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Abstract. Occupancy modeling focuses on inference about the distribution of organisms
over space, using temporal or spatial replication to allow inference about the detection
process. Inference based on spatial replication strictly requires that replicates be selected
randomly and with replacement, but the importance of these design requirements is not well
understood. This paper focuses on an increasingly popular sampling design based on spatial
replicates that are not selected randomly and that are expected to exhibit Markovian
dependence. We develop two new occupancy models for data collected under this sort of
design, one based on an underlying Markov model for spatial dependence and the other based
on a trap response model with Markovian detections. We then simulated data under the model
for Markovian spatial dependence and fit the data to standard occupancy models and to the
two new models. Bias of occupancy estimates was substantial for the standard models, smaller
for the new trap response model, and negligible for the new spatial process model. We also fit
these models to data from a large-scale tiger occupancy survey recently conducted in
Karnataka State, southwestern India. In addition to providing evidence of a positive
relationship between tiger occupancy and habitat, model selection statistics and estimates
strongly supported the use of the model with Markovian spatial dependence. This new model
provides another tool for the decomposition of the detection process, which is sometimes
needed for proper estimation and which may also permit interesting biological inferences. In
addition to designs employing spatial replication, we note the likely existence of temporal
Markovian dependence in many designs using temporal replication. The models developed
here will be useful either directly, or with minor extensions, for these designs as well. We
believe that these new models represent important additions to the suite of modeling tools now
available for occupancy estimation in conservation monitoring. More generally, this work
represents a contribution to the topic of cluster sampling for situations in which there is a need
for specific modeling (e.g., reflecting dependence) for the distribution of the variable(s) of
interest among subunits.

Key words: cluster sampling; detection probability; India; Markov model; occupancy modeling;
Panthera tigris; spatial dependence; spatial replication; tigers; trap response model.

INTRODUCTION

Large-scale occupancy surveys and monitoring pro-

grams are now used throughout the world to inform

conservation decisions. Most occupancy modeling re-

quires some sort of replication in order to obtain the

information needed to estimate detection probability

and, thereby, probabilistically separate true absence

from presence and nondetection (MacKenzie et al. 2006,

Royle and Dorazio 2008). The usual sampling situation

involves multiple visits to each sample unit during some

period of time over which the units are assumed to be

closed to changes in true occupancy. In some cases it is

possible to substitute spatial replication for temporal

replication in order to obtain this information about

detection probability. Specifically, multiple survey sites

or locations are selected from each sample unit

randomly and with replacement and are then surveyed

a single time, usually on the same day (MacKenzie et al.

2006). Such a design permits estimation of occupancy at

the level of the sample unit (not at the level of the

specific sites or locations within each unit). When the

species (or sign of the species) occupies a sampling unit,

but is not present at all sites within the sampling unit,

detection probability consists of two components: (1)

Pr(present at survey site) and (2) Pr(detection j present at
survey site). Resulting estimates of detection probability

in such designs correspond to each specific survey site

and are reasonable estimates of the product of these

components.

Sometimes surveys employ spatial replication but do

not follow the recommendation to sample randomly and

with replacement. Such survey designs typically result

from logistical constraints and represent a compromise
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between statistical requirements and practical require-

ments of field surveys. It is unclear how deviations from
random spatial sampling with replacement affect esti-

mates of occupancy. In this paper we focus on a specific
field design that is being used in a large-scale occupancy

survey of tigers (Panthera tigris) in southwestern India
(K. U. Karanth, N. S. Kumar, A. Gopalaswamy, and V.

Srinivas, unpublished manuscript). This type of survey
design has been adopted elsewhere in southeast Asia by
several conservation organizations for use with carni-

vores and elephants, is currently being used for
carnivore surveys in Africa, and is being considered

for surveys of carnivores in the New World as well. The
design uses spatial replication without the requisite

random selection and replacement and is expected to
produce detection data that are correlated on adjacent

sample sites (replicates). We first develop a new model
that deals explicitly with data resulting from this type of

spatially replicated design. We also develop a new ‘‘trap
response’’ occupancy model (see MacKenzie et al. 2006)

for possible use with such data. We then use computer
simulation to investigate the consequences of this kind

of spatial design for estimates based on (1) standard
occupancy models that ignore spatial dependence, (2)

the new trap response model, and (3) the new spatial
Markov process model developed for this design.

Finally, we apply all three classes of model to initial
data from a field survey of tigers in India (K. U.
Karanth, N. S. Kumar, A. Gopalaswamy, and V.

Srinivas, unpublished manuscript), focusing on variation
among resulting estimates and on the results of model

selection.

SURVEY DESIGNS WITH CORRELATED SPATIAL REPLICATION

Field surveys

The field survey that motivated this work was

developed for tigers in the 22 000-km2 Malnad-Mysore
Tiger Landscape in Karnataka State, southwestern India.

This and similar designs designate as sampling units large
geographic grid cells at a scale appropriate to the study

organism, depending on the biology of the species. For
example, for tigers in southwestern India, the cell size was

set based on expected maximum home range size of ;200
km2 (Karanth and Sunquist 2000). Tigers are known to
use forest roads and trails as travel routes and to mark

them intensively with tracks, scent, and scats (Karanth
and Sunquist 2000). Search for tiger signs along such

trails increases detection probabilities far above those
expected based on random sampling. Within each cell the

design ensured that each survey team passed through a
point randomly chosen before the survey. The trail was

then walked by three trained surveyors looking for signs
of the species of interest (e.g., tiger scat and tracks). The

distance covered was subdivided into segments of equal
length (e.g., 1 km) that were then treated as geographic

replicates in the occupancy analysis. We initially viewed
the chief virtue of this design to be logistical feasibility

(but see Discussion).

Recommendations for the use of geographic replicates

in occupancy surveys include sampling randomly

selected replicates with replacement (MacKenzie et al.

2006). Logistical considerations sometimes cause biolo-

gists to select designs, such as that used in the tiger

survey, that do not sample the replicates (segments) with

replacement. The reasons for preferring sampling with

replacement are not likely to be important for the large,

wide-ranging, highly mobile species to which this type of

survey design is applied. High mobility insures that all

possible detection histories have some nonnegligible a

priori probability of occurrence. This is not the case for

spatial replication of sedentary organisms that either

inhabit a replicate or not. For such species, if replicate 1

is inhabited and replicate 2 is not, then only detection

histories 10 and 00 are possible if sampling is without

replacement. This latter situation leads to biased

estimates of occupancy and detection probability.

Despite the random selection of one of the replicates

(e.g., trail segments) in the carnivore survey design, all

other replicates are not selected at random (Fig. 1).

Trails are selected for surveys because they represent

likely travel routes for study species. Because individual

animals walk along trails for distances that can exceed

segment length, detection of sign on one segment likely

will translate to an increased probability of detecting

sign on the next segment. In this paper we focus on

methods for dealing with data from designs with this

type of potential for spatial correlation in detection

probability.

This type of sampling design can be thought of

generally as a cluster sampling design (e.g., Thompson

2002). Formal inference for such a design requires a

model of within-cluster variability (i.e., a description of

the process generating variation among subsamples). In

the present context, we require a model for variability in

species presence among subsamples. The basic null

model that has justified previous applications of spatial

subsampling (e.g., see Williams et al. 2002:555–573) is

that subsample occupancy states are independent and

identically distributed Bernoulli outcomes, in which case

subsample occupancy becomes confounded with detec-

tion probability (as noted in paragraph 1; see also Cam

et al. 2002). Random sampling with replacement is

simply an attempt to induce this null model. In cluster

sampling designs such as that described here, the

subsamples are spatially organized, suggesting certain

types of models that accommodate spatial dependence.

When such models are reasonable, they provide

information that can be used to estimate additional

parameters describing variation among spatial subsam-

ples within a cluster.

New Markov process for segment occupancy, model

[w(.), h(.), h0(.), p(.)]

Under the above design, we suspected some degree of

positive correlation between detection events on adja-
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cent sample segments. Specifically, we considered the

biologically likely scenario that an individual tiger might

travel along a trail for several adjacent 1-km segments.

We chose to model this scenario by decomposing the

detection process into two components: (1) animal

presence at a segment and (2) animal detection, given

presence on a segment. We then modeled the component

associated with animal presence as a first-order spatial

Markov process (e.g., Williams et al. 2002:197–202).

Initially, we believed that this model might be so general

that parameters would not be identifiable. We thus

developed an additional model patterned after the trap

response models of capture–recapture. Although we

found that inference is indeed possible for the more

general model, we present the new trap response model

in Appendix A, as we believe that it may be useful in

some sampling situations as well.

We assume that we begin the survey at one end of the

survey route (trail) for a sample unit and proceed in

order along the K total segments of the route. The data

resulting from such a survey are detection histories (e.g.,

based on tiger sign) for each of the s sample units (large

cells) selected to survey. Each detection history is simply

a vector containing a ‘‘0’’ or a ‘‘1’’ for each of the K

elements (segments), depending on whether the species

was (1) or was not (0) detected on that segment. For

example, consider the detection history for cell j, hj ¼
01011. There were no detections of tiger sign on

segments 1 or 3, but sign was detected on segments 2,

4, and 5.

Define the following parameters of a spatial process

model for detection history data obtained under the

above design (we drop the subscript j denoting the

sample unit): p¼ Pr(detection at a segment j sample unit

occupied and species present on segment); w¼Pr(sample

unit occupied); h¼ Pr(species present on segment j sam-

ple unit occupied and species not present on previous

segment); h0 ¼ Pr(species present on segment j sample

unit occupied and species present on previous segment).

These parameters can be used to develop a Markov

spatial process model that involves an unobservable

random variable, whether the species was present or not

in the previous segment. The dot notation (dot following

a model parameter symbol, e.g., w(.)), in the model

description indicates no variation from segment to

segment in a model parameter.

Consider the detection history, hj ¼ 01011. The

probability associated with this history under the

Markov spatial process model is

Prðhj ¼ 01011Þ ¼ w½ð1� hÞhþ hð1� pÞh 0�

3 p½ð1� h 0Þhþ h 0ð1� pÞh 0�ph 0p:

The initial w in the above expression corresponds to the

event that the species was present in the sample unit. The

first set of brackets contains two additive components

dealing with the uncertainty about segment 1. One

possibility is that the species was present on segment 2

(the probability corresponding to this event is h), but
absent from the previous segment (1 � h). The other

possibility is that the species was present on segment 2

(h0) and present but undetected [h(1� p)] on the previous

segment. The p following these bracketed terms indicates

detection on segment 2. The second set of brackets

contains probabilities associated with the two possible

outcomes on segment 3, absence of the species and

presence with nondetection. There is no ambiguity

associated with segments 4 and 5 (the species was

present and detected at each of these segments), so the

modeling is simpler.

The probability associated with a detection history of

all zeros must include the probability of true absence

from surveyed segments and the probability of presence

and nondetection. The latter probability in turn depends

FIG. 1. Two sampling designs employing spatial replication to draw inference about occupancy and detection probabilities: (a)
design 1 depicts an example of random sampling; (b) design 2 depicts sampling of segments along a trail, likely producing correlated
spatial replicates.
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on the realization of the spatial Markov process that

dictates true presence and absence among segments.

Consider a simple design with only two segments (not

recommended, but this produces a probability statement

that is relatively easy to follow). The probability

associated with history hj ¼ 00 can be written as

Prðhj ¼ 00Þ ¼ ð1� wÞ þ w½hð1� pÞð1� h 0pÞ

þ ð1� hÞð1� hpÞ�:

The first term, (1 � w), corresponds to the probability

that the sample unit is not occupied. If the sample unit is

occupied, then the first of the two main additive terms

within the brackets corresponds to the probability that

the first segment is occupied, but the species is not

detected. The next segment is then either occupied with

no detection [h0(1 – p)] or not occupied (1 � h0). Note

that 1 � h0p ¼ h0(1 – p) þ (1 � h0). The second main

additive term within the large brackets corresponds to

the probability that the first segment is not occupied.

The second segment then may be occupied with no

detection or not occupied.

Every detection history can be modeled in this

manner, and the likelihood under this model can be

obtained simply as the product of the probabilities

corresponding to all detection histories:

Lðw; h; h 0; p; j h1; h2; :::; hsÞ ¼
Ys

j¼1

PrðhjÞ:

A general computing expression for Pr(hj) is provided in

Appendix B.

Estimates under this model can be obtained via

maximum likelihood, and the senior author has incor-

porated this model into program PRESENCE (Hines

2006). This software can be used to obtain estimates

under this and related models. In fact, the model

structure incorporated into PRESENCE is more general

than that described above in that it deals with missing

observations. The above model can also be implemented

using a Markov chain Monte Carlo (MCMC) approach.

A brief description of this approach, together with

WinBUGS code for this model, is presented in

Supplement 1. Results of a small simulation study

comparing results of the likelihood-based and MCMC

approaches are provided in Appendix C.

METHODS

Simulation study

A simulation study was conducted to evaluate the

performance of standard occupancy models and the two

new models described above for data collected under the

described spatial cluster sampling. The simulation of

detection history data proceeded in a straightforward

manner and followed the development of model [w(.),
h(.), h0(.), p(.)]. For each sample unit, occupancy was

determined as a Bernoulli trial with probability w. For
those units that were occupied, presence of the species

on the first segment of the survey route was determined

as a Bernoulli trial with probability h. If the species was
determined to be present on segment 1, then its presence

on segment 2 was determined as a Bernoulli random

variable, Bern (h0). If the species was not present on

segment 1, then presence on segment 2 was determined

as Bern (h). Species presence and absence at the

remaining segments were determined similarly, with

probability of presence at segment t depending on

presence at segment t � 1. Once presence/absence was

determined for all K segments of the survey route, the

detection process was simulated. At each segment at

which the species was present, detection was determined

as Bern ( p). This procedure led to detection histories for

all s sample units.

Specific values were assigned to the above parameters,

and detection data were generated. These detection

histories were then used in conjunction with four specific

occupancy models in order to assess estimator perfor-

mance in the face of the described spatial sampling with

correlation. Specifically, we simulated data from a study

of 200 sample units, each sampled by a ‘‘trail’’ consisting

of 10 segments. Occupancy at the level of the sample

unit was set at w ¼ 0.75. For occupied sample units,

probability of animal presence for segment 1 and for all

subsequent segments, t, for which there was no presence

on the previous segment, t � 1, was set at h ¼ 0.1. For

occupied sample units, probability of animal presence

on any segment, t, for which there was presence on the

previous segment, t� 1, was set at h0¼0.5. The detection

probability for each segment, conditional on presence of

animals on the segment, was set at pt ¼ p ¼ 0.80. The

detection data were thus generated according to a spatial

Markov process and showed a strong positive spatial

correlation between successive segments.

In order to provide a set of simulations to serve as a

sort of control, we also generated data that correspond-

ed to standard occupancy model assumptions

(MacKenzie et al. 2002, 2006, Royle and Dorazio

2008). These simulations were carried out with the same

sample sizes and parameter values as above, with the

exception that we set h¼ h0 ¼ 0.3. This latter constraint

corresponds to the situation in which occupancy of a

particular segment is the same regardless of whether the

previous segment is occupied (we have removed the

Markovian dependence).

These values were used to generate 1000 sets of

detection history data corresponding to each of the

above spatial processes (Markovian and non-

Markovian). These data were then used to estimate

occupancy and detection probability under two stan-

dard occupancy models that were not designed to

account for the possibility of spatial correlation between

segments, [w(.), p(.)] and [w(.), p(t)]. The first model

assumes constant occupancy among sites and constant

detection probability among sites and segments. Note

that this model corresponds to the second set of

simulations described above. The second model assumes

July 2010 1459OCCUPANCY WITH DEPENDENT REPLICATES



constant occupancy among sites and constant detection

probability among sites, but permits variation in

detection probability among segments. We then evalu-

ated the performance of estimators from the new model

developed specifically for spatially correlated data, [w(.),
h(.), h0(.), p(.)]. For comparison, we also fit the new trap

response model [w(.), p(.), p 0(.)] developed as an

approximation to the process generating the data

(Appendix A).

In evaluating the performance of all of these models,

we focused on the bias of the occupancy estimator, ŵ,
and computed bias as

BiasðŵÞ ¼

Xn

k¼1

ðŵk � wÞ

n

where ŵk is the estimate obtained for simulated data set

k, n is the number of simulations (n¼ 1000), and w is the

true occupancy value used to generate the data. Relative

bias is obtained by dividing bias by the true parameter

value, e.g.,

RelBiasðŵÞ ¼ BiasðŵÞ=w:

We also evaluated the performance of the estimates of

standard errors for various estimators, /̂. We computed

bias of these estimators as

Bias½cSEð/̂Þ�’

Xn

k¼1

cSEð/̂kÞ

n
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

k¼1

ð/̂k � ˆ̄/Þ
2

n� 1

vuuuut

basically computing the difference between the average

model-based standard error and the iteration-based

estimate based on the 1000 estimates of /.

Large-scale tiger occupancy survey

The spatial distribution survey of tigers in Karnataka

State, India (K. U. Karanth, N. S. Kumar, A.

Gopalaswamy, and V. Srinivas, unpublished manuscript),

was conducted between February 2006 and June 2007

across a 22 000-km2 area, assuming that tiger spatial

distribution remained unchanged during this relatively

short period. Based on previous studies of tiger density,

home range size, and relationship to abundance of

ungulate prey (Karanth and Sunquist 2000, Karanth et

al. 2004), we assumed an expected maximum home

range size of 150 km2 for tigers. The grid cell size

selected was larger than this area, primarily with the

goal of eventually linking the occupancy parameter to a

measure of tiger abundance using the Royle-Nichols

(2003) model.

The survey was carried out over 205 grid cells of 188

km2 each that coincided with the survey map-grid

feature to facilitate fieldwork. The surveyed distance

walked within each cell was 40 km if the cell entirely

comprised tiger habitat based on land-cover features.

This distance was proportionately reduced depending on

extent of habitat, and cells with ,10% forest cover were

not surveyed, as they were unlikely to shelter tigers.

Thus, the number of 1-km replicate segments surveyed

per cell ranged from 4 to 42. The tiger signs (tracks,

scats) encountered were verified and recorded (K. U.

Karanth, N. S. Kumar, A. Gopalaswamy, and V.

Srinivas, unpublished manuscript).

As noted above, within each sample unit (grid cell) the

design ensured that each survey team passed through a

point randomly chosen before the survey. However, the

starting point of the survey was not necessarily located

at the beginning of the trail. The first segment surveyed

was typically in the interior of the trail. This design

requires a slight modification of the probability structure

described here for model w(.), h(.), h0(.), p(.). Specifically,

it is not appropriate to model the probability of segment

occupancy for the initial segment as h, because the initial
surveyed segment may or may not be preceded by an

occupied segment. Instead, we need an expression for

the probability that a randomly selected segment from

the interior of a trail is occupied. A reasonable

expression for this probability is the equilibrium

probability of occupancy for a spatial Markov process

defined by h and h0, as given by

h
hþ ð1� h 0Þ : ð1Þ

(e.g., see MacKenzie et al. 2006:208). Thus, the

probability associated with segment-level occupancy of

the initial surveyed segment can be modeled either as h,
when this segment is at the beginning of a trail, or as

expression 1 for surveys such as the tiger survey in which

the initial surveyed segment is in the trail interior.

We fit six models to the tiger data set. The first three

models were parameterized with constant occupancy
and three different models of the detection process, [w(.),
h(.), h0(.), p(.)], [w(.), p(.), p0(.)], and [w(.), p(.)]. The

additional models reflected the same three models of the

detection process, but with occupancy modeled as a

linear-logistic function of the number of segments

surveyed (because this number reflected the proportion

of the cell comprised of tiger habitat, denoted h in model

notation), [w(h), h(.), h0(.), p(.)], [w(h), p(.), p0(.)], and
[w(h), p(.)]. All models were implemented in program

PRESENCE (Hines 2006), and maximum-likelihood

estimates were computed. Akaike’s information criteri-

on (AIC) was computed as a model selection statistic,

and AIC weights were computed for the six models

(Burnham and Anderson 2002). We considered use of

AICc AIC adjusted for small sample size. However, the

issue of just what constitutes sample size in the case of

occupancy models has not been resolved, so we opted
for the unmodified AIC. Note that the issue of defining

sample size is problematic not only for occupancy

modeling, but for many other situations as well

(Burnham and Anderson 2002:332–333).

For a given model of occupancy (e.g., constant), we
expected the model with spatial segment-level depen-
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dency, [w(.), h(.), h0(.), p(.)], to be selected as the most

appropriate model for the data. This model was

developed for exactly this kind of spatial process.

Simulation study results led us to suspect that the trap

response model, [w(.), p(.), p0(.)], would provide a fair

description of the data and that the standard occupancy

model, [w(.), p(.)], would neither describe the data well

nor provide a good estimate of occupancy. For a given

model of the detection process (e.g., constant), we

expected the model with occupancy written as a function

of the habitat covariate, [w(h), p(.)], to perform better

than the constant occupancy model, [w(.), p(.)]. Overall,

we thus expected model [w(h), h(.), h0(.), p(.)] to perform

best and model [w(.), p(.)] to perform worst.

RESULTS

Simulations

When data were simulated under the case of no spatial

correlation among segments (Table 1, column h ¼ h0 ¼
0.3), parameter estimates for the two standard occupan-

cy models, [w(.), p(.)] and [w(.), p(t)], were very close to

expectations. Mean occupancy estimates were only

slightly larger than the true value of 0.75; bias and

relative bias were small. True segment-level detection

probability for these standard models can be obtained as

the product of segment-level occupancy and detection,

conditional on occupancy, hp ¼ 0.3 3 0.8 ¼ 0.24. The

mean values of p̂ under these two models were again

nearly identical to 0.24 (Table 1). Similarly, the model-

based estimates of standard error performed well, as

they matched the empirical estimates of standard

deviation of parameter estimates quite closely (Table 1).

However, when data were simulated with spatial

correlation (Table 1, column h ¼ 0.1, h0 ¼ 0.5) the

standard models performed very poorly. For example,

relative bias of the occupancy estimators under these

standard models was approximately �0.30, indicating

that occupancy estimates were ;30% too small. The

spatial Markov process induced heterogeneity among

segments with respect to segment-level occupancy, with

segments preceded by an occupied segment having very

different probabilities of being occupied than segments

not preceded by an occupied segment.

We recognized that the Markov detection process

(trap response) model, [w(.), p(.), p0(.)], did not capture

the underlying model of spatial dependence perfectly,

but we hoped that it would provide an approximation

that yielded reasonable estimates. The occupancy

estimator under this model performed much better than

the standard occupancy models, but still exhibited

negative bias (relative bias nearly�0.07). The estimated

TABLE 1. Simulation results for 1000 sets of detection history
data for 200 sites under each of two spatial correlation
scenarios.

Parameter
estimates
by model

True segment occupancy parameter values

h ¼ 0.1, h0 ¼ 0.5 h ¼ h0 ¼ 0.3

w(.), p(.)

ˆ̄w 0.5194 0.7532
cSE ðŵÞ 0.0429 0.0351
cSDðŵÞ 0.0448 0.0363
ˆ̄p 0.1792 0.2395
cSEð p̂Þ 0.0148 0.0124
cSDð p̂Þ 0.0189 0.0128

w(.), p(t)

ˆ̄w 0.5178 0.7515

cSEðŵÞ 0.0429 0.0352

cSDðŵÞ 0.0447 0.0432
ˆ̄p5 0.1855 0.2393

cSEð p̂5Þ 0.0387 0.0349
cSDð p̂5Þ 0.0406 0.0358

w(.), p(.), p0(.)

ˆ̄w 0.7039 0.7534

cSEðŵÞ 0.0835 0.0356

cSDðŵÞ 0.0894 0.0366
ˆ̄p 0.0980 0.2397
cSEð p̂Þ 0.0170 0.0146
cSDð p̂Þ 0.0159 0.0152

ˆ̄p
0

0.3977 0.2390
cSEð p̂ 0Þ 0.0491 0.0250
cSDð p̂ 0Þ 0.0383 0.0226

w(.), h(.), h0(.), p(.)

ˆ̄w 0.7648 0.7534
cSEðŵÞ 0.1068 0.0355
cSDðŵÞ 0.1054 0.0360
ˆ̄h 0.0996 0.4843
cSEðĥÞ 0.0188 0.0793
cSDðĥÞ 0.0188 0.2647
ˆ̄h
0

0.5082 0.4887
cSEðĥ 0Þ 0.0686 0.0858
cSDðĥ 0Þ 0.0733 0.2670
ˆ̄p 0.7955 0.6548

cSEð p̂Þ 0.1054 0.0499

cSDð p̂Þ 0.1169 0.3210

Number converged 851 753

Notes: Detection history data were generated for a true site
occupancy of w¼0.75 and segment-level detection probability of
p¼0.8. Detection history data were generated both with (h¼0.1,
h0 ¼ 0.5) and without (h ¼ h0 ¼ 0.3) spatial correlation of
segment-level occupancy between adjacent segments. Four
different models were fit to each simulated data set, and
parameter estimates under these models are summarized.
Presented are the mean parameter estimates from all 1000

simulated data sets (e.g., ˆ̄w), the mean of the model-based

estimates of standard error (e.g., cSEðŵÞ), and the replication-
based estimate of standard deviation of parameter estimates

 
(cSDðŵÞ). The model that included spatial correlation [w(.), h(.),
h0(.), p(.)] did not always converge in the simulations, and the
number of cases for which convergence was obtained is included.
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detection probability for segments preceded by segments

with a detection ( p̂0) should estimate the product, h0p¼
0.5 3 0.8¼ 0.4, and the mean of the estimates was very

close to this value (Table 1). However, detection

probability for segments not preceded by segments with

a detection ( p) pertain to: (1) some segments for which

preceding segments were unoccupied and (2) other

segments for which previous segments were occupied

yet not detected. It is this detection parameter that is not
estimated properly, leading to the negative bias in the
occupancy estimator.

The model [w(.), h(.), h0(.), p(.)] that was developed
explicitly for the underlying spatial model used to
generate the data performed well with small positive
bias in the occupancy estimator (relative bias ,0.02).
Our main question about implementing this model was
whether the underlying parameters were identifiable.
The model was not as numerically stable as the other
three models with convergence failure occurring in
approximately 150 of the 1000 simulations. Because this
was a simulation study, there was no attempt to use
alternative starting values or try other approaches to
obtaining convergence in problem cases. When this

model was fit to data generated with no spatial
dependence (h ¼ h0 ¼ 0.3), it produced reasonable
estimates of occupancy and its variance (Table 1).
However, the absence of Markovian spatial dependence

in the process used to generate the data produced

difficulties in estimating the parameters associated with

the detection process (the local occupancy and detection

parameters) and also led to increased numerical

instability (convergence failure in nearly one-quarter of

the simulations).

Tiger survey

As expected, model selection results for the tiger

survey data strongly support the use of the Markov

process models for spatial dependence, [w(h), h(.), h0(.),

p(.)] and [w(.), h(.), h0(.), p(.)] (Table 2). The former

model including the effects of habitat on occupancy was

favored, as expected, and received a model weight of

;0.87. The coefficient associated with the proportion of

the cell in tiger habitat was estimated to be b̂1 ¼ 0.053,
cSE(b̂1) ¼ 0.021. Thus, under the selected model, w(h),
h(.), h0(.), p(.), the probability of occupancy at the level

of the 200-km2 cell increased with the proportion of

habitat in the cell as predicted. The occupancy estimate

for a cell with the average proportion of habitat was

ŵ(h̄) ¼ 0.50, cSE[ŵ(h̄)] ¼ 0.069. The other model that

received support, [w(.), h(.), h0(.), p(.)], yielded an

occupancy estimate of ŵ ¼ 0.57, cSE(ŵ) ¼ 0.077 (Table

3). The trap response models, [w(h), p(.), p0(.)] and [w(.),
p(.), p0(.)], developed as crude approximations to the

true detection process, received virtually no support, but

still provided a relatively better description of the data

than did the standard occupancy models, [w(h), p(.)] and
[w(.), p(.)]. As predicted based on simulation results, the

trap response and standard occupancy models yielded

progressively smaller estimates of occupancy (Table 3).

The naı̈ve estimate computed as the proportion of cells

at which tiger sign was detected was 0.36.

The parameter estimates corresponding to the detec-

tion process provided strong evidence of the kind of

process for which the model was developed. Under the

top model, the segment-level occupancy for segments

not preceded by an occupied segment was only ĥ¼ 0.07,

whereas occupancy for a segment preceded by an

TABLE 3. Estimates of occupancy and parameters related to the detection process for tiger survey
data from southwestern India.

Model ŵ ðcSE½ŵ�Þ� p̂ ðcSE½ p̂�Þ p̂ 0 ðcSE½ p̂ 0�Þ ĥ ðcSE½ĥ�Þ ĥ
0 ðcSE½ĥ 0�Þ

w(h), h(.), h0(.), p(.) 0.50 (0.069) 0.42 (0.063) ��� 0.07 (0.017) 0.79 (0.061)
w(.), h(.), h0(.), p(.) 0.57 (0.077) 0.42 (0.059) ��� 0.07 (0.017) 0.80 (0.057)
w(h), p(.), p0(.) 0.42 (0.044) 0.09 (0.008) 0.36 (0.031) ��� ���
w(.), p(.), p0(.) 0.46 (0.045) 0.09 (0.008) 0.36 (0.031) ��� ���
w(h), p(.) 0.38 (0.039) 0.14 (0.008) ��� ��� ���
w(.), p(.) 0.41 (0.039) 0.13 (0.008) ��� ��� ���

Notes: Definitions are as follows: w is the probability that a 188-km2 sample unit is occupied;
definitions of p vary among models, but for the first model, it denotes the probability of detecting
sign on a segment, given the presence of tigers on the segment (local occupancy); h denotes
occupancy of a segment, given that the preceding segment was unoccupied; h0 denotes occupancy of
a segment, given that the preceding segment was occupied.

� For models in which occupancy is a function of habitat, w(h), the table shows the estimated

occupancy (and SE) at the mean value of the habitat covariate, ŵ(h̄). For all three habitat models,

these estimates were within 0.01 of the mean occupancy taken over all cells, ˆ̄w(h).

TABLE 2. Model selection statistics for six models fit to tiger
(Panthera tigris) survey data from southwestern India.

Model DAIC w �2 log(L) Parameters

w(h), h(.), h0(.), p(.) 0.00 0.87 1564.67 5
w(.), h(.), h0(.), p(.) 3.77 0.13 1570.44 4
w(h), p(.), p0(.) 25.18 0.00 1591.85 4
w(.), p(.), p0(.) 31.30 0.00 1599.97 3
w(h), p(.) 123.93 0.00 1692.60 3
w(.), p(.) 134.14 0.00 1704.81 2

Note: The statistics are the change in Akaike’s information
criterion, DAIC; AIC weight, w; �2 times the logarithm of the
likelihood, �2 log(L); and the number of parameters in the
model.
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occupied segment was estimated to be ĥ0 ¼ 0.79. The
segment-level detection probability, conditional on
segment-level occupancy, was estimated to be relatively

high as expected, p̂ ¼ 0.42. This value is larger than the
detection parameter estimates under the other two
classes of models (Table 3), because these latter
parameters incorporate both segment-level occupancy
and detection given occupancy.

DISCUSSION

This work was designed to investigate ways of

estimating occupancy using spatial replication in a case

in which replicate-level occupancy follows a one-

dimensional spatial Markov process. We described the

basic kind of field survey design that motivated this

work and noted that this design is frequently used for

surveying large, wide-ranging mammals that typically

use trails for marking and movement. We believe this

approach has great potential utility because it explicitly

models the process that generates signs along trails

(animal behavior) and also meets key logistical and

practical needs of field surveys in tropical forests (easy

movement of survey teams across rugged landscapes

using trails and ease of detecting animal signs on them).

In this design spatial replicates are visited in a specified

order (e.g., segments along a trail), and we suspected

that replicate-level occupancy was correlated for adja-

cent segments (because of behavior of tigers; Karanth

and Sunquist 2000). We developed a new occupancy

model to deal explicitly with this sort of spatial process.

We also developed a new trap response occupancy

model as a rough approximation for data obtained

under such sampling designs. We then conducted a

simulation study generating detection history data

according to the hypothesized spatial model for such a

survey in order to evaluate estimators obtained under

standard occupancy models (MacKenzie et al. 2006)

and the two new models that we developed.

In the case of higher probability of local occupancy of

a trail segment given local occupancy of the preceding

trail segment, occupancy estimators for standard models

showed substantial negative bias. The new trap response

occupancy model [w(.), p(.), p0(.)] simply places a

Markovian dependence on detection probabilities, such

that detection probability for a spatial replicate (trail

segment) depends on whether or not sign of the species

was detected on the preceding replicate or trail segment.

We were confident that such a model could be fit to

detection history data and speculated that it might

provide a reasonable approximation to the hypothesized

underlying spatial process. Simulation results indicated

that occupancy estimates from this model were indeed

much improved over those of the standard occupancy

models, but they were still negatively biased.

The other new occupancy model [w(.), h(.), h0(.), p(.)]

was developed specifically for the Markov spatial

process that was thought to characterize the tiger survey

data and that was used to generate the simulated data.

However, we were uncertain about whether this model

could be readily fit to detection history data and whether

the model parameters were really identifiable. The model

failed to converge for ;15% of the simulated data sets,

but we made no efforts to use different starting values or

otherwise deal with the convergence problems. For the

remainder of the data sets, convergence was obtained

and model estimators performed very well, exhibiting

negligible bias.

We fit six models to the data from the large-scale

occupancy field survey for tigers in southwestern India

that motivated the simulation study. We modeled

occupancy as either a constant or a function of the

proportion of the grid cell that contained suitable tiger

habitat. For each type of occupancy model, we modeled

the detection process either using a constant detection

probability, the new trap response model, or the new

spatial Markov process model. The AIC model selection

statistics provided support for the habitat model of

occupancy and strong support for the Markov spatial

process model, as predicted. The parameter estimates

associated with segment-level occupancy provided evi-

dence of a large increase in the probability of local

occupancy of a segment when the preceding segment

was occupied. The trap response models specifying a

Markov process for detections indicated a much higher

segment-level detection probability for segments preced-

ed by a detection. The results of these models were

consistent with our predictions based on tiger behavior

and field survey methods.

Results of the field survey analysis provided evidence

that tiger biologists are capable of identifying habitat

elements of the Malenad–Mysore Tiger Landscape of

Karnataka that are essential for tiger existence and

strengthen their arguments for protection of the areas of

suitable habitat that do remain. Cells containing large

amounts of habitat showed the largest probabilities of

tiger occupancy, providing stronger inferences than

expert statements about specific areas most important

to tigers. The estimated fraction of surveyed cells that

were occupied under the most appropriate model was

;0.50, whereas the naı̈ve occupancy estimate obtained

as the proportion of cells at which tigers were detected

was 0.36. The Karnataka survey demonstrates the

ability to assess current range of secretive animals using

large-scale field surveys, and the analytic results indicate

the need to adequately deal with nondetection in

analysis of resulting data. K. U. Karanth and associates

are currently investigating specific factors within each

cell, in addition to available habitat, that may influence

probability of a cell being occupied by tigers.

The occupancy estimates under the six models were

also consistent with expectations for a Markov spatial

process based on simulation results. The standard

occupancy models yielded the smallest occupancy

estimates, whereas the Markov spatial process models

produced the largest occupancy estimates (ŵ(h̄) ¼ 0.50,

ŵ ¼ 0.57). We conclude that the spatial process models
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were appropriate for the data and provided an

occupancy estimate that was a substantial improvement

over the naı̈ve estimate.

We have not extended the kind of modeling presented

here to the case of dealing with abundance-induced

heterogeneity and abundance estimation (e.g., Royle

and Nichols 2003). At present, those interested in such

models (or indeed in any other occupancy models

requiring independent spatial replicates) can use the

model presented here to test for spatial dependence at

different segment lengths. For example, the tiger survey

data were collected at 1-km intervals, but they can be

aggregated to create longer segments of 2 km, 3 km, 4

km, etc. Spatial dependence is expected to decline with

segment length, and the model presented here can be

used to test for spatial independence in order to select

a length at which independence is a reasonable

approximation (K. U. Karanth, N. S. Kumar, A.

Gopalaswamy, and V. Srinivas, unpublished manuscript).

Models requiring independence can then be used with

these aggregated data sets to draw inferences.

The ability to break trails into segments of various

lengths poses the interesting design question of whether

there is an optimal segment length with respect to

precision or mean squared error. It would be unwise to

use segment lengths so short that most of them contain

no detections even when animals are present at the level

of the sample unit. Similarly, segments should not be so

long that fewer than three segments exist in most sample

units. Beyond those simple recommendations, it does

not seem possible to provide guidelines, or even

construct a simulation study, that would be generally

useful. Instead, this is the sort of design issue that should

be investigated (e.g., via simulation) on a case-by-case

basis, and we suspect that the conclusion will depend

very heavily on the logistics and biology of the survey

situation.

Both new models (Markovian spatial dependence,

Markovian detections [Appendix A]) were developed

specifically for the use of spatial replicates for occupancy

estimation in the presence of Markov spatial processes

in detection or replicate-level occupancy. In addition to

the increasing use of the described type of survey design

for large mammals worldwide, we also foresee applica-

tion to any road- or trail-based surveys (track surveys,

scent station surveys) of species that occasionally use

roads and trails as travel routes. Even for species that do

not use roads or trails as travel routes, we believe that

the models developed here may prove useful. For

example, the North American Breeding Bird Survey

(e.g., Peterjohn and Sauer 1993) is a road-based survey

using avian point counts conducted at 50 stops located

along the route at 0.8-km intervals. Adjacent stops are

expected to exhibit greater similarity of habitat, on

average, than stops located farther apart. In some

instances, individual birds with range centers located

between two adjacent stops may be detected at each of

two stops. Both of these possibilities would be expected

to generate the sort of Markovian spatial dependence

for which our models were developed.

In addition to applications for certain spatial sam-

pling designs, we believe that these models will also have

broad application to occupancy studies that use

temporal replication. Consider an occupancy study of

a territorial species such that only a single individual or

pair or group (e.g., a wolf pack) is likely to use any

particular sampling unit during the survey season.

Further assume that individuals of the species travel

widely, such that a sample unit is likely to be used by the

species on some days and not on others. If this use is

correlated in time (e.g., a tiger or a wolf pack cycling

through a large range, perhaps spending multiple days at

a kill site and then moving on), then either of the

proposed new models might be a reasonable candidate

for describing that situation.

Other situations for which temporal Markov process-

es may be useful involve strong seasonality of animal

presence and use of surveyed sites. For example breeding

anuran occupancy can be modeled as a function of date

(season) and air temperature, with substantial pulses of

breeding activity (Weir et al. 2005). Markovian model-

ing, with initial local occupancy (h) a function of such

environmental covariates and subsequent local occu-

pancy (h0) probability larger following initial emergence,

might be useful in such a situation. Occupancy analyses

of butterfly surveys may show multiple peaks of

emergence within a season (Kery et al. 2009), and

Markovian models for such data should be useful as

well. In such situations the suggested Markovian

modeling should not only permit reasonable inference

about sample unit occupancy, but also permit inference

about the temporal pattern of local occupancy (see Kery

et al. 2009). In the case of temporal Markovian depen-

dence, estimates of h and h0 pertain to an occupancy

process analogous to temporary emigration of individ-

ual animals in capture–recapture studies (e.g., Kendall

et al. 1997).

When viewed in the broader context of models for

estimation of animal abundance and occupancy, model

[w(.), h(.), h0(.), p(.)] represents an explicit decomposition

of the detection process into two components: availabil-

ity and detection given availability (see discussion in

Nichols et al. 2008b). With respect to abundance

estimation, availability refers to an individual animal

having a nonzero probability of detection, for example

because it is on the water surface, not submerged (e.g.,

Marsh and Sinclair 1989), at the time of a visual survey

or because it vocalizes at the time of an auditory survey

(e.g., Farnsworth et al. 2002) or because it is present in

the sampled area (not a temporary emigrant) during a

capture period in a trapping study (Kendall et al. 1997).

In cases of occupancy estimation for mobile animals

that use areas larger than a single sample unit, the

detection process can also be decomposed into two

components: (1) local presence of species at the temporal

or spatial replicate and (2) detection given local
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presence. Similar decomposition was also used to

estimate occupancy at two different spatial scales using

data from multiple detection devices at the local

sampling site (Nichols et al. 2008a). This sort of

decomposition of the detection process may be needed

to properly model detection, as in the present study, and

it may also provide the ability to address interesting

ecological questions (Nichols et al. 2008a).

The kind of modeling used here may also be relevant

to the still broader application area of cluster sampling

(e.g., Thompson 2002). Specifically, the process and/or

observation model for the variable of interest (e.g.,

occupancy) might differ between the two levels at which

sampling occurs, the cluster and the subunit within a

cluster. It is possible that there are other situations in

which explicit modeling of the process governing the

distribution of the variable across subunits might yield

improved inference. In the spirit of placing this modeling

within a general context, we also note that this work

represents a special application of inference for hidden

Markov chains (e.g., Cappé et al. 2005).

We note the potential to extend the type of modeling

presented here to capture–recapture modeling of

Markovian temporary emigration in demographically

‘‘closed’’ animal populations. Kendall et al. (1997)

described approaches to the modeling of temporary

emigration for open populations using Pollock’s (1982)

robust design, and they included Markovian models.

Kendall (1999) showed that abundance estimates under

capture–recapture models for closed populations are

robust to random (non-Markovian) temporary emigra-

tion. However, Markovian temporary emigration, such

that presence of an animal on a trapping array at one

sample period depends on whether it was present or not

the previous sample period, was shown to induce bias in

abundance estimates (Kendall 1999). The type of

Markovian modeling used here can be used in closed

capture–recapture modeling to permit estimation of

abundance in the face of such Markovian temporary

emigration.

We conclude with a consideration of the two spatial

sampling designs that motivated this work (Fig. 1). We

introduced the topic by noting that use of spatial

replicates with standard occupancy models strictly

requires that spatial replicates be selected randomly

and with replacement from each sample unit (e.g., grid

cell). Kendall and White (2009) provide some results on

the magnitudes of bias that can arise during certain

sampling situations when sampling is not conducted

with replacement. In the absence of spatial dependence

of segment-level occupancy (this is the spatial model

that we attempt to induce by random sampling),

standard occupancy models appear to perform reason-

ably. However, in the presence of spatial dependence,

standard models yield biased estimates of grid cell

occupancy. The model that we present here can be used

to test for such dependence, and if it is present, to

provide reasonable parameter estimates. Our initial

development of the Markov spatial model was motivat-

ed by biological and logistical considerations associated

with certain kinds of field surveys. However, the

Markovian dependence that we initially viewed as a

nuisance actually permits decomposition of the detec-

tion process in a manner that is not possible with

independent segments (e.g., see the poor estimator

performance for ĥ, ĥ0, and p̂ in the last column of

Table 1 for model [w(.), h(.), h0(.), p(.)]). Thus, if we are

interested either in decomposing the detection process or

in focusing for other reasons on lower level occupancy,

then sampling designs that lead to Markovian spatial

dependence provide an advantage.
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APPENDIX A

Markov process for detections, model [w(.), p(.), p0(.)] (Ecological Archives A020-053-A1).

APPENDIX B

Computing expression for probabilities associated with detection histories, Pr(hj), under model [w(.), h(.), h0(.), p(.)] (Ecological
Archives A020-053-A2).

APPENDIX C

Simulation results comparing maximum-likelihood estimates with those obtained using the Markov chain Monte Carlo method
(Ecological Archives A020-053-A3).

SUPPLEMENT

WinBUGS code for model [w(.), h(.), h0(.), p(.)] (Ecological Archives A020-053-S1).
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