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Abstract

Background: Several methods have been developed for analyzing genome-scale models of metabolism and
transcriptional regulation. Many of these methods, such as Flux Balance Analysis, use constrained optimization to
predict relationships between metabolic flux and the genes that encode and regulate enzyme activity. Recently,
mixed integer programming has been used to encode these gene-protein-reaction (GPR) relationships into a single
optimization problem, but these techniques are often of limited generality and lack a tool for automating the
conversion of rules to a coupled regulatory/metabolic model.

Results: We present TIGER, a Toolbox for Integrating Genome-scale Metabolism, Expression, and Regulation. TIGER
converts a series of generalized, Boolean or multilevel rules into a set of mixed integer inequalities. The package
also includes implementations of existing algorithms to integrate high-throughput expression data with genome-
scale models of metabolism and transcriptional regulation. We demonstrate how TIGER automates the coupling of
a genome-scale metabolic model with GPR logic and models of transcriptional regulation, thereby serving as a
platform for algorithm development and large-scale metabolic analysis. Additionally, we demonstrate how TIGER's
algorithms can be used to identify inconsistencies and improve existing models of transcriptional regulation with
examples from the reconstructed transcriptional regulatory network of Saccharomyces cerevisiae.

Conclusion: The TIGER package provides a consistent platform for algorithm development and extending existing
genome-scale metabolic models with regulatory networks and high-throughput data.

Background

Constraint-Based Reconstruction and Analysis (COBRA)
methods have allowed the study of metabolism on a
genome-wide scale [1]. These models have been used to
understand the interplay between environmental and
genetic perturbations and the metabolic capabilities of
an organism. Applications of COBRA methods have led
to increased understanding in the fields of bioprocess
optimization [2], pathogenicity [3], symbiosis [4], biofuel
production [5], and human disease [6].

The Gene-Protein-Reaction relationship

COBRA models often contain two sets of biological
information, a matrix of stoichiometric data for meta-
bolic reactions, and a mapping between gene-encoding
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enzymes and the reactions they catalyze (the gene-pro-
tein-reaction, or GPR, relationship). Predicting the meta-
bolic capabilities of a COBRA model is possible with
Flux Balance Analysis (FBA), a two-stage mathematical
technique based on the observation that metabolic net-
works often display optimal dynamics [7]. In the first
stage of FBA, genes in the modeled organism are classi-
fied as either “on” or “off” to create an in silico genetic
state. Turning genes “off” can be used to simulate signif-
icant reductions in expression levels or complete knock-
outs. The GPR for each reaction, represented as a
binary rule, determines if a sufficient collection of pro-
teins (isozymes, enzymatic subunits, etc.) is present for
the reaction to carry flux. All reactions with satisfied
GPR rules are collected into a stoichiometric matrix.
The second stage of FBA uses linear programming to
calculate a thermodynamically-feasible, mass-balanced
flux distribution that maximizes the flux through an

© 2011 Jensen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:papin@virginia.edu
http://creativecommons.org/licenses/by/2.0

Jensen et al. BMC Systems Biology 2011, 5:147
http://www.biomedcentral.com/1752-0509/5/147

objective reaction. The objective reactions used in FBA
vary among organisms, ranging from ATP maintenance
to biomass production [8]. By assuming that the fluxes
through a metabolic network have evolved to maximize
an objective, FBA eliminates the need for detailed
kinetic information for each of the thousands of reac-
tions in a complete metabolic reconstruction.

The GPR rules do not always describe a one-to-one
mapping between genes and reactions (where one gene
encodes a complete enzyme that independently catalyzes
one reaction). For example, a COBRA reconstruction for
the yeast Saccharomyces cerevisiae [9] contains 1266
metabolic reactions; 231 (18.3%) of these reactions have
complex GPR associations. The most complex GPR in
this model involves the products of 18 open reading
frames. The entire set of GPR rules contains 340
instances of isozyme-like behavior (two proteins both
able to fully catalyze a reaction) and 279 different com-
plexes of protein subunits.

Because of the complexity of the GPR mappings, early
extensions to FBA were reaction, rather than gene, cen-
tric. For example, the OptKnock [2] algorithm removed
reactions from a FBA model to design a strain of E. coli
with optimal production of a metabolic byproduct. Ide-
ally, OptKnock would operate by removing genes, not
reactions, since it is not straightforward to indepen-
dently remove reactions from a biological system with-
out genetic manipulations. An optimization using genes
as decision variables would require a method for encod-
ing the GPR logic into a set of linear inequalities. This
encoding was developed as SR-FBA [10] using a mixed
integer optimization approach for GPR logic and other
Boolean regulatory rules. An SR-FBA-based approach
was later used to develop OptORF, a method to design
microbial strains through gene knockouts and overex-
pression [11]. Other gene-centric, FBA-related algo-
rithms have been developed, each using a variation of
the SR-FBA method [12-14]. However, a general soft-
ware platform for coupling GPR rules of arbitrary com-
plexity with a COBRA model using mixed integer
programming was not available. Such a tool would
speed the development of new algorithms by removing
the need for researchers to re-implement this complex
process.

Transcriptional regulatory networks

The accuracy of COBRA models has been improved
through the addition of transcriptional regulatory net-
works (TRNs) [15,16]. The TRN is a set of rules that
relate the expression states of metabolic genes to various
genetic and environmental cues. Because of the paucity
of kinetic details available to describe these relation-
ships, genome-scale models often represent gene expres-
sion and environmental cues in a binary, “on” or “off”
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format. This approach allows TRNs to be described
with Boolean logic.

The first genome-scale TRNs were applied to models
of Escherichia coli [15] and Saccharomyces cerevisiae
[16] metabolism. The rules were written in standard
Boolean format, where each Boolean variable is given by
an explicit function of the other variables. This method
creates two significant problems. First, the TRN uses the
absence or presence of metabolites in the extracellular
environment to calculate which genes (and, subse-
quently, reactions) will be active. However, certain meta-
bolic pathways secrete byproducts into the extracellular
space, thereby changing the environment. Studies with
the E. coli and S. cerevisiae TRNs used an iterative
approach [17] - applying the TRN to the metabolic net-
work in a starting environment, determining which
metabolites would be secreted, and then repeating the
process in the new environment until the environment
no longer changes between iterations. A more straight-
forward approach would be to solve the TRN and meta-
bolic networks simultaneously by formulating both
problems in a single optimization.

A second obstacle with TRN integration is that the
explicit rule formulation used by previous studies [17]
can over-constrain the metabolic model. (In explicit
rules, each gene’s state can be calculated unambiguously
from the state of all other genes and metabolites.) Con-
sider the following subnetwork of the iMH805 TRN for
S. cerevisiae [16]:

migl —— mthl

1)

rgt] ——— gln-L

Transcription factor mthl is repressed by migl and
promotes expression of rgtl. Extracellular L-glutamine
(gln-L) represses rgtl expression. The original iMH805
study required this set of constraints be described with
the following set of explicit rules [16]:

not MIG1 & mthl
MTH1 and (not gln-L) & rgtl

An implicit representation of (1) is

MIG1 = not mthl
MTH1 = 1gt1
gln —L = not rgtl

The three transcription factors and one metabolite in
these rules can be arranged in 2* = 16 possible states.
As shown in Table 1, only four of the sixteen states are
feasible for the explicit rules. The implicit formulation
of the same system allows four new states and makes
one of the explicit states infeasible. This example
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Table 1 Feasible states for explicit and implicit rules

State Feasibility
mig1 mth1 rgt1 gln-L Explicit Implicit
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Feasible states for explicit and implicit rules describing the transcriptional
regulatory network (1). Rules are taken from the S. cerevisiae regulatory
network model iMH805 [16]

illustrates that two mathematical descriptions of the
same biological process can lead to distinct model pre-
dictions. The model developer should be free to choose
the rule formulation that best encompasses the underly-
ing biology. However, implicit rules require simulta-
neous solution with a metabolic model and are often
more difficult to parse into a mixed integer linear pro-
gram. As a result, previous TRN integration studies
have relied solely on explicit rules to describe regulatory
interactions [17]. A software platform that can correctly
parse both explicit and implicit rules would ease the
development of large TRN models.

Objectives

Software suites have been developed to enable COBRA
analyses. Packages such as CellNetAnalyzer [18], the
BioMet Toolbox [19], and the COBRA Toolbox [20]
implement several useful algorithms for studying
COBRA models and TRNs. However, to date, no single
software platform has been developed to 1.) convert
COBRA models and TRNs into integrated optimization
problems, 2.) analyze these integrated models with exist-
ing algorithms to incorporate high-throughput expres-
sion data, and 3.) allow users to easily develop new
algorithms for the integrated models. To overcome
these limitations, we present a Toolbox for Integrating
Genome-scale metabolism, Expression, and Regulation
(TIGER). TIGER automatically converts a list of implicit
or explicit GPR and TRN rules into a set of linear
inequalities; these equations are integrated with an exist-
ing COBRA model. The software allows rules to be
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written in a generalized Boolean format, enabling TRN
logic to more accurately reflect the underlying biology.
We demonstrate how this increased expressivity can
overcome inconsistencies in existing TRN models. We
will also show how TIGER simplifies the development
of gene-centric extensions to FBA by improving three
algorithms for integrating high-throughput expression
data with a COBRA model.

Implementation

The primary functions of TIGER are shown in Figure 1.
TIGER converts a GPR and additional regulatory rules
into an equivalent mixed integer linear program (MILP).
The MILP constraints are added to a COBRA metabolic
model to create a TIGER model that combines metabo-
lism, GPR associations, and transcriptional regulation.
This integrated model serves as a platform for applying
many gene-centric extensions to FBA, including algo-
rithms that incorporate “omics” data for model refine-
ment. In this section, we describe how the rules parsed
by TIGER are constructed, and how they are converted
to an MILP. Sample files depicting a COBRA model,
GPR, and TRN are provided in the “test/samples”
directory of the TIGER distribution.

Creating rules

The GPR uses Boolean logic to describe the nonlinear
relationship among genes, their protein products, and
the reactions they catalyze. Examples of GPR relation-
ships appear in Figure 2. The majority of metabolic
reactions adhere to a one gene, one enzyme, one reac-
tion relationship, as demonstrated by gene a, enzyme
A, and reaction 1. If gene a is expressed, FBA assumes
that reaction 1 can carry any physiologically feasible
flux. Some enzymes, such as enzyme B, can catalyze
two or more separate reactions. Other reactions, such
as reaction 4, require two enzymes (C and D) to carry
any flux. Enzymes C and D are commonly protein sub-
units of an enzymatic complex; if either is absent, no
substrate conversion is possible. Genes e and f encode
isozymes; either protein can independently catalyze
reaction 5.

These GPR relationships can be described as a Boo-
lean expression using the standard operators and and
or. For example, a reaction that is catalyzed by either of
two isozymes, the second of which is composed of two
subunits, would have a GPR of the form “isozyme; or
(isozyme,, and isozyme,;,)”. Two expressions are joined
with an implication operator (= or < corresponding to
“if” and “if and only if”), to form a rule. For GPR asso-
ciations, rules are formed as “GPR & reaction”, where
reaction is an indicator variable that constrains the flux
through a reaction to be zero when the GPR expression
is false.
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Figure 1 TIGER platform overview. TIGER converts Boolean rules to MILPs. Rules are first simplified by substitution and converted into a
system of linear inequalities. The rules are optionally attached to a COBRA model by coupling indicators of reaction participation (R) to the
reaction flux v;. In addition to serving as a platform for developing new algorithms, TIGER models can be integrated with high-throughput
expression data to generate context-specific models using variations on the GIMME, iIMAT, and MADE algorithms.

Minimal genomes

. AR Context-specific networks
Strain optimization

GIMME, iMAT, MADE

TIGER model

Expression
data

COBRA
model

TIGER expressions allow additional features to
describe logical relationships that are more complex
than those typically found in GPRs. The not operator
allows logical negation, which is often used to construct
rules for transcriptional repression. Expressions can also
contain conditionals that compare the numerical values
of individual variables. If a gene g was known to be
expressed when glucose uptake is greater than 10 flux
units, this relationship could be represented by the rule
“glc_ex >10 = g*, where “glc_ex” is the glucose exchange
reaction in the metabolic model. Any two expressions of

arbitrary complexity can be combined as a rule and
parsed by TIGER. The grammar used by TIGER for
rules was designed to resemble logical operations in
common programming languages and to be compatible
with the GPRs of widely-used COBRA models. A com-
plete description of the TIGER syntax appears in Addi-
tional File 1.

Some transcriptional regulators, such as the response
of ¢crp to cAMP in E. coli, display multiple levels of
activity and cannot be easily described with Boolean
logic [15]. Rather than require users to create several

reaction reaction | | reaction

1

reaction

reaction

4 5

2 3
B

T

T /
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gene a gene b
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gene d gene f
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Figure 2 The gene-protein-reaction relationship. Boolean logic is used to describe gene-protein-reaction (GPR) relationships of varying
complexity. Reactions can carry flux if and only if a correct combination of genes is expressed. Reaction 1 is catalyzed by a single gene product

(reaction 1 & gene a). Reactions 2 and 3 are both catalyzed by the product of gene b (reaction 1 < gene b, reaction 2 < gene b). Genes ¢ and d
produce subunits of an enzymatic complex; both proteins are required for reaction 4 to carry flux (reaction 4 < gene ¢ andgene d). Genes e and
f encode isozymes. Either enzyme can catalyze reaction 5 (reaction 5 < gene e or gene f).
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variables describing each state of activation, TIGER
allows multilevel variables. If a transcription factor ¢
activates target genes g, at low levels of expression
and gpign at high levels of expression, then this relation-
ship could be described with the rules

(t=1)= giow ()

(t =2) = ghigh (3)

where t = 0, 1, and 2 corresponds to no, low, and high
expression. Logical operators have a different interpreta-
tion when applied to multilevel variables. If proteins x
and y form a promoter complex for expression of gene
z, then the corresponding rule for z expression would be
“x and y = z“ since both x and y are required for z
transcription. If x and y were multilevel, one would
assume that z expression would be proportional to the
promoter subunit in lower abundance, since this species
would limit the amount of complete promoter complex
that could be formed. Thus, the and operation often
corresponds to a minimization:

x and y = min{x, y} (4)

The or operation would be used in situations where
either factor can independently induce expression. In
this situation, the species in higher abundance deter-
mines the target gene’s transcription level. TIGER
implements the multilevel or as a maximization:

x or y = max{x, y} (5)

The not operator can have two interpretations when
applied to multilevel variables:

x>0 pseudo - binary
X —x inversion,x € {O,..., X}

not x = { (6)

where x € {0,...,x}. The first case (pseudo-binary)
regards any nonzero value as true, regardless of the
number of levels the variable may occupy. The second
case (inversion) requires that the value of x and the
quantity notx always sum to the maximum value that
x can occupy. In this case, notx is a measure of how
far x is from its upper bound. Users are able to select
the pseudo-binary or inversion representation depend-
ing on which interpretation is a better approximation
of the biological context. For example, consider a
gene/repressor relationship R = not G, where the
repressor R can take on three biologically distinct
levels - “off,” “low,” and “high”. If both “low” and
“high” levels of R prevent any expression of G, then
the pseudo-binary not operator would be appropriate
as G is off whenever R is not “off”. However, if G also
has the same three levels of expression, then the
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inversion interpretation of the not operator is more
appropriate. This choice implies that

R = off — G = high @)
R =low — G = low (8)
R = high — G = off 9)

Any variable in a TIGER model can be declared with
multiple levels. Such declarations are made when rules are
added to a model using the add_rule function in two
ways: 1.) setting the default upper bound to all variables to
any integer greater than one, or 2.) providing a list of vari-
able names and a set of upper and lower bounds.

Rule simplification

Simple Boolean rules can be represented by systems of
linear inequalities of integer variables [21]. A general
Boolean rule can be converted by the following proce-
dure to a set of simple rules before conversion to an
MILP.

We define an “atomic” expression as either a vari-
able (x) or a negated variable (not x). If a not opera-
tor appears before an expression that is not atomic,
TIGER applies DeMorgan’s laws to move the negation
onto atomic expressions (e.g., not (x and y) becomes
the equivalent expression (not x) or (not y)). A sim-
ple rule then conforms to one of the following pat-
terns

x (=€) z (10)
xand y (=|®) z (11)
xory (=€) z (12)
x(opy (=1e) z (13)

where %, y, and z are atomic, and (op) is a conditional
operator (<, >, etc.). Non-simple rules are converted to
simple rules through a series of recursive substitutions.
For example, the rule

(x or (not y))and z=w (14)

is not simple, since the expression x or (not y) is not
atomic. By defining an indicator variable I, which is true
if and only if the expression x or (not y) is true, equa-
tion (14) can be written as two simple rules:

xor (not y) &I (15)

ITand z= w (16)
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The bounds of I are determined by the bounds of x

and y. If x€{0,...,X} and ye{0,...,7}, then
1€1{0,...,1}, where

= | max{x,y} forx or y

I= { min{x, y} for x and y (17)

Thus, if x and y are binary, X =y = 1, so [ is binary as
well.

TIGER applies the above substitutions recursively,
creating indicator variables as necessary until all rules
are simple. Each simple rule is converted to a set of lin-
ear inequalities that are added as constraints to the
model structure. If a variable name already appears in
the model, TIGER assumes that these variables repre-
sent the same quantity and thus allows new rules to be
added to an existing model without recompiling pre-
vious rules. At the same time, TIGER creates variables
to substitute for negated variables. For efficiency,
TIGER ensures that only one negated variable is created
for each original variable, regardless of the number of
times the negated expression appears in the set of sim-
ple rules. Details of the conversion between simple rules
and inequalities, along with methods for handling condi-
tionals, are provided in Additional File 1.

Reaction coupling

If the GPR expression for a reaction is not satisfied, the
reaction is not allowed to carry flux. To enforce this
relationship during an optimization, a set of discrete
variables R; are defined, where R; = 0 if the GPR for
reaction i is not satisfied, and R; >0 otherwise. To
enforce the GPR’s effect on flux, TIGER adds the con-
straint

l/lminRi <y =< U;-naXRi (18)

where v; is the flux through the ith reaction, with
lower and upper bounds ™" and v/"**.

Model structure

TIGER models are represented as Matlab structures.
The layout of this structure is shown in Figure 3. The
structure contains fields obj, A, b, 1b, and ub that
correspond to the values in the following MILP pro-
blem:

min obj'x

subject to
Ax(<=12)b
Ib<x<ub

The type of (in)equality for each constraint in A is
determined by the character vector ctype. The type of
variable for each entry in «x is specified by the field
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Figure 3 Structure of TIGER models. TIGER models are
represented as Matlab structures. Boxes indicate size and orientation
of the fields. Black text denotes TIGER field names. Gray areas
contain data from the COBRA model, with white text indicating the
relevant COBRA field names. Border color indicates data type: black
— double-precision matrix, blue — cell array of strings, red —

character array.

« e

vartype, where ‘c’, ‘©’, and ‘1’ denote continuous, bin-
ary, and general integer variables. Reaction fluxes are
continuous variables, while all other variables are either
binary or integer depending on the corresponding upper
bound. The fields rownames and varnames contain
descriptive names of the constraints and variables,
stored as cell arrays of strings. Functions in TIGER
allow variables to be interchangeably referenced by their
name, column index, or through Matlab’s logical index-
ing features.

The format for TIGER models is designed for compat-
ibility with the model structure for the COBRA Toolbox
[20]. TIGER can use a COBRA Toolbox model as a
starting point for converting a genome-scale reconstruc-
tion; therefore, any model in a file format supported by
the COBRA Toolbox (SBML, Simpheny, etc.) can be
converted to a TIGER model.

Accessing the MILP solver

TIGER uses a custom Matlab class CMPI (Common
Mathematical Programming Interface) to create and
solve mathematical programming problems. CMPI
defines a consistent structure for MILP (and mixed-inte-
ger quadratic programming, MIQP) problems, providing
independence from the underlying MILP solver software.
TIGER currently supports the CPLEX, Gurobi (via Gur-
obi MEX), and GLPK (via GLPK Mex) software packages,
all of which are freely available for academic use. Porting
TIGER to use a new solver requires modifying only the
CMPI method solve mip to specify the new interface.
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CMPI also provides a standardized method for configur-
ing common solver parameters (maximum solution time,
optimality and feasibility tolerances, etc.).

Previous work has indicated that the computation
time of some FBA-related algorithms, such as Flux
Variability Analysis [22], can be reduced by saving infor-
mation about the problem structure between calls to the
MILP solver [23]. CMPI provides a method, solve -
multiple milps, to preserve the solver state between
successive calls to the CPLEX optimizer and reduce run-
time in this manner. (Gurobi and GLPK currently do
not support this feature in their Matlab interfaces.) If
the CPLEX optimizer is not installed, CMPI will auto-
matically make successive calls to the installed optimi-
zer. While this removes the potential speed increase
from using solver restarts, it allows TIGER code to
remain solver independent and portable.

Using TIGER
TIGER source code and installation instructions are
available online at http://bme.virginia.edu/csbl/down-
loads/ or http://csbl.bitbucket.org/tiger The version of
TIGER used for the examples in this study is included
as Additional File 2. All functions in the toolbox are
documented using Matlab’s “help” facilities. Complete
documentation and a step-by-step tutorial are also avail-
able on the TIGER website. The software includes a
testing suite to verify the installation. These tests con-
tain examples that build a TIGER structure from a sim-
ple COBRA model, add a set of TRN rules, call a MILP
solver, and display the solution.

Results and Discussion

Refining integrated models for Saccharomyces cerevisiae
TIGER was used to couple the 1266 reactions in
iND750 [9], a genome-scale model of Saccharomyces
cerevisiae metabolism, with 750 metabolic genes. The
resulting TIGER model contained 4498 constraints in
3214 variables. A model of S. cerevisiae transcriptional
regulation, iMH805 [16], was added. The additional 805
rules contributed 1057 constraints and 562 variables to
the TIGER model. The conversion took 53.66 s for
iND750 and 20.31 s to add the TRN using an Intel 3.2
GHz i7-quad core processor running Linux.

As mentioned above, previous methods for integrat-
ing TRNs involve an iterative process, alternating
between calculating gene states from a given environ-
ment and determining an environment based on meta-
bolic byproducts [17]. However, the multiple layers of
trascriptional regulation may require several iterations
of this method to reach a stable gene state. The num-
ber of iterations to reach a stable state varies by envir-
onment and cannot easily be determined a priori [24].
In fact, some feedback mechanisms in TRNs may lead
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to a stable cycle of gene activation/inactivation rather
than a single gene state. TIGER solves the TRN and
FBA problems simultaneously, so the resulting gene
state is always stable (or an optimal state inside a
stable cycle).

Applying large-scale TRNs to COBRA models may
result in infeasible models, i.e., models unable to produce
any biomass. This is often due to a small number of rules
that turn off reactions that are essential for biomass pro-
duction. Previous work has developed techniques for find-
ing which rules create the model infeasibility [13]. TIGER
includes the function find infeasible rules to
identify rules that prevent feasible solutions to the result-
ing MILP. Given a model and a set of rules that prevent a
feasible solution, find infeasible rules creates a
MILP that preserves the logic of the rules but allows each
rule to be artificially satisfied. The objective of this MILP
is to minimize the number of rules that must be artificially
satisfied while finding a feasible solution for the model.
(Details of this process are available in Additional File 1.)

Analysis by TIGER reported that the combined
iND750/iMH805 metabolic and TRN network was
unable to produce biomass under aerobic conditions in
a glucose minimal media. Since S. cerevisiae is well-
known to grow in this environment, we used TIGER’s
find infeasible_rules function to identify the
following three rules that prevented growth:

O;[e] or (not ROX1) < hapl (19)

O;[e] and HAP1 & roxl (20)

glucose[e] and HAP1 and (not ROX1) < ergll (21)

The product of gene ergll, lanosterol 14¢-demethy-
lase, is an essential enzyme for the production of ergos-
terol, a main sterol in S. cerevisiae [25]. This gene is
essential in the iND750 metabolic model and must
remain “on” during aerobic growth on glucose. How-
ever, the stable gene state for ergll in the above rules is
always “off” after three iterations, as described in Table
2. Because the iMH805 study used the results of the
second iteration as the final gene state, this inaccuracy
was unnoticed.

Rule (21) was originally derived from Turi & Loper
[25]. Re-examination of this manuscript revealed that
while ROX1 represses ergll, complete repression is only
observed under low oxygen conditions. To incorporate
these findings, we create an indicator “high 02” that is
true if and only if the cell uptakes more than 10% of the
maximum oxygen consumption rate. This relationship is
expressed as

high 02 < EX 02(e) < —0.244 (22)
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Table 2 Gene states for erg11 regulation

Iteration
Start 1 2 3 4 Rule

Ole] 1 111
glucose 1 T 1 11
le]
hap1 0 1 1 1 1 Oye] or not ROX1
rox1 0 0 1 1 1 Oyle] and HAP1
ergll 1 1 1 0 0 Ole] and HAP1 and (not ROX1)
ergll 1 T 1 1 1 Oje] and HAPT and (high_o2 or not

ROX1)

To start, all transcription factors are assumed to be “off”, and all metabolic
genes are “on”. The extracellular environment contains only glucose (glucose
[e]), oxygen (O;[e]), and essential salts and minerals. Each iteration calculates
the next gene state based on the current state of metabolites in the
environment and transcription factors. After three iterations, expression of
erg11 turns off, unless a modified rule is used that account for high oxygen
uptake. The modified rule (shown below the double line) is more consistent
with the results in Turi & Loper [25] Rules are taken from the S. cerevisiae
regulatory network model iMH805 [16]

where “EX_o02(e)” is the iND750 name for the oxygen
exchange reaction, and the maximum oxygen uptake
rate for growth on glucose is 2.44 mol/(g dry cell
weight)/h (negative flux through exchange reactions
indicate uptake by the cell). Rule (21) for ergl!l expres-
sion was re-written to only exhibit ROX1 repression
under low oxygen conditions:

glucose[e] and HAP1 and (high 02 or not ROX1) ¢ ergll  (23)

The set of refined rules (20,21,23) reproduces the cor-
rect growth phenotype in aerobic glucose conditions.
This example demonstrates a three-step procedure for
refining existing TRN models using TIGER: 1.) apply
the existing TRN to a COBRA model, 2.) use the fin-
d_infeasible rules function to identify rules that
cause the model to differ from a known phenotype, and
3.) re-examine the evidence for these rules and make
appropriate modifications. As shown in the previous
example, new biological information can often be incor-
porated into existing rules using TIGER’s support for
complex logical expressions.

Improved methods for expression data

Coupling the GPR with a metabolic model is a starting
point for several algorithms designed to refine metabolic
models by integrating high-throughput gene or protein
expression data. The TIGER package contains imple-
mentations of three of these methods.

GIMME

GIMME was designed to generate context-specific meta-
bolic networks by designating each reaction as “on” or
“off” [26]. Given expression data and a minimum
expression threshold, GIMME calculates a normalized
gene “score” for each reaction by averaging the

Page 8 of 12

expression values of all genes that appear in the GPR
for the reaction. Reactions with a score below a cutoff
are turned off; only reactions scoring above the cutoff
are allowed to carry flux. Because this thresholding does
not guarantee a functioning model, an optimization pro-
blem is formed to minimize the number of “off” reac-
tions that must carry flux when the model produces a
minimum objective flux.

The GIMME algorithm is an excellent candidate for
conversion to a gene-centric approach. Rather than
average the gene expression values for each reaction, a
simpler approach is to turn genes “on” or “off” if their
expression is above or below a threshold. Using an inte-
grated GPR/metabolic model, an optimization problem
could re-activate “off” genes to allow the network to
produce an objective flux. TIGER provides a gimme
function that implements this gene-centric approach.
Similar to the original algorithm, TIGER's GIMME uses
the distance below the expression threshold as a weight
when selecting genes for re-activation. In addition to
removing discrepancies caused by the averaging of gene
expression values over each reaction, TIGER’s integrated
approach allows GIMME to identify each gene as either
“on” or “off” in the resulting network (GIMME origin-
ally reported only the state of each reaction).

We applied GIMME to the prototypic network shown
in Figure 4a. In this network, three metabolites, A, C,
and F, are transported into the system and undergo che-
mical transformation into products E and G. The meta-
bolic objective for this system is the production of E.
The GPR associations are also shown in Figure 4a. Reac-
tions 4 through 8 are gene associated. Reactions 5 and 7
both require two enzymatic subunits to carry flux, and
reaction 8 can carry flux through either of two isozymes.

The expression data applied to this network are shown
in Table 3. Using simple thresholding at a threshold
expression level of 10 does not produce a functional
model. As shown in Table 3 and Figure 4b, GIMME reac-
tivates the genes g5a and g7b. Because reaction 7 is the
only method of producing metabolite E (the metabolic
objective), this reaction must be active and both subunits
(g7. and g7,) must be expressed. Production of E also
requires metabolite B and either reaction 5 or reaction 6.
The expression data showed that both genes g5, and g4
were below the expression threshold; GIMME chose to
activate gs, since its expression was closer to the threshold.
iMAT
Shlomi, et al. [27], introduced the iMAT algorithm to
create tissue-specific models of mammalian metabolism.
Briefly, reactions or genes were classified as having
either low, regular, or high activity using information
from several databases. An optimization problem was
formulated such that
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Figure 4 Integrating expression data with a prototypic network model. A. Prototypic network model. Production of metabolite E is the
metabolic objective (reaction 9). Reactions 4 and 6 are catalyzed by a single enzyme. Reactions 5 and 7 require enzymes composed of two
necessary subunits. Reaction 8 can be catalyzed by either of two isozymes. B - D display the results of integrating expression data in Tables 3 -
5. Red indicates that a gene (reaction) is expressed (active).

\

> ¢ ifreaction i has high activity feasible (mass balanced). The mass-balance approach

Vi { (24) attempts to yield functional models in multicellular organ-
isms that lack a clearly defined metabolic objective.

for each reaction flux v; and some small flux ¢. The opti- TIGER includes a gene-centric version of the iMAT

mization attempted to preserve the reaction classifications  algorithm. Because TIGER allows multilevel variables,

while enforcing that the resulting set of reaction fluxes be  each gene in the GPR is allowed to occupy a state of

low (0), medium (1), or high (2) activity. The multilevel

< ¢ ifreaction i has low activity

Table 3 Expression data for GIMME example

Table 4 Activity levels for iMAT example

Gene Expression Simple thresholding GIMME
g 3 ] ] Gene Activity level
4
Gsa 6 0 1 s medium
Jsb 12 1 1 Jsa low
96 2 0 0 9o low
97a 18 1 1 s high
G 6 0 ] G7a high
sa 2 0 0 g7p high
oo 4 0 0 Jsa medium
Jsb high

Expression values for genes of the network shown in Figure 5a. “Simple
thresholding” is the gene state after a simple threshold of 10 is applied to the Classification of genes according to “low”, “medium”, or “high” activity for
expression values. “GIMME” is the gene state calculated by GIMME that iMAT. Genes correspond to the network shown in Figure 5a. iMAT produces
produces a functioning model. All expression values are arbitrary units. the integrated network shown in Figure 5c.

"o
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operators in the GPR then combine the gene expression
values to create a reaction indicator with the same three
levels. Rules are added to enforce the constraints in
equation (24). Additionally, if a metabolic objective is
available for the organism, the flux through the corre-
sponding objective reaction can be constrained above a
minimum value.

iMAT was used to integrate the activity data in Table
4 with the network model in Figure 4a. The results are
shown in Figure 4c. Notice that the high activity of gene
gsp requires that reactions 8 and 10 carry flux. Because
production of metabolite G is not a part of the system’s
metabolic objective, reaction 8 would most likely not
carry flux in the FBA flux distribution for this network;
the activity seen in this side pathway is enforced by the
iMAT constraints.
MADE
Metabolic Adjustment by Differential Expression
(MADE) removes the need for a pre-defined “on"/"off”
threshold when integrating expression data [12]. Instead,
MADE uses the differential expression between two or
more conditions to determine which genes or proteins
are likely to be “on” or “off”. If a gene increases signifi-
cantly between conditions 1 and 2, MADE attempts to
turn the gene “off” in condition 1 and “on” in condition
2. The expression data are mapped while ensuring
model functionality in all conditions, and the statistical
significance of the expression changes are used to priori-
tize discrepancies.

The TIGER implementation of MADE offers two
improvements. First, genes are allowed to be multilevel
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instead of binary. The user is allowed to define a map-
ping between the multiple levels of gene expression and
the flux constraints for the corresponding reactions.
Second, TIGER MADE allows comparisons among
states that do not appear as a linear sequence. The ori-
ginal MADE algorithm used a series of # conditions Cj,
C,, ..., C,, and n - 1 sets of expression data describing
the changes C; - C,, C, —> C;3, ..., C,,.; > C,. TIGER
MADE allows any number of connections between the
n states.

A conceptual example of TIGER MADE’s capabilities
is presented in Figure 5. The goal in this example is to
use expression data from five bacterial strains to
develop strain-specific metabolic models. Strains A and
B were evolved from the same parent strain P. Strain
A later gave rise to two additional strains, A1 and A2.
A matrix containing the differential expression
between each strain and its predecessor is calculated.
A transition matrix T is defined as follows: if T(i, j) =
k, then the kth column of the differential expression
matrix was calculated between strains i and j. Values
greater than one in this column indicate that expres-
sion is higher in strain j than in strain i. These two
matrices are used by TIGER MADE to create a single
optimization problem. The result is a functional gene
state for each condition that maximizes the significant
changes in gene expression between each strain and its
parent.

Figure 4d shows the results of applying MADE on
three network models simultaneously. Each resulting
model is functional and captures the most significant

Expression data
P-A P-B A-Al A-A2

l oB  geney

/ \1 gene w

§§0P\‘ gene x . ‘ . . Transition matrix
2, 0000
A gene z ‘ . . .

000

P A B Al A2
1 2

3 4

ZEo>

g“m SN2

Context-specific

<«
models

create gene states for each bacterial strain.

Figure 5 Conceptual example using the enhanced MADE algorithm. Workflow for integrating expression data from evolved bacterial
cultures using TIGER's enhanced MADE algorithm. Parent strain P splits into strains A and B. Strain A further diverges into strains A1 and A2.
Expression data indicates fold change between different strains for each gene. The interaction matrix indicates that the first column of fold
changes represents a change from P to A, the second column from P to B, etc. The expression data and the interaction matrix are combined to

TIGER MADE
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Table 5 Expression data for MADE example

Fold change MADE states

Gene 1>2 P 253 P 3-1 P 1 2 3
g4 2.1 0.68 30 0.08 0.7 0.15 1
Jsa 0.5 045 8.0 044 0.8 022 1
g 11007 01 049 22 003 1
Je 36 0.05 16 022 04 048 0
G7a 14 0.38 4.2 040 1.8 043 1
) 2.3 0.04 04 0.19 03 012 1
Jsa 1.3 040 7.3 0.21 0.2 045 0
gso 09 0.89 4.1 0.83 0.1 028 0 0 1

[ NN N
- O

Fold change and P-values for the MADE example. Column “1 — 2" and
indicates the fold change in expression between conditions 1 and 2; P is the
P-value for this change. “"MADE states” are the binary gene states returned by
the algorithm. The states maximize the transitions in the expression data
while retaining model functionality in each condition. Gene names correspond
to the network in Figure 5a. Results are also depicted in Figure 5d.

differences described the fold changes listed in Table 5.
Notice that despite significant changes in enzyme
expression for reactions 4 and 7, these reactions remain
“on” in all models because they are required to produce
metabolite E, the metabolic objective.

Source code for all of the examples in Figure 4 are
available in the file test /gimme imat made exam-
ples.m of the TIGER distribution.

Conclusions

We have presented TIGER, a software platform for con-
verting generalized Boolean and multilevel rules to
mixed-integer linear programs, and coupling these rules
to genome-scale models of metabolism. The flexibility of
TIGER’s generalized rule format allows for a more accu-
rate description of biological processes such as catalysis
by isozymes and multi-meric proteins, metabolic flux
control, and transcriptional regulation. These features
were used to identify and correct inconsistencies within
an existing TRN model of Saccharomyces cerevisiae. We
have also demonstrated how TIGER can be used as a
starting point for implementing and improving existing
algorithms for genome-scale analysis.

In addition to adding implementations of other gene-
centric algorithms to TIGER, we are exploring methods
to improve the solution efficiency of the generated
MILP. Possible strategies include exploiting indicator
constraints, specially-ordered-sets (SOS), and other sol-
ver optimizations through CMPL.

Availability and requirements
Project name: TIGER

Project home page: http://bme.virginia.edu/csbl/
downloads or http://csbl.bitbucket.org/tiger

Operating system: Platform independent
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Programming language: Matlab

Other requirements: Matlab v7.0 or higher, a Mixed-
Integer Linear Programming solver (e.g. CPLEX, Gurobi,
or GLPK)

License: MIT

Non-academic use restrictions: None

Additional material

Additional file 1: Supplementary Methods. Detailed grammar for
TIGER rules and specifics on the rule to MILP conversion process.

Additional file 2: TIGER source code. Source code, documentation, and
tutorials are also available online at http://bme.virginia.edu/csbl/
downloads/ or http://csbl.bitbucket.org/tiger.

List of abbreviations used

TIGER: Toolbox for Integrating Genome-scale metabolism, Expression, and
Regulation; COBRA: COnstraint-Based Reconstruction and Analysis; FBA: Flux
Balance Analysis; GPR: Gene-Protein-Reaction; TRN: Transcriptional Regulatory
Network; MILP: Mixed-Integer Linear Program; SR-FBA: Steady-State
Regulatory FBA; IND750: Genome-scale model of Saccharomyces cerevisiae
metabolism; iIMH805: Genome-scale transcriptional regulatory network for
Saccharomyces cerevisiae.; CMPI: Common Mathematical Programming
Interface; GIMME: Gene Inactivity Moderated by Metabolism and Expression;
iMAT: Integrative Metabolic Analysis Tool; MADE: Metabolic Adjustment by
Differential Expression.
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