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Abstract

Background: High-throughput RNA sequencing (RNA-Seq) enables quantification and identification of transcripts

at single-base resolution. Recently, longer sequence reads become available thanks to the development of new

types of sequencing technologies as well as improvements in chemical reagents for the Next Generation

Sequencers. Although several computational methods have been proposed for quantifying gene expression levels

from RNA-Seq data, they are not sufficiently optimized for longer reads (e.g. > 250 bp).

Results: We propose TIGAR2, a statistical method for quantifying transcript isoforms from fixed and variable length

RNA-Seq data. Our method models substitution, deletion, and insertion errors of sequencers based on gapped-

alignments of reads to the reference cDNA sequences so that sensitive read-aligners such as Bowtie2 and BWA-

MEM are effectively incorporated in our pipeline. Also, a heuristic algorithm is implemented in variational Bayesian

inference for faster computation. We apply TIGAR2 to both simulation data and real data of human samples and

evaluate performance of transcript quantification with TIGAR2 in comparison to existing methods.

Conclusions: TIGAR2 is a sensitive and accurate tool for quantifying transcript isoform abundances from RNA-Seq

data. Our method performs better than existing methods for the fixed-length reads (100 bp, 250 bp, 500 bp, and

1000 bp of both single-end and paired-end) and variable-length reads, especially for reads longer than 250 bp.

Background
Massively parallel sequencing of cDNA libraries con-

structed from RNA samples (RNA-Seq) has become a

popular choice for quantifying gene expression levels of

transcript isoforms [1]. Advantages of RNA-Seq over con-

ventional microarray technologies include its larger

dynamic range for quantification and capacity of identify-

ing novel isoforms at one nucleotide resolution without

the need for designing cDNA probes. A typical RNA-Seq

data analysis workflow consists of two components: align-

ing sequenced reads to the reference cDNA sequences,

and quantifying transcript isoform abundances based on

the number of mapped reads on the reference sequences.

In measuring gene expression levels, FPKM (Fragments

Per Kilobase of transcript per Million mapped reads) is

calculated under the assumption that a relative expression

level of an isoform is proportional to the number of

cDNA fragments that originate from it [2].

Since reads are typically 50-300 bp paired-end for Illu-

mina sequencers, in many cases, they can be aligned to

more than one isoform and/or locations on the reference

sequences. One of challenges for accurate estimation of

gene expression is to handle such multi-mapped reads [3].

Several approaches have been proposed to model uncer-

tainty of read mappings in a probabilistic framework, and

it has been shown that the statistical inference of read

mapping is effective for more accurate estimation of gene
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expression levels [4,5]. Although rigorous simulation ana-

lyses with various conditions (such as 35 bp vs. 70 bp, and

single-end vs. paired-end data) have been performed with

several tools in the literature [6], cases for longer reads,

such as 250 bp or longer that can be produced from the

latest Illumina MiSeq sequencer, have not been extensively

studied so far. Moreover, there are few methods suitable

for RNA-Seq data produced from new types of sequencers,

such as the Ion Torrent PGM sequencer, which generate

variable-length reads with relatively higher error rate of

substitutions, deletions, and insertions [7,8].

In this paper, we present a statistical method, TIGAR2,

which implements new features for improving sensitivity

and accuracy of quantification of isoform expression

levels from RNA-Seq data by extending the originally

developed method [5]. First, for achieving maximum sen-

sitivity for mapping longer reads to reference sequences,

TIGAR2 can handle aligned reads from BWA-MEM [9],

as well as other widely used alignment tools such as Bow-

tie2 [10]. Sequencing errors (substitutions, deletions and

insertions) within reads that can be inferred from the

gapped alignments of reads to reference sequences are

modelled under a probabilistic framework in TIGAR2.

Second, in order to speed up the variational Bayesian

inference in TIGAR2, a new algorithm is implemented so

that only reads that can influence isoform abundance

parameters in the next iteration are detected and consid-

ered in the following update equations.

In order to evaluate quantification performance with

TIGAR2, we prepare simulation data that emulates Illu-

mina fixed-length reads (both single-end and paired-end)

and Ion Torrent variable-length reads data. For simulating

the variable-length reads, a variable read length distribu-

tion is empirically estimated from the actual RNA-Seq

data by non-parametric regression with Gaussian kernels

as basis functions in our analysis. We also apply TIGAR2

to real data of human cell line samples and evaluate con-

sistency of estimated gene expression levels among techni-

cal replicates.

Methods
A pipeline of running TIGAR2 consists of two steps: align-

ment of reads to reference sequences, and estimation of

transcript isoform abundances based on the alignment

result (Figure 1). Since the first part of the pipeline uses

external alignment tools for aligning reads to the reference

sequences, it is recommended to run the whole pipeline in

the UNIX environment. Details of each step are described

in the following sections.

Alignment of reads to reference sequences

Reference cDNA sequences in the FASTA format of

model organisms are either available from the RefSeq

database [11], or can be generated from the whole genome

reference sequence and a gene annotation file (GTF for-

mat) with a tool called “gffread”, which is included in the

Cufflinks package [2]. For cases of non-model organisms,

de novo transcriptome assembly might be considered [12],

and then the resulting contigs can be used as reference

sequences. Given a set of cDNA sequences in FASTA for-

mat, the FM-index for the following alignment step is con-

structed with the corresponding alignment tool. Then,

gapped-alignments of reads to the reference sequences are

generated with Bowtie2 or BWA-MEM with allowing mul-

tiple mappings of reads to the reference cDNA sequences.

Generative model of RNA-Seq data

After the alignment is complete, TIGAR2 takes the result-

ing SAM/BAM and the FASTA files as input for transcript

isoform abundance estimation. We use a generative model

for RNA-Seq data as described in Figure 2, which is an

extended version of the original model [5]. Here, θ is a

model parameter that represents transcript isoform abun-

dances, and Znt is an indicator variable and it takes one if

read n is generated from transcript isoform n , and zero

otherwise. R1
n and R2

n are the nucleotide sequence of the

first and second pair of read n, respectively. Then, the

joint probability of the model is decomposed as the pro-

duct of conditional probabilities as follows:

P(θ , Znt , R1
n, R2

n) = P(θ)P(Znt|θ)P(R1
n, R2

n|Znt).

Figure 1 The TIGAR2 pipeline. The schematic diagram shows a

typical workflow of running TIGAR2 software. Alignment tools such

as Bowtie2 take two input files, read data in FASTQ format and

cDNA reference sequences in FASTA format. After reads are aligned

to the cDNA sequence, the generated BAM file and the reference

FASTA file are used in TIGAR2 for estimating transcript isoform

abundances and calculating FPKMs.

Nariai et al. BMC Genomics 2014, 15(Suppl 10):S5

http://www.biomedcentral.com/1471-2164/15/S10/S5

Page 2 of 9



P ( θ ) is the prior distribution of the parameter and

we assume the Dirichlet distribution:

P(θ) =
1

C

T∏
t=0

θ
αt−1
t ,

where αt > 0 is a hyperparameter, C is a constant, T
is the number of transcript isoforms, and �

T
t=0 θt = 1 .

Here, θ0 represents the noise isoform abundance (reads

that are not generated from any known isoform are

assigned).
P(Znt|θ) is the conditional probability of Znt given θ

and we further decompose as follows:

P(Znt|θ) = P(Tn|θ)P(Fn|Tn)P(Sn|Tn, Fn)P(On|Tn)P(A1
n, A2

n|Tn, Fn, Sn, On),

where Tn, Fn, Sn, On , A1
n , and A2

n respectively represent

the transcript isoform choice, fragment size, read start

position, orientation, and alignment state of the first pair

and second pair of read n . P(Tn|θ) represents the prob-

ability of read n generated from transcript isoform Tn

given a parameter vector, and we compute
P(Tn = t|θ) = θt . Compared to the original model of

TIGAR [5], a fragment size variable is now included in the

model. The conditional probability of observing Fn = fn
given Tn = tn is calculated by truncated and normalized

distribution [6,13,14]:

P(Fn = fn|Tn = t) =
dF(fn)

∑lt
x=1 dF(x)

,

Where lt is the length of transcript isoform n , and
dF(x) is the global fragment size distribution. We con-

struct dF(x) based on the normal distribution with

mean μF and standard deviation sF, which can be either

specified according to experimental protocols, or can be

estimated from the primary alignments of reads for the

case of paired-end data. P(Sn|Tn, Fn) represents the

probability of the start position of the first pair of read
n given the transcript isoform choice and fragment size,

and calculate P(Sn = s|Tn = t) = 1/ft if mRNAs have poly

(A) tails, and P(Sn = s|Tn = t) = 1/(ft − L + 1) if mRNAs

do not have poly(A) tails. P(On|Tn) represents the prob-

ability of the orientation of read n given the transcript

isoform choice. For a strand specific protocol, it can be

set as P(On = 0|Tn = t) = 1 and P(On = 0|Tn = t) = 0 .

Otherwise, it can be automatically estimated from the

primary alignment of reads from the RNA-Seq data.
P(A1

n, A2
n|Tn, Fn, Sn, On) represents the probability of the

alignment state of read n given the transcript isoform

choice, fragment size, start position, and orientation of

read n . The transition probability of the alignment state

is calculated as described previously [5].

Finally, P(R1
n, R2

n|Znt = 1) is the conditional probability

of sequence of the first and second pair of read n given

Znt = 1 . We calculate this probability considering the

observed read length as

P(R1
n, R2

n|Znt = 1)

=

X1∏

x=1

emit(r1[x], q1[x], c1[x], a1[x])

X2∏

x=1

emit(r2[x], q2[x], c2[x], a2[x]),

where emit (r1[x], q1[x], c1[x], a1[x]) is the emission

probability of nucleotide characters of the first pair of

read n , r1[x] is the nucleotide character, q1[x] is the

base call quality score, c1[x] is the nucleotide character

of the corresponding reference sequence, a1[x] is the

alignment state of the first pair of read n at position x .

emit (r2[x], q2[x], c2[x], a2[x]) is similarly calculated as

for the first pair of the read.

Modelling of variable read length distribution

Some sequencers, such as Ion Torrent PGM, produce

reads whose lengths are variable. In order to simulate

such variable read length, we model the conditional

probability of the read length given the fragment size,

which is also calculated by the truncated distribution [4]

P(Ln = length (Rn)|Fn = fn) =
dR(length(Rn))

∑fn
x=1 dR(x)

,

where length (Rn) is the observed length of read n ,

and is the global read length distribution. Here, dR(x)

can be constructed based on a linear combination of the

smooth functions by fitting it to the data in a non-para-

metric manner with M equally spaced Gaussian kernels

as basis functions. Let

Figure 2 The generative model for RNA-Seq data in TIGAR2. The

transcript isoform abundance parameter, indicator variable for

transcript isoform choice, nucleotide sequence of the first and second

pair read n are represented by θ , Znt , R1
n, and R2

n , respectively.
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g(x) =
M∑
i=1

aimi(x),

where ai is the coefficient parameter, and mi(x) is the

normal distribution with mean μi and standard deviation

s. From the RNA-Seq data, observations of read lengths

and their frequency, (xn, yn) , are constructed, where xn

is the read length, and is yn the frequency of xn , and

�
N
n=1 yn = 1 . Then, the least squares estimate (LSE) of

the parameter vector a = (a1, . . . , aM)T is obtained by

â = arg min
a

N∑

n=1

{yn − g(xn)}2.

Define a real value matrix Bij = mj(xi) . Then, the

ordinary LSE is calculated by

â = (BTB)−1BTy.

Then, the global read length distribution dR(x) can be

constructed from g(x) as:

dR(x) =
g(x)

�
max(L)
x′=1 g(x′)

,

where max(L) is the maximum read length of the

read data.

An example of the estimated read length distribution

from the real sequencing data of a human cell line

(HeLa) sequenced by the Ion Torrent PGM sequencer

(http://ioncommunity.lifetechnologies.com) is shown in

Figure 3.

Estimation of transcript isoform abundances

In our variational Bayesian inference approach, latent vari-

ables (true alignments of reads) as well as model para-

meters (transcript isoform abundances) are estimated as

the posterior distribution. We use the Dirichlet distribu-

tion for the prior distribution θ ∼ D(α0, . . . , α0)

with a single hyperparameter α0 > 0. For α0 < 1 , the

prior favors solutions in which some of isoforms have zero

abundance. Hence, α0 controls the complexity of model

parameters (the number of possible transcript isoforms). A

hyperparameter α0 is selected as a maximizer of the lower

bound of the marginal log likelihood of the observed data.

Here, we consider α0 = 0.001, 0.01, 0.1, or 1.0. Each itera-

tion step of the variational approximation updates poster-

ior distribution until a convergence criterion is satisfied.

In the VBE step, the expected number of reads that

Figure 3 Estimated read length distribution from the Ion Torrent PGM RNA-Seq data. From the histogram of variable read lengths, the

smoothly fitted probability distribution is constructed from a linear combination of 20 equally spaced Gaussian distributions(standard deviations

are set to 20 bp) that minimizes the least squares error of the estimate.
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are mapped to the transcript isoform t is obtained

by r̂t = �nEZ[Znt = 1] . In the VBM step, the expected

abundance of transcript isoform t is obtained by

Eθ [θ̂t] = α̂t/(�t, α̂t′ ) , where α̂t = α0 + r̂t . Details of these

update equations and calculation of the lower bound of

the marginal likelihood are described in [5]. Recently, it

has been shown that the variational inference described

here is accurate in estimating the mean of posterior tran-

script expression, but not the variance [15].

The bottleneck of the computational cost of the infer-

ence algorithm is the calculation of Ez[Znt = 1] for all

the possible alignments in the VBE step, which takes O

(M) time if the total number of possible alignments is

M. This time complexity is upper bounded by O(NT),

where N is the number of reads and T is the number of

cDNA reference sequences. Suppose some Eθ [θ̂t] are

already converged (unchanged from the previous itera-

tion step) at the current step. We store the information

in a Boolean variable theta_converged [t], which takes

true if Eθ [θ̂t] is converged, and false otherwise for each

isoform t. Let τn be a set of isoforms to which read n

is aligned. In the next VBE step, for each read n,
Ez[Znt = 1] will not change if theata_converged [t] is

true for all t ∈ τn . To represent this information, we

introduce a Boolean variable read movable [n] , which

takes false if Ez[Znt = 1] will not change in the next

VBE step, and true otherwise. The following algorithm

computes read movable [n] at the start of each iteration:

1. For each t, set theta_converged [t] to true if Eθ [θ̂t]
did not change from the previous step, and false

otherwise.

2. For each n, if theta_converged [t] is true for all

t ∈ τn , then set read movable [n] to false, and true

otherwise.

Then, in the VBE step, Ez[Znt = 1] is computed where

read movable [n] is true. The algorithm heuristically

eliminates unnecessary calculations of Ez[Znt = 1] dras-

tically in the later part of iterations, in which most of

Eθ [θ̂t] are already converged and only a fraction of

reads should be considered for calculating the update

equations.

Results and discussion
Simulation data analysis

We evaluate the performance of quantifying gene expres-

sion levels with TIGAR2 compared to existing methods

using simulation data. First, 10,000 transcript isoforms in

the human RefSeq database [11] are randomly chosen.

Second, a set of true gene expression levels is con-

structed, in which log of isoform abundance is sampled

from the standard normal distribution. Then, we gener-

ated 20 million, 8 million, 4 million, and 2 million RNA-

Seq single-end reads of 100 bp, 250 bp, 500 bp, and 1000

bp, respectively, so that the total throughput of nucleo-

tides remains the same. Similarly, 10 million, 4 million,

2 million, and 1 million paired-end reads of 100 bp,

250 bp, 500 bp, and 1000 bp, respectively, have been gen-

erated whose fragment size follows the normal distribu-

tion with μF = 300, 750, 1250, and 2500, and sF = 40,

100, 200, and 400, respectively. In order to simulate

sequencing errors, we prepared a set of simulation data

with 1% substitution, 1% deletion, and 1% insertion

errors. All the simulation data was generated by our in-

house software. After aligning reads to the reference

cDNA sequences with Bowtie2 (the maximum number of

allowed alignments per read is 100), transcript isoform

abundances are estimated with TIGAR2. For comparing

the performance, TIGAR1 [5], RSEM v1.2.10 [6] and Cuf-

flinks v2.1.1 (with default options except ‘-u’ and ‘-G’

options) [2] are applied to the same simulation data.

Although BitSeq [16] is also a relevant method, it is not

included in our experiment since performance compari-

son with TIGAR was already conducted in their analysis

[17]. Similarly, variable-length reads are generated

according to the estimated read length distribution as

shown in Figure 3, and isoform expression levels are esti-

mated with each method. The root mean square errors of

the estimated abundances (log of FPKMs) compared to

the true gene expression levels are calculated and shown

in Figure 4 and 5. For both fixed-length (single-end and

paired-end) and variable-length reads, TIGAR2 consis-

tently performed better than others. Especially, when

read lengths > 250bp, the prediction accuracies with

TIGAR2 over those with RSEM and Cufflinks are mark-

edly better, which can be explained by more sensitive

mapping with the latest alignment tools and efficient

optimization of multi-mapped reads by the variational

Bayesian inference implemented in TIGAR2. Since

RSEM uses Bowtie as an aligner in the integrated pipe-

line, it becomes more difficult to align longer reads to the

reference sequences without gapped-alignments of the

reads, which potentially loses sensitivity of mappings.

Real data analysis

To evaluate performance with TIGAR2 for real RNA-Seq

data analysis, we obtained 4.25 million single-end reads

of variable lengths of the human HeLa cell, which is pub-

licly available from the Life Technologies’ web site

(http://ioncommunity.lifetechnologies.com). The sequen-

cing was performed with the Ion PGM sequencer, which

detects the protons released sequentially when one of the

four nucleotide bases is introduced in real-time [18]. We

divided the RNA-Seq data into two data sets, assuming

that they are technical replicates obtained from the same

experimental conditions. Gene expression levels were

estimated with TIGAR2, RSEM, and Cufflinks and
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plotted in Figure 6 (the Pearson correlation coefficients

of the estimated abundances between the two technical

replicates were 0.897, 0.888 and 0.888, respectively).

The result shows that the quantification with TIGAR2

was most consistent among the technical replicates, com-

pared to those with RSEM and Cufflinks. TIGAR2 out-

puts the optimized read alignment on cDNA references

in BAM format after inference is done, so that predicted

Figure 4 Performance evaluation with TIGAR2, TIGAR1, RSEM, and Cufflinks using single-end and variable lengths simulation data.

Root mean square errors of the predicted transcript isoform abundances with each method against the true gene expression levels are shown

for 100 bp, 250 bp, 500 bp, and 1,000 bp single-end, and variable-length simulation data. Because RSEM did not produce predictions for 1,000

bp single-end reads, errors were calculated assuming abundances were estimated as zero for all isoforms.

Figure 5 Performance evaluation with TIGAR2, TIGAR1, RSEM, and Cufflinks using paired-end simulation data. Root mean square errors

of the predicted transcript isoform abundances with each method against the true gene expression levels are shown for 100 bp, 250 bp, 500

bp, and 1,000 bp paired-end simulation data. Because RSEM and TopHat-Cufflinks did not produce predictions for 500 bp and 1,000 bp paired-

end reads, errors were calculated assuming abundances were estimated as zero for all isoforms.
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isoforms can be followed up. The resultant BAM file can

be loaded into a genome browser, such as Integrative

Genomics Viewer [19]. This function is also a new fea-

ture that is not available in the original TIGAR and

TopHat-Cufflinks. The bottom track in Figure 7 shows

the optimized read alignments estimated with TIGAR2

for NM_001139441, which is an isoform of BAP31 that is

known to be expressed in HeLa cells [20]. Compared to

the read alignment by Bowtie2 (the top track in Figure

7), not only the amount of reads assigned to the isoform

Figure 6 Correlation of gene expression levels estimated from technical replicates. Scatter plots of gene expression levels estimated from

technical replicates produced from the Ion Torrent PGM RNA-Seq data. The Pearson correlation coefficients are calculated and shown on each

plot. Predictions with TIGAR2 were most consistent among technical replicates.

Figure 7 Visualization of the optimized read alignment. Read alignment on NM_001139441, which is an isoform of BAP31, is visualized by

IGV. The top track shows the read alignment by Bowtie2, and the bottom track shows the optimized read alignment with TIGAR2. It became

easier to identify possible sequencing errors from genetic variants by optimization with TIGAR2 (red circles).
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increased, but also it became easier to identify possible

sequencing errors from genomic variants.

Computational resources

CPU time and memory required in the real data analysis

are summarized in Table 1. TIGAR2 was the fastest

among others, notably more than two times faster than

TIGAR1 with practical memory requirement. TopHat-

Cufflinks was slower than TIGAR2, TIGAR1 and RSEM,

especially in the alignment step.

To see the scalability of TIGAR2 for a large dataset, it

is applied to 100 million synthetic reads (100 bp single-

end). It required 16 GB memory and 2,621 minutes of

CPU time.

All the experiments were performed on an Intel Xeon

CPU E5-2670 processor (2.60GHz) with the Red Hat

Enterprise Linux Server release 6.2.

Conclusions
We have developed a computational method, named

TIGAR2, which is accurate and sensitive in quantifying

gene expression levels of transcript isoforms from RNA-

Seq data. TIGAR2 outperformed existing methods with

simulation data of both single-end and paired-end reads

(100 bp, 250 bp, 500 bp and 1000 bp), especially for

reads > 250 bp. TIGAR2 will be more effective for accu-

rate detection and quantification of transcript isoforms

compared to other existing methods, as new technolo-

gies for longer sequencing become available.

Instead of trying to find novel transcript isoforms from

RNA-Seq data, reference cDNA sequences of transcript

isoforms are assumed to be known in the TIGAR2 pipe-

line. Although there are a couple of algorithms to predict

novel transcript isoforms or fusion genes [2,14,21],

TIGAR2 does not provide the novel predictions at the

moment. However, once candidates of novel transcript

isoforms are predicted by external tools, they can be trea-

ted as known and gene expression levels of these novel

isoforms can be quantified and assessed with TIGAR2.

Another possible extension of TIGAR2 includes model-

ling of underlying genomic variation for identifying

allele-specific gene expression. Because the cost of whole

genome-sequencing is dropping sharply, it is becoming

feasible to use both genomic information as well as gene

expression data. Finally, there should be an optimal

balance between the maximum number of allowed align-

ments per read and the convergence speed. These topics

will be investigated as our future works.

Availability of supporting data
The implementation of TIGAR2 and the documentation

is available in the GitHub repository, https://github.

com/nariai/tigar2.
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