi-

tional estuaries could not be used to study the sensitivity to water level

variations, since accurate lidar data often do not extend to larger water

depths. We calculated the total bar height (hbar) as the sum of channel

depth and bar height above mean sea level for the estuaries for which

bathymetry was available. Channel depth was defined as the average

local depth below mean sea level. Furthermore, we recorded the stan-

dard deviation of bar height above mean sea level.

Hydrological and physical properties were retrieved from the En-

hanced UK Estuaries database (Manning, 2007), the National Estuarine

Eutrophication Assessment Estuaries Database (USA, ian.umces.edu/

neea), National Ocean Service's Estuarine Bathymetry (USA,

estuarinebathymetry.noaa.gov) and in some cases specific data from a

case study (Dalrymple et al., 1990; Jeuken et al., 2003; Billy et al.,

2012; Wolanski, 2014; Alam et al., 2014). These data include typical

flow velocities and estimates of tidal prism. In case of the UK Estuaries

database, estimates of tidal prismwere based on approximatemeasure-

ments of high water volume and low water volume (Townend, 2005;

Manning, 2007). Townend (2005) assessed the likely error arising

from their approach and found that tidal prism is on average

overestimated by 30%. Bathymetry and lidar data were obtained from

Rijkswaterstaat (NL), Aberystwyth University (Wales) and the National

Ocean Service's Estuarine Bathymetry (USA).

3.3. Data processing

Only the non-amalgamated bars should be compared with the pre-

dictions from linear stability analyses. Therefore, measured bar widths

were partitioned by the number of barb channels that intersect the

bar (Fig. 9). The barbs are traces of the amalgamation or incipient split-

ting of bars. In the framework of the theoretical approach (Fig. 4), both

sedimentary and erosional mechanisms are indicative of the natural

Fig. 7. Sensitivity analysis of bar length and braiding index as a function of variables and parameters. Blue lines (SC) are calculated with Schramkowski et al. (2002) [fastest growing

configuration in Eq. (1)] and red lines (CM) are calculated with Struiksma et al. (1985) with the braiding index derived by Crosato and Mosselman (2009) [Eqs. (9)–(10)].
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braiding index that develops in a system. Schuurman et al. (2013)

showed that theory predicted the length of amalgamated bars well,

but overpredicted the braiding index in case of unpartitioned amalgam-

ated bars. Therefore, we divided the maximum width of side bars and

compound bars by the sum of intersecting and surrounding channels

(Fig. 9). Similarly, for u-shaped bars this means dividing the maximum

measured width by 2 (Fig. 9). We calculated the partitioned bar width

(wp) as:

wp ¼
w

c−1ð Þ þ bþ s
ð22Þ

where c is the number of surrounding channels, b is the number of barb

channels and s is 1 in case the bar type is sidebar and 0 in all other cases.

Based on the bar location, we estimated the bar specific or local tidal

prism, which is the total volume of water passing the tidal bar over half

a tidal cycle. To obtain this, the approximate surface area upstream of

the bar location was calculated and divided by the total surface area of

the estuary. Consequently, the multiplication of this factor with the

total tidal prism gave a bar specific estimate of the tidal prism.

For cases without bathymetry, we estimated width-averaged estu-

ary depth at the bar locations. Savenije (2015) found that the depth

along 28 estuaries often showa linear or almost linear profile. This is ev-

idence that a linear interpolation between estuarymouth and upstream

river is a reasonable estimate and in this case the only possible estimate

for lack of data. Depth at the estuary mouth was available in the

Enhanced UK Estuaries database (Manning, 2007) and depth at the

mouthwasmeasured from bathymetry when available. Other estuaries

were left out this analysis. River depth was calculated based on hydrau-

lic geometry for rivers (Leopold and Maddock, 1953; Hey and Thorne,

1986):

h ¼ bQq ð23Þ

where Q is the river discharge and b and q are constants, where b is 0.33

and q is 0.35. Qwas derived from the databases mentioned above. Mea-

sured estuary depth at bar locations was compared with the estimated

depth, which showed that all predictions are within a range of 10%

from the measured value. The Western Scheldt was an exception, with

channels being 50% deeper than predicted as a result of the dredging ac-

tivities. Given the difficulties and uncertainties in the prediction of estu-

ary depth (Gisen and Savenije, 2015; Savenije, 2015) and the lack of

detailed data on estuarine geometry, our approach seems a reasonable

first step to assesswhether a relation between bar dimensions and estu-

ary depth may exist.

In the results section, regressions and confidence limits are given for

the presented relations. Linear regressions were calculated minimising

the residuals in both the x- and y-directions, which it is themost robust

and conservative method. Confidence limits are given for two standard

deviations from the regression. The legends show the approximatemul-

tiplication factor that the confidence limits plot higher or lower than the

trend.

Fig. 8. (a) Hypsometric curve of bar 1 in the Broad River estuary. Bar numbers indicated in the legend correspond to bar numbers in the supplementarymaterial. The root of the total area

above a given elevationwas used as a characteristicmeasurement of length on the x-axis. (b) Elevation normalised by the tidal amplitude. A normalised value of 1 indicates thewater level

duringmeanhighwater level. Part of the barmaybe elevatedhigher and only beflooded during spring tides. The dashed yellow lines indicate the range ofmeasurements possible between

mean sea-level and lowwater level. The averagemeasurement of Area0.5 is indicated by a solid line. (c) Approximate factor ofmisprediction as a function of normalisedwater level for the

full range of surface elevations. The likely error in measurement arising from the unknown flow stage is approximately a factor 2 for the Broad River estuary (d), Mersey estuary (e) and

Western Scheldt (f).
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4. Results

In this section, we first present empirical relations between bar

length, width and height. Then we explore relations between bar di-

mensions and braiding index with hydrodynamic and geometrical

properties of the estuaries. From bathymetric data we check effects of

water level variations on bar shape and braiding index. Subsequently,

the theoretical models are compared with the data. Fig. A.17 shows

the hydraulic geometry relations in the dataset.

4.1. Bar shapes and dimensions

We visually classified four different types of bars based on their

shape and connection with the estuary banks or marshes: linear, u-

shaped, side- and compound bars. All bar types occur for the full range

of measured dimensions: 50–30,000 m long and 20–20,000 m wide

(Fig. 10a).Width-to-length ratio relates to bar type: linear bars are gen-

erally 3 to 15 times longer than their width, while u-shaped and com-

pound bars are more circular or square with bar lengths of 1 to 5

times their width (Fig. 10a). Sidebars occur in width-to-length ratios

of 1 to 15.

Fig. 10b shows that the range of width-to-length ratios narrows con-

siderably when partitioned bar width is used. As a result of the similar-

ity collapse, the range of all width-to-length ratios is equal to the

dimensions found for linear sand bars:

l ¼ 6:9wp ð24Þ

which is valid over more than two orders of magnitude (Fig. 10b). The

similarity collapse supports the hypothesis that the amalgamation or in-

cipient splitting of bars can be used to partition compound bars. A sim-

ilar relation was found by (Kelly, 2006) for braided rivers:

l ¼ 4:95w0:97 ð25Þ

This implies that all bar classes in estuaries have approximately the

same shape as river bars after partitioning, with sand bars in estuaries

being on average slightly longer (6.9wp) than river bars (4.95w).

Fig. 11a,b shows that bar dimensions appear to be interrelated. We

found that bar length could be predicted within a factor 5 when bar

height is known (Fig. 11b). The goodness of fit for bar width as a func-

tion of bar height is much lower and the scatter is larger (Fig. 11a).

Fig. 9. Description of four types of bar shapes in estuaries from images (left panels) to bar length and width measurement and recognition of individual bars and barb channels that

compose the bar complex in planform (middle panels) and cross-section (right panels). Partitioned bar width was calculated with Eq. (22).
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The three-dimensional shape of bars in estuaries is best

characterised with half an ellipsoid (Fig. 11c). This results from calcula-

tions of bar volume (V), based on measurements of length (l), width

(wp) and height (hbar):

1

2
� Vellipsoid ¼

1

6
πlwphbar ð26Þ

Calculating bar volume as a square boxwould lead to an overpredic-

tion of bar volume, while adapting the shape of half a cylinder would

lead to an underprediction. However, when the ellipsoid is used as a

characteristic shape, the calculated bar volume predicts bar volume

well within a factor three (Fig. 11d). Either bar length, width or height

could be used to predict bar volumes (Fig. 11e,f). The prediction is

most accurate when bar length is used:

V ¼ 0:08l2:3
ð27Þ

We found that u-shaped bars form in both ebb and flood direc-

tions and that linear and compound bars have often steep edges on

both their seaward and landward side. Ebb- and flood-dominated

currents typically produce mutually evasive tidal channels

(van Veen, 1950; Kleinhans et al., 2015b) that often end in barb

channels. Most of these features seem to be unique for tidal environ-

ments, which raises the question: to what extent are the forming

mechanisms of bars in estuaries similar to the mechanisms that

form bars in rivers?

4.2. Relation between bar dimensions and estuarine properties

In general, we found that bar dimensions scale with estuary dimen-

sions, in particular with width and depth. Bars are clearly longer in

wider estuaries and in higher tidal current velocities (Fig. 12a). Bar

length varies from 3 times smaller to 3 times larger than the estuary

width (Fig. 12c). Part of this spread is the result of two trends. First,

bar length normalised with estuary width decreases with estuary

width-to-depth (aspect) ratio, where bar length equals estuary

width for an aspect ratio of about 200 (Fig. 12e). Second, bar length

is largest for higher tidal current velocities (Fig. 12a,d). Nevertheless,

bar length is independent of tidal current in the range of 0.8 to

1.2 m s−1 (Fig. 12d). Moreover, estuary width correlates with bar

length within this range (Fig. 12a,c). Bar length correlates better

with estuary width than with peak tidal current velocity, which is

described by:

l ¼ 0:97W0:87 ð28Þ

Furthermore, the bar shape correlates with estuary width: sidebars

occur in smaller channels and channels with a lower aspect ratio,

while u-shaped bars occur on the higher end of the widths and aspect

ratios (Fig. 12c,e).

Bar length scales with tidal prism (Fig. 12f) with a goodness of fit of

0.48. Nevertheless, the approximatemultiplication factor that the confi-

dence limits plot higher or lower than the regression indicates scatter of

an order of magnitude. The scatter occurs for two reasons: half of the

tidal prism data was retrieved from the dataset of Manning (2007), for

which Townend (2005) calculated that the error may be approximately

30%. The second reason is that we estimated the local tidal prism based

on the location of the tidal bar within the estuary. These results thus

provide an initial indication of the relation that is present between

tidal prism and bar dimensions. Possibly, the use of measured surface

area in combination with tidal amplitude would result in a better pre-

diction of the along-channel variation in bar patterns, but this is beyond

the scope of this paper.

The braiding index mainly depends on estuary width and aspect

ratio (Fig. 12b). For equal tidal currentmagnitude, the braiding index in-

creases with estuary width. However, for the same estuary width, the

braiding index may vary between 1 and 5. Local width is thus insuffi-

cient to predict braiding index.

For all measured estuaries, bar height equals estuary depth within a

factor 1.5 (Fig. 12g). In addition, the standard deviation of bar height

falls within the tidal range of the estuary. For low estuary depths, the

Parrett estuary (UK) seems an outlier with a tidal range of almost 8 m

at the mouth. However, in this case the estuary is small (width 100–

500 m and depth approximately 4 m), resulting in a much smaller

tidal range (2 m) within the estuary.

Fig. 10. (a) Relation between bar length and bar width. (b) Same, with partitioned width after division based on the number of barb channels. The Kelly (2006) relation for braided rivers

(Eq. (25)) and the line of equality are drawn for comparison. Confidence limits are given for two standarddeviations from the regression. The legend shows the approximatemultiplication

factor that the confidence limits plot higher or lower than the trend.
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4.3. Dependence of bar shape and braiding index on water level

The braiding index and bar shape depend strongly on water level as

illustrated by Figs. 13 and 14. For example the Western Scheldt shows

how bar type may alter from sidebar to linear bar in the transition

from low water to higher water (Fig. 13c,e,g). Length-to-width ratios

of non-partitioned bars support this. It may vary from 2.3 at low

water, to 5.5 at higher water and 2.9 at mean sea level. Other estuaries

show similar trends. For example the Broad River estuary shows a u-

shaped bar with a length-to-width ratio of 2.6 that alters to a linear

bar with a ratio of 15.6 for increasing water levels (Fig. 13d,f,h). In

addition, the braiding index changes: from 1.5 to 3 and at mean sea

level to 2 inWestern Scheldt and from2.5 to 2 in theBroadRiver estuary

(Fig. 13b,d,f). These results imply that u-shaped bars and sidebars may

occur as linear bars under higher water levels and that the braiding

index is highly sensitive to water level in imagery.

Fig. 14 shows the variation of bar shape and braiding index at differ-

ent bar locations in three estuaries forwhich bathymetry datawas avail-

able. Since estuary width is constant for different water levels, the

variation of bar shape and braiding index at a specific bar location can

be seen in the vertical aligned markers. The variation caused by water

level alterations over a tidal cycle spans almost an order of magnitude

for both length-to-width ratio and bar length (Fig. 14). This is similar

to the variation that occurs within our dataset of all 190 bars. Similarly,

the variation of braiding indices that occurs for a specificwidth is almost

the same for the full dataset as for one location at different water levels.

Nevertheless, the measurements from aerial photographs were

taken between mean sea-level and low water level. Within this range,

Fig. 11. (a, b) Relation between (a) bar width and bar height and (b) bar length and bar height. (c) Comparison of measured bar volume from bathymetric datawith predicted bar volume

for idealised bar geometries: half an ellipsoid (Eq. (26)), half a cylinder and a square box. The closest agreement is obtainedwhen bars are represented as half an ellipsoid. (d)Measuredbar

volume compared with predicted bar volume using half an ellipsoid for different bar types. (e) Predicted bar volume as a function of bar length. (f) Bar volume as a function of bar height.

Confidence limits are given for two standard deviations from the regression. The legend shows the approximate multiplication factor that the confidence limits plot higher or lower than

the trend.
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the uncertainty is limited to about a factor of two (Fig. 8d,e,f), which is

reasonable given the scatter in the full dataset of estuarine bars.

Fig. 8d,e,f shows that apparent bar dimensions are particularly sensitive

towater level abovemean sea level, when they are increasingly flooded.

This uncertainty is smaller than the degree towhich the bars collapse on

a trend with limited scatter, before and after they were partitioned.

4.4. Comparison of theory and data

We compared the datawith bar length predictions from the theoret-

ical model (Schramkowski et al., 2002) for the same width, depth and

tidal current velocity as for the gathered dataset (Fig. 15). We assumed

here, that all other estuarine properties such as sediment properties and

bottom roughness are equal for all estuaries for a lack of more detailed

data (see default values in Table 1). Theoretical model results of bars

are in the same order of magnitude as natural estuaries. For the same

range of estuary dimensions as the natural estuaries used in this

study, theory predicts bar lengths of 500–30,000 m. Both theory and

data show bar lengths of 3–40 times bar width (Figs. 5 and 10).

Bar theory predicts bar length within the same order of magnitude

in case of large bars, which are tens of kilometres long (Fig. 15a,b). In

contrast, the length of shorter bars is overpredicted by oneor two orders

Fig. 12. Bar dimensions as a function of estuarine dimensions and flow characteristics. (a, b) Lack of relation of tidal velocity amplitude and bar properties. Bar length as a function of local

estuarywidth (c), tidal current velocity (d), estuarywidth-to-depth ratio (e) and tidal prism (f). (g) Bar height as a function of local water depth. Error bars are one standard deviation and

colour indicates tidal amplitude. (h) Bar length against estuary depth. Confidence limits are given for two standard deviations from the regression. The legend shows the approximate

multiplication factor that the confidence limits plot higher or lower than the trend.
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of magnitude. In all cases, bar theory predicts bar lengths in the order of

the tidal excursion length (Fig. 15c), while data shows bar length to be

up to an order of magnitude smaller. Surprisingly, tidal theory of

Schramkowski et al. (2002) predicts bar length reasonably well when

the aspect ratio is assumed to be 2000 for all estuaries (not shown

here). This shows that the theory is not capturing the observed trends,

or that the theory is not valid for fully developed bars, unlike the suc-

cessful application of river bar theory to fully developed patterns

(Kleinhans and van den Berg, 2011).

For aspect ratios below 100, the bar theory predicts a braiding index

of 1 (Fig. 15d). In natural estuaries a range of braiding indices between 1

and 3 occurs for aspect ratios between 10 and 100. Bar theory predicts

fairly similar braiding indices for aspect ratios higher than 100. Bar

theory thus underpredicts the braiding index for relatively narrow and

deep estuaries. Moreover, the quality of bar length prediction also in-

creases for systemswith a high aspect ratio or a large width (Fig. 15a,b).

5. Discussion

Below,wewill first compare the range of bar shapes and dimensions

that occur in natural estuaries with results from studies on river bars

and laboratory scale-experiments. Thereafter, we will compare the re-

sultswith hypotheses fromphysics-basedbar theory and previous stud-

ies, which enables us to assess the usability of theoretical models for

prediction of real world bar patterns. Then, we link the bar dimensions

with hydrodynamic and geometrical properties of estuaries. Finally, we
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describe themajor implications for reconstruction of bar architecture by

geologists and for future studies on bar patterns.

5.1. Bar dimensions in data and theoretical models

We found that bar shapes and dimensions in natural estuaries are

similar to bars in braided rivers (Kelly, 2006) and in laboratory scale-ex-

periments (Fig. 16). Bars in estuaries are on average 6.9 times longer

than their width, which is more elongated than bars in rivers, where

bars are 4.95 times longer than their width. We obtained this result

after partitioning of the barwidth based on thenumber of barb channels

(Fig. 9). Before partitioning (Fig. 10a), bar lengths are on average 3.3

times their width to the power of 0.9, which is very similar to the rela-

tion found for model results of braided rivers (l = 2.98w) (Schuurman

et al., 2013).

Our results are in good agreement with studies on river bars after

considering the difference in methodology for measuring bars (Kelly,

2006; Schuurman et al., 2013). Kelly (2006) mainly measured bars as

single linear bars without intersecting channels, while Schuurman et

al. (2013) recorded bar length andwidth of full bar complexes including

cross-bar channels. They found that river bar length is well predicted by

theoretical models, while the braiding index is overpredicted in case of

amalgamated braid bars. The methodology of Schuurman et al. (2013)

resembles ourmethodology before partitioning,whereas themethodol-

ogy of Kelly (2006) is similar to our methodology after partitioning bar

width.

Until now, the forming mechanism of mutually evasive channels is

unknown. As an example, we describe three theories for the formation

of a u-shaped bar. U-shaped bars are better developed in estuaries

than on open coast. For that reason, Wood (2004) hypothesised that

these bars only form when the ebb- and flood-dominated channels

are well-developed. In shallow-water settings, sandbanks spread later-

ally, merge with each other, and become dissected by ebb- and flood-

dominated channels. Potential explanations for the formation of a u-

shaped bar are (1) one current depositing sediments in a fan shape,

while the other current evades the fan, (2) a tidal channel forming an

unsuccessful chute cutoff and (3) linear bars connecting by lateral mi-

grations (Sambrook Smith et al., 2006; Dalrymple and Choi, 2007).

Furthermore, we found relations between bar dimensions and rela-

tions with bar volume (Eq. (24), Figs. 10–11). In principle, it should be

possible to predict bar length and width with bar height. Nevertheless,

predictions may be off by an order of magnitude due to the scatter

and as indicated by the lower R2 values. Bar volume is best represented

as half an ellipsoid (Fig. 11c), which allows to predict bar volumewithin

a factor 3 if all bar dimensions aremeasured (Fig. 11d). Prediction of bar

volumewith bar lengthworks better (Eq. (27), Fig. 11e) than prediction

with bar height (Fig. 11f). This suggests that bar volume may be

mispredicted by an order of magnitude when bar height from a single

outcrop or drilling core is used.

Wood (2004) collected bar width and height from geological out-

crops and presented data on tidal ridges in open oceans, river mouths,

heads of bays and tidal coasts (Off, 1963). For geological outcrops,

Wood (2004) found bar heights ranging from 1.4–6.8 m and bar widths

from 380 to 1800 m. For the modern tidal sandbank data (Off, 1963),

Wood (2004) found typical median values for bar length (12 km),

width (1.6 km) and height (9.2 m). The data we collected for estuarine

systems consist off considerably smaller bars: median length is 1.1 km

and width is 0.3 km. The variation in bar height is very similar in our

dataset,with amedian of 8.6m. The largest bars in our dataset have sim-

ilar dimensions as the smallest bars in the dataset of Off (1963). This

may be explained by the environment inwhich the data were collected.

Many bars measured by Off (1963) were collected in offshore environ-

ments, such as bars in the northern end of the Persian Gulf, which also

means that they were formed by a different mechanism (Dyer and

Huntley, 1999). In contrast, our data is limited to bars within estuarine

systems, where bars are significantly smaller. Nevertheless, the trends

on length-to-width ratios of bars are very similar in both datasets.

Bars inOffs dataset show slightlymore elongated shapes than bars in es-

tuaries with lengths on average 9.9 times longer than their width.

5.2. Applicability of the theoretical models

Given similar flow velocities in a large range of estuary scales, bar

theory consistently overpredicts bar dimensions by an order of magni-

tude in the case of small estuaries. Neither imposing aspect ratios of nat-

ural estuaries (Fig. 16, Eq. (24)) nor using a constant depth results in

well-predicted bar dimensions. Better predictions were found for the

braiding index which depends mostly on local channel aspect ratio in

the theories. We conclude that the theory underpredicts the strong de-

pendency of bar length and braiding index on estuary width as found in

our data and for rivers.

Fig. 14. The dataset with 190 bars from this study, compared with the variation in bar length (a), bar width (b) and braiding index (c) occurring in three estuaries due to water level

variations. Vertically aligned circles represent one bar for different water levels, where colour indicates water level above MSL normalised by tidal range.
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We assumed that properties such as sediment properties and bot-

tom roughness are equal for all estuaries, which in principle may

cause a misprediction of bar properties. Nevertheless, the sensitivity

analysis showed that bar length is rather insensitive to grain size, bed

slope effect and estuary width in tidal theory. Bed slope effect only has

a minor influence on the braiding index, while estuary width clearly al-

ters the braiding index (Fig. 7). Only the friction coefficient may influ-

ence bar length such that it alters by an order of magnitude. Longer

bars are predicted for lower friction. In conclusion, theoretical model

predictions are only slightly sensitive to the default parameters as spec-

ified in Table 1, meaning a rather general validity of our results.

An important assumption in linear theory is that the perturbations

have a small amplitude relative to water depth, to avoid nonlinear ef-

fects becoming important. This means that both agreement and mis-

match between data and theory can be due to a problem in the theory

and due to deviations between incipient bars and fully developed

bars. For rivers, bar theory works quite well with accurate bar length

and braiding indices despite the full nonlinear development of the

bars, which can suggest that something similar should hold for bars in

estuaries if there are sufficient similarities in the processes. However,

we found very large deviations between trends and magnitudes in the

data and the predictions. Future testswith numericalmodels and exper-

imentsmay showwhether incipient bars are greatly different from fully

developed bars. This means thatwe presently lack understanding of the

formative mechanism of sand bars in estuaries.

5.3. What determines bar properties?

Bar length is often much shorter than tidal excursion length and bar

length is independent of the amplitude of tidal current in our dataset, in

contrast with hypotheses from previous theory (Seminara and Tubino,

2001; Schramkowski et al., 2002). So the hypothesis that bar length de-

pends on system width – which was proposed in river theory

(Kleinhans and van den Berg, 2011) and suggested for tidal systems

(Dalrymple and Rhodes, 1995; Seminara et al., 2001; Dalrymple and

Choi, 2007) – is more appropriate for tidal systems than the hypothesis

from tidal theory, which states that bar length depends of the amplitude

of tidal flow velocity. Previous authors proposed for bar length a ratio of

6–10 times channel width in tidal systems (Seminara et al., 2001) and 6

times channelwidth for tidal creeks (Dalrymple and Rhodes, 1995). Our

Fig. 15.Comparisonof datawith theoreticalmodel results as obtained from the theoreticalmodel of Schramkowski et al. (2002)with the samewidth, depth and tidal current velocity as for

the data.
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data suggests that bar length for estuaries may rather be of the same

magnitude as the estuary width (Eq. (28)).

The dataset with tidal bars includes some constrained and vegetated

bars. For rivers with meandering, where floodplain formation is impor-

tant for the pattern, that would have been a problem (Kleinhans and

van den Berg, 2011). However, the dimensions of estuarine sand bars

are related to estuary width, regardless how that width came about.

For estuaries, the effects of constraints and vegetation on bar shapes

and dimensions are thus undiscernible (Fig. A.18).

The Brahmaputra River showed a power relation betweenbar length

and river discharge (Ashmore, 2001). Our data resulted in a broad brush

relation for a similar relation for bar length in estuaries: on average larg-

er bars occur in estuaries with larger local tidal prisms (Fig. 12f). To cap-

ture the along-channel variation in bar patterns within an estuary, we

may require a more accurate estimate of the local tidal discharge or a

bar specific estimate, which equates to the upstream tidal prism plus

any river discharge. A possible estimation could bemade with the estu-

ary shape and tidal range, sincewe often lack data on tidal prisms or the

quality of these predictions is low (Townend, 2005).

Field observations and numerical model results for estuaries imply

that more braided bars form when the aspect ratio increases

(Dalrymple and Rhodes, 1995; Hibma et al., 2003; Toffolon and

Crosato, 2007). As a threshold, an aspect ratio of approximately 100 is

suggested for the transition from alternate bars to multiple bars

(Dalrymple and Rhodes, 1995; Hibma et al., 2003). Both theoretical

models and data in this study show that the braiding index increases

with increasing estuary width and increasing aspect ratio (Figs. 5 and

7). This is similar to trends found in river theory, where aspect ratio is

considered the major control on the braiding index (Struiksma et al.,

1985; Schielen et al., 1993; Hibma et al., 2003; Kleinhans and van den

Berg, 2011). Bar theory for tidal systems predicts that the braiding

index depends on tidal current velocities for wide channels and that

bar length reduces with higher braiding indices, which does not agree

with our data.

5.4. Applications

Geological architecture of tidal bar dimensions and thus reservoir

size has been estimated with themedian, 10th percentile and 90th per-

centile of modern tidal systems (Wood, 2004), which is rather inaccu-

rate because this assumes independence on estuary dimensions and

properties of tidal flow. We found that bar dimensions in estuaries are

an order of magnitude smaller than the bars in the dataset of Off

(1963), except for bar height.

However, the surface metrics of tidal bars that we collected cannot

directly be linked to the subsurface metrics without relying on an

empirical preservation ratio between feature height determined from

surface morphology and subsurface architecture (Allen, 1984; Paola

and Borgman, 1991; Bridge and Best, 1997; Straub et al., 2009; Ganti

et al., 2011). Typical preservation ratios for ripples, dunes and river

bars are 0.1–0.3 (Storms et al., 1999; Blom and Kleinhans, 2008; van

de Lageweg et al., 2015). Although such generalisations are likely to

extend to tidal systems, there clearly is a need for further study for

application in process-driven reservoir characterisation.

Our analyses showed which factors determine bar dimensions and

braiding index. These factors are mainly related to estuary dimensions,

for which we have no predictors yet. Previous studies hypothesised

that bar height increases with the lateral distance between bars

Fig. 16. Comparison of bars in our dataset with theoretical predictions of Schramkowski et al. (2002), numerical models and scaled laboratory experiments across six orders of magnitude.
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(Allen, 1968), which increases with water depth according to

Huthnance (1982). From these relations, one can derive an expression

for the braiding index and bar width as a function of water depth. How-

ever, these relations would conflict with the hypotheses of Dalrymple

and Rhodes (1995), who suggested that narrower banks typically

occur in deeper channels. Swift and Field (1981) also documented a sys-

tematic decline in the length and width of tidal sandbanks as water

depth increases. In short, we require a predictor for estuary width,

such as the reference width in river systems (Kleinhans and van den

Berg, 2011). Consequently, similar empirical bar pattern predictors

maywork successfully for estuaries, such as the potential streampower.

Future experiments and numerical modelling will allow us to sys-

tematically vary initial and boundary conditions to explore further

what determines bar patterns. The empirical relations provided here

will form a reference frame for comparison to experiments, analytical

and numerical models and provide an estimate of bar dimensions

when limited data is available. Additionally, an understanding of what

determines the equilibrium bar pattern will enable us to study the evo-

lution of sand bar patterns over time.

6. Conclusions

To investigate tidal bar patterns we collected a dataset on sand bar

shapes and dimensions in funnel-shaped alluvial estuaries, mainly lo-

cated in the USA and Europe. Comparison with braided river data

shows that bars in estuaries are similar but 30% more elongated, being

on average 6.9 times longer than their partitioned width. Bar height in

estuaries approximates the local estuary depth. Bar shapes in estuaries

show unique features, such as the mutually evasive ebb and flood tidal

channels, but in other aspects resemble river bars. However, until

their formative mechanisms are better understood, it remains unclear

to which extent linear, u-shaped, side- and compound bars in estuaries

are similar to unit and compound bars in rivers. U-shaped, side- and

compound bars are on average 2–3 times wider than linear bars,

which is explained by barb channels, which may either be interpreted

as remnants of cross-bar channels or of the amalgamation of smaller

bars. After dividing up the bars at the barb channels, we found a similar-

ity collapse of all bar types for the length-to-width ratio.

We tested a linear stability theory for bar properties in which pre-

dicted bar length strongly depends on the amplitude of tidal current

or tidal excursion length. Measured bar dimensions, in contrast, show

the strongest relation with estuary width. Given that estuaries of a

wide range of sizes only exhibit a narrow range of flow velocities, the

bar theory of Schramkowski et al. (2002) predicts bars of similar sizes

regardless the size of the estuaries. In particular, the theory overpredicts

bar dimensions in small estuaries by an order of magnitude. The theory

underpredicts the strong dependency of bar length and braiding index

on the estuary width as found in the data and for rivers. Better predic-

tions were found for the braiding index which depends mostly on

local channel aspect ratio.We present empirical relations for bar dimen-

sions and for bar length as a function of local estuary width. The new re-

lations may aid comparisons between experiments, models and natural

systems, and may be applied in outcrop interpretation.
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