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Abstract

There has been a recent surge in learning generative mod-
els for graphs. While impressive progress has been made
on static graphs, work on generative modeling of temporal
graphs is at a nascent stage with significant scope for im-
provement. First, existing generative models do not scale with
either the time horizon or the number of nodes. Second, exist-
ing techniques are transductive in nature and thus do not facil-
itate knowledge transfer. Finally, due to their reliance on one-
to-one node mapping from source to the generated graph, ex-
isting models leak node identity information and do not allow
up-scaling/down-scaling the source graph size. In this paper,
we bridge these gaps with a novel generative model called
TIGGER. TIGGER derives its power through a combination
of temporal point processes with auto-regressive modeling
enabling both transductive and inductive variants. Through
extensive experiments on real datasets, we establish TIGGER
generates graphs of superior fidelity, while also being up to 3
orders of magnitude faster than the state-of-the-art.

Introduction and Related Work
Modelling and generating graphs find applications in vari-
ous domains such as drug discovery (Hrinchuk, Popova, and
Ginsburg 2020; Li, Zhang, and Liu 2018), anomaly detec-
tion (Ranu and Singh 2009), data augmentation (Bojchevski
et al. 2018), and data privacy (Casas-Roma, Herrera-
Joancomartı́, and Torra 2017). Initial works on graph genera-
tive modelling relied on making prior assumptions about the
graph structure. Examples include Erdős-Rényi (Karoński
and Ruciński 1997) graphs, small-world models (Watts DJ
1998), and scale-free graphs (Albert and Barabási 2002).
Recently, learning-based algorithms have been developed
that circumvent this limitation (You et al. 2018; Goyal, Jain,
and Ranu 2020; Hrinchuk, Popova, and Ginsburg 2020;
De Cao and Kipf 2018; Liao et al. 2019). Specifically, these
algorithms directly learn the underlying hidden distribution
of graph structures from training data.

Unfortunately, most of the learning-based generative
models are limited to static graphs. In today’s world, there
is an abundance of graphs that are temporal in nature. Ex-
amples include financial transactions (Kumar et al. 2016;
Dal Pozzolo et al. 2018), online shopping (He and McAuley
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2016), community interaction graphs like Reddit (Liu, Ben-
son, and Charikar 2019), and user behaviour networks (Yang
et al. 2013). The interactions (edges) between nodes in a
temporal graph are timestamped and the structure of these
graphs change with time. The key challenge in generative
modelling is therefore to learn the rules that govern their
evolution over the time horizon (Michail 2015).

TAGGEN (Zhou et al. 2020) models temporal graphs by
converting them into equivalent static graphs by combining
node-ids with each of their interaction edge timestamps, and
connecting only those nodes in the resulting static graph that
satisfy a specified temporal neighbourhood constraint. They
perform random walks on this transformed graph, which
are then modified using heuristic local operations to gen-
erate many synthetic random walks. Finally, the synthetic
random walks that are classified by a discriminator as real
random walks are collected and combined to construct the
generated temporal graph. More recently, DYMOND (Zeno,
La Fond, and Neville 2021) presented a non-neural, 3-node
motif based approach for the same problem. They assume
that each type of motif follows a time-independent exponen-
tially distributed arrival rate and learn the parameters to fit
the observed arrival rate.

These approaches suffer from the following limitations:
•Weak Temporal Modelling: DYMOND makes two key as-
sumptions: first, the arrival rate of motifs is exponential; and
second, the structural configuration of a motif remains the
same throughout the time horizon being modeled on. Both
these assumptions do not hold in practice – motifs them-
selves may evolve with time and could arrive with time-
dependent rates. This leads to poor fidelity of structural and
temporal properties of the generated graph. TAGGEN, on the
other hand, does not model the graph evolution rate explic-
itly. It assumes that the timestamps in the input graph are
discrete random variables prohibiting TAGGEN from gener-
ating new(unseen in source graph) timestamps. More criti-
cally, the generated graph duplicates a large portion of edges
from the source graph – our experiments found upto 80%
edge overlap between the generated and the source graph.
While the design choices of TAGGEN generate graphs that
exhibit high fidelity of graph structural and temporal inter-
action properties, unfortunately it achieves them by generat-
ing graphs that are largely indistinguishable from the source
graph due to their poor modelling of interaction times.
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• Poor Scalability to Large Graphs: Both TAGGEN and
DYMOND are limited to graphs where the number of nodes
are less than ≈10000 and the number of unique timestamps
are below ≈200. However, real graphs are not only of much
larger size, but also grow with significantly high interaction
frequency (Paranjape, Benson, and Leskovec 2017). In such
scenarios, the key design choice of TAGGEN to convert the
temporal graph into a static graph, fails to scale to long time
horizons since the number of nodes in the resulting static
graph multiplies linearly with the number of timestamps.
Further, TAGGEN also requires the computation of the in-
verse of an N ′×N ′ matrix, where N ′ is the number of nodes
in the equivalent static graph to impute node-node similar-
ity. This leads to the quadratic increase in memory consump-
tion and even higher cost of matrix inversion, thus making
TAGGEN not scalable.On the other hand, DYMOND has an
O(N3T ) complexity, where N is the number of nodes and
T is the number of timestamps. In contrast, the complexity
of the algorithm we propose is in O(NM) for a graph with
N nodes and M timestamped edges, and is independent of
the time horizon length.
• Lack of Inductive Modelling: Inductivity allows trans-
fer of knowledge to unseen graphs (Hamilton, Ying, and
Leskovec 2017). In the context of graph generative mod-
elling, inductive modelling is required to (1) upscale or
downscale the source graph to a generated graph of a dif-
ferent size, and (2) prevent leakage of node-identity from
the source graph. Both TAGGEN and DYMOND rely on one-
to-one mapping from source graph node ids to the generated
graph and hence are non-inductive.

Contributions: The proposed generative model, TIGGER
(Temporal Interaction Graph GEneRator), addresses the
above mentioned gaps in existing literature through the fol-
lowing novel contributions:
• Assumption-free Modelling: We utilize intensity-free

temporal point processes (TPP) TPPs (Shchur, Biloš,
and Günnemann 2020) to jointly model the underlying
distribution of node interactions and their timestamps
through temporal random walks. Our modelling of time
is assumption-free as we fit a continuous distribution
over time. This allows TIGGER to generate timestamps
that were not even present in the input graph. More-
over, this empowers TIGGER to sample interaction graphs
for future-timestamps. Thus, TIGGER is capable of up-
sampling/down-sampling in the temporal dimension.

• Inductive Modelling: TIGGER supports inductive mod-
elling through a novel multi-mode decoder that learns the
distribution over node embeddings instead of learning dis-
tribution over node IDs. In addition, through the usage of
a WGAN (Arjovsky, Chintala, and Bottou 2017), we sup-
port up-sampling/down-sampling of generated graph size.
Thus, in contrast to DYMOND and TAGGEN, TIGGER is
capable of generating graphs of arbitrary sizes without
leaking information from the source graph – potentially
useful in many privacy-sensitive applications.

• Large-scale Empirical Evaluation: Extensive evaluation
over five large, real temporal graphs with up to to millions
of timestamps comprehensively establishes that TIGGER
breaks new ground in terms of its scalability, while also

ensuring superior fidelity of structural and temporal prop-
erties of the generated graph.

Problem Formulation
Definition 1 (Temporal Interaction Graph). A temporal in-
teraction graph is defined as G = (V, E) where V is a set
of N nodes and E is a set of M temporal edges {(u, v, t) |
u, v ∈ V , t ∈ [0, T ]}. T is the maximum time of interaction.

Problem 1 (Temporal Interaction Graph Generator).
Input: A temporal interaction graph G.
Output: Let there be a hidden joint distribution of structural
and temporal properties from which given G has been sam-
pled. Our goal is to learn this hidden distribution. Towards
that end, we want to learn a generative model p(G) that max-
imizes the likelihood of generating G. This generative model,
in turn, can be used to generate new graphs that come from
the same distribution as G, but not G itself.

The above problem formulation is motivated by the one-
shot generative modelling paradigm i.e., it only requires one
temporal graph G to learn the hidden joint distribution of
structural and temporal interaction graph properties. Defin-
ing the joint distribution of temporal and structural proper-
ties is hard. In general, these properties are characterized
by inter-interaction time distribution and evolution of static
graph properties like degree distribution, power law expo-
nent, no. of connected components, largest connected com-
ponent, distribution of pair wise shortest distances, close-
ness centrality etc. Typically, a generative model optimizes
over one of these properties under the assumption that the
remaining properties are correlated and hence would be im-
plicitly modeled. For example, DYMOND uses small struc-
tural motifs and TAGGEN uses random walks over the trans-
formed static graph. In our work, we perform temporal ran-
dom walks, which are then modeled using point processes.

TIGGER
Fig. 1 presents the pipeline of TIGGER. Given a source
graph, we decompose it through temporal random walks.
These random walks are modeled using a recurrent gener-
ative neural model. Once the model is trained, it is used to
generate synthetic temporal random walks, which are finally
merged to form the generated temporal interaction graph.
We next formalize each of these sub-steps.

Training Data: Temporal Random Walks
Definition 2 (Temporal Neighborhood). The temporal
neighbourhood of a node v at time t contains all edges with
a higher time stamp. Formally,

Nt(v) = {e | e = (v, u, t′) ∈ E ∧ t < t′}
Definition 3 (Temporal Random Walk). Given a node v and
time t, an ℓ-length temporal random walk starts from v and
takes ℓ jumps through an edge in the temporal neighbor-
hood of the current node. More formally, it is a sequence
of tuples S = {s1, · · · , sℓ}, where each tuple s ∈ S is a
(node, time) pair such that, s1 = (v, t) and ∀i ∈ [2, ℓ] the
edge (si−1.v, si.v, si.t) ∈ Nsi−1.t(si−1.v). A walk ends af-
ter taking ℓ jumps or if Nsi−1.t(si−1.v) = ∅.
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Figure 1: Pipeline of TIGGER in transductive modelling. The highlighted nodes in the Training Data Generation component
indicates the start (green) and the ending nodes (yellow) of random walks for different length ℓ.

Since each jump is constrained to edges within the tempo-
ral neighborhood, it is guaranteed that si.t > si−1.t. To cap-
ture the temporal characteristics, the probability of jumping
through edge e ∈ Nsi.t(si.v) decreases exponentially with
time gap from (si.t). More formally,

p(e = (si.v, u, t) | si) =
exp (si.t− t)∑

e′=(si.v,u′,t′)∈Nsi.t
(si.v)

exp (si.t− t′)

Note that si.t < t and hence a smaller gap leads to in-
creased chances of being sampled. While we exponentiate
the time gap, other functions, such as linear, may also be
used. We use exponentiation due to superior empirical re-
sults. A random walk starts from an edge chosen uniformly
at random. Examples of temporal random walks are shown
in the Data Generation component of Fig. 1. In Table 4 of ap-
pendix 1, we summarise all the notations used in our work.
As per convention, we use boldface symbols to denote learn-
able vectors and weight matrices.

Modelling Temporal Random Walks
We train a generative model p(S) on a set S of temporal
random walks. Formally,

p(S) =
∏
S∈S

p(S), where, p(S)= p(s1, . . . , sℓ) (1)

Owing to the auto-regressive nature of a sequence, we ex-
press p(S) as the product of the conditionals.

p(S) = p(s1)
ℓ∏

i=2

p(si | (s1, . . . , si−1))

1Supplementary material: https://arxiv.org/abs/2203.03564

We simplify this conditional by decomposing as follows.

p(S) = p(s1)
ℓ∏

i=2

p(si.v | (s1, . . . , si−1)) (2)

× p(si.t | (si.v, (s1, . . . , si−1))) (3)

To learn the above conditional distribution, we utilize a
recurrent neural network (RNN) based generator. Formally,

hi=rnnhidden
θ (h1, (s1, . . . , si−1))=rnnhidden

θ (hi−1, si−1)

oi=rnnoutput
θ (h1, (s1, . . . , si−1))=rnnoutput

θ (hi−1, si−1)

Here, rnnoutput
θ (hi−1, x) is the output of RNN cell and

rnnhidden
θ (hi−1, x) is the updated hidden state. Both hi and

oi are vectors and we initialize h1 = 0. Semantically, oi

captures the prior to predict the next node vi in the temporal
random walk. More formally, p(S) in Eq. 3 is re-written as:

p(S) = p(s1)

ℓ∏
i=2

p(si.v | oi) ∗ p(si.t | si.v,oi) (4)

In the following sections, we discuss the internals of the
RNN, and formulate how exactly Eq. 4 is learned. We de-
velop two procedures: first is a transductive learning algo-
rithm, and the second is an inductive model.
Transductive Recurrent Generative Model: Given a
sequence of node and time pairs s1 . . . , sℓ, we trans-
form si.v and si.t to vector representations fv(si.v) ∈
RdV , ft(si.t) ∈ RdT respectively.

First, we transform the node ids to a vector using fv(v) =
Wvv where Wv ∈ RdV ∗ RN is a learnable weight matrix
and v ∈ R1×N is one-hot encoding of the node ID of v.
Next, to learn vector representation of time t ∈ R, we use
following TIME2VEC (Kazemi et al. 2019) transformation.

ft(t)[r] =

{
ωr · t+ ζr, if r = 0

sin (ωr · t+ ζr), 1 ≤ r < dT
(5)

6821



where ω1, . . . , ωdT
, ζ1, . . . , ζdT

∈ R are trainable weights
shared across each pair of the input sequence. r is the index
of ft(t). After embedding both si−1.v and si−1.t, we con-
catenate them resulting in a vector of RdV +dT dimension.
This vector is fed into the RNN cell along with hi−1 which
outputs oi and hi. We represent p(si.v | oi) in Eq. 4 as
multinomial distribution over v ∈ V parameterized by θv .

p(si.v = v | oi) = θv(oi)

= θv(rnn
output
θ (hi−1, (si−1.v, si−1.t)))

= θv(rnn
output
θ (hi−1, (fv(si−1.v) ∥ ft(si−1.t))))

=
exp(WO

v oi)∑
∀u∈V exp(WO

u oi)
(6)

where WO
v ∈ R1∗dO , ∀v ∈ V is a node-specific learnable

weight vector. dO is the dimension of oi.
Temporal point processes (TPP) are de-facto mod-

els for modelling distributions of continuous, inter-
event time over discrete events in event sequences
{(e0, t0), (e1, t1) . . . (en, tn)}. TPPs are generally defined
using conditional intensity function λ(t).

λ(t) =
p(t | Htn)

1− F (t | Htn)

Here, p(t | Htn) is the probability distribution of next event
time t after observing events till time tn. F (t) is the cumu-
lative probability distribution corresponding to p. Htn is the
summary of events till time tn. λ(t) is the expected number
of events around infinitesimal interval [t, t + dt] given the
history before t. It results in following probability distribu-
tion p for next event time (Rizoiu et al. 2017).

p(t | Htn) = λ(t) exp(−
∫ ∞

tn

λ(x) dx)

Resulting log likelihood contains integral due to p(t) which
needs to be estimated using Monte-Carlo sampling (Mei and
Eisner 2017) leading to high variance, unstable updates dur-
ing training and high computation cost (Omi, Ueda, and Ai-
hara 2019). Motivated by strong performance on event time
prediction task by (Shchur, Biloš, and Günnemann 2020),
we adopt their TPP formulation, which directly defines p(t)
as mixture of log normal distribution instead of deriving it
from λ(t). From Eq. 4,

p(si.t | si.v,oi) = p(si.t− si−1.t | si.v,oi)

= θt(∆t | si.v,oi)

=
C∑

c=1

ϕC
c

1

∆tσC
c

√
2π

exp(− (log∆t− µC
c )

2

2(σC
c )

2
)

(7)

where ∆t is time difference between si and si−1, p(t) is
parameterized by θt and µC

c , σ
C
c , ϕ

C
c are parameters of θt.

µC
c =WµC

c (fv(si.v) ∥ oi), σ
C
c =exp(WσC

c (fv(si.v) ∥ oi))

ϕC
c =

exp(WϕC
c (fv(si.v) ∥ oi))∑C

j=1 exp(W
ϕC
j (fv(si.v) ∥ oi))

Moreover, C is no. of components in the log normal mix-
ture distribution and WµC

c ,WσC
c ,WϕC

c ∈ R(dV +dO), ∀c ∈
{1..C}. Note that every components’ learnable weights are
shared across each time-stamp in the sequence.
Training loss: The loss over the set S of temporal random
walks is derived from Eqs. 1, 4, 6 and 7. Specifically,

L = − log(p(S)) = −
∑
S∈S

log(p(S))

= −
∑
S∈S

log p(s1)
ℓ∑

i=2

(log(p(si.v | oi)

+ log(p(si.t | si.v,oi)))

In the above loss function, p(s1) = 1/|E| since the first edge
is chosen uniformly at random. p(si.v | oi) and p(si.t |
si.v,oi) are computed using Eq. 6 and Eq. 7 respectively. A
pictorial summary of the training process is available in the
training component of Fig. 1.

Inductive Recurrent Generative Model: The primary
distinction between transductive and inductive generative
models are the construction of node representation and the
procedure of learning next node distribution given the past
information in the sequence. In the transductive model, a
node is represented by its ID ∈ {1, . . . , N} in the form of
a one-hot vector. In the inductive model, we use a Graph
Convolution Network (GCN) to embed nodes.

Node Representations: We first transform the input tem-
poral graph G = (V, E) to a static graph Gstatic =
(V, Estatic), where Estatic = {(u, v) | ∃(u, v, t) ∈ E}.
On Gstatic, we utilize GRAPHSAGE (Hamilton, Ying, and
Leskovec 2017) to learn unsupervised structural node repre-
sentations. Details can be found in the supplementary mate-
rial.

We denote embedding of node v as v ∈ RdV . Given a
temporal walk sequence S = (s1, . . . sℓ), we replace si.v
with si.v ∀i ∈ {1, . . . , ℓ}. Similar to the transductive vari-
ant, in order to learn p(si | s1, . . . , si−1), each si−1.v and
si−1.t is transformed using fv(si−1.v) = Wsi−1.v where
W ∈ RdV × RdV and ft using Eq. 5. Both fv(si−1.v) and
ft(si−1.t) are concatenated, which is fed into the RNN cell
along with the previous hidden state hi−1. The RNN outputs
oi ∈ RdO and hi ∈ RdH . These steps are the same as in the
transductive variant.

Multi-mode node embedding decoder: Owing to work-
ing with node embeddings, the objective of the RNN is to
predict the next node embedding instead of a node ID (in
addition to the timestamp). Towards that end, we develop a
multi-mode node embedding decoder. Fig. 2 presents the in-
ternals. The decoder has three distinct semantic phases. We
explain them below.

We first note that node embeddings of a graph may not
follow a uni-modal distribution since real-world graphs are
known to have communities. The presence of communities
would create a multi-modal distribution (Hamilton, Ying,
and Leskovec 2017). To model this distribution, we perform
K-means clustering on the node embeddings; each cluster
would correspond to a community. The appropriate value
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of K may be learned using any of the established mech-
anisms (Han, Pei, and Kamber 2011). Next, we design a
multi-mode decoder that operates in two steps: first, it pre-
dicts the cluster that the next node embedding belongs to,
and then predicts the node embedding from that cluster.

Formally, we would like to the learn probability distribu-
tion p(ki = k | oi), where ki denotes the cluster mem-
bership of next node si.v and k ∈ [1, · · · ,K]. From this
distribution, ki is sampled. Given cluster ki, we next sample
a vector z from p(z | oi, ki). Then, si.v is sampled from
p(si.v | z). Since, we need to learn the distribution of si.v
given oi and ki, we introduce a latent random variable z in
the multi-mode decoder. Mathematically,

p(si.v | oi) = p(ki | oi)

∫
z
p(z | oi, ki)p(si.v | z)dz

= p(ki | oi)Ez∼p(z|oi,ki)[p(si.v | z)]
(8)

where,

p(ki | oi)
∀k∈{1,...,K}

= θk(oi) =
exp

(
WK

k oi

)∑j=K
j=1 exp

(
WK

j oi

)
p(z | oi, ki) = N

(
µK

ki
,
(
σK
ki

)2)
p(si.v | z) = N

(
µZ ,

(
σZ)2

))
µK

ki
= WµK

ki
oi σK

ki
= exp

(
WσK

ki
oi

)
µZ = WµZz σZ = exp

(
WσZz

)
(9)

where z ∈ RdZ , µK
k ,σK

k ,µZ ,σZ ∈ RdZ , WµZ ,WσZ ∈
RdZ×RdO , WµK

k ,WσK
k ∈ RdZ×RdZ , WK

k ∈R1∗dO ∀k ∈
{1..K}.

We approximate the E term in Eq. 8 using the reparam-
eterization trick from the auto-encoding variational bayes
approach (Kingma and Welling 2014) by defining a deter-
ministic function g to represent z ∼ p(z | oi, ki) as follows:

z = g(µK
ki
,σK

ki
, ε) = µK

ki
+ εσK

ki
ε ∼ N (0, 1)

Ez∼p(z|oi,ki)[p(si.v|z)]=Eε∼N (0,1)[p(si.v|g(µK
ki
,σK

ki
, ε))]

≃ 1

L

j=L∑
j=1

p(si.v | g(µK
ki
,σK

ki
, εj)) εj ∼ N (0, 1)

(10)
Taking the logarithm of Eq. 8, substituting the expectation

term using Eq. 10, and assuming L=12, we get the follow-
2Motivated by (Kingma and Welling 2014), which shows state-

of-the-art empirical results on image generation tasks using L=1

Algorithm 1: Sampling synthetic temporal random walks
from a trained transductive recurrent generative model

Require: S1, fv, ft, rnnθ, θv ∀v ∈ V , θt, ℓ′
Ensure: Synthetic temporal random walks S ′

1: S′ = {}
2: for s1 ∈ S1 do
3: S′ ← {}, (v1, t1)← s1, h1 ← 0
4: for i ∈ {2, 3 . . . ℓ′} do
5: oi, hi ← rnnθ(hi−1, (fv(vi−1) ∥ ft(ti−1)))
6: vi ∼ Multinomial(θv1(oi), θv2(oi) . . . θvN

(oi))
{Sample next node}

7: ∆t ∼ θt(t− ti−1 | vi, oi) {Sample next time using
eq. 12}

8: ti ← ti−1 +∆t
9: S′ = S′ + (vi, ti)

10: end for
11: S ′ = S ′ + S′

12: end for
13: Return S ′

ing:

log p(si.v|oi)≃ log p(ki|oi) + log p(si.v|g(µK
ki
,σK

ki
, ε))

(11)
p(si.t|si.v,oi) is modelled the same as Eq. 7 except
fv(si.v), which is replaced by fv(si.v) where si.v is the vec-
tor representation of node si.v.
Training loss is derived from Eqs. 1, 4, 7 and 11 by substi-
tuting the log-probabilities below:

L ≃ −
∑
s∈S

log p(s1)

ℓ∑
i=2

( log p(si.v | oi) + log p(si.t | si.v,oi)

−βDkl(p(z | oi, ki) || N (0, 1))),

where Dkl is KL-Divergence. Empirical observations indi-
cate that adding the regularizer on p(z) helps in reducing
over-fitting. Thus, we have added the KL distance regular-
ization on p(z) to restrict its sample space near to the distri-
butionN (0, 1). Here β ∈ (0, 1) is a hyper parameter, which
decides the weightage of the regularizer term. L is then
used to learn the model parameters W,WµK

k ,WσK
k ∀k ∈

{1 . . .K},WµZ ,WσZ and parameters of ft, fv, rnnθ.

Generating Interaction Graphs
Once the recurrent generative model is trained over the col-
lection S , we sample synthetic temporal random walks S ′
from the trained model. This synthetic collection is then as-
sembled to form the synthetic temporal graph G′. Similar to
(Zhou et al. 2020), from each sequence S ∈ S , we store the
first item s1 and denote S1 as the collection of s1.
Transductive model:

Alg. 1 explains method to sample synthetic temporal ran-
dom walks using transductive variant of TIGGER. Specifi-
cally, in Alg. 1, ∆t in line 7 is sampled using below equation
(Shchur, Biloš, and Günnemann 2020).

ϕ ∼ Categorical({ϕC
1 . . . ϕC

C})
∆t = exp((σC)Tϕε+ (µC)Tϕ) ε ∼ N (0, 1) (12)
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Algorithm 2: Sampling synthetic temporal random walks
from a trained inductive recurrent generative model

Require: S1, fv, ft, rnnθ, θk, WµK
k , WσK

k ∀k ∈ {1..K},
θt, WµZ , WσZ , ℓ′

Ensure: S ′
1: S ′ = {}
2: for s1 ∈ S1 do
3: S′ ← {}, (v1, t1)← s1
4: h1 ← 0
5: for i ∈ {2, 3 . . . ℓ′} do
6: oi,hi ← rnnθ(hi−1, (fv(vi−1

) ∥ ft(ti−1)))
7: ki ∼ Multinomial(θk1

(oi), θk2
(oi) . . . θkK

(oi))
{Sample next cluster}

8: z ∼ N (WµK
ki

oi, exp(WσK
ki

oi))

9: vi ∼ N (WµZz, exp(WσZz)) {Sample next node
embedding}

10: ∆t ∼ θt(t−ti−1 | vi,oi) {Sample next time using
eq. 12}

11: ti = ti−1 +∆t
12: S′ = S′ + (vi, ti)
13: end for
14: S ′ = S ′ + S′

15: end for
16: Return S ′

Where µC = (µC
1 . . . µC

C) and σC = (σC
1 . . . σC

C ) and ϕ is
one-hot vector of size C.

After collecting synthetic temporal random walks S ′, we
assemble them by maintaining the same edge density as in
the original graph within time range t ∈ [1, T ]. First, we
count the frequency of each temporal occurrence in the syn-
thetic random walks. We denote this as α(vi, vj , t), i.e the
frequency of occurrence of node pair (vi, vj) at time t in S ′.
We denote the set of edges present at time t in S ′ as Ẽt.
Now, for each uniquely sampled time stamp t ∈ [1, T ], we
define the distribution of occurrence on node pairs present at
time t in synthetic temporal random walks S ′ as follows:

ptvi,vj
=

α(vi, vj , t)∑
e=(ui,uj)∈Ẽt α(ui, uj , t)

(13)

From this distribution, we keep sampling edges till the edge
density of the synthetic graph is same as original graph in
the temporal dimension.
Inductive model: Sampling from the inductive version fol-
lows a similar pipeline as in the transductive variant; the
only difference is the presence of an additional step of map-
ping the generated node embeddings in the synthetic ran-
dom walks S′ to nodes v ∈ G′ where G′ = (V ′, E ′),
|V ′| = N ′, |E ′| = M ′. G′ is the generated temporal graph.
Note that N ′ and M ′ are different from the source graph
sizes, and hence allows control over the generated graph
size. The pseudocode is provided in Alg. 2. First, we train
a WGAN (Arjovsky, Chintala, and Bottou 2017) generative
model on node embeddings obtained from Gstatic (Ji et al.
2021). From the trained WGAN model, we sample N ′ node
embeddings to construct V ′. Finally, we match each embed-
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Figure 3: Scalability against # timestamps and # edges in
Wiki(hourly). The y-axis is in log-scale.

ding in S′ to its closest node in V ′ using cosine similarity.
Theorem 1. The computation complexities of generating a
temporal interaction graph G′ = (V ′, E ′) through the trans-
ductive and inductive versions are≈ O(M × ℓ′× (N +C))
and ≈ O(M × ℓ′ × (K + C +N ′)) respectively.

PROOF. Provided in supplementary material.

Experiments
In this section, we benchmark TIGGER against DYMOND
and TAGGEN and establish that it (1) it is up to 2000 times
faster, (2) breaks new ground on scalability against number
of timestamps, and (3) generates graphs of high fidelity. Our
codebase and datasets are available at https://github.com/
data-iitd/tigger.

Experimental Setup
Datasets: For our empirical evaluation, we use the publicly
available datasets listed in Table 1. Columns 2 to 4 of Table 1
summarize the sizes of the temporal interaction graphs. Our
datasets span various domains including message exchange
platform (UC Irvine) (Kunegis 2013a), financial network
(Bitcoin) (Kumar et al. 2016), communication forum (Red-
dit) (Leskovec and Krevl 2014), shopping (Ta-feng) (Bai
et al. 2018), and Wikipedia edits (Wiki) (Leskovec and Krevl
2014). Further details are provided in supplementary mate-
rial. Since DYMOND and TAGGEN do not scale to graphs
with large number of timestamps, we sample a smaller sub-
set of Wiki by considering only the first 50 hours. This
dataset is denoted as Wiki-Small. Baselines and Training:
We benchmark the performance of TIGGER against DY-
MOND and TAGGEN. For TIGGER, we denote the inductive
version as TIGGER-I. To allow uniform comparison, in TIG-
GER-I, we generate graph of the same size as the source. For
both TAGGEN and DYMOND, we use the code shared by au-
thors. For all algorithms, the entire input graph is used for
training and a single synthetic graph is generated. Parameter
details along with machine configuration are provided in the
supplementary material.
Evaluation metrics: The performance of a generative
model is satisfactory if (1) it runs fast, (2) generates graphs
with similar properties as in the source, (3) but without du-
plicating the source itself. To quantify these three objectives,
we utilize the following metrics.
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Dataset N M T Method Time
(s)

% Edge
overlap

Mean
degree

Triangle
count

PLE LCC Global
CF

Mean
CC

Wiki-
Small 1.6K 2.9K 50

Median - - 1.1064 0.0 16.463 5.0 0.0 0.0122
DYMOND 69120 0.0 0.2424 0.0 11.426 2.0 0.0 0.0264
TAGGEN 1800 87.169 0.0674 0.0 5.6519 1.0 0.0 0.0004
TIGGER 14 1.2821 0.0352 0.0 4.5005 1.0 0.0 0.0014

UC
Irvine 1.8K 33K 194

Median - - 1.5714 0.0 4.634 21.0 0.0 0.0701
TAGGEN 12, 480 79.356 0.1806 0.0 0.7732 6.5 0.0 0.0067
TIGGER 125 25.0 0.076 0.0 0.4135 3.0 0.0 0.013

Bitcoin 3.7K 24K 191
Median - - 1.8443 2.0 3.5607 50.5 0.0102 0.1003
TAGGEN 18579 80.0 0.2311 0.0 0.5207 13.0 0.0016 0.0133
TIGGER 128 24.294 0.1217 1.0 0.294 6.0 0.0078 0.0229

Wiki 9.2K 157K 2.6M
Median - - 1.1525 0.0 12.037 7.0 0.0 0.0093
TIGGER 896 25.573 0.072 0.0 9.4139 2.0 0.0 0.0017

Reddit 10.9K 662K 2.6M
Median - - 1.6693 0.0 5.672 269.0 0.0 0.0217
TIGGER 4661 0.077 0.1206 0.0 1.5709 128.0 0.0 0.0099

Ta-feng 56K 817K 120
Median - - 2.8832 0.0 2.6827 3798.0 0.0 0.1526
TIGGER 2722 17.028 0.301 0.0 0.0762 282.0 0.0 0.045

Table 1: TIGGER’s performance against TAGGEN and DYMOND in terms of graph generation time (Col 6), edge duplication
percent (Col 7), and median error across various graph statistics (Cols 8-13, comparisons concerning the remaining graph
metrics are available in table 1 of the supplementary material). For all performance metrics, lower values are better. For each
statistic, we also list the Median value over original graph snapshots to better contextualize the error values. The best result in
each dataset is in boldface. We do not report the results for an algorithm if it does not complete within 24 hours. Errors smaller
than five decimal places are approximated to 0.

• Efficiency: Efficiency is measured through running time
of the graph generation component.

• Fidelity: To quantify preservation of original graph prop-
erties, we compare various graph statistics of the snap-
shots of original graph Gt and synthetic graph G′t for
each unique timestamp t ∈ {1 . . . T}. We use the follow-
ing graph statistics (Kunegis 2013b): (i) mean degree, (ii)
wedge count, (iii) triangle count, (iv) power law exponent
of degree distribution (PLE), (v) relative edge distribu-
tion entropy, (vi) largest connected component size (LCC),
(vii) number of components (NC), (viii) global clustering
coefficient (CF), (ix) mean betweenness centrality (BC),
(x) mean closeness centrality (CC). We explain these met-
rics in the supplementary material. The error with respect
to a given graph statistic P is quantified as the median
absolute error, that is, Mediant∈[1...T ]|P (Gt) − P (G′t)|.
We use median instead of mean to reduce the impact of
outliers. Nonetheless, the mean absolute errors (MAE) are
also reported in the supplementary material.

• Duplication: To capture the level of duplication, we com-
pute the percentage of overlapping edges, i.e., |E∩E′|

|E| ×
100. Measuring duplication is important since an algo-
rithm that duplicates the source graph would obtain per-
fect scores with respect to property preservation, although
the generated graph is of limited use. We note that dupli-
cation has not been studied by TAGGEN or DYMOND.

Transductive: Comparison against Baselines
Table 1 presents the performance of all transductive algo-
rithms across all metrics. We summarize the key observa-
tions below.
Efficiency and Scalability: TIGGER is by far the most ef-
ficient of all models, while DYMOND is the slowest due to
its O(N3T ) time complexity. TAGGEN is nearly 2 orders
slower than TIGGER. In the inference phase, TAGGEN sam-
ples paths from the original graph, uses heuristics to mod-
ify these paths and then employs a discriminator to select
from the generated paths. This process is prohibitively slow.
Additionally, TAGGEN performs an expensive inversion of
N ′ × N ′ matrix where N ′ is number of unique pairs of
nodes and their interaction timestamps in G. Consequently,
TAGGEN fails to scale on Wiki and Reddit with millions
of timestamps, and on Ta-feng which has much larger node
and edge sets (see Table 1). Note that DYMOND fails to com-
plete in all but Wiki-Small, the smallest dataset. TIGGER on
the other hand is orders of magnitude faster, and can scale
to large datasets, since it simply uses the trained RNN to
sample paths, and generates the graph using these paths. In
Fig. 3, we plot the growth of running time against the num-
ber of timestamps and graph size. As visible, TIGGER is not
only faster, but also have a slower growth rate. For this ex-
periment, we sample the desired number of timestamps/tem-
poral edges from the Wiki dataset.
Duplication: TAGGEN consistently duplicates ≈ 80% of
the original graph. Hence, the utility of TAGGEN as a graph
generator is questionable. Both DYMOND and TIGGER do
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Metric Wiki-
Small

UC
Irvine

Bitcoin

Generation
Time(sec) 19 1112 640

%Edge overlap 0 0 0

Mean degree 0.0463/ 0.1949/ 0.4015/
1.1064 1.5714 1.8443

Wedge count 7/13 26/71 50/190

Triangle count 0/0 0/0 1/2

PLE 5.3916/ 1.1036/ 2.0456/
16.4626 4.634 3.5607

Edge entropy 0.0045/ 0.0125/ 0.0177/
0.9912 0.9537 0.941

LCC 1/5 7/21 16/50.5

NC 4/44 7/14 18/13

Global CF 0.0/ 0.0/ 0.0096/
0.0 0.0 0.0102

Mean BC 0.0/ 0.0026/ 0.0113/
0.0 0.0063 0.0146

Mean CC 0.0015/ 0.0257/ 0.0594/
0.0122 0.0701 0.1003

Table 2: Median errors across various graph statistics for in-
ductive version. Each entry, row 3 onwards, denotes (median
absolute error/ median value of the corresponding original
graph property across snapshots).

not suffer from this limitation.
Fidelity: From Table 1, we observe that TIGGER and
TAGGEN achieve the best results in majority of graph statis-
tics. However, as we noted above, TAGGEN nearly dupli-
cates the original graph and hence it is not surprising that the
graph statistics remain nearly the same. In contrast, TIGGER
has an edge overlap of ≈ 20% on average, and yet achieves
low errors similar to a near-duplicate graph. While TIGGER-
I exhibits higher median error than the transductive TIGGER,
it is better than DYMOND (See Wiki-Small in Table 2).

To study how the performance varies with growth of
graphs, we study the variation of median error against time
in Fig. 4. Consistent with the trends in Table 1, the per-
formance of DYMOND is the weakest. TAGGEN performs
marginally better in clustering coefficient (CF), while TIG-
GER is superior in mean degree and LCC.

Inductive: Performance of TIGGER-I
Before initiating the discussion, we note that TIGGER-I of-
fers an important feature not found in any of the transductive
models, viz., the ability to control the size of the generated
graph. Table 2 presents the results.
Scalability: TIGGER-I, is orders of magnitude faster than
TAGGEN and DYMOND. However, TIGGER-I is 5–8 times
slower than transductive TIGGER. This is unsurprising since

10 20 30 40 50
Time(t)

0.00

0.01

0.02

G
lo

ba
l

C
F

10 20 30 40 50
Time(t)

0

1

2

L
C

C

10 20 30 40 50
Time(t)

0.0

0.1

0.2

M
ea

n
de

gr
ee

DYMOND TagGen TIGGER TIGGER-I

Figure 4: Median error over each consecutive window of 10
graph snapshots in Wiki-Small.

TIGGER-I needs to perform nearest neighbor search in the
inference phase on node embeddings. Additionally, TIG-
GER-I is challenging to train on large graphs due to its re-
liance on WGAN, which often fails to converge on large
graphs. Hence, we have not reported results on full Wiki,
Reddit and Bitcoin. Fig. 3 reveals that the growth rate of
running time in TIGGER-I is similar to TIGGER.
Duplication: The edge-overlap of TIGGER-I is 0 across all
benchmarked datasets, which is the ideal score.
Fidelity: The modelling task in inductive mode is inherently
more difficult due to not having access to node IDs. Despite
this challenge, we observe that the errors are low when com-
pared to the median values of graph statistics in the original
graph (Table 2). More importantly, despite being inductive,
the errors are significantly better than DYMOND and com-
parable to TAGGEN and TIGGER (compare Tables 2 and 1).
This trend is also visible in Fig. 4.

Conclusion
The success of a temporal graph generative model rests on
two key properties: (1) Scalability to large temporal graphs
since real-world graphs are large, and (2) and the ability to
learn the underlying distribution of rules governing graph
evolution rather than duplicating the training graph. Existing
techniques fail to show the above desired behaviour. As es-
tablished in our empirical evaluation, the proposed method,
TIGGER, achieves the above desiderata. TIGGER derives its
power through an innovative use of intensity-free temporal
point processes to jointly model the node interaction times
and the structural properties of the source graph. Addition-
ally, we introduce an inductive version called TIGGER-I,
which directly learns the distribution over node embeddings
instead of node IDs.
Future Work: The scalability of the inductive model is lim-
ited by its graph embeddings and the use of WGAN. Hence,
we plan to explore mechanisms that address this limitation
and eventually move towards a model that is inductive, scal-
able and accurate in terms of fidelity.
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