
Tides on Europa, and the thickness of Europa’s icy

shell

J. M. Wahr,1 M. T. Zuber,2 D. E. Smith,3 and J. I. Lunine4,5

Received 11 April 2006; revised 20 June 2006; accepted 1 August 2006; published 8 December 2006.

[1] It has been shown previously that measurements of tides on Jupiter’s moon Europa
can be used to determine whether there is a liquid ocean beneath this moon’s icy outer
shell. In this paper we examine the further possibility of constraining the thickness
of the icy shell in the case where a liquid ocean exists, by combining measurements of
tidal gravity obtained from tracking an orbiting spacecraft with measurements of vertical
tidal surface displacements obtained from a precise onboard altimeter. By simulating a
1-month Europa mapping mission we demonstrate that this combination of tidal
measurements would provide a much better estimate of ice thickness than could be
obtained using either tracking or altimeter measurements alone. The thickness value
inferred from the combined data would also require an estimate of the shear modulus of
Europa’s icy shell. This introduces an additional uncertainty in the thickness estimate
that is approximately proportional to the uncertainty in the inverse of the shear modulus.
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1. Introduction

[2] It has long been known that the surface of Jupiter’s
moon Europa is mainly composed of water ice. Various
observations from the Galileo spacecraft, most notably from
magnetometry [Kivelson et al., 2000], support the hypoth-
esis that this fractured, icy surface overlies a liquid water
ocean. Details on geometry and physical properties of the
shell and ocean, however, remain uncertain. Models of the
internal structure of Europa based on gravitational field
estimates inferred from perturbations of Galileo’s orbit
suggest that the total thickness of the combined ice+ocean
layer is probably between 80 and 170 km [Anderson et al.,
1998]. The thickness of the icy shell has been estimated on
a regional basis from a diverse collection of surface features
[Hoppa et al., 1999b; Turtle and Pierazzo, 2001; Schenk,
2002; Nimmo et al., 2003]. Thermal models [Ojakangas
and Stevenson, 1989; Hussmann et al., 2002; Tobie et al.,
2003; Spohn and Schubert, 2003] permit global estimates,
but such estimates are based on assumptions about internal
structure that have considerable uncertainty. Regional thick-
ness estimates range from kilometers to tens of kilometers.

However, Europa’s shell thickness has not been estimated
reliably on a global basis. Such estimation will require a
dedicated Europa orbiter mission.
[3] The presence of a liquid ocean would significantly

increase tidal amplitudes on Europa [see, e.g., Yoder and
Sjogren, 1996; Edwards et al., 1997; Chyba et al., 1998;
Moore and Schubert, 2000; Wu et al., 2001]. As a result,
measuring tidal amplitudes is one of the primary motiva-
tions for a Europa orbiter mission. The goal of this paper is
to examine whether tidal measurements could provide
information on the thickness of the icy shell, using the
current state of knowledge that a liquid ocean almost
certainly exists. Moore and Schubert [2000] noted that tidal
amplitudes should vary linearly with ice thickness, where
the coefficient of that linear term depends on the shear
modulus of the ice. We concur with that conclusion.
However, we find that uncertainties in the material proper-
ties of the ocean and underlying rocky mantle would make
it difficult to identify that linear term using observations
of tidal gravity or tidal displacements alone. Here we
combine theoretical analysis with a simulation of a nominal
1-month-long orbital mapping mission to investigate what
could be learned about Europa’s icy shell using modern
techniques in geophysics and space geodesy. We find that by
combining measurements of tidal gravity obtained from
tracking an orbiting spacecraft, with measurements of ver-
tical tidal surface displacements obtained from an onboard
altimeter, it should be possible to extract that linear term to a
high degree of accuracy, and so to constrain the product of
the thickness and shear modulus of the ice. Direct measure-
ment of Europa’s tidal displacements even in the case of a
fully solid body is within current capability, as demonstrated
for Mars with an orbital laser altimeter [Zuber et al., 1992;
Smith et al., 2001] and the application of crossover analysis
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[Neumann et al., 2001] in the precision orbit determination
process.

2. Tides and Love Numbers

[4] By far the largest tides on Europa are those caused by
the gravitational attraction of Jupiter. Europa’s rotation is
synchronous with its orbital motion, both having periods of
T = 3.55 (Earth) days. Nonsynchronous rotation could exist;
but, if so, its period would be at least 104 years [Hoppa et
al., 1999a], which means any nonsynchronous drift would
be negligible during a satellite lifetime. For synchronous
rotation, tidal variability requires an eccentric orbit and has
period T. To lowest order in eccentricity, �, and assuming
Europa’s orbital obliquity vanishes, the tidal potential is [see
Kaula, 1964]

VT r; q;l; tð Þ ¼ A
r

R

� �2

1� 3 cos2 q
� �

cos ntð Þ
�

þ sin2 q 3 cos ntð Þ cos 2lð Þ þ 4 sin ntð Þ sin 2lð Þ½ �
�
; ð1Þ

where A = 3GM�R2/4a3. Here r, q, l are the radius,
colatitude, and eastward longitude; the time t is assumed to
be zero at perijove; M is Jupiter’s mass; and R, a, and n are
Europa’s radius, semimajor axis, and mean motion (n =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GM=a3
p

= 2p/T). Note that VT varies periodically with
time at a period of 2p/n = 3.55 days.
[5] Let U (q, l, t) and F (q, l, t) be, respectively, the

vertical tidal surface displacement and the perturbation in
the gravitational potential at the surface caused by the
tidally perturbed density field of Europa. Then, since VT is
the sum of spherical harmonics of degree 2 ((1 � 3 cos2q)
is a harmonic of degree 2, order 0; sin2q cos (2 l) and
sin2q sin (2l) are harmonics of degree 2, order 1),

U ¼ h VT R; q;l; tð Þ=g F ¼ k VT R; q;l; tð Þ; ð2Þ

where g is the gravitational acceleration at the European
surface and h and k are Love numbers of degree 2 [Love,
1927; Munk and MacDonald, 1960; Lambeck, 1990]. h and
k depend on the internal structure of Europa, and would be
much larger if Europa had a liquid ocean than if it did not
[see, e.g., Yoder and Sjogren, 1996; Edwards et al., 1997;
Chyba et al., 1998; Moore and Schubert, 2000; Wu et al.,
2001]. Altimeter observations of tidal surface displacements
could provide h, and gravity field solutions for the tidal
potential could provide k, and so both measurement types
could provide information about the presence of a liquid
ocean.
[6] In this paper we suppose Europa has a liquid ocean

underlying its icy outer shell. Our goal is to understand how
observations of h and k could be used to provide informa-
tion on the icy shell in general, and on the thickness of that
shell in particular. To this end, we compute h and k for a
wide variety of Europan structural models and parameter
values. We use two methods, one analytical and one
numerical, to compute the Love numbers.

3. Analytical Method

[7] We use an analytical method, described in this sec-
tion, to find the Love numbers for a simplified structural
model of Europa. Our goal is to develop an initial under-

standing of how the Love numbers depend on the param-
eters of the icy shell. The results described below suggest
that although observations of h or k alone are unlikely to be
useful for constraining ice thickness, there is a linear
combination of h and k that could provide a meaningful
estimate.
[8] Assume that Europa consists of a uniform, incom-

pressible icy shell overlying a uniform, incompressible
liquid ocean; and that the ocean overlies a rigid mantle.
Inertial forces are ignored, which is equivalent to assuming
the tidal period is infinite. Coriolis and centrifugal forces are
also ignored, which is equivalent to ignoring the dynamical
effects of Europa’s rotation. Solutions are obtained by add-
ing together linearly independent analytical solutions of the
differential equations of motion (these solutions are tabulated
by Yuen et al. [1982]), so that the combined solution
satisfies all external and internal boundary conditions. This
combined solution is found using Mathematica, to obtain
the explicit dependence on Europa’s structural parameters.
[9] Define R = 1565 km and �r = 2989 kg/m3 [Anderson et

al., 1998] as the radius and average density of Europa, ro
and ri as the densities of the liquid ocean and the icy shell, d
as the thickness of the icy shell, Rm as the radius of the
rocky mantle (so that R�Rm is the thickness of the com-
bined liquid ocean and icy shell), and mi as the shear
modulus of the icy shell. Although the exact analytical
expressions for h and k are complicated, they simplify in
the limit of d/R � 1 (i.e., a thin icy shell) to

h ¼ h0 þ h1
d

R
; k ¼ k0 þ k1

d

R
; ð3Þ

where

h0 ¼ 5�r
5�r� 3ro

; k0 ¼ 3ro
5�r� 3ro

; ð4Þ

h1 ¼ 75�r R2Gp 16�r� 3roð Þ ri � roð Þ � 6mi½ �
11R2Gp 5�r� 3roð Þ2ro

; ð5Þ

k1 ¼ 15 11R2Gp 8�r� 3roð Þ ri � roð Þ � 18mi½ �
11R2Gp 5�r� 3roð Þ2

: ð6Þ

[10] Note that if we define D = 1 + k � h, then

D ¼ 15R2Gp 16�r� 11roð Þ ro � rið Þ þ 90mi

11R2Gp 5�r� 3roð Þro

	 

d

R
: ð7Þ

The quantity �D 	 VT /g is the height of Europa’s outer
surface above the surface of constant potential. Thus the
result that D = 0 if there is no icy shell (i.e., if d = 0),
implies that in the limit of infinite period and no rotation,
which is what we are assuming in this model, the tides of an
uncovered ocean are equilibrium: i.e., at all times during the
tidal cycle the ocean surface is a surface of constant
gravitational potential.
[11] The fact thatD vanishes when d = 0, whereas h and k

do not, implies that observations of D are likely to be more
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useful than observations of h or k alone for constraining the
ice thickness. The h1 (d/R) and k1 (d/R) terms in (3) are
almost certain to be much smaller than h0 and k0, respec-
tively. Relatively small uncertainties in h0 and k0 due, for
example, to uncertainties in ro, could map into large
uncertainties in d, even in the absence of observational
errors in h and k.
[12] For example, Table 1 lists numerical values of the

parameters appearing in (3)–(7), and of other parameters
that we will introduce in section 4, that we use to define a
‘‘reference model’’. The values of ro and ri are those for
pure water. The correct value of mi is uncertain. From
laboratory experiments involving periodic loading of
unfractured, saline ice, Cole and Durell [1995] concluded
that as the forcing period increases, the shear modulus for
ice at �30�C approaches an asymptotic value of about 2 	
109 Pa. We have adopted this number as our reference
value. However, Cole and Durell’s experiments do not
consider loading at periods greater than 2.5–3 hours, which
is far shorter than the 3.55 day tidal period on Europa; and
their results for ice at higher temperatures seem to imply
values of mi that may be smaller by a factor of 2 or more.
Furthermore, there is evidence from surface faulting on
Europa, that the shear modulus of the outer surface of the
ice could be up to a factor of 5 smaller than Cole and
Durell’s estimate, due conceivably to surface fracturing
[Nimmo and Schenk, 2006]. Using observations of tidal
flexure of terrestrial ice shelves, Vaughan [1995] obtained
values for Young’s modulus consistent with a still smaller
value of mi: mi 
 0.3 ± 0.1 	 109 Pa. Schmeltz et al. [2002]
conducted a similar tidal flexure study, and found values of
mi of between 0.3 and 1.3 	 109 Pa, with different values
for different shelves, and even for the same shelves but for
different time spans. Schmeltz et al. [2002] concluded that
the large strains associated with tidal flexure of ice shelves
is likely to induce significant visco-plastic effects which
would affect these estimates of mi based on flexure obser-
vations. Because the tidal strains in the Europan icy shell
are 1–2 orders of magnitude smaller than the tidal strains
within terrestrial ice shelves, we instead adopt Cole and
Durell’s [1995] value of mi for our reference value.
[13] Using the Table 1 values in (3)–(7), we obtain

h ¼ 1:25� 3:9
d

R
; k ¼ 0:25� 0:85

d

R
; D ¼ 3:0

d

R
: ð8Þ

Suppose, though, that the ocean+ice layer was composed
instead of the eutectic system H2O-MgSO4-Na2SO4 brine,
one of the possibilities proposed by Kargel et al. [2002].
Then ro = 1208 kg/m3 and ri = 1144 kg/m3, so that

h ¼ 1:32� 3:5
d

R
; k ¼ 0:32� 0:90

d

R
; D ¼ 2:6

d

R
: ð9Þ

[14] The difference between, say, k0 in these two cases is
not large (0.32 versus 0.25), but this difference could have a
substantial impact on the value of ice thickness inferred
from observations of k. For example, suppose the ocean+ice
layer were composed of pure H2O, but that the Love
number observations were interpreted under the erroneous
assumption that this layer was composed of Kargel et al.’s
brine. Further, suppose the icy shell thickness, d, was close
to zero. Then observations would yield h = 1.25, k = 0.25,
and D = 0. If those observations were erroneously inter-
preted using (9), the values inferred for d would be d =
(1.32–1.25)/3.5 	 R 
 30 km using h, and d 
 120 km
using k. However, the value of d inferred from observations
of D would, correctly, = 0 km. In the more general case of
nonzero ice thickness, these errors in the assumed ocean and
ice densities would cause d to be overestimated by 3.0/2.6 =
15% using D, while causing much larger overestimates of
30 km +11% using h, and 120 km � 6% using k. The 30 km
and 120 km terms come from errors in h0 and k0 respec-
tively, and they cause the total errors in d inferred from h and
k to be far larger than the errors inferred from D.
[15] The errors in d caused by this mismodeling of h0 and

k0, scale inversely with the value of mi. For example, if we
use mi = 1	 109 Pa, instead of the reference value 2	 109 Pa,
then our results for h, k, and D in the case of a H2O-MS-NS
ocean+ice layer, become

h ¼ 1:32� 1:9
d

R
; k ¼ 0:32� 0:53

d

R
; D ¼ 1:4

d

R
ð10Þ

so that the coefficients of the d/R terms are about half those
in (9). The d/R coefficients in the case of a pure H2O layer
are similarly half those shown in (8). For this reduced value
of mi, errors in the assumed ocean and ice densities would
cause d to be overestimated by 60 km +16% using h and
210 km � 3% using k.
[16] Of the parameters required in (3)–(7), by far the

most uncertain are d and mi. For the reference values listed
in Table 1, [90 mi]/[15R

2Gp (16�r � 11ro)(ro � ri)] 
 8, so
that the numerator in (7) is dominated by the term propor-
tional to mi. In this case, to an accuracy of 10–15%,

D 
 90mi

11R2Gp 5�r� 3roð Þro

	 

d

R
; ð11Þ

so that observations of D would mostly provide a constraint
on the product mid. If the product mi d is too large, large
enough that mi d/R 
 2R2Gro�r (
109 Pa using the reference
model values) or larger, then terms second order in d/R,
neglected in (7), are of equal importance to the first-order
terms and so should be included in the expression for D.
This means, for example, that if d 
 30 km, then (7) is a
good approximation if mi � 5 	 1010 Pa. Since 5 	 1010 Pa
is about 250 times the reference value of mi, we conclude
that (7) is adequate for values of d of this order or less.

Table 1. Reference Model Parameter Valuesa

Parameter Value

ro 1000 kg/m3

ri 920 kg/m3

rc 5150 kg/m3

mi 2.0 	 109 Pa
ki 1.0 	 1010 Pa
ko 2.0 	 109 Pa
mm 6.0 	 1010 Pa
km 1.2 	 1011 Pa
kc 5.0 	 1011 Pa
R 1565 km
Rm 1465 km
Rc 700 km
aSubscripts i, o, m, and c, refer to the icy shell, liquid ocean, rocky

mantle, and liquid core, respectively.
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[17] Small values of mi also lead to problems. For
example, if mi is as small as implied by the tidal flexure
studies described above, then (11) would not be a valid
approximation for (7). In the still more extreme case that mi

is on the order of dRG �r (ro � ri) (
106 Pa for a 30 km icy
shell; or about 2000 times smaller than our reference value)
or less, then higher-order terms in d/R should, again, be
included in the approximation (7).

4. Numerical Method

[18] Although the analytical results described above pro-
vide insight into the Love numbers’ dependence on key
parameters of the ice shell, they are based on an incomplete
model of Europa’s structure. We extend those results by
using a numerical method to compute Love numbers for a
more general structural model: one that includes a liquid
core and nonrigid rocky mantle underlying the ocean+ice
layer, and that is compressible throughout. Our numerical
results, described in this section, show that the overall
conclusions inferred from the analytic method remain valid
in this more general case.
[19] Our numerical method is based on the standard

algorithms used by geophysicists to compute Love numbers
for a stratified, compressible, and self-gravitating Earth. Our
numerical code, in fact, is a modified version of the code
employed by Dahlen [1976] to compute terrestrial Love
numbers. We assign uniform material properties (i.e., the
density r, shear modulus m, and bulk modulus k) to each
region: the icy shell, liquid ocean, rocky mantle, and liquid
core. The model allows us to include material properties that
vary smoothly with radius, and it would perhaps be worth-
while to use an equation of state to do that when interpreting
real data. However, for this pilot study, we elect instead to
employ uniform material properties within each layer.
[20] Our reference numerical values for these parameters

are listed in Table 1. Descriptions of ri, ro, and mi are given
in section 3. For the liquid core we use Anderson et al.’s
[1998] values for radius (Rc) and density (rc) that assume an
Fe-FeS mixture; and we use a value of kc that roughly
coincides with the value of k at the top of the Earth’s liquid
core [Dziewonski and Anderson, 1981]. For the icy shell
and liquid ocean we use values of the bulk moduli, ki and
ko, that are consistent with laboratory measurements as
summarized by Fletcher [1970] for water ice and Dorsey
[1940] for liquid water. The density in the rocky mantle is
adjusted so that the mean density of Europa = 2989 kg/m3

[Anderson et al., 1998]. So, for example, if the icy shell
thickness is 10 km and the other radii and densities are as
given in Table 1, then the mantle density = 3214 kg/m3.
This value varies accordingly when we modify the thickness
of the icy shell, the radius of the mantle, and the density and
radius (and, for that matter, the existence) of the liquid core.
To estimate the shear and bulk moduli for the mantle, we
use Birch’s law [see, e.g., Poirier, 2000] to estimate the
seismic P-wave velocity vp using an assumed Europan
mantle density of rm = 3214 kg/m3; and we assume a ratio
of vp to vs (shear wave velocity) of 1.78 [Anderson and
Bass, 1984] to then obtain vs. Using these estimates we
obtain the values of mm and km listed in Table 1.
[21] The solid black lines in Figures 1a–1c show our

results for h, k, and D, as functions of ice thickness d,

computed using the reference values listed in Table 1. The
other lines included in Figures 1a–1c show results computed
using modifications of the Table 1 values: values of ro and ri
consistent with the eutectic H2O-MgSO4-Na2SO4 brine pro-
posed byKargel et al. [2002]; results for both an increase and
a decrease in the shear modulus, mm, of the rocky mantle; and
results for a model without a fluid core. We also generated
results for plausible differences in ko, km, kc, and Rm, though
none of these caused significant changes in any of h, k, orD,
and so the results are not shown. Results caused by changes
in the ice parameters, mi, ki, and ri, are discussed below.
Results are shown only for d � 30 km, so that it’s easier
to see the effects of model differences.
[22] Note, as anticipated in section 3, that h, k, and D

vary approximately linearly with d, and that D vanishes
when d = 0 while h and k do not. Figures 1a and 1b show
that h0 and k0 (the values of h and k when d = 0; see (3)) are
now sensitive not only to the ocean and ice densities, but
also to mm and to whether Europa has a fluid core or not.
These sensitivities would introduce significant errors into
any estimate of d made using observations of h or k alone.
[23] For example, suppose observations give h = 1.25 and

k = 0.26, so that D = 0.01. The horizontal dotted lines in
Figures 1a–1c correspond to those values. Those lines in
Figures 1a and 1b illustrate the wide range of possible
values of d that could be inferred from observations of h or
k alone, depending on what was assumed about other
parameters. The presence or absence of a fluid core could
make a difference in the inferred value of d of about 3 km
when using h and 12 km when using k; and varying mm

between 0.4 	 1012 Pa and 1.3 	 1012 Pa, a somewhat
arbitrarily chosen but not implausible range of values, could
make a difference of about 7 km when using h and 31 km
when using k. The difference between the results computed
assuming a pure H2O ice+ocean layer and a eutectic H2O-
MS-NS layer is much the same as found using the analytical
method in section 3: about 36 km using h and well over
100 km using k. As described in section 3, all these differ-
ences scale approximately inversely with mi; so that, for
example, if mi = 1 	 109 Pa, instead of the reference value
2	 109 Pa, then these differences in d approximately double.
[24] Figure 1c shows that the corresponding impact on

values of D would be far less: the difference between the
two models for the chemistry of the ice+ocean layer would
cause an error in d of 15–20%, about the same as found
using the analytical method; while differences caused by
uncertainties in mm or in whether there is a fluid core or not,
would be negligible.
[25] The slope of D as a function of d/R is on the order of

2.7 for small values of d. The difference between this value
and the slope of 3.0 obtained using the analytical model (8)
is almost entirely due to compressibility of the icy shell,
which is included in the numerical model but not in the
analytical model. We find that the effects of compressibility
can be approximated reasonably well by adding a term to D
that is inversely proportional to ki. Altogether, we approx-
imate D 
 Da, where

Da ¼
15R2Gp 16�r� 11roð Þ ro � rið Þ þ 90mi

11R2Gp 5�r� 3roð Þro
� 1:4

mi

ki

	 

d

R
:

ð12Þ
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Figure 1d is a contour plot of D/Da as a function of d and
mi, computed using the reference model values (Table 1) for
all other variables. The results show the approximation (12)
begins to break down for large values of d, both when mi is
small and, especially, when mi is large. This is caused by the
neglect of second- and higher- order terms in d/R, and is
discussed in section 3.
[26] For values of mi between the reference model value

(2 	 109 Pa) and a factor of 10 or more smaller than the
reference value, and for any plausible values of the other
model parameters, D is approximated to within 10% (and

even better for values of d of 
30 km or less) by (12). For
the reference value of mi, the 90 mi term dominates the
bracket in (12), so that (11) becomes a good approximation
for D. Because this approximation (11) breaks down for
values of mi that are either much smaller or much larger than
the reference value, it’s an oversimplification to conclude
that observations of D would constrain mi d. However,
because by far the most uncertain parameter in (12), other
than d, is mi, it is fair to conclude that the dominant error in
any estimate of d caused by inadequacies in model param-
eters, would be caused by errors in mi. Also, at least for

Figure 1. (a, b) Results for the Love numbers h and k as functions of ice thickness, d, computed using
the numerical method described in the text. (c) Linear combination D = 1 + k � h. Results are shown
for the reference model described in Table 1, and for modifications of that reference model as described in
the text. The results in all three cases vary approximately linearly with ice thickness. The horizontal,
dotted lines in Figures 1a–1c, correspond to arbitrarily chosen values of h (=1.25) and k (=0.26), and are
included to illustrate the advantage of using observations of D to constrain ice thickness, rather than
observations of h or k alone. (d) A contour plot of D/Da as a function of d and mi, where Da is given by
(12). Values from the reference model (Table 1) have been used for all other variables. The results in this
panel are an indication of how good an approximation Da is for D.
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values of mi close to the reference value, the corresponding
uncertainty in d would be approximately proportional to the
uncertainty in 1/mi.

5. Ocean Tides: Are They Equilibrium?

[27] Our conclusion that D is proportional to d is based
on the results from our Europan tide models that predict that
when there is no icy shell the tidal response of the ocean is
equilibrium. For an equilibrium ocean, if the tidal potential
at the surface is VT (q, l, t) (1), then the tidal variation in sea
surface height is

�h q;l; tð Þ ¼ 1þ kð ÞVT q;l; tð Þ=g: ð13Þ

[28] Our tide models assume an infinite forcing period and
ignore the Coriolis force. Those are not good assumptions
when computing diurnal ocean tides on the Earth. To
estimate the impact of these simplifying assumptions on
Europa, we construct an independent model of the ocean
tides using the Laplace tidal equations (LTE) on a sphere
[e.g., Lamb, 1945], for an ocean without continental bound-
aries and of uniform depth. These equations describe tides in
an incompressible ocean with no overlying solid shell, in the
shallow water limit: i.e., when the ocean thickness, H � R.
The LTE’s include the effects of the Coriolis force and of a
finite tidal period, and are the same equations routinely used
to model ocean tides on Earth. For Europa, H/R 
 100/
1565 = 6%. This is not nearly as small a ratio as for the
Earth, where the corresponding ratio is about 0.06%. How-
ever, our expectation is that it is small enough to make the
LTE’s useful for resolving the issue of whether Europan
ocean tides, with no icy shell, should be close to equilibrium.
[29] We force theLTE’swith the applied potential (1+ k)VT.

We follow sections 213–221 of Lamb [1945], and expand
the solution to first order in the parameter b = 4W2R2/gH,
where W is Europa’s rotation rate (= n, Europa’s mean
motion). For an ocean of 100 km depth, b 
 0.03, so that
b � 1. We find that, to first order in b, the tidal perturbation
in sea surface height, h (q, l, t), is

h 
 �hþ b
12

A 1þ kð Þ
g

cos ntð Þ cos4 q� cos2 q
2

� 1

30

� �	

� 3

2
cos ntð Þ cos 2lð Þ þ 4

3
sin ntð Þ sin 2lð Þ

� �
sin2 q cos2 q



;

ð14Þ

where �h is the equilibrium tide in (13). (For diurnal tides on
the Earth, b 
 20, so the first-order expansion (14) is not a
useful approximation, and h is not approximately equal to
�h.)
[30] The fact that the ocean tide is not exactly an

equilibrium tide has implications for the inferred value of
D. D would be determined by setting �DVT/g equal to the
height of Europa’s surface above the equipotential surface.
In the case where the thickness of the icy shell on Europa, d,
is negligible, this differential height is h � �h. Since h � �h
does not vanish, the inferred value of D would not be zero.
Specifically, D in this case would be determined from

�DVT=g ¼ h� �h : ð15Þ

Because the left- and right-hand sides of this equation
depend on colatitude (q) in different ways, there is no
latitude-independent solution for D. Instead, a solution
would be obtained by expanding each side of this equation
in spherical harmonics, Yl

m, and equating common coeffi-
cients. The left-hand side includes only Y2

0 and Y2
2 terms (the

1 � 3cos2q and sin2q terms in (1), respectively). Equating
Y2
0 terms in (15), and using (14) for h, gives D = 5b/168 


10�3; and equating Y2
2 terms gives D = 3b/128 
 8 	 10�4.

Using the reference model values, each of these solutions
for D would be interpreted as implying a value for d of
about 600 meters, instead of the correct value: d = 0 km.
This inferred value of d would vary approximately linearly
with mi (see (12)), and inversely with the ocean depth H
through the definition of b. Although this argument
assumes that the correct value of d is 0, the tentative
implication is that no matter what the value of d, the effects
of ignoring Coriolis and inertial forces in the liquid ocean
lead to an error in d of less than 1 km when the ocean
thickness is on the order of 100 km or more. The error could
be larger than this for a thinner ocean; if the icy shell
occupied most of the total ice+ocean layer, for example.
Furthermore, this ocean model does not include the effects
of the overlying icy shell back on the ocean: effects that are
likely to be more important if the shell thickness is large.

6. Other Complications

[31] The tidal models described in sections 3 and 4 ignore
certain complicating effects in the solid portions of Europa
(the icy shell and the rocky core), as well. Some of those
effects are clearly unimportant. For example, rotational and
inertial forces are omitted in those solid regions, just as they
are in the ocean. Those forces affect solid body tides on
Earth at only the 0.3% level [Wahr, 1981], and their impact
on Europan tides is apt to be even smaller, given Europa’s
slower rotation rate and longer tidal period. Our models also
assume the density and elastic parameters are constant
throughout the rocky core, which is certainly an oversim-
plification. For the Earth, for example, these parameters
increase by about 30% going from the top to the base of the
lower mantle (a region where the effects of phase changes
are not likely to be important). However, for Europa,
the general insensitivity of D to any rocky core parameters
(see section 4) suggests that this, too, is not a limiting
assumption.
[32] Vertical stratification in the icy shell could be more

important, particularly if it involves the ice shear modulus,
mi. Suppose, for example, that the ice consists of two layers
of identical densities and bulk moduli, but where the lower
layer has a shear modulus of miL = 2.0 	 109 Pa, after Cole
and Durrell [1995], and the upper layer has a shear modulus
of miU = 0.4 	 109 Pa, which is near the lower limit for the
outer surface suggested by Nimmo and Schenk [2006].
Suppose the depth to the upper-layer/lower-layer boundary
is D. We use the numerical model described in section 4 to
compute D in this case, using the reference model param-
eters shown in Table 1, and assuming a total ice thickness of
d = 25 km. Results are shown in Figure 2, as a function of
D, where D = 0 km and D = 25 km correspond to uniform
mi values of 2.0 	 109 Pa and 0.4 	 109 Pa, respectively,
throughout the entire icy shell.
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[33] The results in sections 3 and 4 show that for a single
layer D is approximately proportional to mid. We find we
obtain this same result in the two layer case, if we replace mi

with mi = (miUD + miL (d � D))/d = the average value of mi

throughout the icy shell. This is illustrated in Figure 2,
where the dashed line shows the values of D computed for
the same Europa parameters used to compute the solid line,
but where mi is replaced by the constant mi throughout the
entire icy shell. The good agreement between the solid and
dashed lines suggests that (12) is a good approximation for
D even in the case of a radially stratified mi within the icy
shell, as long as we interpret mi in (12) as the average value
of mi throughout the shell.
[34] One final complication ignored in our models, is

anelasticity in the icy shell. Anelasticity is also ignored in
the rocky core, but the general insensitivity of D to core
structure implies that this is not likely to introduce signif-
icant errors.
[35] In the icy shell, where an anelastic Q as small as 10

has been considered [Ojakangas and Stevenson, 1989], the
effects could be more important. In that case, (12) would
still be a good approximation for D, but mi would now be
complex, with real and imaginary parts that are affected by
anelasticity. ki would remain unaffected, assuming the
anelastic mechanisms involve dissipation of shear energy
rather than bulk energy. The imaginary part of mi would
cause D to have an imaginary part, which would lead to a
phase lag between the tidal forcing and tidal response. Thus,
measurements of the phase lag in D could provide infor-
mation on Q in the icy shell.

7. Measuring Europa’s Tides

[36] Altimetry and spacecraft tracking can be analyzed
jointly to directly measure tidal displacements on Europa
[cf. Wu et al., 2001]. Here we describe and simulate an
analogous experiment that could in principle be imple-
mented in a 1-month orbital mapping mission at Europa.

The experiment is based on a mission scenario consistent
with that of a previously proposed Europa Orbiter mission.
The results are meant to be simply demonstrative. In this
scenario, Europa’s tidal parameters are determined through
coupled analysis of laser altimetry and microwave tracking
data. The approach provides the strongest solutions for the
orbit of the spacecraft, the shape of Europa, the gravity field
of Europa, and the Love numbers k and h.
[37] The numerical simulation described below suggests

the tidal parameters can be recovered to levels recommen-
ded by the Europa Science Definition Team [Chyba et al.,
1998]: ±0.0005 for k, and better than ±0.01 for h. This
accuracy goal for k implies a spacecraft positional accuracy
of order 10 m along track and better than 1 m radially; the
accuracy goal for h implies a positional accuracy of 1 m or
better in the radial direction. The present-day capability in
orbit determination of planetary spacecraft though micro-
wave tracking alone is approaching the 1-m level in the
radial direction [Lemoine et al., 1999] after improvement of
all the forces acting on the spacecraft, particularly the
gravity field. Achieving such accuracy typically takes
weeks in the mapping mission dedicated to gravity field
improvement. Not only will this amount of time be unavail-
able at Europa, but a high-quality gravity field must be
obtained during the same time available for obtaining the
tidal parameters. Of concern are errors in the gravity field
that cause errors in the spacecraft position that are not
removable by additional tracking [Tapley and Rosborough,
1985]. These errors have been observed for Earth-orbiting
spacecraft and detected in orbits of the Mars Global
Surveyor (MGS) spacecraft orbiting Mars. For MGS,
high-precision gravity models developed at both JPL and
GSFC [Smith et al., 1999] show internal accuracies for the
radial position of MGS at the submeter level [Lemoine et
al., 2001; Yuan et al., 2001; Konopliv et al., 2006].
However, comparison of these orbits with the MGS laser
altimeter [Zuber et al., 1992; Smith et al., 2001] at over
2 million altimeter crossover locations show radial errors at
the 3- to 5-m level. Inclusion of laser altimetry in the gravity
model solution improves the gravity field and the orbits, and
can largely remove these errors [Rowlands et al., 1999].
[38] Altimeter crossover analysis is a powerful method

for accurate determination of the spacecraft orbit and time-
varying shape of a planet (or moon). As shown schemati-
cally in Figure 3, crossovers are locations on the surface of a
planet where the orbit ground track crosses over a previous
track. At these locations a measure of the radius of the
planet is obtainable from both orbits. A difference in the
estimated radius at the crossover location could be the result
of (1) an error in one or both orbits, (2) an instrumental
error, (3) a change in the radius of the planet, such as one
due to tides, between the times of the altimeter observations,
or (4) a combination of all these.
[39] Of particular importance is that the crossover obser-

vation is independent of the static radius of the planet but
remains sensitive to any time-varying component of the
shape due, for example, to tides. Since the crossover
observations are also sensitive to orbital errors, they can
be used as an observation of the spacecraft radial position in
the orbit determination process [Shum et al., 1998]. Thus,
crossovers can be combined with the Doppler tracking of

Figure 2. The solid line shows results for D computed for
an icy shell (25 km thickness) that consists of two layers
with different shear moduli. The x axis is the depth to the
lower-layer/upper-layer interface. The dashed line shows
similar results, but where the shear modulus is uniform
throughout the icy shell, with a value equal to the icy shell
average in the two layer case.

E12005 WAHR ET AL.: TIDES ON EUROPA

7 of 10

E12005



the spacecraft both to improve the orbit and to estimate tidal
changes in the shape of the planet.
[40] We have conducted a full simulation of the recovery

of h and k for a 30-day, high-inclination, 200-km altitude
Europa mission. We construct simulated tracking and al-
timeter data from the following a priori models. We use the
Earth’s Moon (without the center-of-mass/center-of-figure
offset) as the model for Europa gravity and topography (the
Moon may not be like Europa, but it provides a reasonable
proxy for Europa’s size and shape), a Jupiter-induced
Europa tidal model that assumes k = 0.2 and h = 1.0, and
the IAU model for the precession, nutation, and rotation of
Europa (no physical librations). We assume that range-rate
measurements (Doppler tracking) of the Europa spacecraft
by the 3-station DSN (Deep Space Network) are available
for the full 30-day mission, including the occultation of
Europa behind Jupiter and of the spacecraft behind Europa.
To be conservative, we did not include DSN measurements
of range, which provide an additional constraint on space-
craft position. In the simulation, no allowance is given for
the time spent pointing at Earth, but the data used in the
simulation are less than would be expected in a nominal
laser altimeter mapping mission. The DSN data are given
a 0.1 mm/s accuracy for a 60-second integration. Small
daily accelerations are included to represent spacecraft
momentum dumps. The altimeter observations are simu-

lated at 1-Hz, 1-m accuracy, and are acquired for the full
30-day mission. Once the simulated data are constructed,
we discard all the a priori models, including GM, the
gravity, topography, and tidal models, and we analyze the
(simulated) tracking data in 4-day periods to provide initial
estimates for GM and the spacecraft orbit. Iterating this
process many times leads to a preliminary gravity model
solution, as well as to orbits for the spacecraft for the 30-day
mission. The (simulated) altimeter data were ‘‘hung’’ on the
orbits and a preliminary topography model was obtained for
Europa. The Love numbers k and h were estimated in
subsequent iterations of this solution.
[41] The simulation revealed that solving directly for the

tidal Love numbers, k and h, without using the altimetric
crossovers to improve the orbit, does not yield the level 1
accuracy objectives. The principal gravity and topographic
distortion of Europa is due to Jupiter’s tidal forcing.
Because Europa is in a synchronous orbit, most of the tidal
distortion is a permanent deformation of the body. Table 2
demonstrates that separating the tidal shape from the non-
tidal shape is difficult because of high correlation between
estimates of the tidal parameters and the second-degree
coefficients in the gravity and topographic expansions
(Table 3). Such correlation is common when attempting to
recover multiple parameters from a single spacecraft in
orbit. Adding the altimeter crossovers to the Doppler data
in the orbit determination process provides improved orbital
accuracy, not only in the radial direction but particularly in
the cross-track and along-track directions. The simulated
solution behavior was entirely consistent with observational
experience on MGS [Rowlands et al., 1999]. Attempts for a
simultaneous recovery of the spacecraft orbit and tidal
parameters using altimetric crossovers were fully successful
leading to results shown in Table 4 that meet the require-
ments for measurement of Europa’s tides. Our estimated
uncertainties in k, h, andD( = 1 + k � h), are on the order of
0.0004, 0.01, and 0.01, respectively.
[42] Each of the above solutions was obtained from 4 days

of simultaneous tracking and altimetry whenever the space-
craft was visible from Earth. The results obtained herein are
after the solution had been iterated to improve the gravity

Figure 3. Schematic illustration of the altimeter crossover
approach. By measuring, at points where two orbits cross,
the range from the spacecraft to the surface from altimetry
and the radius of the spacecraft from the planetary center of
mass from Doppler tracking, the time-varying component of
topography can be unambiguously determined.

Table 2. Recovered Values for the Tides Without Altimetrya

Soln Param Recovered Value Formal Sigma Error

15 days k 0.2135 0.0002 6.3%
15 days h 0.9534 0.001 4.7%

aThe values inputs to the simulation were k = 0.2 and h = 1.0.

Table 3. Correlations Between Gravity and ka

C2,0 C2,1 C2,2 S2,1 S2,2

k 0.71 �0.04 0.998 �0.01 0.95
h 0.99 �0.05 0.999 �0.04 0.95

aHigh correlations indicate that parameters are inseparable in inversion.

Table 4. Recovered Values for the Tides and the Pole Position

Soln Param Recovered Value Formal Sigma Error

1 k 0.19959 0.22E-04 0.2%
h 1.00276 0.22E-04 0.3%

Pole, RA 268.8093 0.70E-05
Pole, DEC 65.2369 0.69E-05 0.003�

2 k 0.19964 0.18E-04 0.02%
h 1.00944 0.22E-02 0.9%

Pole, RA 268.8105 0.14E-04
Pole, DEC 65.2352 0.82E-05 0.004�
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model. Initial values of the tidal parameters were zero,
and initial values of the pole position were the modeled
value.

8. Summary

[43] It has been argued for several years that accurate
solutions for the Europan Love numbers k or h could
provide definitive evidence of the presence of a liquid
ocean beneath the surface ice shell [e.g., Yoder and Sjogren,
1996; Edwards et al., 1997; Chyba et al., 1998; Moore and
Schubert, 2000; Wu et al., 2001]. The issue we address in
this paper is whether, if there is a liquid ocean, the Love
number solutions could be further used to determine the ice
thickness, d. We conclude that this cannot be done to any
useful accuracy using k or h alone. Even if k or h could be
measured perfectly, there would still be an unacceptably
large uncertainty in any estimate of d because of the
difficulty of modeling k0 and h0 (the values of k and h in
the d ! 0 limit; see (3)).
[44] We find, though, that an observed value for the linear

combination D = 1 + k � h, would greatly reduce this
problem, since D ! 0 in the limit of d ! 0. There would
still be an ambiguity in the thickness estimate owing to
uncertainties in the shear modulus, mi, of the ice. The value
of D is proportional to d 	 mi, implying that the uncertainty
in d would be proportional to the uncertainty in 1/mi.
[45] The uncertainty, d d, in the ice thickness would also

depend on the uncertainty, dD, in the measured value of D.
Our best estimate of the relation between these two uncer-
tainties is

dD ¼ 2:7	 dd=R ð16Þ

(see the discussion above (12)), where R is the radius of
Europa. To estimate dD we have simulated a 1-month
Europa mapping mission that includes both microwave
spacecraft tracking and an onboard laser altimeter, and
where we solve simultaneously for the Love numbers and
the static gravity field and surface topography. The results
suggest that Europa’s gravity field can be recovered to
degree and order 15, and that the static topography field can
be obtained with an accuracy of 1 m. The measurement
precision required for the Europa experiment has already
been demonstrated in the geodetic investigation on the Mars
Global Surveyor (MGS) mission [Smith et al., 2001;
Neumann et al., 2001].
[46] This simulation suggests that dD would probably be

on the order of 0.01. Using this estimate of dD in (16), we
obtain an uncertainty of ±5 km in d; though the precise
uncertainty depends on the ice thickness itself and on the
uncertainty in mi.
[47] Estimates for the thickness of the Europan crust

range from many tens of kilometers to (at least in places)
tens or hundreds of meters [Chyba et al., 1998]. The
ability of a future landed mission to access the liquid water
ocean for the purpose of searching for life depends
sensitively on this thickness: a drilling depth of tens of
kilometers is a very different challenge than a drilling
depth of tens of meters. Our simulation suggests an
accuracy for the recovered thickness of the crust (i.e.,
±5 km) that, depending on the result, may not be sufficient

to decide whether follow-on missions designed to further
study the ocean are warranted. If the ice thickness is on
the order of many km or larger, the observations proposed
in this paper offer the most practical means of obtaining
reliable numbers for the thickness of the Europan crust
(and rule out drilling missions). Other techniques, such as
radar probing of the crust, would be required to interpret,
in terms of in situ mission feasibility, a tracking/altimeter
experiment that gives (for example) 1 km ± 5 km.
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