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We study the tideless traversable wormholes in the f(R) gravity metric formalism. First we consider three
shape functions of wormholes and study their viabilities and structures. The connection between the f(R) grav-
ity model and wormhole shape function has been studied and the dependency of the f(R) gravity model with
the shape function is shown. We also obtain a wormhole solution in the f(R) gravity Starobinsky model sur-
rounded by a cloud of strings. In this case, the wormhole shape function depends on both the Starobinsky model
parameter and the cloud of strings parameter. The structure and height of the wormhole is highly affected by the
cloud of strings parameter, while it is less sensitive to the Starobinsky model parameter. The energy conditions
have been studied and we found the ranges of the null energy condition violation for all wormhole structures.
The quasinormal modes from these wormhole structures for the scalar and Dirac perturbations are studied using
higher order WKB approximation methods. The quasinormal modes for the toy shape functions depend highly
on the model parameters. In case of the Starobinsky model’s wormhole the quasinormal frequencies and the
damping rate increase with an increase in the Starobinsky model parameter in scalar perturbation. Whereas in
Dirac perturbation, with an increase in the Starobinsky model parameter the quasinormal frequencies decrease
and the damping rate increases. The cloud of strings parameter also impacts prominently and differently the
quasinormal modes from the wormhole in the Starobinsky model.
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I. INTRODUCTION

Recent experimental observations suggest that the universe is undergoing a phase of accelerated expansion [1–3]. Since
General Relativity (GR) can’t explain this current phase of expansion of the universe, several modifications to GR have been
introduced including dark energy models and Modified Gravity Theories (MGTs) [4]. In MGTs, the curvature part of Lagrangian
is modified to explain the observational results. One of the attractive and simplest forms of such extensions is the f(R) theories
of gravity, where the Ricci scalar R in the Lagrangian or action of GR is replaced by an arbitrary function of R. Some of
the promising f(R) gravity models are: Starobinsky model [5], Hu-Sawicki model [6], Tsujikawa model [7], Gogoi-Goswami
model [8] etc. Of late, there are many works in which the viabilities and different aspects of these models have been explicitly
studied [9–16]. Apart from these, various other f(R) gravity models are studied in different perspectives [17–44].

Like GR, MGTs also show the possibilities of black holes and wormholes. Recent studies show that the MGTs play a very
important role in the study of black holes and wormholes. It is seen that the black hole solutions, black hole thermodynamics and
quasinormal modes are affected by the type of modifications introduced in the extended forms of gravity [45, 46]. Lately, it was
found that the polarization modes of Gravitational Waves (GWs) increase from two to three in f(R) theory metric formalism
due to the existence of extra degrees of freedom. The extra polarization mode is a scalar massive polarization mode which is a
mixture of the massless transverse but not traceless breathing scalar mode and the massive longitudinal scalar mode [8, 47]. In
recent times there are plenty of works in literature that are related to the study of different aspects of wormholes in the f(R)
theory of gravity. For example, in Ref. [48], the traversable wormholes have been studied in the framework of f(R) gravity.
In this work, the authors have explicitly studied the factors responsible for the null energy condition violation supporting the
existence of wormholes for different shape functions. The cosmological model with a traversable wormhole has been studied in
Ref. [49]. In Ref. [50], existence of wormholes in scalar tensor theory and f(R) gravity has been studied. In another study, the
cosmological evolution of wormhole solutions in f(R) gravity has been explored [51]. This study deals with the construction of
dynamical wormhole that asymptotically approaches a Friedmann-Lemaı̂tre-Robertson-Walker universe. Traversable wormholes
in f(R) gravity with non-commutative geometry has been studied in Ref. [52]. In this work, the author has studied the relation
of wormhole shape function with the f(R) gravity model explicitly and also studied the associated energy conditions at the
throat of the wormhole. Exactly traversable wormholes in bumblebee gravity have been obtained recently in Ref. [53]. The
thin-shell wormholes in quadratic f(R) gravity have been studied in Ref. [54], where the authors present a class of spherically
symmetric Lorentzian wormholes in inflationary Starobinsky type model with and without charge. The authors constructed the
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wormholes by cutting and pasting two manifolds with different constant curvatures into a hypersurface representing the throat
of the wormhole which is not symmetric across the throat. Wormholes in f(R) gravity sourced by a phantom scalar field have
been recently studied in Ref. [55], where the authors obtained exact wormhole solutions and studied the energy conditions
explicitly by considering a scalar field with negative kinetic energy, a phantom scalar field which has a self interacting potential.
In their study, they have obtained the wormhole solution without specifying the actual form of the f(R) function. They show
that the presence of such a scalar field has impacts on the scalar curvature and the size of the wormhole throat. An increase in
the strength of the scalar field results in wormholes with larger throat radii, which eventually decreases the curvature near the
wormhole. The traversable wormhole geometries using Karmarkar condition have been studied in Ref. [56]. In Ref. [57], the
authors have studied the wormholes and black holes in f(R) gravity with a kinetic curvature scalar. Traversable wormholes
in the R + αRn model were studied by N. Godani and G. C. Samanta in Ref. [58]. Deflection angle of the Brane-Dicke
wormhole in the weak field limit has been studied in Ref. [59]. In another work, the weak deflection angle by black holes and
wormholes has been extensively studied with different examples and wormhole structures [60]. Apart from these, there are
several studies dealing with deflection angle in the domain of black holes and wormholes [61–65]. Traversable wormholes in
extended teleparallel gravity with matter coupling is studied in Ref. [66], where the authors explored mainly non-commutative
Lorentzian and Gaussian distributed wormholes explicitly. An evolving wormhole hole configuration is studied in the dark
matter halo in Ref. [67].

It is worth to be mentioned that the wormhole solutions are primarily useful as “gedanken-experiments” and as a theoretical
probe of the possible results of GR. In basic GR, wormholes are supported by exotic matters. These exotic matters involve a
stress-energy tensor which can violate the Null Energy Condition (NEC) [68, 69]. The NEC is defined by Tµνkµkν ≥ 0, where
kµ is any null vector. Hence, in wormhole physics it is an important challenge to find any realistic matter source which can
violate the NEC.

The quasinormal modes of black holes have been studied extensively in different MGTs [45, 70–78]. In such a study, it was
seen that the quasinormal modes from black holes may play a very important part in distinguishing GR from f(R) gravity [71].
Along with the black holes, the quasinormal modes of wormholes also have received significant attention from the researchers.
The quasinormal modes of a natural anti-de Sitter wormhole in Einstein-Born-Infeld gravity have been extensively studied in
Ref. [79]. Authors in this paper studied the dependencies of the quasinormal modes from the wormholes on the mass of the scalar
field as well as on other wormhole parameters. Recently, quasinormal modes from a wormhole in bumblebee gravity have been
studied in Ref. [80]. It has been shown recently that similar to black holes, the arbitrarily long lived modes or quasi-resonances
can also exist in case of a wormhole if it does not have a constant red-shift function [81]. The quasinormal modes, echoes and
shadows of wormholes without exotic matter were studied in Ref. [82]. Apart from these studies, there are many recent studies
which involves different properties of wormholes as well as quasinormal modes and echoes [83–100]. Being motivated from
these studies, we study wormholes in the f(R) gravity Starobinsky model and in the models defined by three shape functions
in this work. At first, we use three different types of wormhole shape functions and study their viability conditions. After that
we show the dependency of the shape functions with f(R) gravity model in presence of cloud of strings. In the next stage, we
consider the f(R) gravity Starobinsky model and obtain the wormhole solution surrounded by a cloud of strings. The idea of
cloud of strings in GR has been implemented for the first time in Ref. [101]. Since then the cloud of strings has been used by
many researchers in different perspectives [102–111]. The impact of the cloud of strings on wormholes in GR has been studied
previously in Ref. [112]. However, in our work, we shall consider this relic in f(R) gravity to obtain the wormhole solutions.
Such a study will help us to see the impact of clouds of strings on the shape of the wormholes. Apart from this, we shall study
the quasinormal modes of such wormholes using the WKB approximation method. A comparative study with the previously
used wormhole shape functions will be done to get a clear view on the quasinormal mode dependencies on the shape functions.
This study will also provide some important insights on the possibilities of wormholes and chances of detecting them using the
quasinormal modes for the considered f(R) gravity models. It will also provide the possibilities of differentiating a wormhole
and a black hole in terms of quasinormal modes. In our work, we shall consider two types of perturbations. The general scalar
perturbation and Dirac perturbation. The scalar field perturbation is commonly used in different studies to check the behaviour
of the quasinormal modes and a study of scalar quasinormal modes in wormhole spacetime will help us to compare the results
easily with quasinormal modes from black holes. On the other hand, interaction of the Dirac field with gravity has been studied
in Ref.s [113, 114]. It was found that the time-periodic solutions in various black hole spacetimes do not exist [115, 116]. This
implies that any Dirac particles, such as electrons, neutrinos etc. cannot remain on a periodic orbit around a black hole. So, if
such particles around a black hole or wormhole collapses gravitationally, they should vanish inside the event horizon of a black
hole or they can escape to infinity. Hence a study of the Dirac fields in curved background spacetimes can provide interesting
results. In this study, we shall study such Dirac field perturbations on the wormhole spacetimes considered in the work.

We have already discussed that quasinormal modes from wormholes have been studied widely in different literatures. Al-
though wormholes are still considered to be hypothetical, one can see that GR exhibits both black holes and wormholes as
promising solutions of the field equation. Since GR has been one of the most successful theories of gravity till now in predicting
physically realizable things, the possibility of existence of wormholes in the Universe can not be nullified. If that is so, tools and
methods to probe wormholes and also differentiating them from black holes is an essential need for the scientific community. As
previous studies show that wormholes also can emit quasinormal modes when a perturbation is introduced to its background, we
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believe that studies dealing with quasinormal modes from wormholes can play a significant role in differentiating black holes
from wormholes in the near future when suitable observational data of quasinormal modes will be obtained.

The primary motivation of this work is to see how the structure of a wormhole behaves in presence of a cloud of strings
in f(R) gravity and possibility of experimental detection of the impacts of a cloud of strings in the wormhole background
using quasinormal modes as a probe. The study will also focus on the variation of the quasinormal modes with the cloud of
string parameter and the f(R) gravity model parameters in order to understand how they can affect the ringdown GWs. The
justification for using the f(R) gravity Starobinsky model is its simplicity and versatility. Since the Starobinsky model has
been very successful in explaining the inflationary epoch of the Universe and several other observational aspects, it has been
the choice of many researchers to consider it in different directions of study. This investigation dealing with the Starobinsky
model will put some light on the possible configuration of wormholes in this model as well as its behaviour and properties of
quasinormal modes.

The rest of the structure of this paper is as follows. We have given a brief introduction of wormholes in f(R) gravity in section
II. Here we have studied the field equations and connection between shape function and f(R) gravity model. We have obtained
a wormhole solution in f(R) gravity Starobinsky model in this section and then studied the energy conditions in brief for a
general idea. In section III, we have studied quasinormal modes of the wormhole solution obtained in the Starobinsky model
along with three other toy shape functions for the scalar perturbations and Dirac perturbations. The time domain analysis part
has been included in section IV. We have summarized the results of our work with a brief conclusion in section V.

II. WORMHOLES IN f(R) GRAVITY

In this work, we shall use the metric formalism in which the action of the theory is varied with respect to the metric gµν . The
f(R) gravity in metric formalism has been widely studied in the field of black holes and wormholes previously. Other formalisms
frequently used in literature are the Palatini formalism [117] and the metric-affine formalism [118]. In the Palatini formalism,
the metric and the connections are considered as independent or separate variables and the matter action is independent of the
connection, while in the metric-affine formalism the matter part of the action is also varied with respect to the connection. In our
work, we shall restrict to the study of wormholes in f(R) gravity metric formalism only.

The action in f(R) gravity is given by

S =
1

2κ

∫
d4x
√
−g f(R) +

∫
d4x
√
−g Lm(gµν , ψ) , (1)

here κ = 8πG and from hereafter we shall consider κ = 1. Lm is the matter Lagrangian density, in which matter is minimally
coupled to the metric gµν and ψ denotes the matter fields. Now varying the action (1) with respect to the metric gµν , we obtain
the field equations in f(R) gravity metric formalism as given by

FRµν −
1

2
f gµν −∇µ∇νF + gµν�F = T (m)

µν , (2)

where F ≡ df(R)/dR and T (m)
µν = − 2√

−g
δ(
√
−gLm)
δgµν is the stress-energy tensor of the matter. Taking trace of this Eq. (2), we

have

FR− 2f + 3�F = T. (3)

Using this trace equation we can rewrite the field Eq. (2) in the following possible form:

Gµν ≡ Rµν −
1

2
Rgµν = T eff

µν . (4)

Here the effective stress-energy tensor is T eff
µν = T

(c)
µν + T̃

(m)
µν , where T̃ (m)

µν = T
(m)
µν /F and the curvature stress-energy tensor,

T (c)
µν =

1

F

[
∇µ∇νF −

1

4
gµν (RF + �F + T )

]
. (5)

The associated conservation law with the modified field equation can be given by

∇µT (c)
µν =

1

F2
T (m)
µν ∇µF . (6)

As mentioned earlier, since the possibility that wormholes are supported by f(R) theories of gravity, here our intention is to
explore the distinguishing characteristics of a few specific forms of wormholes in this area of MGTs. One should note that it is
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the effective stress energy of f(R) gravity, which may be interpreted as a gravitational fluid, is responsible for the null energy
condition violation. This leads to the non-standard wormhole geometries, fundamentally different from their counterparts in GR
[48]. However, we demand that the matter threading the wormhole satisfies the energy conditions. For the purpose of our study
we consider the following ansatz,

ds2 = −e2Φ(r)dt2 +
dr2

1− b(r)/r
+ r2 (dθ2 + sin2 θ dφ2) , (7)

where Φ(r) and b(r) are arbitrary functions of the radial coordinate r, referred to as the lapse function and the shape function
respectively [68]. This ansatz represents a static and spherically symmetric wormhole in spacetime. The lapse function deter-
mines the red-shift effect and tidal force associated with the wormhole spacetime. If the lapse function Φ(r) = 0 or e2Φ(r) = 1,
the wormhole is said to be tideless [119].

It is to be noted here is that the radial coordinate r is non-monotonic which decreases from infinity to minimum value r = r0

at the throat of the wormhole, defined by b(r0) = r0, and it then again increases to infinity. Hence, the shape function b(r)
has the minimum value r0 at the throat of the wormhole. In general to have a wormhole solution certain conditions should
be satisfied including the flaring out condition of the throat, given by (b − b′r)/b2 > 0 [68] at the throat b(r0) = r0 and the
condition b′(r0) < 1. These conditions impose the NEC violation in the classical GR. Another condition for a stable wormhole
is 1− b(r)/r > 0. Most importantly, for the wormhole to be traversable, there should be no horizons present, which are defined
on the spacetime by e2Φ → 0, so that Φ(r) must be finite everywhere. In view of this, we consider a constant redshift function
i.e. Φ′ = 0. This simplifies the calculations associated with the field equations and provide interesting wormhole solutions.

The unusual structure of wormhole suggests that the distribution of matter threading the wormhole is anisotropic and the
stress-energy tensor for such distribution of matter is given by

T (m)
µν = (ρ+ pt)Uµ Uν + pt gµν + (pr − pt)χµχν , (8)

where Uµ represents the four-velocity of matter field, χµ =
√

1− b(r)/r δµr represents the unit spacelike vector along the
radial direction, ρ(r) represents the energy density, pr(r) represents the radial pressure along the direction of χµ, and pt(r)
represents the transverse pressure along the direction orthogonal to χµ. Using this stress-energy tensor of matter, we can write
the field equations (4) in the following forms:

b′

r2
=

ρ

F
+

(FR+ �F + T )

4F
, (9)

− b

r3
=
pr
F

+
1

F

{(
1− b

r

)[
F ′′ −F ′ b′r − b

2r2(1− b/r)

]
− 1

4
(FR+ �F + T )

}
, (10)

−b
′r − b
2r3

=
pt
F

+
1

F

[(
1− b

r

)
F ′

r
− 1

4
(FR+ �F + T )

]
, (11)

where a prime denotes a derivative with respect to the radial coordinate r. In the above equations, �F is given by

�F =

(
1− b

r

)[
F ′′ − b′r − b

2r2(1− b/r)
F ′ + 2F ′

r

]
(12)

and the Ricci curvature scalar R is given by

R =
2b′

r2
. (13)

Rearranging the field equations (9), (10) and (11) we may obtain the following expressions for ρ, pr and pt [48] as

ρ =
Fb′

r2
, (14)

pr = −bF
r3

+
F ′

2r2
(b′r − b)−F ′′

(
1− b

r

)
, (15)

pt = −F
′

r

(
1− b

r

)
+
F

2r3
(b− b′r). (16)

These are the generic forms of expressions of the energy density and pressures of the matter threading the wormhole in f(R)
gravity metric formalism as a function of the wormhole shape function and F(r).
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FIG. 1: Plots of b(r)/r vs. r (on the left panel) and b(r)− b′(r)r vs. r (on the right panel) for the wormhole shape function (17) with different
values of the parameterm1 and throat radius r0 = 1. The vertical dotted line in each plot represents the position of the throat of the wormhole.

A. Toy Models of Wormhole Shape Function

As the shape function of a wormhole is the deciding factor for its particular construction or structure, it is necessary to
study the behaviours of this function of a wormhole under certain required conditions. It is to be noted that in order to have
a consistent wormhole structure the shape function should satisfy the following conditions or properties: (i) b(r)/r < 1 for
r > r0, (ii) b(r) = r0 at r = r0, (iii) b(r)/r → 0 as r →∞, (iv) b(r)− b′(r)r > 0 and (v) b′(r) < 1 at r = r0. In this study,
we consider three toy wormhole shape functions as given by

b1(r) = r exp [m1 (r0 − r)] , (17)

b2(r) =
r log (2m2 r0)

log [m2 (r + r0)]
, (18)

and

b3(r) =
m3 r

m3 + r − r0
. (19)

Here m1,m2 and m3 are the model parameters and r0 denotes the throat radius of the wormholes. The first toy model has been
widely used in different works [120–122]. Whereas other two toy functions have been introduced by us as two possible shapes
or structures of wormhole. First, to check the viabilities of these toy models, we check the viability conditions mentioned above
for them. For this purpose, we have plotted the functions b(r)/r and b(r)− b′(r)r with respect to r for these functions and the
corresponding embedded diagrams of the wormholes in Fig.s 1, 2, 3, 4, 5 and 6 respectively. From Fig. 1, we can see that the
first toy model can effectively satisfy the conditions for a viable wormhole. The right panel of this figure shows that the function
has a peak which moves toward the throat of the wormhole with an increase in the value of the model parameter m1. Although
the function decreases gradually for higher values of r, it remains positive satisfying the condition b(r)− b′(r)r > 0. However,
the behaviours of this test function b(r) − b′(r)r are totally different for the second and third toy shape functions respectively.
In Fig.s 3 and 5, we have plotted the test functions for the second and the third toy models or shape functions respectively. Here,
one can see that the test functions show suitable behaviours for m2 > 1 and m3 > 1 respectively. In both cases, the parameters
m2 and m3 impose similar signatures. On the left panel of Fig. 3, we can see that with an increase in the model parameter m2,
the function b(r)/r increases at r > r0. On the right panel, near the throat, with an increase inm2, the test function b(r)−b′(r)r
decreases initially, but at a significantly far distance away from the throat, the opposite trend comes into picture. For the third
shape function also, we observe a similar behaviour.

Next, in order to visualise the embedded diagrams of the wormholes represented by toy shape functions (17), (18) and (19),
we use an equatorial slice θ = π/2 at a fixed time or at t = constant. This gives us the privilege to reduce the metric (7) into the
following form:

ds2 =
dr2

1− b(r)/r
+ r2dφ2. (20)
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FIG. 2: Embedded 2-D and 3-D plots of the wormhole defined by the shape function (17) with different values of the parameter m1 and throat
radius r0 = 1.
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FIG. 3: Plots of b(r)/r vs. r (on the left panel) and b(r)− b′(r)r vs. r (on the right panel) for the wormhole shape function (18) with different
values of the parameterm2 and throat radius r0 = 1. The vertical dotted line in each plot represents the position of the throat of the wormhole.
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FIG. 4: Embedded 2-D and 3-D plots of the wormhole defined by (18) with different values of the parameter m2 and throat radius r0 = 1.

In cylindrical coordinates, we can write the above equation as

ds2 = dz2 + dr2 + r2dφ2. (21)



7

0 2 4 6 8 10

r

0

0.5

1

b
(r

)/
r

 = 1.13m

 = 1.53m

 = 2.53m

 = 1.13m

 = 1.53m

 = 2.53m

 = 1.13m

 = 1.53m

 = 2.53m

0 2 4 6 8 10

r

0

0.5

1

1.5

2

b
(r

)-
b

'(r
)r

 = 1.13m

 = 1.53m

 = 2.53m

 = 1.13m

 = 1.53m

 = 2.53m

 = 1.13m

 = 1.53m

 = 2.53m

FIG. 5: Plots of b(r)/r vs. r (on the left panel) and b(r)− b′(r)r vs. r (on the right panel) for the wormhole shape function (19) with different
values of the parameterm3 and throat radius r0 = 1. The vertical dotted line in each plot represents the position of the throat of the wormhole.
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FIG. 6: Embedded 2-D and 3-D plots of the wormhole defined by (19) with different values of the parameter m3 and throat radius r0 = 1.

As the embedded surface in three dimensional Euclidean space is expressed by z = z(r), we can rewrite Eq. (21) as

ds2 =
[
1 + (dz/dr)

2
]
dr2 + r2dφ2. (22)

Finally, comparing the recasted metric (22) with the reduced metric (20), we get,

dz

dr
= ±

[
r

b(r)
− 1

]−1/2

. (23)

This relation gives the embedded surface of the wormhole. From the flare-out condition, we can see that the inverse of the
embedding function r(z) satisfies d2r/dz2 > 0 near or at the throat of the wormhole. More explicitly, differentiating inverse of
the Eq. (23) with respect to z, we get,

d2r

dz2
=
b(r)− rb′(r)

2b(r)2
> 0. (24)

Apart from this, from Eq. (23) one can see that dz/dr → ∞ at the wormhole throat and the wormhole space is asymptotically
flat as r → ∞. Using Eq. (23) we have plotted the embedded diagrams of the wormholes in Fig.s 2, 4 and 6 for the toy shape
functions (17), (18) and (19) respectively. These embedded diagrams show the impact of the model parameters on the shape of
the wormhole. For the shape function (17) it is seen that with an increase in the model parameter m1, height of the wormhole
gets reduced. On the other hand, for the shape functions (18) and (19), it is clear from the diagrams 4 and 6 respectively that the
impact of the model parameters m2 and m3 on the respective wormholes is similar in nature. In both cases, with an increase in
the model parameters, the height of the wormholes increases gradually.
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B. f(R) gravity model from toy shape function of wormhole surrounded by a cloud of strings

Under some suitable conditions, it is possible to obtain the f(R) gravity model for a wormhole shape function satisfying
the field equations. Here, we shall consider the third toy shape function (19) as an example to obtain the corresponding f(R)
gravity model in presence of a cloud of strings. A cloud of strings is a kind of fluid model in which one-dimensional strings
are distributed in a given direction, which may exist in different geometrical shapes, such as spherical, axisymmetric and planar
[123]. In our work we shall consider spherically symmetric cloud of strings distribution. The solution for a spherically symmetric
strings cloud configuration was obtained in Ref. [123]. The only non-null components of the energy-momentum tensor of a cloud
of strings can be shown as

T tt = T rr = − η2

r2
, (25)

where η is a constant, which is related to the energy of the cloud of strings. For the shape function (19), the field Eq. (14) can be
written as

(m2
3 −m3 r0)F(r)

r2 (m3 + r − r0) 2
+
η2

r2
= 0. (26)

Now, from this equation one can obtain an expression for F(r) given by

F(r) = −η
2 (m3 + r − r0)

2

m3 (m3 − r0)
. (27)

In this expression, r can be replaced by the Ricci curvature using the definition (13) of Ricci curvature as

R =
2m3 (m3 − r0)

r2 (m3 + r − r0) 2
. (28)

Solving this equation for r one can find,

r =
1

2

(
∓
√

(m3 − r0)
2 ∓ 4

√
2m3 (m3 − r0) /R−m3 + r0

)
. (29)

For the mathematical feasibility we choose the solution given by

r =
1

2

(√
4
√

2m3 (m3 − r0) /R+ (m3 − r0) 2 −m3 + r0

)
. (30)

One can obtain the throat radius of the wormhole in terms of background Ricci curvature using the limit r → r0 and R→ R0 in
the above Eq. (30). Using that relation for the throat radius, we have the final relation for r as

r =
A

2m3R0

[{
4
√

2m2
3R
−1/2 (R0/A)

3/2
+ 1
}1/2

− 1

]
, (31)

where A = m2
3R0 −

√
2m2

3R0 + 1 + 1. Hence, Eq. (27) can be written as

F(R) = −
η2A

[
1 +

√
1 + 4

√
2m2

3R
−1/2 (R0/A)

3/2

]2

4m2
3R0

. (32)

Integrating above expression with respect to R, we obtain the f(R) function for the wormhole with the shape function (19) as

f(R) = −(2A2m2
3R0)−1η2

[ √√√√A5R

(
4
√

2m2
3

√
RR3

0

A
+AR

)
+ 4
√

2m2
3

√
A3RR3

0 (33)

− 8m4
3R

3
0 log

√A3RR0 +A

√√√√R0

(
4
√

2m2
3R0

√
RR0

A
+AR

)
+ 2
√

2m2
3R

2
0

+A3R

+ 2Am3
3R

2
0

√
2AR

m2
3R0

+ 8
√

2

√
RR0

A

]
+ C1.
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Here C1 is an integration constant. In this function the background curvature is connected with the throat of the wormhole by
the following relation:

R0 =
2 (m3 − r0)

m3r2
0

. (34)

Obviously, the f(R) function or model in Eq. (33) depends on the shape function of the wormhole. One may note that the
cloud of strings parameter η appears in the f(R) model explicitly because of the presence of a cloud of strings in the wormhole
spacetime as clear from our consideration above. Whereas the fact is that the shape function of the wormhole is considered to
be independent of the cloud of strings parameter. In such a situation, the cloud of strings parameter contributes to the geometry
modification only as shown in Eq. (33) and the basic properties of the wormhole remain independent of it. This type of situation
arises when we define the shape function at first. So, for the toy shape functions of the wormholes, we shall not see any cloud of
strings dependency with the quasinormal modes in general. Hence, such type of ad-hoc wormhole definitions may not be very
feasible to study the impacts of any surrounding relics on the quasinormal modes from the wormhole spacetime. Any additional
relic such as cloud of strings etc. will appear as a spacetime modification imprinted in the f(R) gravity model due to fixing the
shape function initially.

C. Wormhole solution in f(R) gravity Starobinsky model surrounded by a cloud of strings

In this section, we shall obtain the wormhole solutions in f(R) gravity Starobinsky model surrounded by a cloud of strings.
Here the approach will be opposite to the previous case where we fixed the shape function at first and then calculated the
corresponding f(R) gravity model. This approach will help us obtain a wormhole shape function which has a dependency with
the surrounding relic if any. In this work we shall use the Starobinsky’s inflationary model [5], which is given by

f(R) = R+ αR2, (35)

where α is the constant model parameter. Using this model (35) in Eq. (14), we obtain,

4αb′(r)2 + r2b′(r) + r2η2 = 0. (36)

This equation can be solved for b′(r) as

b′(r) =
− r2 ± r

√
r2 − 16αη2

8α
. (37)

For a feasible situation, we pick only the solution

b′(r) =
− r2 + r

√
r2 − 16αη2

8α
(38)

and the solution for b(r) with the boundary condition b(r0) = r0 yields,

b(r) =
− r3 +

(
r2 − 16αη2

)3/2 − (r2
0 − 16αη2

)
3/2 + 24αr0 + r3

0

24α
. (39)

One may note that in this shape function of the wormhole, the cloud of strings parameter and f(R) gravity model parameter
appear explicitly and any modification in these parameters will affect the geometry of the wormhole and the corresponding
quasinormal modes.

To check the viability of the new shape function (39), we have checked the necessary conditions mentioned earlier and two
of the important conditions are shown in the Fig.s 7 and 8 for different values of shape function parameters α and η. In Fig. 7,
we have plotted the function b(r)/r vs. r for different values of wormhole shape function parameters α and η. We see that the
function shows a maximum value near the throat of the wormhole and it decreases gradually with an increase in the value of r
in both cases. Thus, clearly one can realise that b(r)/r < 1 for r > r0, which is a necessary condition for the formation of a
wormhole. It is to be noted that here the impact of the Starobinsky model parameter α is very small in comparison to the cloud
of strings parameter. In Fig. 8, we have plotted b(r) − b′(r)r vs. r for the shape function for different values of α and η. The
Starobinsky model parameter α shows a similar impact on the function b(r)− b′(r)r with the impacts of model parameters m2

and m3 of the toy shape functions defined in Eq. (18) and (19) respectively. With an increase in the values of α, the function
increases slowly and the value of the function is always greater than 0. One may note that as previously mentioned for a viable
wormhole, one needs b(r) − b′(r)r > 0. Moreover, the test function b(r) − b′(r)r and hence the shape function has a higher
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FIG. 7: Plots of b(r)/r vs. r with η = 0.5 (on the left panel) and with α = −0.10 (on the right panel) for the wormhole shape function (39)
with throat radius r0 = 1. The vertical dotted line in each plot represents the position of the throat of the wormhole.
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FIG. 8: Plots of b(r)− b′(r)r vs. r with η = 0.5 (on the left panel) and with α = −0.10 (on the right panel) for the wormhole shape function
(39) with throat radius r0 = 1. The vertical dotted line in each plot represents the position of the throat of the wormhole.

dependency on the other model parameter i.e. cloud of strings parameter η as seen from the Fig. 8. Here also, the function is
always greater than 0 for any r > r0 justifying the viability of the shape function (39). Now, to have a better visualisation of the
wormhole shape function (39), we plot the embedded diagrams of the wormhole using the Eq. (23) after solving it numerically.
The embedded diagrams are shown in Fig. 9 and in Fig. 10 for different values of the Starobinsky model parameter α and cloud
of strings parameter η respectively. From Fig. 9, one can see that the Starobinsky model parameter α has a very small impact on
the structure of the wormhole as already clear from above. However, with decrease in α, the height of the wormhole increases
very slowly. Moreover, we have seen that for a viable wormhole one must have, α < 0. From these observations, we can
infer that the Starobinsky model parameter has a very minimal impact over the structure of the wormhole. On the other hand,
the cloud of strings parameter has a significant impact over the structure of the wormhole. As seen from the Fig. 10, with an
increase in the cloud of strings parameter, the height of the wormhole decreases gradually. Hence, presence of a surrounding
field e.g. a cloud of strings may have significant influences over different properties of the wormhole. The impact of these two
model parameters on the quasinormal modes of wormhole will be elaborately studied in the next section.

D. Energy conditions

Here we shall study the energy conditions of the wormholes in f(R) gravity metric formalism briefly. In GR, a fundamental
requirement in wormholes is the violation of energy conditions [124, 125]. Whereas in f(R) theories of gravity, the required
condition Rµνkµkν ≥ 0 results null energy condition of the form T effµν kµkν ≥ 0 with the modified field equations. This
expression can be used to study the NEC. Now, using a radial null vector, violation of NEC can be expressed as

ρeff + peffr =
ρ+ pr
F

+
1

F
{
F ′′ (1− b(r)/r)−F ′ (b′(r)r − b(r)) /(2r2)

}
< 0. (40)
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FIG. 9: Embedded 2-D and 3-D plots of the wormhole defined by the shape function (39) with throat radius r0 = 1 and η = 0.1 for different
values of α.
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FIG. 10: Embedded 2-D and 3-D plots of the wormhole defined by the shape function (39) with throat radius r0 = 1 and α = −0.10 for
different values of η.

At the throat of the wormhole, this relation reduces to the following form:

ρeff + peffr |r= r0 =
ρ+ pr
F
|r= r0 +

1− b′(r0)

2r0

F ′

F
|r= r0 < 0. (41)

One may note that for a Morris-Throne wormhole in GR, the flare out condition is sufficient to yield a violation of the NEC at
the throat. It can be easily checked by using F = 1 in Eq.s (14) and (15) that

ρ(r0) + pr(r0) =
r0b
′(r0)− b(r0)

b(r0)2 r0
< 0, (42)

as we have b(r0) = r0 at the throat of the wormhole. But from Eq. (40) one can see that in f(R) gravity, the violation of NEC
depends on the form of the f(R) gravity model also apart from the shape function.

Now we shall study the NEC for our toy shape functions and the Starobinsky model. Since ρ(r) + pr(r) has a complex form,
we shall see the condition only at the throat for simplicity. So at the throat of the wormhole, the first toy shape function defined
in Eq. (17) gives,

ρ(r0) + pr(r0) = −
η2m1

(
m2

1r
2
0 − 2

)
2r0 (m1r0 − 1)

2 . (43)

From this expression, it is found that the wormhole solution violates NEC for (m1r0 >
√

2) ∪ (−
√

2
r0

< m1 < 0) and
beyond this range the solution respects the NEC. For the second shape function defined by Eq. (18), we have at the throat of the
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wormhole,

ρ(r0) + pr(r0) =
η2
[

log (2m2r0)
{

8 log (2m2r0)− 1
}
− 2
]

4 log (2m2r0)
{
r0 − 2r0 log (2m2r0)

}2 . (44)

NEC is violated at the throat for the following range:

log (2m2r0) <
1

16

(
1−
√

65
)
∪ 0 < log (2m2r0) <

1

16

(√
65 + 1

)
(45)

and beyond this range the NEC is respected. Similarly, for the third shape function defined in Eq. (19), at the throat of the
wormhole,

ρ(r0) + pr(r0) =
η2 (m3 + r0)

m3r0 (m3 − r0)
. (46)

In this case the NEC is violated for 0 < m3 < r0 ∪ m3 + r0 < 0. Finally for the Starobinsky model case, we have

ρ(r0) + pr(r0) =
4αη2

(√
r2
0 − 16αη2 + 2η2r0 + r0

)
r3
0

(
−16αη2 − r0

√
r2
0 − 16αη2 + r2

0

) . (47)

In this situation the NEC is violated for (α < 0) ∪ (0 < α <
r20

16η2 ). Moreover, one may note that for α > r20
16η2 , Eq. (47) results

in imaginary values. Hence, for this case, NEC is violated for the complete feasible range in the parameter space.
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We have also checked the NEC for the variable r graphically in Fig.s 11 and 12 for the shape functions (17), (18), (19) and
(39) respectively for selected set of parameters. Since the expressions for ρ+ pr are complex, we have given their explicit forms
along with the corresponding df(R)/dR in terms of r in the appendix. On the left panel of Fig. 11, we have shown the variation
of NEC for the first wormhole shape function with η = 1.1, m1 = 0.1 and the throat radius of the wormhole r0 = 1. The red
dotted line represents the throat of the wormhole. One may note that for the chosen value of the parameters, NEC is respected
at the throat of the wormhole. With an increase in the distance from the throat of the wormhole, ρ + pr increases gradually
respecting NEC. On the right panel of Fig. 11, we have shown the variation of ρ + pr for the second wormhole shape function
defined by (18) with the model parameters η = 1.1, m2 = 1.2 and the throat radius of the wormhole r0 = 1. In this case also,
the selected values of the parameters respect the NEC at the throat as seen from the previous results. From the figure, one can
see that in this case ρ+ pr is positive at the throat of the wormhole and gradually decreases towards 0 with an increase in r.

On the left panel of Fig. 12, we have shown variation of ρ + pr for the third shape function defined by (19). In this case we
have chosen η = 1.1, m3 = 1.3 and the throat radius of the wormhole r0 = 1. These values of the parameters respect the NEC
at the throat of the wormhole. We have seen that with an increase in the value of r, ρ + pr decreases gradually but the value
of ρ + pr is much greater than 0 for this particular shape function. Finally, on the right panel of Fig. 12, we have shown the
variation of ρ + pr with respect to r for the shape function obtained for the Starobinsky f(R) gravity model surrounded by a
cloud of strings. We have already seen that for the feasible α < 0 values and at the throat, this wormhole always violates the
NEC. Hence, with the selected values of the model parameters η = 1.1, α = −0.1 and r0 = 1, we have seen that ρ+ pr violates
NEC for a variable r and with an increase in the value of r, ρ+ pr approaches to 0 gradually.

So, as a result we have seen that the wormhole solution obtained in f(R) gravity Starobinsky model always violates NEC,
while the three toy shape functions can violate NEC in a particular range of the model parameters only. This range has been
calculated explicitly at the throat of the wormholes for each of toy shape function.

III. QUASINORMAL MODES

Quasinormal modes of compact stellar objects, such as black holes, wormholes etc. are the long lasting components of
gravitational waves from such objects when the morphological symmetry of those objects are disturbed by some perturbative
effects. Quasinormal mode frequencies are usually expressed in terms of complex numbers, where the real part represents the
amplitude of the mode and the imaginary part represents the loss of energy of the objects. Thus by quasinormal modes compact
objects try to regain their original state with the loss of energies. The details about the quasinormal modes can be found in
Ref.s [126–137]. To calculate the quasinormal mode frequencies of a compact object it is necessary to use an external field
surrounding the object as a probe, which can give a measure of the perturbation in the object. There are various possible probe
fields, e.g. scalar fields, vector fields, fermionic or Dirac fields [138–140] etc. surrounding the compact objects. Here, we shall
study the quasinormal modes from the wormholes for the scalar (field) perturbations and Dirac (field) perturbations using WKB
approximation method. We shall neglect any possible echoes from quantum corrections near the wormhole throat or from any
matter far from it [119, 141].

The primary problem in the quasinormal modes calculations of wormholes is related with the potential, because in the absence
of tidal forces and in the usual situation, the peak of the potential is at the throat of the wormhole. In normal coordinates it is
difficult to visualise such peak of the potential properly. This issue can be simply avoided by converting the potential of the
problem into tortoise coordinates. During the calculations, we assume that the test fields such as scalar field or Dirac field have
negligible reaction on the spacetime.

A. Scalar Perturbation

Now we consider a massless scalar field ζ around the wormhole spacetime. Assuming that the reaction of the scalar field on
the spacetime negligible as mentioned above, it is possible to describe the quasinormal modes of the wormholes by the Klein
Gordon equation in curved spacetime as given by

�ζ =
1√
−g

∂µ(
√
−ggµν∂νζ) = 0. (48)

Using spherical harmonics, it is possible to decompose the scalar field in the following form:

ζ(t, r, θ, φ) =
1

r

∑
l,m

ψl(t, r)Ylm(θ, φ), (49)
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where ψl(t, r) is the radial time dependent wave function, and l and m are the indices of the spherical harmonics. Using this
equation in (48), we get,

∂2
r∗ψ(r∗)l + ω2ψ(r∗)l = Vs(r)ψ(r∗)l, (50)

where r∗ is the tortoise coordinate defined by

dr∗
dr

=

√
r e−2φ(r)

r − b(r)
(51)

and the effective potential is given by

Vs(r) =
e2Φ(r) [− rb′(r) + b(r) (1− 2rΦ′(r)) + 2r {l(l + 1) + rΦ′(r)}]

2r3
. (52)

Here l is referred to as the multipole moment of the quasinormal modes of the wormhole.

B. Dirac Perturbation

For the perturbation of Dirac field with mass m, one can write the general equation as [142, 143]

[γaeµa(∂µ + Γµ) +m]ψ = 0, (53)

where Γµ = 1
8 [γa, γb]eνaebν;µ is the spin connection, γa are the Dirac metrices and ebν;µ = ∂µebν − Γαµνebα. Using our ansatz

(7), eaν can be taken to be

eaν = diag(eΦ(r), (1− b(r)/r)−1/2, r, r sin θ). (54)

Using this and now considering massless Dirac field i.e. m = 0, Eq. (53) can be further written in the following form:

∂2
r∗ψ(r∗)l + ω2ψ(r∗)l = Vd±(r)ψ(r∗)l, (55)

where r∗ is the tortoise coordinate and two isospectral potentials,

Vd±(r) =
k

r

(
ke2Φ(r)

r
∓
e2Φ(r)

√
(1− b(r)/r)
r

± eΦ(r)
√

(1− b(r)/r)d e
Φ(r)

dr

)
. (56)

Here k = 1, 2, 3 . . . are called the multipole numbers with k = `+ 1/2. The potentials can be transformed from one to another
form by using the Darboux transformation as shown below:

ψ+ = A

(
W +

d

dr∗

)
ψ−, W =

√
eΦ(r)

√
(1− b(r)/r), (57)

where A is a constant. As + and − wave equations are isospectral, we shall consider only one of the two effective potentials for
the Dirac case.

C. WKB method for Quasinormal modes

The first order WKB method for calculating the quasinormal modes was first suggested by Schutz and Will in [144]. Later,
the method was developed to higher orders [145–147]. In this work, we shall use higher order WKB methods, more specifically
the 3rd order and 5th order WKB approximation methods to calculate the quasinormal modes from the wormholes defined in
the previous sections.

At first, we calculated the quasinormal modes for scalar perturbation for the wormhole defined by the shape function (17)
usingm1 = 0.3 and throat r0 = 1. The value of the parameterm1 is chosen in such a way that it satisfies the viability conditions
for a wormhole mentioned earlier. The results for different multipole numbers are shown in Table I. In this table and following
ones ∆3 is defined as

∆3 =
ω4 − ω2

2
, (58)



15

TABLE I: Fundamental quasinormal modes of the wormhole defined by the shape function (17) for the scalar perturbation with m1 = 0.3 and
r0 = 1.

l WKB 3rd order WKB 5th order ∆3 ∆5

l = 1 1.4317− 0.1853i 1.4322− 0.1851i 0.000863134 0.000111803

l = 2 2.4434− 0.1862i 2.4435− 0.1862i 0.000280943 0.0000132872

l = 3 3.4426− 0.1864i 3.4427− 0.1864i 0.000139003 3.40181× 10−6

l = 4 4.4378− 0.1865i 4.4378− 0.1865i 0.0000830125 1.23455× 10−6

TABLE II: Fundamental quasinormal modes of the wormhole defined by the shape function (17) for the Dirac perturbation with m1 = 0.3
and r0 = 1.

k WKB 3rd order WKB 5th order ∆3 ∆5

k = 8 7.9443− 0.1882i 7.9455− 0.1697i 0.000801561 0.12791

k = 9 8.9348− 0.1880i 8.9356− 0.1777i 0.000502494 0.0628711

k = 10 9.9252− 0.1879i 9.9257− 0.1817i 0.00035 0.0334861

k = 11 10.9155− 0.1877i 10.9159− 0.1839i 0.00025 0.0189136

and similarly,

∆5 =
ω6 − ω4

2
, (59)

where ω2, ω4 and ω6 represent the quasinormal modes obtained from 2nd order, 4th order and 6th order WKB approximation
methods respectively. ∆3 and ∆5 give a measurement of the errors associated with the quasinormal modes obtained from 3rd
order and 5th order WKB approximation methods. It is clearly visible from the Table I that with an increase in l, magnitudes of
both the real and imaginary frequencies increase gradually. So, for higher multipole numbers the decay rate of the quasinormal
frequency increases slowly. Another point to note is that the corresponding errors also decrease as the value of l increases. In
this case, 5th order WKB method seems to be more accurate with less errors. For the same wormhole, we have calculated the
Dirac quasinormal modes in Table II. In this scenario, for lower k values, the WKB approximation gives less accurate results
due to the behaviour of the corresponding potentials. Hence, we have listed the quasinormal modes for some higher values of
k. In this case, considering the 3rd order WKB results which have less errors, with an increase in the value of k, we observe
a decrease in the decay rate of the quasinormal frequencies while the real part increases gradually following the previous trend
of scalar perturbation. One may note that in case of Dirac perturbation, 5th order WKB method is less accurate in comparison
to the 3rd order WKB method. The errors, as expected, decrease with increase in the value of k. Similarly, we have calculated
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FIG. 13: Variation of the fundamental scalar quasinormal modes with model parameter m1 for the wormhole defined by the shape function
(17), calculated with 3rd order WKB approximation method.
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TABLE III: Fundamental quasinormal modes of the wormhole defined by the shape function (18) for the scalar perturbation with m2 = 1.3
and r0 = 1.

l WKB 3rd order WKB 5th order ∆3 ∆5

l = 1 1.45101− 0.251715i 1.45255− 0.25038i 0.00181116 0.000638004

l = 2 2.45502− 0.247206i 2.45537− 0.247046i 0.000629713 0.0000668254

l = 3 3.45096− 0.246039i 3.45109− 0.245998i 0.000318384 0.0000163396

l = 4 4.44427− 0.245568i 4.44434− 0.245553i 0.000191903 5.81055× 10−6

TABLE IV: Fundamental quasinormal modes of the wormhole defined by the shape function (18) for the Dirac perturbation with m2 = 1.3
and r0 = 1.

k WKB 3rd order WKB 5th order ∆3 ∆5

k = 10 9.9313− 0.2489i 9.9421− 0.0908i 0.00676849 1.29907

k = 11 10.9219− 0.2483i 10.9293− 0.1497i 0.00461736 0.683984

k = 12 11.9124− 0.2479i 11.9178− 0.1839i 0.00326382 0.395367

k = 13 12.9028− 0.2475i 12.9068− 0.2045i 0.00241299 0.241984

the quasinormal modes for the second wormhole (18) and listed them in Table III for scalar perturbation. In this case, with an
increase in the multipole number l, the decay rate decreases following an opposite trend in comparison to the first case. For this
wormhole, the Dirac quasinormal modes are listed in Table IV. For the third wormhole, defined by Eq. (19), the scalar and Dirac
quasinormal modes are listed in Tables V and VI respectively. For this case also, the scalar quasinormal modes decrease with an
increase in the value of l.

To get a clear picture, we have plotted the real and imaginary quasinormal modes of the wormhole (17) with respect to the
model parameter m1 in Fig. 13 for scalar perturbations and in Fig. 14 for Dirac perturbations using 3rd order WKB approxi-
mation method. The reason for choosing 3rd order WKB method in the plots can be justified from the previous tables, where
we have seen that in general the 5th order WKB method results in higher magnitudes of errors basically in Dirac perturbations.
In Fig. 13, it is seen that the real quasinormal mode increases linearly with respect to the model parameter m1. However, at
the same time, the decay rate also increases following a non-linear pattern. The decay rate is smaller when the parameter m1

negligibly small. The Dirac quasinormal modes are shown in Fig. 14. The real quasinormal modes decrease with an increase in
the model parameter m1. However, in case of decay rates, we observe a multipole dependency towards m1 = 1. Initially, for all
multipole modes, decay rate increases with an increase in m1. But, for smaller multipole modes, a reverse pattern is observed
near m1 = 1. The decay rates for l = 3 start increasing gradually near m1 = 1. In the case of l = 4, the slope of the decay
rate curve becomes very small near m1 = 1. However, for higher multipole modes, such a pattern vanishes and the decay rates
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(17), calculated with 3rd order WKB approximation method.
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TABLE V: Fundamental quasinormal modes of the wormhole defined by the shape function (19) for the scalar perturbation with m3 = 1.3
and r0 = 1.

l WKB 3rd order WKB 5th order ∆3 ∆5

l = 1 1.47458− 0.308873i 1.47748− 0.305617i 0.00307541 0.00168329

l = 2 2.46893− 0.301043i 2.46966− 0.300633i 0.00110078 0.000177451

l = 3 3.46087− 0.298982i 3.46114− 0.298877i 0.000561802 0.0000431066

l = 4 4.45198− 0.298148i 4.45211− 0.298109i 0.000339966 0.0000152743

TABLE VI: Fundamental quasinormal modes of the wormhole defined by the shape function (19) for the Dirac perturbation with m3 = 1.3
and r0 = 1.

k WKB 3rd order WKB 5th order ∆3 ∆5

k = 13 12.9085− 0.3013i 12.9185− 0.1644i 0.00627415 0.988848

k = 14 13.899− 0.3008i 13.9066− 0.2060i 0.00467172 0.615035

k = 15 14.8895− 0.3004i 14.8953− 0.2331i 0.00357246 0.400761

k = 16 15.8799− 0.3001i 15.8845− 0.2512i 0.00277218 0.270291

become almost identical to each other.
We have shown the variation of the scalar quasinormal modes for the second shape function defined by Eq. (18) in Fig. 15.

Here, we have chosen the range of the parameter m2 in such a way that the shape function satisfies the viability conditions. It is
seen that an increase in the parameter from m2 = 1 to 2 results in decrease of the quasinormal frequencies and at the same time
the decay rate also decreases gradually. In case of Dirac quasinormal modes (see Fig. 16), however, an increase in the parameter
m2 results in an increase of the quasinormal frequencies. But in decay rate, we observe an anomalous pattern which depends on
the multipole number l. For l = 3, the decay rate initially increases with an increase in m2 and beyond m2 = 1.4, the decay rate
starts to decrease very slowly with an increase in m2. For l = 4, decay rate increases very slowly near m2 = 1.1 and beyond
this, decay rate decreases. In the case of l = 5 and above, the decay rate only decreases gradually from m2 = 1 to 2. It may
be noted that for higher l values, the decay rates are almost identical to each other and they start decreasing with an increase
in m2 beyond 1. For the third shape function (19) also, the scalar quasinormal modes follow a similar pattern to that of the
second shape function as seen from the Fig. 17. In case of the Dirac quasinormal modes as seen from Fig. 18, the quasinormal
frequencies increase with increase in the parameterm3 and the decay rate follows a similar trend as that of the Dirac perturbation
case for the shape function (18). Hence, the analysis shows that the shape functions (18) and (19) show a similar behaviour in
terms of the quasinormal modes of the wormholes in both scalar and Dirac quasinormal modes.

We now move to the new shape function that has been obtained from the Starobinsky f(R) gravity model surrounded by
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(18), calculated with 3rd order WKB approximation method.
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TABLE VII: Fundamental quasinormal modes of the wormhole in Starobinsky model defined by the shape function (39) for the scalar pertur-
bation with α = −0.3, η = 0.5 and r0 = 1.

l WKB 3rd order WKB 5th order ∆3 ∆5

l = 1 1.50652− 0.401418i 1.51379− 0.389575i 0.00693889 0.00702422

l = 2 2.49009− 0.381394i 2.492− 0.380002i 0.00230204 0.000643374

l = 3 3.47658− 0.375938i 3.47729− 0.375589i 0.00114282 0.000147775

l = 4 4.46441− 0.373693i 4.46474− 0.373568i 0.000682844 0.0000511278

TABLE VIII: Fundamental quasinormal modes of the wormhole in Starobinsky model defined by the shape function (39) for the Dirac
perturbation with α = −0.3, η = 0.5 and r0 = 1.

k WKB 3rd order WKB 5th order ∆3 ∆5

k = 16 15.8877− 0.376659i 15.9049− 0.143713i 0.0105442 1.77187

k = 17 16.8783− 0.376026i 16.8918− 0.203532i 0.00829676 1.18099

k = 18 17.8688− 0.375502i 17.8796− 0.245583i 0.00661801 0.819652

k = 19 18.8592− 0.375063i 18.8681− 0.275713i 0.0053437 0.585226

a cloud of strings. We have calculated the quasinormal modes for different values of multipole moments in Tables VII and
VIII for the scalar and Dirac perturbations respectively. In this case also, we observe that the errors associated with the scalar
perturbation are comparatively smaller than those found in the Dirac perturbation. In the scalar perturbation, 5th order WKB
has smaller errors. The real quasinormal mode increases and the decay rate decreases with an increase in the value of multipole
moment, l. In the case of Dirac perturbation also, with an increase in k, real quasinormal mode increases. But according to the
results from 3rd WKB, the decay rate decreases and for 5th WKB, decay rate increases with an increase in k. However, one may
note that the errors associated with 5th order WKB are higher and this is basically due to the form of the potential. For smaller
values of k, the errors are large. Since, the error associated with 3rd order WKB is comparatively smaller, we can use the trend
provided by this method for the implications from quasinormal modes. Moreover, we use 3rd order WKB in case of this new
shape function also, in order to analyse the quasinormal modes graphically. For this shape function defined by (39), we have
observed the variation of real and imaginary quasinormal modes with respect to the Starobinsky model parameter α in Fig. 19.
The real quasinormal modes increase non-linearly with an increase in the parameter α towards 0. One may note that it is not
possible to obtain a wormhole solution and hence the corresponding quasinormal modes for positive values of the parameter α.
The decay rate also increases non-linearly with an increase in the parameter α. In Fig. 20, we have shown the dependency of
the scalar quasinormal frequencies and the decay rates with respect to the cloud of strings parameter present in the wormhole
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(19), calculated with 3rd order WKB approximation method.
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FIG. 18: Variation of the fundamental Dirac quasinormal modes with model parameter m3 for the wormhole defined by the shape function
(19), calculated with 3rd order WKB approximation method.

shape function. It is obvious from the figure that he quasinormal frequencies and the decay rates depend on the magnitude of
the parameter η only. With a decrease in the magnitude of the parameter η towards 0, both the quasinormal frequencies and the
decay rates decrease to a minimum value.

The variation of Dirac quasinormal modes with respect to the parameter α for the wormhole obtained in the Starobinsky
model is shown in Fig. 21. In this case, the real quasinormal modes decrease with an increase in α. The decay rate, on the other
hand, increases with an increase in α. So, in both types of perturbations, i.e. in scalar and Dirac perturbations, an increase in the
Starobinsky parameter, the decay rate increases.

Finally, we have plotted the real and imaginary Dirac quasinormal modes with respect to η for the wormhole in the Starobinsky
model in Fig. 22. It is seen that an increase in the magnitude of η, decreases the quasinormal frequencies gradually. On the other
hand, the decay rate increases with an increase in the magnitude of η. So, in general for both the type of perturbations, i.e. for
the scalar and Dirac perturbations η has a similar type of impact over the decay rate of the quasinormal frequencies, while the
impact of η over the real quasinormal modes is opposite.

IV. TIME DOMAIN ANALYSIS

We study the evolution of the scalar and Dirac perturbations, especially the time domain profiles for these perturbations in this
section for the considered wormhole solutions. To study the time domain profiles for the respective perturbation schemes we
implement the time domain integration method introduced in Ref. [148]. We define the associated wavefunction as ψ(r∗, t) =
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calculated with 3rd order WKB approximation method using η = 0.7 and r0 = 1.
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FIG. 20: Variation of the fundamental scalar quasinormal modes with model parameter η for the wormhole defined by the shape function (39),
calculated with 3rd order WKB approximation method using α = −0.5 and r0 = 1.

ψ(i∆r∗, j∆t) ≡ ψi,j and the potential as V (r(r∗)) = V (r∗, t) ≡ Vi,j to write Eq. (48) in the form:

ψi+1,j − 2ψi,j + ψi−1,j

∆r2
∗

− ψi,j+1 − 2ψi,j + ψi,j−1

∆t2
− Viψi,j = 0. (60)

Identifying the initial conditions as ψ(r∗, t) = exp

[
− (r∗ − k1)2

2σ2

]
and ψ(r∗, t)|t<0 = 0 (here k1 and σ are median and width

of the initial wave-packet), it is possible to express the time evolution of the scalar field as

ψi,j+1 = −ψi,j−1 +

(
∆t

∆r∗

)2

(ψi+1,j+ψi−1,j ) +

(
2− 2

(
∆t

∆r∗

)2

− Vi∆t2
)
ψi,j . (61)

In order to comply with the Von Neumann stability condition we have chosen ∆t
∆r∗

< 1 during the numerical procedure. We
use the same method for the Dirac perturbation scheme also to obtain the time domain profiles or the time evolution of the
perturbations for a selected set of parameters. The time profiles for scalar and Dirac perturbations are shown in Fig.s 23, 24, 25
and 26 for shape function obtained from Starobinsky model and toy shape functions respectively. The profiles show that with
an increase in the number of the multipole modes, the oscillation frequency increases. Another important implication is that the
corresponding oscillation frequency for the Dirac perturbation case is smaller than that obtained for the scalar perturbation. The
damping rate or decay rate also increases slowly with an increase in the multipole modes for both types of perturbations. One
may also note that the times domain profiles for the Starobinsky model case are distinguishable from the time domain profiles
of the toy wormhole models. It is because of the impact of the cloud of strings parameter. In the Starobinsky model case, the
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calculated with 3rd order WKB approximation method using η = 0.3 and r0 = 1.
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calculated with 3rd order WKB approximation method using α = −0.5 and r0 = 1.
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FIG. 23: Time domain profile for the wormhole defined by the shape function (39) for the scalar perturbation with α = −0.5, η = 0.1 and
r0 = 1 (on the left panel) and for the Dirac perturbation with α = −0.3, η = 0.5 and r0 = 1 (on the right panel).

structure of the wormhole highly depends on the surrounding cloud of strings and any variation in the cloud of strings parameter
will impact the quasinormal modes and time domain profiles obtained from the perturbation of the wormhole geometry. But in
case of the toy models, we have well defined the shape functions initially and hence the cloud of strings parameter appears as
a contribution towards the geometry modification i.e. the corresponding f(R) gravity model has the cloud of strings parameter
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FIG. 24: Time domain profile for the wormhole defined by the shape function (17) for the scalar perturbation (on the left panel) and the Dirac
perturbation (on the right panel) with m1 = 0.5 and r0 = 1.
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FIG. 25: Time domain profile for the wormhole defined by the shape function (18) for the scalar perturbation (on the left panel) and the Dirac
perturbation (on the right panel) with m2 = 1.1 and r0 = 1.
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FIG. 26: Time domain profile for the wormhole defined by the shape function (19) for the scalar perturbation (on the left panel) and the Dirac
perturbation (on the right panel) with m3 = 1.1 and r0 = 1.

as a model parameter in it. This basically provides an f(R) gravity model which can compensate the effect of cloud of strings
for the chosen shape function of the wormhole. In Fig. 24, for both type of perturbations we have chosen m1 = 0.5 and throat
radius of the wormhole r0 = 1. Similar to the previous case, we observe that with increase in the multipole moment, quasinormal
frequencies and decay rate increases. However, the variation of decay rate is comparatively small. In Fig.s 25 and 26, we have
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used m2 = 1.1 and m3 = 1.1 respectively. We observe that for both cases, the time domain profiles are not identical and the
variation is more prominent in case of the Dirac perturbation. These results support the previous results obtained from the WKB
analysis. So, at last we can summarise that the structure of the wormholes are connected with the quasinormal modes and hence
also on the time domain profiles. Next generation GWs detectors like LISA may play a prominent role [46] in distinguishing
between quasinormal modes from black holes and wormholes and hopefully may be able to constrain the wormhole shape
functions to a satisfactory order.

However, one can also consider constraining the gravity models using cosmological or other experimental data to see how
tightly the quasinormal spectrum is bounded. Since in the wormhole configuration we have considered a cloud of strings as a
possible relic, a proper constraint from cosmological data may give useful insights here. We keep this as a future prospect of this
study. In a recent study, from GW150914 with 90% credibility, the following bound on the fractional deviations of quasinormal
modes for Kerr black holes are obtained [155]:

δf220 = 0.05+0.11
−0.07, δτ220 = 0.07+0.26

−0.23, (62)

where f stands for real frequencies and τ stands for damping time. Assuming this bound to be valid for the case of wormholes
also, one can see that it puts a weak limit on the model parameters. For example, in the Starobinsky model, we can see that
δα ≈ 71.43 and δη ≈ 2.78 for the Dirac perturbation using real quasinormal mode only. It may be noted that the values of these
two parameters considered in our study lie within these weak limits of their values. However, to get a proper constraint, we need
to wait for LISA.

V. CONCLUSION

In this study, we have used three toy models of wormhole shape functions along with a wormhole solution obtained from
the Starobinsky model surrounded by a cloud of strings in the f(R) gravity metric formalism. At first we studied the viability
conditions for this new wormhole solution along with the three ad-hoc shape functions. We have also plotted the embedded
diagrams of the wormholes for a better visualisation of the model parameter dependencies on the structure of the wormhole. We
see that the first toy model (17) has a unique behaviour in terms of the model parameter dependency, which is opposite to the cases
observed for the other two toy shape functions. On the other hand, the new shape function obtained for the Starobinsky model has
two model parameters apart from the throat radius r0. They are the Starobinsky parameter α and the cloud of strings parameter
η. The viability functions as well as the structure of the wormhole depends highly on the cloud of strings parameter η. However,
the Starobinsky parameter α has a smaller dependency on the same. Thereafter, we considered two types of perturbations in
the wormhole spacetime, viz. the scalar and Dirac perturbations. We have calculated the corresponding potentials in the tortoise
coordinates, as in the normal coordinates, it is not possible to predict the peak of the potential due to the property of the wormhole
spacetime. We have seen that the quasinormal modes for the scalar perturbation are more accurate than those obtained in the
Dirac perturbation in terms of the error parameter defined earlier. This is due to the different behaviour of the Dirac perturbation
for which the quasinormal modes with smaller multipole modes become unstable in the WKB approximation method and for
smaller values of k, sometimes positive imaginary quasinormal modes are obtained denoting unstable quasinormal modes.
Hence, in our study, we have considered higher values of k in case of Dirac perturbation so that we can avoid unstable modes
and obtain quasinormal modes with higher accuracy. One may note that in WKB approximation method, one may not always
get higher accuracy for higher order corrections. We have observed that for the scalar perturbation, 5th order WKB gives higher
accuracy but in the case of Dirac perturbation, 3rd order WKB gives better accuracy than 5th order WKB. Since, in general for
both the cases, errors associated with the 3rd order WKB is in acceptable range, we have considered 3rd order WKB to analyse
the quasinormal modes with respect to the model parameters in the graphs.

Our study shows that the cloud of strings parameter can have a significant impact on the quasinormal modes from a wormhole
in f(R) gravity Starobinsky model. The impacts are opposite for the real quasinormal modes for the scalar and Dirac pertur-
bations. So, in such a situation, quasinormal modes may be a probe in the near future to distinguish between scalar and Dirac
perturbations in different wormhole geometries. However, in case of the toy shape functions defined in (17), (18) and (19), the
quasinormal modes do not depend on the cloud of strings parameter. It is because, the shape functions are defined at first and
the definitions are kept rigid throughout the whole calculation. So, the impact of the relic cloud of strings appears in the explicit
form of the f(R) gravity model. Therefore, it is impossible to see the impact of cloud of strings parameter on the quasinormal
modes in case of the toy shape functions. So, in such a situation astrophysical constraints on the corresponding f(R) gravity
model may provide some useful insights including viability of such configurations. The other model parameters m1, m2 and
m3 have significant impacts on the quasinormal modes from the corresponding wormholes. The impact on the quasinormal
modes of m1 of the first toy shape function is however, opposite in comparison to the second and third toy shape functions.
On the other hand, one may note that the wormhole solution found for the Starobinsky model depends highly on the cloud of
strings parameter and this solution is valid only in presence of this relic. So, as expected the wormhole shape function does not
have a GR limit, or the solution is completely different from a GR scenario. Moreover, the solution is different significantly
from a standard Schwarzschild solution and hence it is expected to be easily differentiable from a GR black hole with the help
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of quasinormal modes. Another important point to note is that the Starobinsky wormhole differs significantly from the black
hole solutions obtained in Ref. [123], where black holes in f(R) gravity have been taken into account along with a cloud of
strings. Therefore, it might be possible in the near future to distinguish between wormhole shape functions and a black hole
using the GW observations from the next generation detectors like LISA [46]. This study will also help to test the viability of the
Starobinsky model and to constrain it in the near future using the observational data from quasinormal modes. The Starobinsky
model provides a unique wormhole shape function in presence of a cloud of strings and a study of several other properties of
this wormhole such as weak deflection angle, geodesic equations etc. will shed some more light on such configurations.

A basic question has been raised several times in literature if it is possible to distinguish quasinormal modes from a black
hole and a wormhole spacetime [149–153]. Although it is seen that the quasinormal spectra for wormholes varies from those
for black holes, for some wormholes the quasinormal modes can be very close to those found in black holes and in such a case
quasinormal modes may not be very helpful in distinguishing between black holes and wormholes [90, 152, 153]. But it might be
possible to distinguish between wormholes and black holes effectively using other ways [154]. In such a situation, experimental
results from quasinormal modes may be used to study the variations and as a supporting evidence.
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Appendix: Expressions of ρ+ pr

1. Shape function 01

For the first shape function defined by (17), we have

F(r) = −η
2e−m1(r0−r)

1−m1r
. (A.1)

Using this expression, Eq.s (14) and (15) can provide,

ρ+ pr =
η2m1e

m1(r−r0)
(
em1(r0−r)

(
m3

1r
3 − 7m2

1r
2 + 12m1r − 2

)
− 2m1r

(
m2

1r
2 − 4m1r + 5

))
2r (m1r − 1) 3

, (A.2)

which has been used for checking the violation of NEC.

2. Shape function 02

For the second shape function defined by (18), using the field equations, we have obtained,

F(r) = − η2 (r + r0) log2 (m2 (r + r0))

log (2m2r0) (r log (m2 (r + r0)) + r0 log (m2 (r + r0))− r)
. (A.3)

This expression along with the field Eq.s (14) and (15), we have

ρ+ pr =
η2

2r (r + r0) log (2m2r0) log (m2 (r + r0)) ((r + r0) log (m2 (r + r0))− r) 3

[
− 2r3 log (2m2r0) (A.4)

+ 2 (r + r0)
((

2r2 + 5r0r + r2
0

)
log (2m2r0) + r (3r + 2r0)

)
log3 (m2 (r + r0))

+ r2 (3 (r + 2r0) log (2m2r0) + 4r) log (m2 (r + r0))− 2r (r + r0) (r + 3r0) log4 (m2 (r + r0))

− r (3 (r + r0) (3r + 2r0) log (2m2r0) + 4r (r + 2r0)) log2 (m2 (r + r0))
]
.
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3. Shape function 03

Similarly, for the shape function (19), we have

F(r) = − η2 (m3 + r − r0) 2

m3 (m3 − r0)
, (A.5)

which along with the field Eq.s (14) and (15) results,

ρ+ pr =
η2
(
m3 (2r − r0) +m2

3 + 2r (r − r0)
)

m3r (m3 − r0) (m3 + r − r0)
. (A.6)

4. Shape function 04 (Starobinsky model shape function)

Finally, for the Starobinsky model,

F(r) = − 8αη2

r
(√

r2 − 16αη2 − r
) . (A.7)

Using this along with the field Eq.s (14) and (15), we can obtain

ρ+ pr =
η2

6r4 (r2 − 16αη2)
3/2
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)[12288α3η6 + 128α2η2

{
r
(

10η2

(√
r2 − 16αη2 −

√
r2
0 − 16αη2

)
(A.8)

− 12
√
r2 − 16αη2 − 15r0

)
+ 3
√
r2 − 16αη2

(
2η2
√
r2
0 − 16αη2 + 3r0

)
+ 4

(
3− 7η2

)
r2
}

+ r2

(
−12r4 + 5r2

0

√
r2 − 16αη2

(√
r2
0 − 16αη2 − r0

)
+ 12r3

√
r2 − 16αη2 + 7r2

0r

(
r0 −

√
r2
0 − 16αη2

))
− 8α

{
6
(
3− 7η2

)
r4 + 5r2

√
r2 − 16αη2

(
2η2
√
r2
0 − 16αη2 + 3r0

)
+ 6η2r2

0

√
r2 − 16αη2

(√
r2
0 − 16αη2 − r0

)
+ r3

(
2η2

(
15
√
r2 − 16αη2 − 7

√
r2
0 − 16αη2

)
− 18

√
r2 − 16αη2 − 21r0

)
+ 10η2r2

0r

(
r0 −

√
r2
0 − 16αη2

)}]
.
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[63] R. C. Pantig and A. Övgün, Testing Dynamical Torsion Effects on the Charged Black Hole’s Shadow, Deflection Angle and Greybody

with M87* and Sgr A* from EHT, arXiv:2206.02161 (2022).
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[73] A. Övgün and K. Jusufi, Quasinormal Modes and Greybody Factors of f(R) Gravity Minimally Coupled to a Cloud of Strings in 2 + 1

Dimensions, Annals of Physics 395, 138 (2018) [arXiv:1801.02555].
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