FIO77ONRAS. 1817 4471 P!

Mon. Not. R. astr. Soc. (1977) 181, 441-454

Tidal torques on accretion discs in close binary systems
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Summary. We calculate the transfer of angular momentum between an
accretion disc and orbital motion in a close binary system. If the dissipative
process in the accretion disc can transport angular momentum (e.g. shear
viscosity) the disc fills its Roche lobe and tidal torques always dominate the
transport process in the outer parts of the Roche lobe. If not, the disc does
not expand, all the transferred material is accreted and the inflow rate in the
disc is controlled solely by tidal processes. We show that in an optically thick
disc, the presence of a shear viscosity gives rise to a bulk viscosity of com-
parable magnitude.

1 Introduction

We consider the effects of tidal perturbations on an accretion disc around the primary star,
mass My, in a close binary system due to the presence of the secondary, mass M,. We calcu-
late (Section 2) the perturbations to the disc flow in the absence of dissipation using the
approximation that the perturbation is small. We find that the results of our calculations are
valid for all reasonable mass ratios. In the absence of dissipative processes the perturbed
quantities, in particular the density perturbations, are in phase with the secondary. If,
however, a small amount of dissipation is introduced, a correspondingly small phase lag
occurs in the density perturbations. There is therefore a net torque on the secondary due to
the disc. Assuming that the disc and the binary motion are coplanar and that all angular
velocities have the same sign, the effect of this torque is to transfer angular momentum
(relative to the primary) from the disc into orbital motion. In this way the disc can get rid
of its excess angular momentum and accrete on to the primary. The importance of this
process has been stressed by Borner et al. (1973) and evidence of its presence presented by
Lin & Pringle (1976).

We demonstrate (Appendix 2) that, provided the amount of dissipation is small, the tidal
torque can be calculated without explicit knowledge of the phase lag of the density pertur-
bations. Using this, we calculate (Section 2) the dissipation and tidal torques for the two
types of viscosity, bulk and shear.

In Section 3 we show that in an optically thick accretion disc in which the dominant
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pressure is ordinary gas pressure and the dominant opacity is of Kramer’s type, the pre-
sence of a shear viscosity gives rise via radiative processes to a bulk viscosity of comparable
magnitude. In Section 4, we summarize and discuss our results.

2 Calculations

Consider a disc of gas orbiting around a central gravitating mass M;. We ignore the effects
of pressure on the flow and assume that dissipation terms are small so that initially the gas
flows in circular orbits around M, with velocity uo= (u,, ug) = [0, rS2(r)jwhere r is the
radial distance from M,, 0 is the corresponding azimuthal coordinate and Q2= GM, /r3. We
now suppose that this flow field is perturbed by the presence of another gravitating body of
mass M, orbiting M, at a distance R with angular velocity w = [G (M, + M,)/R%]"2. We write
u =ug +u; where uf < ujand w; = (u;, up). Linearizing the equations of motion we find

ou,, ou,

L+ Q — —2Qu, =F, 2.1a
9t 39 7] r ( )
dug dup ,

v +uQu. =F 2.1b
at s e (2.10)

where we have used 2 =732, We use coordinates (r, 6) centred on M, and moving (but not
rotating) with it. We then find

GM, R cos(wt —08) —r] GM, cos (wt — 0)
P 22 32 2 (2.22)
[R*+r* —2Rr cos(wt — 0)] R
. GM,R sin(wt — 6) _ GM,sin (wt —0) (2.25)
o [R?+7r* — 2Rr cos(wt — 0)]3"? R? ' '

The last term in each equation corresponds to the centrifugal force experienced due to the
motion of M, (see Appendix 1). The density perturbations may be found from the linearized
continuity equation.

The equations may be solved for the Fourier components
! ! 217 ! !
s )= [ ) exp (- in0) a0 23)
0

by taking Fourier transforms with respect to time ¢. The solutions are

ro_ . [in(Q2 ~ w) frn + 292f5n]
Uy = exp (—inwt) D@ ) (2.43)

' . [in(Q — w) fon — %2 fon]
Ugy, = exp(—inwt) P @ ) (2.4b)

where
_1GM, (db$)

rn” R? da — O1n (2.5a)
inntGM, _

bn =g G —b1,). (2.5b)
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Here 6,,, is the Kronecker § symbol, & =r/R and bé") (a) is the Laplace coefficient defined
by Hagihara (1972)

7Y b_g") cosny =(1 +a® —2acos )% (2.6)

n=-—oo

We now introduce a small amount of dissipation into the flow and consider the additional
dissipation due to tidal perturbations to first order of smallness in the dissipation parameter.
More specifically we consider two distinct modes of dissipation which for a Newtonian fluid
would be shear viscosity v and bulk viscosity {. The average dissipation per unit radius in the
disc due to bulk viscosity may be written

2m
Di(e)=Z¢ (divu)?d6
0

2 i
=nZ¢ (—q—) w? Y nPFi(a)
1+q n=1
where F,, (&) = w(U, — V), q = M/M,

(@ — w) bRt + %R (db)/da)

" [Q2 — n2(Q — w)?] - o
and
14
U, =~ — (aW
"3 da (aWy)
where
) @$D/da) + 29 bW ot (2.7)
) =

[Q% —n?(Q — w)’]

We note that ¥ is the surface density in the disc. We write
Si@= Y n*Fi@.
n=1

Provided the assumption of linearization is valid throughout the disc (this can always be
arranged by making it small enough), the effective torque induced per unit radius is given by
(see Appendix 2)

2 -1
q 1 )
T()=mZ¢w ——— Sy(@)| —/———= —1 2.8
l( ) § (l + q)2 1( ) (a3/2(1 + q)l/z ( )
and the rate at which angular momentum is transferred from the disc into orbital motion is

aJ
—=—R? f Ty(a) ada. (2.9)
disc

A similar calculation can be made for shear viscosity, v, for which the total dissipation per
unit radius is

2
Dior () = 23w f E;E;do (2.10)
0
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where Ej; = e;; — Y38;; divu and e;; is the usual rate of strain tensor. To estimate the torque
due to tidal perturbations alone we consider only the additional dissipation due to non-
axisymmetric tidal perturbations, that is harmonics with n > 1 (see Appendix 2). For these
we obtain '

D,(a) = mZvw? S,(0). (2.11)

(1+49)*

S, () is a more complicated function than S;(a) and we have plotted it in Fig. 1 for the
case g = 1. In fact, since the dominant contribution to the dissipation rate comes from the
term du,/dr in both cases, the function S, (@) is practically identical (to within 20 per cent)
to S, (@) for the range of & shown in Fig. 1. We see that S, and- S are strongly increasing
functions of . This is partly because (from equation 2.4) the velocity perturbations reson-
ate with the orbital motion at radii given, for n > 1, by

Q2=n*(Q — w)? (2.12)
that is
a, =[1 — (A/m)PP (1 +q)""> (2.13)

For n =1, the resonant radius is o; = 0 and for n = 2, g =1 the radius is a, = 0.5. Thus, close
to the origin (a S 0.05) the n=1 harmonic provides the dominant contribution, and else-
where within the Roche lobe of M,, the # = 2 harmonic dominates.

The flow in the mean potential gives rise to an axisymmetric (n = 0) dissipation rate
Dy(a) and corresponding Sy (), which does not result in angular momentum transfer from
the disc to the secondary. When M, = 0, we have the familiar accretion disc dissipation rate

D(a=9-ﬂ2 2(1 +g)yta’® 2.1
0)2vw( q) o (2.14)

In Fig. 1 we plot Sy () for the case M, = M,.

To obtain a rough comparison of the significance of tidal and ordinary viscous torques
when there is only a shear viscosity acting, we remark that if a thin ring of matter is placed
orbiting at a given radius a, the viscous torque exerted at the density maximum is approxi-
mately Do(c)/(32). Thus tidal and viscous torques are comparable at this maximum if a is
such that Dy (@) ~ 3D, ().

In Fig. 1 we also indicate the mean radius ag, outside which the perturbed orbits intersect
each other. This radius is given by the condition

0
—fu',dt+1 =0 (2.15)
or

where the time integral is taken following a particle orbit. The intersection always occurs
along the line of centres of the two stars. We tabulate ag for various values of g in Table 1.
These estimates of ag compare favourably with the values of the intersection radius obtained
by Paczynski (1977) who computes the particle orbits directly. We note that the condition
(2.15) can be approximated by |du,/or| = Q. It is for this reason that near o, zero order
(n=0) and tidal (n > 1) effects become comparable (see Fig. 1). Just inside this radius linear
theory breaks down. In fact, if viscosity is treated as a perturbation, one would derive
infinite dissipation and loss of angular momentum at this radius, even in non-linear theory,
because of the development of infinite gradients there.
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Figure 1. The dimensionless dissipation per unit radius S, (o) due to tidal effects and shear viscosity is
drawn as a function of dimensionless radius for M, = M,. The dissipation S, (a) due to bulk viscosity is
virtually identical. In the same units S, (), the axially symmetric dissipation due to shear viscosity is
also shown. We indicate the radius, oy, at which the perturbed orbits start to intersect. It is evident that
this is also the radius at which tidal and non-tidal dissipative effects become comparable.

3 Viscosities

In standard, axisymmetric, accretion discs the viscous mechanisms usually invoked are turbu-
lent viscosity and magnetic viscosity (Shakura & Sunyaev 1973; Eardley & Lightman 1975).
Naturally, the major consideration of these processes has been in terms of a shear-type
viscosity, although the same processes probably give rise to a bulk-type viscosity of compar-
able magnitude. However, even if these processes gave rise to negligible bulk viscosity, we
expect an effective bulk viscosity to arise in an accretion disc because of variable radiative
cooling. This process of dissipation is exactly analogous to the process of radiative damping
of ordinary stellar pulsations. We estimate the size of this effect below.
The energy equation may be written in the form

PR 7=(7—1)(P€u*(§) (CRY

where p is the pressure, p the density, T, the effective temperature of the disc, 7y the adia-

batic index, H the scale height of the disc and €, the energy dissipation per unit mass by

Table 1. The radius ag, outside which tidal torques dominate, and o, the mean Roche-lobe radius, are
tabulated as functions of g = M, /M, .

M, /M, 0.2 0.4 0.6 0.8 1.0
o 0.45 0.41 0.37 0.35 0.33
oy, 0.52 0.46 0.42 0.40 0.38
M,/M, 2.0 4.0 6.0 8.0 10.0

o 0.28 0.23 0.21 0.19 018
oL 0.32 0.26 0.23 0.22 0.20
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shear viscosity (assumed axisymmetric for our present purposes). Perturbing this equation in
the form p - p +p’ etc., and linearizing with regard to the perturbed quantities we obtain
for the nth harmonic

P —Z—p p'= ”(7 ~1) [p’ey - 4075T oTH ]H / [in(w — Q)]. G-2)

For an optically thick disc we may approximate the central temperature T at a given radius
by T*=17T¢ where 7 is the optical depth. Hydrostatic equilibrium perpendicular to the
disc under the assumption that gas pressure dominates, yields, approximately,

RoT GM,Hr
p= = — (3.3)
M Kr

where k is the opacity, .# the gas constant and u the mean molecular weight. Using these,
and assuming an opacity law of the form k =k op*T ", the energy equation becomes

12 12 (7 - 1) p v : ' }
= - p —_— 3) —— (x+2). 34
P=7 o (@ +3) ( ) (3.4)
The linearized continuity equation is
, p divu
pl=— L (3.5)
in(w— )

Assuming as a first approximation that

r '

= L
;‘(‘th)p (3.6)

and substituting equations (3.5) and (3.6) into equation (3.4) we obtain, to first order in the
effective bulk viscosity ¢,

p,___ZI_’ p —ptdiva 3.7
)

where

§=~Q —1)B+3)— (@+2)] (3.8)
n*(w — Q)?

Bearing in mind that
, (99 2
€y ~vrt | — 3.9)
ar

and taking y = 5/3, we see that for electron scattering opacity ¢ =0 but that for Kramer’s
opacity (a=1,=3.5)¢ ~ v.

4 Discussion

We have shown that if the dissipative process is of a type that is much more able to remove
energy from dilatation rather than from shearing motions, an accretion disc formed within
the Roche lobe around M; will eventually collapse on to M, losing all the necessary angular
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momentum via tidal effects alone. We note that an accretion disc consisting of material
transferred through the inner Lagrangian point is formed at a radius oy < o (Flannery
1974). In this case all the mass transferred from M, can be accreted by M,. If there is some
form of shear viscosity present in the disc we have shown that the additional tidal-induced
dissipation becomes comparable to that due to the mean flow at a radius g which is about
0.85—0.9 of the mean Roche lobe radius oy (Table 1). We have also shown that in a disc in
which gas pressure dominates radiation pressure and in which electron scattering opacity is
negligible, the presence of the shear viscosity together with radiative processes give rise to a
bulk viscosity of comparable magnitude. Outside g, the perturbed particle orbits intersect,
and, strictly, pressure effects and non-linear effects should not be neglected. In all probabi-
lity, standing shocks form in the gas flow outside this radius, giving rise to a large increase
in tidal dissipation and hence in the rate of angular momentum loss from the disc. We indi-
cate in Appendix 2 that the same principles governing angular momentum loss and dissipation
apply in both the linear and non-linear regimes. There is no a priori reason to associate the
radius g with the outside edge of the disc (contrary to the suggestion by Pacynski 1977)
since even an infinitesimal amount of viscosity ensures that the flow streamlines do not
intersect.

In the absence of tidal torques, the fraction, f, of matter transferred from M, to M, (in
a system in which an accretion disc is formed) that has to be lost from the Roche lobe in
order to allow the remaining matter to accrete is f ~ (an /oy )'? ~ 0.3—0.5 (Prendergast &
Burbidge 1968; Lin & Pringle 1976). The effect of tidal torques is to reduce the fraction f.
If there is no shear viscosity we have seen that f= 0. If there is a shear viscosity the outer
edge of the disc expands beyond o« (Lynden-Bell & Pringle 1974). Since we cannot precisely
calculate the torque beyond «g, we cannot provide a precise value for fin this case. However,
as the disc expands into the non-linear regime outside ag, and close to ap , we expect the
dissipation rate to increase until it becomes of the order of the orbital kinetic energy
(around M;) per orbital cycle, P(og) ~ 2m/S2(ag). Accordingly, in order that the mass
orbiting in the region of ap can absorb the angular momentum flux from a disc which is
secularly evolving on a timescale 7, = NP, where N > 1, we require of order N ! of the mass
of the disc to be in the neighbourhood of the Roche lobe. As a corollary, if shear-viscosity
still acts in the neighbourhood of the Roche lobe we expect the mass loss rate at the outer
edge of the disc to be ~N ! times the accretion rate on to M. That is we expect f ~ P(a)/7,.

In observed systems such as dwarf novae, where 7, may be estimated from the decay
timescale of the outbursts (Bath ef al. 1974) we expect f to be of the order of a few per
cent. In the numerical simulations of viscous gas flow in binary systems by Lin & Pringle
(1976), tidal effects are clearly evident, see Fig. 5(c), and f is found to be of the order of a
few per cent. In this connection we remark that the fact that the above authors did not
consider a fluid is of no relevance. Any system that can provide the required dissipation
should yield the same results for f.

Throughout our discussion we have neglected the effect on the fluid flow of the incom-
ing stream from the inner Lagrangian point. In an equilibrium situation in which the disc
evolves on a secular (viscous) timescale, the density in the disc is greater than that in the
stream, and so the stream does not affect the fluid flow in the disc to any great extent. It
does, however, give rise to considerably enhanced dissipation at the place where it strikes the
disc and may lead to additional mass loss from the collision that occurs there. We should
also note that although the dissipation due to tidal effects occurs in a non-axisymmetric
manner, this does not necessarily imply that those parts of the disc where tidal effects
dominate radiate particularly non-axisymmetrically. This is only true if the cooling time in
the disc is sufficiently short that 7,42 < 1.

15
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Appendix 1: the equations of motion

In an inertial frame based on the centre of mass of the system, the Eulerian equation of

motion can be written

ou 1

—é—G+uG-VuG=——Vp—Vt[/+X (Al)
t P .

where Y is a general viscous force and , the total gravitational potential can be written
GM
Y =— —— — GMy/[r* + R*> — 2R cos (8 — wi)]"? (A2)
r

where r, 0 are cylindrical polar coordinates based on M,. These coordinates are defined in a
system which is based on M, but retains its orientation relative to the original system based
on the centre of mass. The relation between these coordinates is

x=—rcosf =xg — qR coswt/(1 +q) (A3)
y=—rsinf =yg — qR sinwt/(1 +q).

We define velocities relative to M; by

Uy =ugy +qR(1 +q) ' w sinwt (A4)

U, =ug, —qR(1 +q) " wcoswt.

It is then readily verified that the operator 0/0f +ug -V transforms to /¢ +u - V. The
equations of motion thus become

ou 1
—+u-Vu=——Vp - V¥ +Y) (AS)
ot o
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where ¥ is the modified potential
v GM, GM, N qRw?r cos (0 — wi)
r  [r*+R?—2Rrcos(wt — 0)]'? (1+9)
or (A6)
v GM, GM, GM,r cos (0 — wt)
=— — + )
r  [rP+R?—2Rrcos(wt — 0)]'? R?

On account of the invariance of the operators 8/d¢ +u - V, 8/0x and 9/dy, other equations
such as the equation of continuity retain invariant form.

Appendix 2: the perturbed equations and the net loss of angular momentum from the disk
2.1 THE LINEAR REGIME

The total modified potential can be Fourier analysed in the form

GM. rd
V=Y, + ¥ 2 (bgr,'%(r/R) — J1) cosn(6 — wt)
n#*0 R R
or (A7)
V=V, + ¥

where ¥, contains a symmetric part of the perturbing potential which modifies the Keplerian
orbits slightly but which produces no tidal effects. The effect of this can be ignored through-
out. The zero order disc with no tides can then be seen to satisfy

u, d

s Q)= xs,

and (A8)
du, ,_  d¥,

u, ; —ri*= —? + Xy,

Thus‘u, is first order in the viscosity.
We take into account the non-symmetric part of the potential by expanding linearly the
equations of motion, we then find that

ou, ou,

— +

ot
(A9)

ou oup u, 9(r*Q) u, 0(rug 1 ov'

__?+Q___0+_r ( )+_r ( 9)=___+X,0

ot 0 r or r or r 00

From (A9) we note that because the viscosity (and hence u,) is small u;, X;, and 3¥'/d6,
are approximately in phase, while uy, xp and 9W'/or differ from these in phase by /2.
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This means that we can keep terms of the same order in the viscosity and with the same
phase together by defining modified viscous forces by

ou, au,

Xr =X " or " oor
, Al0
- ! ur a(rue) ( )
X6 =Xo ——
r or

This effectively eliminates u, from the problem. The equations then become

!

au, ou, ]
+Q — =20y =— — +X,
ot a0 or

ou, ouy o(r 2 1 0¥
oy e +u’ )
ot o0 r or r 06

(A11)

-1

The solutions for the nth harmonic can then be written down as

Upp = Qpp sinn (0 — wi) +q,, cosn(0 — wt)

on = Qon cosn(0 — wt) + gy, sinn(@ — wt) (A12)

where

2nS2 dD,
Qm=(—~—D +n(2 — w) — 7 )/d

¥

rn = [29)—(;16 + n(‘Q - w) )_(;1r]/d

e

1d , =
Qon = (_— - (r29)7_(nr - XnOn(‘Q _w))/d
rdr

GM, r r
Dp=—— b(")(—)——ﬁ )
n R (l/2 R R 1n

2Q d
d=— — () —n*(Q —w)>
r dr

For comparison with Section 2 we note that

_ifpnR

n =

amn
and
Dy,
ar T
The loss of angular momentum can now be calculated from

ud f o d Al3)
— = p — dr.
dt disc 00 (
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If
p=pat Y pycosn(@ —wi)+ Y ppsinn(@ — wrt) (A14)
n>0 n>0
then
dJ "
— =1 Y ppnD,dr. (A15)
dt disc n
But from the equation of continuity
" 1 d RdonPo
pnn(‘Q _"*’)=“(;E; (rpOCIm)"' - (A16)

and so after an integration by parts

aJ —D,n d D
dt disc \ 7(§2 — w) dr \Q —w

substituting for (q,,, qg, ) one finally obtains

o
dt ,>o dt
where
P . r(dSfdr
%f { Oanan oxné[ QBn _an ( /2)]:(1” (A18)
disc Q-w n—-w)

But if &,,, £,¢ are the Lagrangian displacements associated with the nth harmonic then

0&ny
(—) =Qpp sinn(@ — wt)+0(v)
L

ot
0&no r(@d/dr) Oy ()
(—37) = [ on — —H(Q__w)~] cos n(6 — wt) +0(v)
so that,
dJy, _, [%n _
dt =.[:1isc poXon: (_E;t_)L @ —wyidr (20

where the bar indicates a time average. It is instructive to consider the Lagrangian equations
for the perturbations. These are

azgr 56 ds a‘lf’
—2Q —+2r£,Q — =¥, — —
or? ot & dr Xr or
(A21)
0%%, 0%, , 1 v’
—_ 4 2 —_— = vy — e — .
at? ot X6 r 06
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The energy equation can then be written

2 2 \I,’ \If’
9 %0 {(%) + (é‘é_@) +2rQQ'E2 + &, o +£—0 a—} dr

0t Jdisc ot ot or r 00
0 ] 9\ov
= f PoX - —£d7+ f Po (:g,——+£—0 —)~—~a’7. (A22)

This shows that the angular momentum and energy loss from the perturbations are related
per unit mass by the factor 1/(§2 — w). We note that for the simple case of bulk viscosity, ¢,

X =~ V(p divu), (A23)

O | =

on account of the fact that to zero order in the viscosity

0 divu
div {—?—n / (o= w)} = (A24)
ot Q—-w
and
dJ 0o¢(divu,,)?
Y _ _ f ol ldven)” (A25)
dt disc Q—w

For other viscous forces the situation is more complicated but if the initial shear is neglected

(i.e. terms with Q"), we can always write

al f pe,dr
d

dt

O (A26)
1sc -

where €, is the viscous heat production per unit mass, as a result of the perturbations. For
comparison, equation (2.10) can be written

2m
Dtot (o‘) = f peydo.
0

This is a good approximation when tidal effects start to become important as the major
terms which contribute come from the radial derivatives of the velocity which are much
more rapidly varying than 2.

2.2 THE NON-LINEAR REGIME

We show now that the formula for the net angular momentum loss from the disc extends
into the non-linear regime in the case of bulk viscosity and provided that certain approxi-
mations, which should be reasonable, are adhered to. This allows for possible shock waves,
which can be adequately supported by bulk viscosity.

We write the equation of motion in Lagrangian form as
d*r , v
— =—VW V¥ +—
dr? p
We include an isothermal equation of state by taking

=—pcl+ip divu
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From this we find the equations of conservation of energy and angular momentum in the
form

!

de o 1

— =+ — — {(divu)? + - div([Tu)
dt ot 0

dh ov' 1 oIl

—_ = — 4t - —

Here
e=%u?+W¥ +¥ +c2.

Using the fact that

o’ B 1 oy
00 w ot
we obtain

d w oll 1

— (e — wh) = —{(divu)?> — — — + —div (TTu).

dt p 3 p

If we integrate over the outer edge of the disc, containing the non-linear regime, we find

]
5 {fedm — cof hdm} =~ fi’(divu)zdm —fﬂu -dS +Se — w8
t

where the last three terms represent fluxes of energy and angular momenta from the inner
boundary. In practice we may take the inner boundary to be at about 80 per cent of the
lobe radius. We can then ignore the flux arising from the stress tensor. We define £2, by

d _d
— ledm =8 — fhdm
dt dt

and if

fhdm =J,

and
Se = QbSh;

we find

ji‘ (divu)*dm
a

L Sn (@ — )

dt Q-w Q-w

From the general equations we see that the rate of loss of angular momentum is the order of
the ratio of the rate of dissipation of energy arising from the perturbed potential to the

rotation frequency. For bulk viscosity, this roughly corresponds to the total energy dissipa-
tion rate. Thus, as the non-linear region is probably not extensive, Q, and £, should both
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roughly correspond to the mean rotation rate in that region, which acts as if it has a mean
loss rate per unit mass equivalent to

dh  {(divu)®

dt Q- w
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