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This study aimed to investigate the prevalence and characterization of tet(X4)

in Escherichia coli isolates from a pig farm in Shanghai, China, and to elucidate

tet(X4) dissemination mechanism in this swine farm. Forty-nine (80.33%)

E. coli strains were isolated from 61 samples from a pig farm and were

screened for the presence of tet(X). Among them, six (12.24%) strains were

positive for tet(X4) and exhibited resistance to tigecycline (MIC ≥ 16 mg/L).

They were further sequenced by Illumina Hiseq. Six tet(X4)-positive strains

belonged to ST761 with identical resistance genes, resistance profiles,

plasmid replicons, and cgMLST type except that additional ColE10 plasmid

was present in isolate SH21PTE35. Isolate SH21PTE31, as a representative

ST761 E. coli strain, was further sequenced using Nanopore MinION. The

tet(X4) in SH21PTE31 was located on IncFIA18/IncFIB(K)/IncX1 hybrid plasmid

pYUSHP31-1, highly similar to other tet(X4)-carrying IncFIA18/IncFIB(K)/IncX1

plasmids from ST761 E. coli and other E. coli lineages in China. These

IncFIA18/IncFIB(K)/IncX1 plasmids shared closely related multidrug resistance

regions, and could reorganize, acquire or lose resistance modules mediated

by mobile elements such as ISCR2 and IS26. Phylogenetic analysis were

performed including all tet(X4)-positive isolates obtained in this pig farm

combined with 43 tet(X4)-positive E. coli from pigs, cow, pork, wastewater,

and patients with the same ST from NCBI. The 50 tet(X4)-carrying E. coli

ST761 isolates from different areas in China shared a close phylogenetic

relationship (0-49 SNPs). In conclusion, clonal transmission of tet(X4)-positive

E. coli ST761 has occurred in this swine farm. E. coli ST761 has the potential to

become a high-risk clone for tet(X4) dissemination in China.
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Introduction

Tigecycline is considered as a last-resort antimicrobial
agent to treat serious infections caused by multidrug-resistant
bacteria, particularly carbapenem-resistant Enterobacteriaceae
(Yaghoubi et al., 2021). However, the recent identification of
novel plasmid-borne tigecycline resistance genes tet(X3) in
Acinetobacter baumannii and tet(X4) in Escherichia coli from
animals in China significantly impairs the clinical efficacy of
tigecycline (He et al., 2019). Thus far, tet(X) and its variants
[tet(X1)∼tet(X47)] have been identified in Gram-negative
pathogens and encode flavin-dependent monooxygenase that
modify tigecycline (Aminov, 2021; Li R. et al., 2021; Umar
et al., 2021; Zhang et al., 2021). Among them, the mobile
tet(X4) gene has been increasingly identified in E. coli from
various sources including food-producing animals, wild birds,
food products, humans, and the environment, mainly in
China (He et al., 2019; Fang et al., 2020; Li et al., 2020;
Li Y. et al., 2021; Dong et al., 2022; Liu et al., 2022).
It has sporadically reported in countries outside of China,
e.g., Singapore, Pakistan, Vietnam, United Kingdom, and
Norway (Ding et al., 2020; Marathe et al., 2021; Mohsin
et al., 2021; Dao et al., 2022; Martelli et al., 2022). The
tet(X4) has subsequently detected in various Enterobacteriaceae
species, such as Proteus, A. baumannii, Aeromonas caviae,
Citrobacter freundii, Enterobacter cloacae, E. hormaechei,
Klebsiella pneumoniae, and Shewanella xiamenensis (Chen et al.,
2019; He et al., 2019; Zeng et al., 2021; Dao et al., 2022; Li et al.,
2022; Wu et al., 2022; Zhai et al., 2022).

Although tigecycline is not applied in livestock, the tet(X4)
gene and tigecycline resistance are frequently described in E. coli
from food-producing animals (mainly pigs) in China (He et al.,
2019; Fang et al., 2020; Li Y. et al., 2021; Liu et al., 2022).
The heavy use of tetracyclines in animal production might
facilitate the emergence and spread of tet(X) in livestock (He
et al., 2019). In addition, conjugative/mobilizable plasmids and
mobile elements play an essential role in the dissemination of
tet(X4) in Enterobacteriaceae (Aminov, 2021). In this study,
we aimed to investigate the prevalence and characterization of
tet(X4) in E. coli isolates from one pig farm in Shanghai, China,
to provide insights into the spread of tet(X4) in this swine farm.

Materials and methods

Sample collection and tet(X) detection

On 15 July 2021, 61 non-duplicate samples from pig feces
(n = 41) and pig feed (n = 20) were collected from a pig
farm in Shanghai, China. Samples were incubated in LB broth
for 18∼24 h and then cultured on the MacConkey agar with
and without 2 mg/L tigecycline. One E. coli isolate per plate
was selected and identified by 16S rRNA gene sequencing

(Kim et al., 2010). The presence of tet(X) were detected by PCR
and sequencing (Wang et al., 2019).

Antimicrobial susceptibility testing

The MICs of tigecycline were determined in all E. coli
strains using the broth microdilution method and interpreted
according to EUCAST clinical breakpoint (MIC ≥ 1 mg/L)1.
The tet(X4)-positive isolates were further tested susceptibility to
other 13 antimicrobial agents including ampicillin, cefotaxime,
meropenem, gentamicin, amikacin, streptomycin, tetracycline,
chloramphenicol, florfenicol, nalidixic acid, ciprofloxacin,
colistin, and sulfamethoazole/trimethoprim by using the broth
microdilution method. The results were interpreted according
to Clinical Laboratory Standards Institute (CLSI) M100, 30th
edition. Florfenicol (> 16 mg/L) and streptomycin (> 16 mg/L)
were interpreted according to the epidemiological cut-off values
for E. coli set by EUCAST (see Text Footnote 1). The E. coli strain
ATCC 25922 was used for quality control.

Conjugation experiments

Conjugation experiments were conducted according
to a previously described protocol (Chen et al., 2007)
using E. coli C600 (streptomycin-resistant) as the recipient
strain. Transconjugants were selected on MacConkey
agar plates supplemented with 2 mg/L tigecycline and
3,000 mg/L streptomycin.

Whole genome sequencing and
analysis

The tet(X4)-positive E. coli strains were sequenced on the
Illumina Hiseq platform, and the quality-trimmed raw sequence
data were assembled into contigs using SPAdes v.3.8.2 with
-careful and -cov cut-off auto options. One representative
E. coli isolate SH21PTE31 was sequenced using Nanopore
MinION, assembling with Unicycler version 0.4.9. The genome
sequences of them were analyzed multilocus sequence typing
(MLST), resistance genes, and plasmid replicons by using
the Center for Genomic Epidemiology (CGE) pipeline2. The
tet(X4)-carrying plasmid pYUSHP31-1 in strain SH21PTE31
was analyzed by ISfinder3, BLAST4 and the Gene Construction
Kit 4.5 (Textco BioSoftware, Inc., Raleigh, NC, United States).

1 www.eucast.org

2 http://www.genomicepidemiology.org/

3 https://www-is.biotoul.fr/

4 https://blast.ncbi.nlm.nih.gov/Blast.cgi
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pYUSHP31-1 was compared with other similar plasmids using
BLASTn and BRIG.

Phylogenetic analysis of
tet(X4)-Positive ST761 Escherichia coli
strains

The genome sequences of 43 tet(X4)-positive ST761 E. coli
strains in the NCBI database were downloaded (data collected
on July 7th, 2022) (Supplementary Table 1). The phylogenetic
tree of all the tet(X4)-carrying ST761 E. coli strains obtained
from this pig farm and NCBI was constructed using Parsnp5

and visualized by iTOL6. Core genome MLST (cgMLST) profiles
based on 2,513 alleles were analyzed using cgMLSTFinder 1.27.

Nucleotide sequence accession
number

The whole genome sequences of tet(X4)-positive E. coli
isolates have been deposited in the GenBank under accession
number PRJNA836295.

Results and discussion

Characterization of tet(X4)-positive
Escherichia coli isolates

A total of 49 E. coli strains were obtained from 61
samples. Among them, six strains (12.24%) from different fecal
samples were positive for tet(X4), including five strains isolated
under selection with tigecycline and one strain isolate without
selection. The tet(X4)-positive isolates exhibited resistance to
tigecycline (MIC ≥ 16 mg/L), and the remaining isolates
showed susceptibility to tigecycline with MICs of 0.125 to
0.5 mg/L. These tet(X4)-positive isolates were also resistant
to ampicillin, tetracycline, chloramphenicol, florfenicol, and
sulfamethoazole/trimethoprim, but susceptible to cefotaxime,
meropenem, gentamicin, amikacin, streptomycin, colistin,
nalidixic acid, and ciprofloxacin (Supplementary Table 2).
However, all tigecycline-resistant isolates failed to transfer
tet(X4) to E. coli C600 via conjugation.

The draft genome sequences of six tet(X4)-positive E. coli
strains were obtained by Illumina (Supplementary Table 3).
All six tet(X4)-positive E. coli strains belonged to ST761
with identical resistance genes [blaTEM−1, tet(A), tet(M), floR,

5 https://harvest.readthedocs.io/en/latest/content/parsnp.html

6 https://itol.embl.de/

7 https://cge.food.dtu.dk/services/cgMLSTFinder/

qnrS1, sul3, dfrA5 and mef (B)] and plasmid replicons [IncFIA,
IncFIB(K), IncX1, IncR], except that additional ColE10 plasmid
was present in isolate SH21PTE35 (Figure 1).

tet(X4)-Carrying plasmid pYUSHP31-1

The complete sequences of isolate SH21PTE31, as a
representative ST761 E. coli strain, was obtained. A total of
43,674 reads were obtained, and the sequencing data volume
was approximately 1,000 Mbp. The minimal, maximum and
average read lengths were 8,260 bp, 150,801 bp and 22,897.3 bp,
respectively. The read length N50 of the total sequencing
data were 28,637 bp. The isolate SH21PTE31 consisted of one
chromosome (4,706,168 bp) and four plasmids (Supplementary
Table 3). Among them, tet(X4) and another eight resistance
genes were co-located on the largest plasmid, designated as
pYUSHP31-1. This plasmid had a size of 104,163 bp, and
belonged to the hybrid IncFIA18/IncFIB(K)/IncX1 plasmid.
It was highly similar to our previously reported plasmid
pYUSHP6-tetX (GenBank accession no. MW423609) from
ST761 E. coli isolate SH19PTE6 collected from the same
pig farm in 2019 (Wang et al., 2021), and also showed
high identity (> 99.7%) to multiple tet(X4)-carrying
IncFIA18/IncFIB(K)/IncX1 plasmids from ST761 E. coli
strains in China, such as pNT1W22-tetX4 (pig, CP075470),
pRF108-2_97k_tetX (pig, MT219820), pSTB20-1T (pig,
CP050174), p54-tetX (cow, CP041286), pYPE12-101k-tetX4
(pork, CP041443), and pYPE3-92k-tetX4 (pork, CP041453)
(Figure 2). Similar IncFIA18/IncFIB(K)/IncX1 plasmids
harboring tet(X4) were also present among other E. coli lineages
obtained from a pig farm in Jiangsu province, China (Li
Y. et al., 2021), e.g., pNT1N31-tetX4 (ST716, CP075481),
pNT1F25-tetX4 (ST1421, CP075471), pNT1F31-tetX4
(ST206, CP045188), pNT1N25-tetX4 (ST641, CP075485), and
pNT1F34-tetX (ST10115, CP075486) (Figure 2), highlighting
the importance role of horizontal transfer of plasmids in the
tet(X4) dissemination between different bacteria.

As shown in Figure 3, these IncFIA18/IncFIB(K)/IncX1
plasmids shared closely related multidrug resistance regions
(MRRs). The MRRs in all were bounded by one copy of IS26 and
IS1, respectively. The pYUSHP31-1 MRR (53,134 bp) contained
nine resistance genes and consisted of five regions bounded
by IS26 or ISCR2 (Figure 3A). The first of these (2,813 bp)
comprised one copy of IS26 and a putative open reading frame
encoding recombinase family protein, which was absent in other
similar plasmids.

The second part (∼14.8 kb) contained three resistance genes
mefB, sul3, and dfrA5; four copies of IS26 and incomplete
transposon Tn2 and Tn21. This fragment was also present
in other IncFIA18/IncFIB(K)/IncX1 plasmids, but differed by
46-bp shorter (limited to pNT1N25-tetX4) or 126-bp longer
Tn2 except pYUSHP6-tetX (identical to pYUSHP31-1, obtained
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FIGURE 1

The maximum likelihood tree of tet(X4)-positive E. coli ST761 isolates in this study compared with tet(X4)-positive E. coli ST761 isolates from
NCBI based on cgSNP analysis. Antibiotic resistance genes and plasmid replicons with >95% sequence homology and >60% coverage are
shown. The isolates obtained in this study and in the same pig farm were indicated in blue.

from the same pig farm); deletion of a 5,198-bp structure (IS26-
1Tn2-1Tn21) in pNT1F31-tetX4 (Figure 3G).

The third region corresponded to the core tet(X4) structure
[1ISCR2-orf1-abh-tet(X4)-ISCR2-orf2-orf3-orf4-1ISCR2] and
downstream floR-1ISCR2 module, as observed in other
IncFIA18/IncFIB(K)/IncX1 plasmids with one to four copies
of tet(X4) structure (Figures 3A–J). Compared with that
of pYUSHP31-1, partial tet(X4) structure [1ISCR2-orf1-abh-
tet(X4)-ISCR2] with varied copies was identified in plasmids
pNT1F10-tetX4, pRF108-2_97k_tetX, pSTB20-1T, pRF148-
2_101k_tetX, and NT1N25-tetX4 (Figures 3K–N); one copy
of IS1 was inserted into orf1 within the tet(X4) structure with
9-bp direct repeats in plasmids pNT1F10-tetX4 and pNT1N31-
tetX4, and the latter plasmid carried the tet(X4) fragment in
the opposite orientation and additional two copies of IS26
upstream of floR-1ISCR2 module (Figure 3J). As previously
described (Liu et al., 2022), ISCR2 is associated with tet(X4)
transmission by forming an rolling-cycle transposable unit, thus
generating tandem copies of tet(X4)-harboring structures in
different IncFIA18/IncFIB(K)/IncX1 plasmids.

The fourth segment (∼18.4 kb) included one copy of IS26,
an incomplete Tn1721 carrying tetracycline resistance gene
tet(A) and an intact Tn2 (tnpA-tnpR-blaTEM−1b), followed by
5,391-bp module [1intI4-IS440 tnpA-tet(M)-1IS26] and qnrS1
structure (IS26-qnrS1-1ISKpn19). This region was also found
in other IncFIA18/IncFIB(K)/IncX1 plasmids with the same
1ISKpn19/IS26 boundary except pYPE3-92k-tetX4 (Figure 3F).
IS26-mediated homologous recombination could explain the
loss or acquisition of this region.

The last segment comprising a 3,507-bp structure (IS26-
1IS1294-gshB-IS1) was identical to segments in other plasmids
except p54-tetX (Figure 3D). Insertion of an extra copy of IS26
downstream of gshB, followed by homologous recombination
between it and the first IS26 of MRR, may explain the opposite
location of an approximately 50.2-kb fragment within MRR
in p54-tetX compared to pYUSHP31-1. Similar recombination
between two IS26 elements located in inverse orientations
may also occur in pYPE12-101k-tetX4, leading to the presence
of ∼47.8 kb fragment with the opposite orientation within
MRR (Figure 3C).
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FIGURE 2

Sequence comparison of tet(X4)-carrying plasmid pYUSHP31-1 from E. coli isolate SH21PTE31 in this study with other similar
IncFIA18/IncFIB(K)/IncX1 plasmids using BRIG. The reference sequence pNT1F34-tetX (CP075486) is indicated in red in the outer circle.

These tet(X4)-carrying IncFIA18/IncFIB(K)/IncX1
plasmids may evolve from the same ancestor, and form variable
but related MRRs by insertions, deletions, or rearrangements of
different resistance modules mediated by mobile elements such
as IS26 and ISCR2.

Phylogenomic analysis of
tet(X4)-Positive ST761 Escherichia coli
strains

Escherichia coli ST761 has been increasingly reported in
different sources associated with tet(X4) in China, particularly
from pigs (Supplementary Table 1). To further compare the
genetic differences between tet(X4)-positive E. coli isolates of
the same ST, we performed a phylogenomic analysis based

on cgSNP. The results revealed a relatively close genetic
relationship (0-49 SNPs) among 50 tet(X4)-positive ST761
E. coli isolates (Figure 1). Among them, cgST 137253 (n = 44)
was the most prevalent type, and it contained two isolates from
patients, two from wastewater, three from pork, and 37 from
pigs including six strains obtained in this study and SH19PTE6
from the same pig farm (Figure 1). It indicates that clonal
transmission has occurred in this swine farm. The plasmid
replicons [IncFIA, IncFIB(K), IncX1] possibly associated with
tet(X4) were present in all isolates, and the core resistance
genes [blaTEM−1, tet(A), tet(M), floR, qnrS1, sul3, dfrA5
and mef (B)] within tet(X4)-carrying IncFIA/IncFIB(K)/IncX1
plasmid pYUSHP31-1 were shared by 45 strains (Figure 1).

Although horizontal transfer mediated by plasmids (e.g.,
IncQ, and IncX1) and insertion sequences (e.g., ISCR2, IS26,
and IS1) is the main mechanism for tet(X4) transmission
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FIGURE 3

Genetic organization of the multidrug resistance region of plasmid pYUSHP31-1 and structural comparison with other IncFIA18/IncFIB(K)/IncX1
plasmids. I to IV indicate five regions bounded by IS26 or ISCR2 in pYUSHP31-1. The extents and directions of orientation of resistance genes
(thick red arrow) and other genes are indicated by arrows. Regions with >99% identity are shaded in gray. 1 indicates a truncated gene or mobile
element. Insertion sequences (ISs) are shown as boxes labeled with the IS name. Labeled vertical arrows with IS boxes denote the insertion
position of IS elements. Direct repeats are indicated by arrows and sequences. Tall bars represent the 38-bp IR of transposons (Tn). Arrows
labeled with “HR” and dotted lines indicate where homologous recombination could explain differences between structures.

(Aminov, 2021; Liu et al., 2022; Yu et al., 2022), clonal spread of
tet(X4)-carrying strains, such as E. coli ST877, ST10, and ST48
clones is also responsible for tet(X4) dissemination between
animals and humans (Cui et al., 2022). The E. hormaechei
co-harboring tet(X4) and blaNDM could also clonally spread

from the slaughterhouse to the retail market (Li et al., 2022).
E. coli ST761 isolates carrying tet(X4) has been detected
in pigs, cow, pork, wastewater, and patients in different
areas from China sharing a close phylogenetic relationship,
suggesting that the ST761 lineage has the potential to be
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a successful clone to transfer tet(X4) and other resistance genes
as well in China.

Conclusion

Our findings suggest that tet(X4)-positive ST761 E. coli
was the main reason for spread and persistence of tet(X4) in
this pig farm. Importantly, E. coli ST761 has the potential to
become a high-risk clone for tet(X4) dissemination in China. On
the other hand, the tet(X4)-carrying IncFIA18/IncFIB(K)/IncX1
hybrid plasmids within ST761 E. coli lineage could reorganize,
acquire or lose resistance modules mediated by mobile elements
such as ISCR2 and IS26. The horizontal transfer of similar
IncFIA18/IncFIB(K)/IncX1 plasmids further facilitates the
tet(X4) dissemination in distinct lineages.
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