
Received November 11, 2020, accepted December 15, 2020, date of publication December 30, 2020,
date of current version January 11, 2021.

Digital Object Identifier 10.1109/ACCESS.2020.3048319

Tight Arms Race: Overview of Current Malware
Threats and Trends in Their Detection
LUCA CAVIGLIONE 1, MICHAŁ CHORAŚ2,3, IGINO CORONA4, (Senior Member, IEEE),
ARTUR JANICKI 5, (Member, IEEE), WOJCIECH MAZURCZYK2,5, (Senior Member, IEEE),
MAREK PAWLICKI3,6, AND KATARZYNA WASIELEWSKA5,7, (Senior Member, IEEE)
1Institute for Applied Mathematics and Information Technologies, National Research Council of Italy, 16149 Genova, Italy
2Faculty of Mathematics and Computer Science, FernUniversität in Hagen, 58097 Hagen, Germany
3Faculty of Telecommunications, Computer Science and Electrical Engineering, UTP University of Science and Technology, 85-796 Bydgoszcz, Poland
4Pluribus One Srl, 09128 Cagliari, Italy
5Faculty of Electronics and Information Technology, Warsaw University of Technology, 00-665 Warsaw, Poland
6ITTI Sp. z o.o., 61-612 Poznań, Poland
7Institute of Applied Informatics, The State University of Applied Sciences in Elbla̧g, 82-300 Elbla̧g, Poland

Corresponding author: Artur Janicki (a.janicki@tele.pw.edu.pl)

This work was supported by the European Commission and the Horizon 2020 Program through the SIMARGL Project (Secure Intelligent
Methods for Advanced RecoGnition of Malware and Stegomalware) under Agreement 833042.

ABSTRACT Cyber attacks are currently blooming, as the attackers reap significant profits from them and
face a limited risk when compared to committing the ‘‘classical’’ crimes. One of the major components
that leads to the successful compromising of the targeted system is malicious software. It allows using the
victim’s machine for various nefarious purposes, e.g., making it a part of the botnet, mining cryptocurrencies,
or holding hostage the data stored there. At present, the complexity, proliferation, and variety of malware
pose a real challenge for the existing countermeasures and require their constant improvements. That is
why, in this paper we first perform a detailed meta-review of the existing surveys related to malware and its
detection techniques, showing an arms race between these two sides of a barricade. On this basis, we review
the evolution of modern threats in the communication networks, with a particular focus on the techniques
employing information hiding. Next, we present the bird’s eye view portraying the main development trends
in detection methods with a special emphasis on the machine learning techniques. The survey is concluded
with the description of potential future research directions in the field of malware detection.

INDEX TERMS Cyber security, information hiding, machine learning, malware, threat detection.

I. INTRODUCTION
Damage to the world economy caused by cybercrime is
expected to reach 6 trillion of US dollars per year in 2021 [1].
Such a tremendous impact is mostly due to the wide variety
of means used by attackers, which ranges from technological
breaches to the methods for exploiting anxieties and fears of
their victims. In this vein, the Europol European Cybercrime
Centre (EC3) recently published a report entitled ‘‘Catching
the virus cybercrime, disinformation and the COVID-19 pan-
demic’’ showcasing how attackers are quickly adapting and
exploiting the SARS-CoV-2 pandemic [2]. Despite steady
improvements in defensive systems, tools and techniques,
cybercrime continues to grow, mainly due to:
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• Increase in the number of users: in 2019, the number of
Internet users hit 4.4 billion of people (nearly half of the
world’s population) and it is predicted that it will rise to
6 billion by 2022 [3]. Unfortunately, the majority of
users are inexperienced, with only basic knowledge
regarding networking and security in general.

• Increase in the number of connected devices: according
to Gartner forecasts, more than half a billion wearable
devices will be sold worldwide in 2021, up from roughly
310 million in 2017 [4]. Besides, the average Internet
user has several connected devices (e.g., desktop, smart-
phone, smart TV, and gaming consoles). This tremen-
dously multiplies the opportunities for discovering and
exploiting vulnerabilities.

• Increase in the variety and complexity of services and
protocols: modern networks are continuously evolv-
ing from the perspective of the access paradigm
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(e.g., cloud andwireless accesses), the delivered services
(e.g., social media and e-voting), and the used protocols
(e.g., streaming and real-time communication). From the
attackers viewpoint, this is advantageous as there are
many potential weak spots that can be identified and
misused in order to breach the security of the victim.

• Increase of digitalization: more and more domains of
our everyday lives have now their virtual equivalent,
e.g., online banking, e-institutions, and e-shopping. This
increases the attack surface and the capabilities for gen-
erating illicit profits on an unprecedented scale

• Increase of cybercrime: compared with classical crimes,
the virtual ones are still less risky as they typically do not
involve direct contact with the victim. The migration of
many illicit activities towards the cyberspace caused the
development of a whole ecosystem where professional
groups are selling various types of malicious software
to other cybercriminals, or even offer their ‘‘services’’
using the Crime-as-a-Service (CaaS) business model.

In this scenario, malware found a perfect habitat to increase
at an alarming rate. For instance, Kaspersky claimed that
in 2019 its Web antivirus platform identified 24, 610, 126
‘‘unique malicious objects’’, a 14% increase when com-
pared to 2018. Moreover, 19.8% of the tested computers
were subjected to at least one malware-class web attack
over the year [5]. Furthermore, according to the AV-TEST
Institute, over 350, 000 newmalware samples and potentially
unwanted applications are registered daily [6]. Unfortunately,
malicious software is also evolving quite fast and driving
a blooming underground malware-oriented economy [7].
In fact, historical classification used to describe the malware
landscape based on terms like virus, worms, trojan horses
or spyware, is no longer sufficient as new types of threats
are dominating the scene. For example, the annual Inter-
net Organised Crime Threat Assessment (IOCTA) report [8]
indicates that ransomware is the top threat for several years
in a row. Similar considerations are expected for other
emerging attacks like cryptojacking, Advanced Persistent
Threats (APTs) and stegomalware. Unfortunately, malware
also rapidly adapts to new devices and environments. Recent
studies presented by McAfee [9] show that mobile malware
is on the rise with an increasing number of backdoors, fake
applications, and banking Trojans. Nevertheless, malicious
software is progressively endowed with various obfuscation
and information hiding techniques to stay under the radar and
to remain undetected for as long as possible.

Therefore, cybercriminals are improving their modus
operandi and the dynamism, scale, variety, and complexity
of the modern computing and network infrastructures give
them a colossal advantage. As a consequence, the ongoing
arms race1 between the malware developers and defenders is

1This term has its roots in biology where it is called also the Red Queen
hypothesis. The name has been selected after a character from Lewis Car-
roll’s book ‘‘Through the Looking-Glass’’, inwhich the RedQueen described
her country as a place where ‘‘. . . it takes all the running you can do, to keep
in the same place.’’

characterized by the use of several approaches, overlapping
technologies, emerging ideas or techniques borrowed from
other disciplines. Such dynamics are often observed in nature,
e.g., between predators and prey, or hosts and parasites. For
the case of security, this leads to a continual contention to
develop offensive/defensive measures as fast as possible, to at
least temporarily dominate the other side [10].

In this perspective, this paper analyzes the evolution of
malware and the related detection techniques as well as the
dependencies between them. To this aim, we perform a thor-
ough ‘‘bird’s eye’’ review of the literature and we highlight
the main trends. We also provide a potential future direction.
As it will be detailed later on, one of the main contributions
of this work is to approach the evolution of malware and
detection techniques with a new perspective.

The rest of the paper is structured as follows. Section II
reviews the previous surveys dealing with malware, with
emphasis on detection techniques. In Section III, the archi-
tecture of the survey and its main contributions are outlined.
Next, Section IV demonstrates the evolution of threats tar-
geting modern computing and networking scenarios. Then,
in Section V, information-hiding-capable threats are pre-
sented and categorized. The evolution of the approach to
malware detection is reviewed in detail in Section VI, while
in Section VII we focus on characterizing the development
trends in machine learning (ML) techniques when applied to
malware detection. Section VIII discusses attack trends and
the potential future directions in the perspective of taming the
emerging threats. Finally, Section IX concludes our work.

II. PREVIOUS SURVEYS
The increasing economic and societal impacts of malware
ignited various research projects and actions leading to a
vast amount of research papers. Over the years, the scientific
community has tried to organize such works by producing
several surveys, which are often characterized by different
taxonomies and boundaries. For instance, many surveys con-
centrate on specific aspects of malware (e.g., detection or
evasion mechanisms), whereas other works cover the specific
domain targeted by the malware (e.g., Internet of Things –
IoT, or mobile). To cope with such a fragmented scenario,
the rest of the section is organized according to the most rep-
resentative classes. If a survey spans across various subjects,
we considered its predominant theme.

A. SURVEYS ON MALWARE ANALYSIS AND EVASION
Malware analysis aims at understanding the behavior of a
software to determine its functionalities to prevent or detect
attacks. The literature shows twomain approaches tomalware
analysis: static, which examines the malware without running
its code, and dynamic (behavior), which requires its detona-
tion. Concerning dynamic malware analysis, the survey [11]
highlighted its three main goals: classification, detection and
evolution. The work also emphasized the importance of prop-
erly visualizing the outcome of the analysis to better under-
stand the functionalities and risks of the threats. There are also
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hybrid approaches, combining static and dynamic techniques,
as well as other analytical methods such as memory-based
analysis [12]. The use of static methods is limited to the mal-
ware that is not obfuscated, i.e., its source code is available.

In contrast, the obfuscatedmalware requires more sophisti-
cated approaches. The survey in [13] focused on the dynamic
analysis techniques that can be used to inspect malware
samples without the limitations of static tools. A threat can
rely on the information that cannot be statically determined,
e.g., indirect jumps; therefore, mechanisms for monitoring
function calls or execution flows are used to improve the
chance of detecting or blocking the attack. In a recent sur-
vey [14], the authors reviewed some new dynamic analy-
sis techniques (function call analysis, flow tracking, volatile
memory forensics, and side-channel analysis, just to mention
some) and specific network environments (cloud computing
and IoT). A complementary work on the analysis of the
malware targetingAndroid OS is presented in the survey [15].
It showcased the primemechanisms of threats observed in the
wild to such mitigation techniques as obfuscation, applica-
tion collusion, random restart of the antivirus or monitoring
tools.

Despite the use of the static or dynamic analysis tem-
plates, the use of some form of artificial intelligence (AI) or
ML techniques is becoming widespread, especially for threat
detection. Several reviews have become available. In the
survey [16], the authors summarized the main categories
of ML-based analysis methods, including the deep learn-
ing (DL) approaches and the classifiers based on several
types of features or data. The surveys with a similar scope,
which widely presented the tools used for malware analysis,
are [13], [14], and [17].

Evasion is another topic of interest as far as dealing
with malware analysis is concerned. In a very recent survey
dealing with dynamic malware analysis [14], the authors
focused on the techniques employed by malware to prevent
the analysis and isolated the most common functionalities
needed to implement a malicious behavior. In the survey [18],
the authors noticed that evasive functionalities are primarily
used to recognize and evade sandboxes; therefore, several
works propose to use fingerprinting and the reverse Turing
test for recognizing a genuine human interaction. Similar
considerations can be found in an earlier survey [19].

Survey [20] presents another overview of mechanisms
adopted to elude the detection. As shown, the most advanced
threats often deploy anti-emulation techniques to change their
behavior whether running in virtual or real environments,
or selectively adapt the rate of the attacks depending to
the characteristics of the infected hosts. Countermeasures
should be then designed accordingly and should also be
endowed with adaptability in order to face specific threats.
Many recent mitigation techniques and security-by-design
approaches were presented in the survey [21], where the
authors discussed the advanced techniques to limit the impact
of malware, e.g., dynamic analysis, data execution prevention
and load library protection.

Another possible mechanism to evade detection is the use
of a fileless architecture, which is becoming a relevant trend.
For instance, the recent survey [22] provided an overview of
the fileless malware and related detection techniques. Owing
to its nature, this class of threat remains unnoticed by the
traditional file-focused detection systems; thus, the authors
concluded that the detection of fileless malware may require
the use of forensic tools.

B. SURVEYS ON MALWARE DETECTION
Malware detection is a subset of malware analysis. Since
being able to recognize a threat is crucial to prevent infec-
tions and to engineer suitable defensive campaigns, liter-
ature abounds of works and review papers on this topic.
A recent survey [23] classified the publications on mal-
ware detection into two groups, according to the employed
strategy:
• signature-based methods: they rely on a signature,
i.e., a pattern leading to the identification of the
threat. The most popular examples of signatures are:
sequences in the byte code of the executable imple-
menting/containing the threat, recurring features in the
network traffic, or specific statistical distributions within
execution traces;

• behavior-based (or anomaly-based) methods: they
detect a malware upon recognizing a malicious or
unwanted behavior that is compared against a set of
clean templates. As this group developed, over the years
it has been further subdivided into the heuristic-based,
employing various AI techniques, and specification-
based techniques, employing sets of rules.

A recent review [23] indicated the current trend focusing
on the development of the heuristic-based method taking
advantage of ML techniques. It also hinted at the increas-
ing ‘‘vertical’’ nature of detection techniques, and their
growing specialization. The authors noticed that the follow-
ing groups of detection methods emerged: model checking-
based, DL-based, cloud-based, mobile devices-based, and
IoT-based. Another recent survey [24] presented a snapshot
of works on malware detection techniques and their evolution
for the case of mobile devices. As a consequence of the
highly-specialized nature of detection techniques, the past
reviews mostly concentrate on specific aspects. For instance,
an increasing corpus of works deals with ML-capable
approaches, while other surveys address well-defined scenar-
ios or use-cases, e.g., IoT, mobile malware or Command and
Control (C&C) communications. Therefore, such works will
be described in the following.

C. SURVEYS ON MACHINE LEARNING APPLICATIONS
As discussed, the adoption of AI has been progressively
introduced for the analysis, detection and development of
malware. The survey [25] identified several predominant
techniques in this area: evolutionary algorithms, shallow neu-
ral networks, reinforcement ML, DL, as well as bio-inspired
computation and swarm intelligence.
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Recently, we have observed a tremendous growth of the
publications exploiting ML-based techniques and this also
resulted in several surveys. An interesting viewpoint is pro-
vided by the survey [26], which analyzed a variety of works
with emphasis on the need of suitable datasets, as well as the
fragility of the collection phase. The most important outcome
of the work concerns the discussion of a trade-off metric for
finding solid balance between the accuracy of the analysis
and its economic cost. Concerning the preparation and the
issues to be addressed in datasets used for cybersecurity,
the surveys [16] and [23] showcased some details on the
characteristics of the datasets used in the literature. As the
authors of [15] and [26] underlined, the available datasets
are insufficient and a relevant part of the ongoing research
is devoted to addressing this problem.

Another interesting perspective is given in the survey [11],
which compared the semantics-based and ML-based
approaches. It showed that, in the former case, the results are
easily interpretable by a human operator, but such approaches
require the semantic rules to be manually defined by a
trained security analyst. The two recent surveys [27] and [28]
dealt with the DL-based methods for malware detection, and
observed that the deep belief networks (DBN) outperformed
other techniques like shallow ML algorithms (e.g., random
forest – RF and Naïve Bayes). Despite the good results that
can be achieved with ML when detecting a threat, the authors
of the survey [23] stated that the conjunction of DL and the
cybersecurity-related tasks is still far from being mature and
quantifying the performances of ML-capable approaches is
still an open point. In fact, the survey [27] pointed out that it
is difficult to compare various approaches as the datasets used
by the researchers are highly composite, with variable prop-
erties and non-standardized performance metrics. Moreover,
the review [28] highlighted it that many ML-based methods
require manual labeling, which is time consuming, costly and
error prone.

Data mining is another major field within AI-based mal-
ware detection. For instance, the survey [29] explored the
possible features, such as the usage of critical application pro-
gramming interfaces (APIs), N-grams revealing patterns in
the binary of the threat (used as signatures), or attack-specific
strings, even if they are obfuscated. An overview of the
data mining techniques for detecting malware can be found
in [30], where the authors focused on the signature-based
and behavior-based detection. Various applications of ML
algorithms in the context of malware protection were also
summarized in earlier surveys, see [11], [14], and [29].

Lastly, evasion has also been a major topic among the
researchers and practitioners conjugating ML with cyberse-
curity. As an example, the survey [31] focused on the mal-
ware evading ML-based detection techniques. It explored the
adversarial attacks and the applications of adversarial ML for
malware detection. The survey [32], which concentrated on
C&C communications, concluded that they are difficult to
detect, even by using ML techniques. The authors pointed it
out that the aforementioned techniques need suitable training

data, which often requires facing the ‘‘needle-in-the-haystack
problem’’ and leads to very specialized and scarcely general-
izable solutions. A different perspective of using ML-based
techniques was presented in the survey [33]. In this case,
the authors showed the scenarios where attackers themselves
can use ML algorithms to evade malware detection systems.

D. SURVEYS ON MOBILE MALWARE
As a consequence of the explosion of the malicious code
designed for smartphones, a significant group of review
papers dedicated to the mobile scenarios has been observed
in recent years. According to [23], the most popular types
of mobile malware are: ransomware, spyware, banking mal-
ware, adware, botnets and SMS-based trojans. Popular appli-
cations increasingly contain hidden malware designed for
secretly extracting/mining cryptocurrency [24]. Additionally,
the authors of the survey predicted that the mobile malware
detection methods will evolve towards the anomaly-based
methods. They motivated their opinion by saying that these
methods can potentially detect unknown malware, including
the zero-day attacks, which are currently among the major
threats, also for the mobile platforms.

The survey [34] presented several taxonomies and foren-
sic analysis tools especially crafted for mobile scenarios,
as well as a comparison of various evasion techniques. The
review [15] showed the evolution of the mobile malware and
related analysis techniques. In the survey [35], the authors
focused on the offensive and defensive methods of the soft-
ware stack of Android OS and the related ecosystem, and
proposed rethinking its openness, to create a more secure
version of the OS.

Despite the peculiarities of the techniques used for recon-
naissance, infection or offense attempts, many surveys con-
firm that malware is evolving towards a complex ecosystem,
and mobile and desktop threats are becoming similar, both in
terms of effectiveness and sophistication.

E. SURVEYS ON MALWARE IN IoT ENVIRONMENTS
According to [36], data security plays a key role in the area
of IoT, because the malicious software created specifically
for the resource-constrained devices is becoming a plague.
To classify and capture the wide array of attack techniques
and features of threats targeting IoT scenarios, the authors
developed a phylogeny graph providing visualisation of the
relationship between the different types of malware. They
also proposed another useful visual method of analysis,
defined as a ‘‘feature propagation multigraph’’, which is used
to present more details about this relationship. Owing to this,
the authors concluded that the IoT malware will eventually
merge with the malware attacking other platforms, including
ransomware and the cryptographic mining malware. Other
earlier reviews on the topic highlighted the increasing diffu-
sion of threats especially crafted for IoT nodes/devices and
can be found in [37] and [38].

Concerning the investigation of detection techniques
specifically designed for the IoT scenarios (including the use
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of ML-capable frameworks), the survey [23] reviewed the
algorithms able to detect DDoS attacks, selected malware
families, and crypto-ransomware. Despite the good accuracy,
even the use of DL-based techniques appeared to be of scarce
effectiveness when in the presence of threats using complex
code obfuscation. Another interesting aspect concerns the
development of detection techniques having to meet some
form of time constraints, which often happens in industrial
applications. In this vein, survey [14] pointed out the problem
of performing real-time analysis of IoT malware. In fact,
detection tools need to be placed in every device, whereas
popular dynamic analysismethodsmay not be effective due to
limited computational resources of IoT devices. For this rea-
son, a side-channel data acquisition using hardware method
was proposed.

F. MISCELLANEOUS SURVEYS
The heterogeneous and multi-faceted nature of the research
dealing with malware also reflects into a number of other
surveys targeting specific aspects. For instance, the sur-
vey [40] provided a taxonomy of attack goals (e.g., sabotage,
fraud, and data theft), distribution channels (e.g., market-
place, USB devices, SMS, and network), and privilege acqui-
sition (e.g., manipulation of the user). Even if some aspects
could still be considered valid, some technological-dependent
aspects are partially outdated, as the work also considered
Symbian and Blackberry OS. A more recent work providing
a detailed classification of malware by type, malicious behav-
ior and privilege can be found in the survey [14].

The survey [39] reviewed the visualization-related aspects
of malware analysis, which often is a neglected issue. The
work discussed a variety of techniques, e.g., self-organized
maps, and defined the requirements for visualization tech-
niques, which included the ability to support annotations and
handle various levels of granularity of data, just to mention
some.

Even if many works offer interesting perspectives or
accurate forecasts on the future evolution of cyber security
(e.g., the increasing diffusion of platform-specific threats tar-
geting IoT), they often exhibit important gaps. For example,
the vast majority of them did not consider the threats using
information hiding techniques. To the best of our knowledge,
the only exception is the review [41], dealing with the infor-
mation hiding techniques used in malware for smartphones to
covertly exfiltrate data or elude security constraints.

A complementary work is presented in the survey [32]
dedicated to the C&C detection techniques, which can be
grouped into signature-based, classifier-based and clustering-
based. The authors also discussed the attacks against the ML
algorithms used in themalware C&C detection systems. They
divided attacks by their goal (evasion and poisoning) and by
the group of algorithms affected (classifiers and clustering).

Some surveys focus on very specific types of malware. The
authors of [21] analyzed APTs able to bypass common coun-
termeasures. Some mitigation methods were proposed: sand-
boxing, application hardening, and malware visualisation.

Instead, the survey [20] concentrated on the techniques to
endow malware with some stealth capability, specifically:
rootkits, code mutation, anti-emulation, and targeting mech-
anisms, which are used to camouflage the malware.

III. CONTRIBUTIONS AND SURVEY ARCHITECTURE
Previous surveys focused on a wide range of aspects dealing
with malware, which are summarized in Table 1. In general,
there are some specific aspects or traits that have been largely
reviewed. For instance, the defensive methods are considered
in the totality of works, whereas the offensive or weaponiza-
tion techniques are seldom discussed. Another peculiarity of
many past surveys is their focusing on selected families of
hazards, such as, stealth malware, APTs or the IoT-oriented.
Even if specialization allows to consider a given class of
malware in an in-depth way, in the long run this leads to
a randomised fragmentation of reviews, thus a deep com-
prehension of a well-defined aspect (e.g., code analysis or
preparation of datasets) requires attacking multiple surveys.

The investigation performed in Section II also confirmed
the proliferation of the works dealing with ML techniques.
Despite the nature of the used methodologies, the emerging
trend is to address the multifaceted modern security problems
with some form of ML, even if many works highlighted the
lack of appropriate datasets. Concerning use cases, themobile
scenario was the most studied one and only two surveys were
dedicated to IoT, even though it was mentioned in a variety
of other reviews. Furthermore, some articles tried to identify
the trends in the field of anti-malware security, but none of
them was entirely devoted to this issue.

To sum up, previous surveys partially fail to capture the
fast-moving and complex nature of the most recent research
on the emerging security issues, as they have the following
gaps:
• lack of bird’s eye perspective: despite the fact that
some works are comprehensive, many of them do not
offer a precise and vast review of the techniques dealing
with anti-malware protection. There is also a lack of
in-depth investigation targeting multiple domains and
emerging architectures, which often requires address-
ing a whole ecosystem or different viewpoints in
order to capture the trends/evolution of cutting-edge
defensive/offensive techniques.

• lack of holistic approaches to threats: previous works
highlighted the absence of investigations addressing a
specific security issue by considering several technolog-
ical constraints at the same time. Even if this could be
reasonable in the past, the increasing heterogeneity of
modern network/computing architectures, the presence
of cloud and virtualized services, as well as the bulk
of sensitive information, require to double the effort to
reconsider past research work in this new perspective.

• limited interest in information hiding: as shown, only
one recent work dealt with information hiding (specif-
ically, in the context of mobile devices). As mod-
ern malware is increasingly exploiting some form of
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TABLE 1. Summary of recent surveys on anti-malware security showing areas covered, in chronological order.

steganography, information hiding and obfuscation to
launch attacks or exfiltrate data [42], [43], this consoli-
dated trend should be taken into account.

• lack of sufficient coverage of new threats: despite the
vivacity of the topic, many works continue to focus
on the ‘‘legacy’’ hazards, e.g., phishing. Thus, novel
attacks like ransomware and cryptojacking, as well as
aggressive elusion and offense techniques, including
antiforensics features, have not already been exten-
sively reviewed or addressed in a framework able to
highlight their evolution and the needed research to be
done.

• lack of general indicators/detection frameworks: the
fast evolution of malware and the need to protect broad
and heterogeneous scenarios is imposing the need of
considering indicators or markers independent of the
specific threat. In this vein, the literature does not offer
any previous works reviewing such techniques.

Therefore, this survey aims at filling the aforementioned
research gaps and it is structured for considering the fol-
lowing main aspects of the literature dealing with malware.
Specifically:
• Evolution of Malware (Section IV): during the years,
malware advanced in two directions. The first is
technological and encompasses different techniques,
e.g., multi-stage loading versus monolithic executa-
bles, and has already been investigated. Instead, here
we present the evolution in the light of the novel
incarnations of threats, for instance, cryptojacking

and ransomware, which target or support brand new
malicious activities (e.g., those linked with cryptocur-
rencies). Another trajectory in the development of mal-
ware, which has often been neglected, concerns the
evolution of obfuscation or elusion techniques to launch
attacks without reducing the chance of detection. Thus,
we present the most recent methods, including the file-
less malware.

• Information Hiding Malware (Section V): as said, infor-
mation has been used to empower different phases of
the life-cycle of an attack. In fact, modern malware uses
image steganography to avoid detection when delivered,
or exploits the network covert channels to remain unde-
tected while exfiltrating data, or to communicate with
a remote C&C facility. Moreover, many threats can use
some form of information hiding to elude security poli-
cies of the targeted node, or to implement some form of
collusion between separate processes for reconnaissance
purposes or detected countermeasures like honeypots.
Therefore, here we present the most important stegano-
graphic threats and their evolution.

• Evolution of Malware Detection (Section VI): as
said, detecting malware requires facing an attack
comprehensively, possibly spanning across different
technological domains (e.g., hardware, software and vir-
tualized entities), and using several techniques, includ-
ing steganography. Thus, we outline the evolution of the
most effective and promising detection methods, which
also leverage the bio-inspired principles or try to take
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advantage of the behavior or energetic impact of the
threat.

• Evolution of Machine Learning Applied to Malware
Detection (Section VII): since the vast majority of mal-
ware detection algorithms involve the ML-based tech-
niques, in this section we show the evolution of ML
applied to malware detection, starting from the shal-
low ML methods, through researching new features,
ending with DL and ensemble classifiers. We describe
this development independently from the evolution of
the basic approach to malware detection, presented in
Section VI. This will allow the reader to see the evo-
lution of the malware detection technologies from the
bird’s eye perspective, and also to analyze its various
dimensions.

IV. EVOLUTION OF MALWARE
In this subsection, we highlight the main development trends
of the modern threats in the current communication networks
and the techniques they use to remain stealth for as long as
possible. Moreover, we also describe howML algorithms can
be used for nefarious purposes in order to lower the efficacy
of the defensive solutions.

A. CRYPTOJACKING
Cryptojacking is defined as unauthorized abuse of the
third-party infrastructure, bandwidth, and CPU power in
order to mine cryptocurrencies. During the last five years,
we have experienced a massive surge in criminal cryptomin-
ing. Currently, there are two main types of cryptojacking,
i.e., passive, web-based cryptomining using scripts running
in a victim’s internet browser and more invasive one, which
requires cryptojacking-capable malware. Although this type
of attack affects many users of the Internet, the damage is
typically hard for a victim to observe (as it may be identified
with a delay due to the elevated energy consumption or faster
exploitation of the hardware) and thus, such abuse is rarely
reported.

Since the introduction of Bitcoin in the year 2009,
more than 3000 different cryptocurrencies have sur-
faced (https://coinmarketcap.com). However, cybercriminals
turned their attention to the malicious cryptomining because
the value of cryptocurrencies started to rise significantly.
For example, while the price of a Bitcoin was 0.08$ in
July 2010 (https://en.bitcoinwiki.org/wiki/Bitcoin_history),
in October 2020 it surpassed 11, 000$ (with an all-time record
of 20, 000$ inDecember 2017).Many of the cryptocurrencies
are based on the blockchain technology, i.e., a decentralized
database in which a steadily growing lists of transaction
records are stored in a form of blocks. This database is
extended in a linear, chronological sequence where new
blocks are appended at the end of the transactions list. Note,
that the creation of the new blocks and the validation of the
open transaction records are referred to as ‘‘mining’’, where
the participants of the network have to solve computational

puzzles. At the end of these CPU and memory-intensive min-
ing processes, the miner who solved the puzzle first receives a
reward, i.e., a certain amount in the respective cryptocurrency.
Malicious cryptomining has found a place in the business
model of the cybercriminals due to these rewards. The main
aim here is to delegate the expensive mining process to the
infected devices of unaware users. According to the sys-
tematic study presented in [44], the 1, 000, 000 most visited
websites were examined for signs of malicious cryptomining.
It turned out that 1 out of 500 pages hosted such a mining
script.

The most suitable cryptocurrencies for cryptojacking are
those that are memory intensive, meaning that they are suit-
able for CPU or GPU mining, and difficult to trace. As Mon-
ero (XMR) fulfills both these requirements, it is typically the
first choice for cybercriminals for this type of threat [45].

The surge of cryptojacking in the last few years was
caused by the appearance of the web-based cryptominer ser-
vices [44], like the most popular JavaScript mining program
– Coinhive. While previously malicious cryptomining was
achieved using file-based cryptominers locally executed on
the infected device, web-based cryptomining can be achieved
while victims visit an infected website (the more popular the
website, the better for the attacker).

Currently, cryptojacking still remains a major issue. How-
ever, its activity appears to have peaked in 2018 and decreased
slightly throughout 2019. This was caused mainly by the offi-
cial shut down of the Coinhive in March 2019. Nevertheless,
some variants of the script are still publicly available; thus,
it has already been observed that the incurred gap is being
filled by other web-based cryptojackers [8].

Moreover, this type of attacks against public institutions,
as well as private companies persists and continues to evolve.
For example, recent industry reports have revealed that
the cryptojacking malware adopts fileless features [46] or
worm-like spreading properties [47]. Moreover, as reported
in the AV-TEST Security Report 2019-2020, cybercriminals
are also starting to apply cryptojacking to the unprotected IoT
infrastructure, using a variant of the Coinhive script.

B. RANSOMWARE
For several years now ransomware has maintained its reign
as the most widespread and financially damaging form of
cyber attacks, as considered by the security community and
law enforcement agencies (see, e.g., the Europol’s recent
2019 IOCTA report [8]). Ransomware is a type of malicious
software that is designed for direct revenue generation. Upon
infecting the victim, their critical data is held ‘‘hostage’’ until
a payment is made.

In general, the functioning of typical ransomware is as
follows. First, a user machine is infected using various attack
vectors, e.g., by drive-by-download, malvertisement, phish-
ing, spam, or different forms of social engineering, etc. Then,
depending on the type of ransomware, either the victim’s
machine or the critical data it stores are ‘‘locked’’ until a pay-
ment is issued. Moreover, modern versions of this malicious
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software are able to encrypt all the accessible drives, includ-
ing personal cloud storage services, such as Dropbox, and
shared network drives. As a result, it is possible that multiple
systems can be compromised by a single infection.

Typically, modern ransomware is divided into two main
groups [48]: locker and crypto. Locker ransomware denies
user access to the infected machine. However, it must be
noted that in most cases the underlying system and files are
left untouched. This means that the malware could potentially
be removed without any negative impact on the machine
and the stored data. As a consequence, locker ransomware
is less effective in achieving its goal compared to the more
destructive crypto ransomware. Crypto ransomware is a data
locker that prevents the user from accessing their files or data.
The majority of this type of malware relies on the utilization
of some form of encryption. After a successful infection,
typical crypto ransomware covertly searches for and encrypts
the files that it deemsmost valuable (e.g., documents, pictures
and videos, etc.).

Although the first cases of crypto ransomware have been
known for more than a decade (e.g., Trojan.Gpcoder), it must
be emphasized that the plague of this type of malware is
related to the improved design of the cybercriminals’ tools.
The main difference now is that crypto ransomware has
moved from custom or symmetric key to asymmetric key
cryptography. It is worth noting that if correctly implemented,
asymmetric crypto ransomware is (practically) impossible to
break. The most prominent ransomware, and one of the first
to introduce asymmetric key cryptography, is CryptoWall 3.0,
which was discovered at the beginning of 2015, and later
followed by others, such as CryptoWall 4.0, Locky, etc.

Notably, up to 2017, individual users were the main target
and the favoured payment currency were Bitcoins. However,
recently a new trend is observable: companies and institutions
are highly desired targets. This is not surprising, since com-
pany desktops and servers are more likely to contain sensitive
or critical data, e.g., customer databases, business plans,
source code, tax compliance documents, or even webpages.
Note, that in 2019 the overall volume of ransomware attacks
has declined as attackers focus on fewer but more prof-
itable targets and greater economic damage. The attackers
started to target various key industries and critical infrastruc-
tures, such as: health services, telecommunications, trans-
port and manufacturing industries. In 2018, the companies,
organizations and institutions were accounted for 81% of all
the ransomware infections [49]. Moreover, in 2020 Interpol
warned that cybercriminals are using the chaos caused by
the COVID-19 pandemic and have significantly increased
the number of ransomware attacks, especially the ones on
healthcare institutions [50].

It must also be noted that ransomware developers are
constantly improving their ‘‘products’’ by making it harder
to design and develop effective and long-lasting counter-
measures. Considering the fact that more and more devices
are foreseen to be connected to the Internet due to the IoT
paradigm, the plethora of such tiny and limited-capability

devices is the perfect environment for ransomware to spread
in the foreseeable future [49]. The ransomware plague is so
widely spread that there are even CaaS tools available in the
dark web (like TOX ransomware-construction kit [49]) that
allow even inexperienced cybercriminals to create their own
customized malware, to manage infections, and profits.

The most recent shift in ransomware evolution happened
in late 2019. After infecting the targeted device, cybercim-
inals inform the victim that if the ransom is not paid not
only the data on the infected systems will remain encrypted,
but moreover the attackers will expose highly sensitive data
to the public. This can be described as a hybrid attack,
in which traditional ransomware tactics are combined with
data exfiltration [51].

C. EVOLUTION OF OBFUSCATION TECHNIQUES
The antivirus software typically identifiesmalware by search-
ing for its known patterns or characteristics (a signature).
That is why, signature-based detection, due to its simplicity
and accuracy, remains the commonly used approach. Note,
that the literature and real-world samples collected in the
wild showed a variety of techniques that have been used by
the malware developers for evading such existing detection
methods. The most popular examples include: multi-stage
loading, fileless operation capabilities, encrypted and obfus-
cated payloads, anti-analysis mechanisms, or various types
of information hiding techniques (including steganography).
Below we review the notable malware evasion techniques.

Early malware only utilized encryption or compression to
evade a detection method and its code analysis (which was
referred also as packing) [52]. Such techniques were suc-
cessful against anti-virus software relying on static features
as when the malware was protected by a packer, its original
features were cloaked. Malicious software developers also
tried to apply various anti-disassemblymechanisms to bypass
static analysis [53].

Another type of early methods used code obfuscation. The
traditional obfuscationmethods included techniques like junk
code insertion, register reassignment, instruction replace-
ment, instruction reordering, etc. [52]. More advanced meth-
ods embraced flower instruction, the aims of which is to
add some carefully constructed disturbance instructions to
the program in order for the disassembly to fail, or the use
Windows system exception handling (SEH) mechanism to
hide the control flow.

Then, oligomorphic malware was proposed, where a dif-
ferent key was used for encrypting and decrypting malicious
software payload [54]. An improvement over this approach
was the polymorphic technique where a different key was
utilized for encryption and decryption, as well; however,
the encrypted payload portion contained several copies of
the decoder and could be encrypted in a layered man-
ner [55]. Finally, for the first time, malware developers started
to bypass signature-based detection by using metamorphic
approaches [55]. They allowed to generate the instances of
the same binary that have different signatures but with the
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same functionality. Thus, each new copy of malware has a
completely different signature, making its detection difficult.

Later, various types of dynamic analysis and sandboxes
have been introduced in order to inspect malware and com-
pare its behavior with the well-known patterns. In order to
evade such countermeasures, a number of methods have been
proposed. In order to be able to effectively modify its behav-
ior, malware must be able to determine whether it is being
run within a sandbox environment or on a real user’s system.
Such ‘‘environment-aware’’ malware has been evolving for
years, using sophisticated techniques against the increasing
fidelity of malware analysis systems.

Antidebugging techniques, together with VM-detection
[56], are typically utilized to change the real malware behav-
ior when a debugger or a sandbox is detected. Note, that when
not being debugged, the actual execution of the malicious
software remains constant. One of the simplest and common
evasion techniques of this kind is extended sleep. Malicious
software uses it to wait long enough before revealing its true
nature. Considering that it is computationally costly to run a
sandbox environment, the extended sleep is perceived as an
effective technique.

Later, more advanced obfuscation mechanisms were pro-
posed; popular examples include, e.g., Return Oriented Pro-
gramming (ROP) which allows to hide a malware within a
benign program [57] or movfuscator [58], which compiles the
code using only mov instructions. The alternative technique
is to force another benign program to run malicious payload
by using, e.g., DLL and Reflective DLL injection [59] to
inject a malicious payload into another process’s address
space.

Another branch of evasion techniques includes employing
various heuristics that allow to monitor different parameters
of the host’s system, to identify inspection environments,
like sandboxes (which are often virtualized) [60]. For the
VM-based sandboxing, the most common approach is to
utilize static heuristics to identify VM-specific device drivers
and hardware configurations, VM-specific loaded modules
and processes, registry entries [61]. For detecting environ-
mental and user interaction artifacts, various methods have
been proposed which are based on determining, for instance,
if the mouse cursor is moving on the screen, the presence
of the list of recently open files, or whether there is an
unnaturally low number of active processes, etc. [60].

Finally, a recent trend of evasion techniques involve sand-
box fingerprinting, i.e., deriving configuration profiles from
sandboxes typically used for analyzing malware [62]. When
such a specific environment is identified, then malware can
then alter its behavior accordingly.

D. FILELESS MALWARE
When compared to the traditional file-based malware,
the fileless malicious software does not download any files
or write any content to the disk of the infected machine [22].
Typically, the attacker is using vulnerabilities existing in the

common applications to inject malicious code directly into
the main memory. Since most antivirus or security solutions
(like file sandboxes) are based on file analysis, using file-
less malware provides attackers with higher undetectability.
An increase in attacks via fileless malware is widely reported
by leading security analysts. In the first half of 2019, Trend
Micro noted an 18% rise in this type of abuse [63]. Through-
out the whole of 2019, such techniques accounted for 51%
of attacks, increasing from the 40% the year before [64].
A growing number of exploit kits commercially available to
cybercriminals use fileless techniques instead of the more
traditional method of dropping a payload on disks [65].

Attackers target existing infrastructure tools such as
Microsoft Office Macros, PowerShell, Windows Manage-
ment Instrumentation (WMI), or any of the Windows system
tools that can be leveraged for fileless malware purposes. As a
result, the attacker is able to run scripts and load malicious
code directly into the volatile memory.

The initial mode of entry may be via spear phishing or
compromised emails. The purpose is to inject a payload into
the targeted tool. Ubiquitous tools such as PowerShell and
WMI are the favoured targets for exploitation, as they can
bypass security as legitimate files [66]. The stealthy proper-
ties of the fileless malware are attractive to adversaries. When
a payload delivers script directly to the operating system or
registry, it has the capability to be commanded at will. This
negates the need to run a potentially detectable file in the local
memory, and no signature is left for an anti-virus to detect.
Thus, fileless malware operates as a legitimate process and
under the radar of the traditional malware detection methods.

The persistence and successfulness of the fileless threats
is evidenced in the variety of the exploit type: scripts
in JavaScript or Visual Basic embedded in documents,
PDFs and other types of files, code injected into legitimate
operating processes or hidden in digital media files (via
steganography).

Currently, three classes of fileless malware can be
roughly distinguished [22]: memory-resident, Windows-
registry-based, and rootkit malware. Memory-resident mal-
ware (e.g., Lurk trojan or Poweliks) injects itself into the
main memory of the infected device without modifying the
file systems. It also utilizes legitimate processes or authentic
OS files to execute, and remains there until it is triggered.
Windows registry malware (e.g., Kovter or PowerWare) is
utilizing Windows OS registry to store complete malicious
code (typically in an encryptedmanner). Finally, in the rootkit
fileless malware (e.g., Phase Bot), the attacker hides the
malicious code within the kernel of the Windows OS, after
obtaining administrator level privilege.

Note, that fileless malware may be often used only to get
an initial ‘‘foothold’’ in the infected system with the main
aim to disable or evade tools used to detect more malicious,
file-based attacks. However, when the initial infection is suc-
cessful, the fileless attacks may launch a new stage which
utilizes file-based methods [67].

VOLUME 9, 2021 5379



L. Caviglione et al.: Tight Arms Race: Overview of Current Malware Threats and Trends in Their Detection

E. ADVANCED PERSISTENT THREATS
APT is defined by NIST in [68] as an adversary (attacker)
that is characterized by the sophisticated level of skills and
knowledge in ICT and cybersecurity, and has access to sig-
nificant resources allowing to utilize multiple attack vectors
(e.g., cyber, physical, and deception), often simultaneously,
to achieve the assumed goals. These aims aremostly related to
installing and then extending footholds within the ICT infras-
tructure of the targeted institution/enterprise/organization in
order to exfiltrate information, undermine or impede critical
aspects of a mission, program, or organization; or position
itself to carry out these objectives in the future. The APT is
characterized with the following three features, which makes
it differ from the regular cyber attacks:
• it tries to pursue its objectives (it typically has a
defined intent) continuously, in the long-term perspec-
tive (i.e., it can leverage multiple resources to craft a
complex, multi-step approach that occurs over a poten-
tially long period of time);

• it adapts to the countermeasures deployed by the defend-
ing security team: in other words, the adversary acts,
reacts, and changes strategies quickly;

• it is determined to maintain the level of interaction
needed to execute its objectives.

Due to the characteristic features listed above and its intel-
ligent, adaptive, and resourceful nature, APT and themalware
behind it is currently perceived as a significant threat to
computer systems, also including, e.g., critical systems [69].
It must be noted that initially the term ‘‘APT’’ was associated
with the state-sponsored threats, but over the last years many
non-state groups have been identified which were also capa-
ble of launching large-scale, persistent targeted intrusions for
specific objectives (for financial or political reasons).

In order to achieve its aim, an APT may combine dif-
ferent types of methods and techniques; they may often be
very sophisticated [70]. Typically, the attack begins with a
systematic investigation of the target in order to carefully
plan and execute spear-phishing and/or social engineering
aimed at tricking the victim into downloading an infected
file. Then, the attacker compromises the infected machine
and gains access to the network it resides in. Often, in this
phase, zero-day exploits, i.e., unknown previously unidenti-
fied software/hardware vulnerabilities and infection vectors,
are used as well. Moreover, the utilized techniques typically
used in the APT are adapted or combined depending on the
target and defensive strategy.

The rise of the APTs make traditional network defenses
inadequate [71]. Typically, the existing defensive systems
which use static techniques and tools such as system patch-
ing, firewalls, and signature-based detection, are not able
to secure against custom-built malware and other sophisti-
cated, proprietary techniques used by the APTs. Many of the
functionalities later seen in the ‘‘mainstream’’ malware have
been initially introduced and tested in these sophisticated
threats, and after proving effective are copied to the ordinary
malicious software [72]. This was the case of introducing the

various types of information hiding techniques into malware.
First, such solutions have been tested in APTs (e.g., Duqu,
Regin, HammerToss) and then, when having proved their
effectiveness, they became slowly absorbed by the ‘‘ordi-
nary’’ malware.

From the defenders’ perspective, discovering and resist-
ing against APTs is a significant challenge, as the security
personnel must be able to correlate many security incidents,
which are often only loosely connected (if they are detected
at all), happening in the long time frame and they just adapt
to this dynamic, threat-based strategy. Moreover, in an ideal
case, the security analysts must be able to process, merge, cor-
relate, monitor, and exchange information about the potential
adversary on an ongoing basis.

F. DOMAIN AND FAST FLUX THREATS
Modern malware extensively exploits the DNS (Domain
Name Service) infrastructure for nefarious purposes. In par-
ticular, two complementary techniques are widely employed
in modern scams, namely, Domain and Fast (IP) Flux.

Domain-Flux malware may be instructed to resolve hun-
dreds of different – potentially valid – domain names per day,
only a small portion of which may actually be registered by
miscreants and resolve to a botnet node (i.e., IP address) for
the C&C communication. A popular method is to generate
malware domain names according to a Domain Generation
Algorithm (DGA) [73].

To intercept malware communication, the security commu-
nity needs to blacklist or sinkhole2 all the domains that can
potentially be resolved by the domain-flux malware, which
is very hard and requires an international effort. On the other
hand, malware domains may become known by the security
community only after an extensive analysis of the malware
intercepted in the wild. Meanwhile, new malware deployed
in the wild may query a completely different set of domain
names, using new – arbitrary – (unknown) methods.

Cybercriminals are strongly motivated to deploy domain-
flux malware, because the number of possible domain names
is incredibly large. At the time of writing, there are a full
googol ∼ 10101 of public suffixes that can be registered by
anyone for malicious purposes.3

Additionally, each domain name may resolve to an
ever-changing set of IP addresses, associated with the
malware-compromised machines. This technique is also
known as the Fast (IP) flux. Fast flux nodes are often part
of a large botnet, composed of thousands of machines under
the control of miscreants, and act as a proxy, effectively
masquerading and protecting the actual source of malicious
content called mothership [75]. Fast flux techniques add a

2Sinkholing activities aim to take control of the malicious domain resolu-
tion for defensive/legitimate purposes.

3This number can be computed using the formula presented by Spring [74]
considering that, at the time of writing, there are roughly 10 thousands of
public suffixes, under which Internet users can directly (or could historically)
register domain names – see https://publicsuffix.org for further details.
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substantial layer of reliability to malware C&C and make IP
address blacklisting of limited applicability.

G. MACHINE LEARNING ATTACKS
All modern malware detection technologies are based on the
concept of learning by example, the basic mechanism of
human learning, and, more generally, of all living species,
necessary for survival. A ML algorithm builds a statisti-
cal model capable to generalize a set of (training) malware
instances, extracting higher-level information that character-
izes them as a class. The generalization process is, in fact,
a synthesis of such instances and can make it possible to
automatically recognize never-before-seen malware.

In this scenario, ML algorithms must operate in a hostile
environment, characterized by the presence of an intelligent
adversary (malware developer), highly motivated to evade
detection. The vast majority of the ‘‘off-the-shelf’’ ML algo-
rithms is not designed to operate in such a scenario, and can
be incredibly vulnerable if attacked [76]. ML attacks can be
of three main, complementary types:
• Information gathering: the adversary probes the ML
model to discover sensitive information about its inter-
nal parameters and behavior [77], [78] or even build a
surrogate copy [79];

• Evasion: the adversarymanipulates an instance of attack
to escape detection, exploiting inherent weaknesses of
the learned statistical model [80];

• Poisoning: the adversary injects ad-hoc training exam-
ples to mislead the learning algorithm [81].

Information gathering attacks may lead to privacy vio-
lations about ML parameters and behavior. They can be
also useful to fine-tune and automatize evasion and poison-
ing. In particular, evasion attacks target the ML weaknesses
related to:
• statistical representativity of examples used for training
and performance assessment (testing);

• discriminating capability of information (features)
extracted from each example;

• generalization capability of the base model used by the
learning algorithm.

Poisoning attacks, on the other hand, aim to enhance
the aforementioned limits, substantially compromising the
integrity of the learned model. The accuracy of the learned
model may be reduced until it becomes totally useless, and
even counterproductive, for instance, because it raises too
many false alarms.

V. INFORMATION HIDING AND RELATED THREATS
The term information hiding is an umbrella for a broad
spectrum of techniques that can be used to make data dif-
ficult to notice. Due to improvements in network defense,
information hiding methods are becoming increasingly used
by cybercriminals or state-sponsored groups [42]. As a
consequence of such popularity, a new class of malware
endowed with some form of information hiding capabilities
or steganographic mechanisms is gaining the attention of

researchers [82]. Accordingly, it is called stegomalware and
a precise terminology to describe and classify the wide-array
of techniques used to launch attacks, hide the exfiltration of
data, or bypass security policies, is still absent [83].

The original goal of stegomalware was to remain unnoticed
when implementing the various phases of an attack, mainly
by means of covert channels implementing C&C commu-
nications towards a remote server or colluding applications
schemes to infect a host in a cloaked manner [42]. However,
modern threats captured ‘‘in the wild’’ support a more sophis-
ticated use of such techniques. In fact, stegomalware now
exploits data hiding to deploy anti-forensics mechanisms,
multi-stage loading, or to provide an additional degree of
secrecy over the encrypted and obfuscated executables.

As of today, the most comprehensive observatory on
information-hiding-capable threats is run by the Criminal
Use of Information hiding (CUIng) initiative, which cap-
tured and observed stegomalware samples in the 2011-2019
period (see [42] and [43] for a detailed discussion on the
topic). In essence, the trajectory in the evolution of ste-
gomalware begins with attackers (probably supported by
nation-wide sponsors) resorting to information hiding only
to implement the APTs like Duqu, Regin or Hammertoss.
Over the years, many techniques were also adopted to
develop more ‘‘ordinary’’ attacks. For instance, recent, pop-
ular threats like ransomware (e.g., TeslaCrypt, Cerber and
SyncCrypt) or exploit-kits (Stego/Astrum, DNSChanger, and
Sundown) deploy some form of information hiding. The trend
is reviewed in detail below, by distinguishing the five main
groups of techniques exploited by stegomalware.

A. DIGITAL MEDIA FILE MODIFICATION
Themost common approach employed by attackers for hiding
data exploits digital media files as the container for the secret
(also defined as the carrier). In general, this allows to: conceal
malware settings or a configuration file, provide the malware
with aURL for retrieving additional components, and directly
store malicious code.

The first known attempt dates back to 2006, when
the Trojan.Downbot hid commands and executable code
within licit HTML pages or JPEG images. Yet, the use of
image steganography intensified only years later. Specifi-
cally, in 2011 the Duqu malware aimed at gathering details
on industrial control systems. To exfiltrate secrets, data were
encrypted, appended at the end of innocent digital images,
and then sent over the Internet to a remote host. A sim-
ilar approach was also observed in the Alureon malware.
In 2014, the Lurk malware infected hosts via <iframes>,
and by exploiting vulnerabilities in the Adobe Flash. The
malware then retrieved an additional payload from a URL
encrypted and hidden within the pixel of an image. A year
later, Vawtrak/Neverquest malware concealed settings in fav-
icons, i.e., innocent-looking pictures widely available in web-
sites, by using the LSB technique [84].

More recently, information hiding techniques have also
been employed for malvertising attacks, as evidenced by
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the AdGholas malware, which avoided detection by using
steganography for hiding encrypted JavaScript code in
images, text and HTML code. Lastly, at the end of 2016,
large-scale attacks related to the online e-commerce platform
Magento revealed the usage of image steganography to con-
ceal details of payment cards, i.e., the malware exfiltrated
stolen payment details by hiding them in the images of real
products available through the infected e-commerce site.

B. INFORMATION HIDING AND RANSOMWARE
The first attempt of mixing information hiding to empower
ransomware has been observed in 2016 with the Tes-
laCrypt using the Neutrino exploit kit as the attack vector.
Specifically, the Neutrino initially redirects users to a mali-
cious landing page for auditing the victim and selecting the
most appropriate exploit. The malicious executable is then
gathered via Innocent-looking HTTP traffic, i.e., a HTTP
404 error page embedding C&C commands in the HTML
comments tag. Later the same year, Cerber used a decoy doc-
ument which, when opened, loads malicious macro-code that
downloaded a JPEG file embedding a malicious executable.
Lastly, in August 2017, a similar technique has been dis-
covered in the SyncCrypt ransomware. The infected emails
contained WSF (Windows Script File) attachments posing as
court orders. If opened, malicious code downloaded a digital
image containing the core components of SyncCrypt.

C. STEGOMALWARE AND EXPLOIT KITS
Information hidingmethods became so popular among cyber-
criminals, that they are incorporated within exploit kits to
allow developers with little or no programming skills to
create, customize and distribute malware. The first exam-
ple showing this feature is the Stegano/Astrum exploit kit,
which has been used at the end of 2016 to launch an
aggressive malvertising campaign. Stegano/Astrum embed-
ded malicious code within banner ads by modifying the alpha
channel of the used PNG image.

In 2016, another type of exploit kit relying upon malvertis-
ing has been identified. DNSChanger hid an AES encryption
key within an innocent looking advertisement to decrypt the
network traffic generated by the exploit kit. The scope of the
attack is to launch brute-force attacks against network routers
to gain control and inject advertisements in the exchanged
traffic. While Stegano/Astrum and DNSChanger are niche
products, the Sundown exploit kit is one of the major play-
ers in the ‘‘insecurity’’ market. In particular, Sundown used
steganography in two ways: to covertly exfiltrate information
stolen from the infected system in PNG files uploaded to an
Imgur album, and to hide the exploit code delivered to the
victims.

D. NETWORK COVERT CHANNELS
Network covert channels are hidden communication paths
allowing two remote endpoints to exchange information [42].
To this aim, the attacker manipulates specific behaviors of
the traffic (e.g., the inter-packet time or the throughput) as to

encode a secret [83] or injects a secret in the protocol data unit
(e.g., in the unused fields of the header [85] or in the payload
field [86]).

The adoption of network covert channels to support mali-
cious activities has been firstly observed in 2011. Specifi-
cally, worm W32.Morto propagated using a vulnerability of
the Remote Desktop Protocol and used the records of the
DNS to communicate. In more detail, W32.Morto queried for
a DNS TXT record to obtain an IP address for retrieving an
additional executable. A similar solution has also been used
in the Feederbot malware. Two years later, the Linux.Fokirtor
Trojan hid malware communications in innocent Secure
Shell (SSH) and other server process network traffic. In addi-
tion to this information hiding technique, Linux.Fokirtor uti-
lized the Blowfish encryption algorithm to cipher stolen data
or other communications with its master. Lastly, a sophisti-
cated malware named Regin has been discovered in 2014.
Regin was equipped with many sophisticated mechanisms,
such as anti-forensics capabilities, a custom-built encrypted
virtual file system, and the ability to hide communications
within ICMP/ping traffic, HTTP cookies or in custom TCP
segments and UDP datagrams.

E. POSING AND MIMICKING
With posing and mimicking we think of the countermea-
sures deployed by a malware for being perceived as a legiti-
mate program or for morphing malicious communications to
admissible data exchanges. In this vein, a popular example
is a variant of Android/Twitoor, which impersonates a porn
player app or an MMS application to decoy the user to
install them and spread the infection. A more recent exam-
ple is SpyNote Trojan acting like a legitimate Netflix client
interface. Once installed, it allows the attacker to execute
different actions, such as copying files or contacts, as well as
eavesdropping on the communications of the user. To demon-
strate the effectiveness of the mimicking techniques, they
have also been found in threats targeting industrial control
systems scenarios. For instance, the Irongate malware can
record several seconds of ordinary, legitimate traffic from a
programmable logic controller and then use it as a smoke-
screen, i.e., malicious commands are masked using legitimate
ones.

In general, threats observed in the wild exploit posing and
mimicking to implement some form of a cloaked commu-
nication service. This is the case of Fakem RAT morphing
its C&C traffic to look like MSN and Yahoo! Messenger
or HTTP conversations. A more sophisticated approach has
been observed in 2017 in Carbanak/Anunak, which abused
a Google Sheets spreadsheet to coordinate attacks and exfil-
trate data of infected victims. However, more sophisticated
approaches, such as the one based on domain fronting, are
becoming the preferred choice of many attackers, especially
to empower APTs. In this case, malicious traffic is masked
by mimicking the interaction patterns (even very complex)
with an innocent destination, e.g., HTTPS traffic containing
commands is adjusted to resemble a Google search.
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VI. EVOLUTION OF MALWARE DETECTION
Along with malware becoming more sophisticated, detection
methods have evolved to keep up with the ideas of malware
developers.While the early detection systems relied on signa-
tures, themore recent ones use behavior-based or bio-inspired
techniques. In this section, in a synthetic way, we describe
the evolution process of malware detection methods, showing
how the approach to malware detection evolved.

A. SIGNATURE-BASED METHODS
Early malware detection methods attempted to limit viral
spread by controlling the objects that are accessible to suspi-
cious programs as well as by examining the programs before
executing them (comparing checksums) [87]. The detection
mechanisms have tried to filter the programs that took unde-
sirable actions and made unauthorized modifications in the
operating system. They identified the presence of an infection
by matching code bytes of the software to the code patterns
of known malware (called signatures) in the database. One of
the first malware detection pattern-based mechanisms were
programmable filters using tell-tale properties [88]. They
were able to detect known computer viruses, worms, Tro-
jan horses, and time/logic bombs. Tell-tale properties were
determined using code slicing (e.g., file reading/writing, pro-
gram execution, network accesses, change of privilege), data
flow information (e.g., anomalous data, anomalous inter-
procedural data dependence) and program-specific features
(e.g., authentication, identification of changes).

Signatures can match the characteristic malware con-
tent [89], network protocols and packet payloads [90], but
they can also identify suspicious behavior [91], [92], being
an effective method for detecting well-known malware. The
use of metadata [93] and connection attributes [94] made
it possible to define new features and increase the level of
efficiency enabling the detection of malicious network traffic.
In addition, new signature types such as JA3/JA3S have added
new capabilities to the signature-based engines, allowing the
detection of threats in encrypted traffic [95].

A huge number of signatures require an efficient managing
mechanism tomaintain a proper rule set; otherwise, the detec-
tion system suffers from excessive false alarms, caused
by expired or otherwise useless signatures. Signature-based
methods, well known and thoroughly studied, are part of
most of modern malware detection systems. They allow rapid
identification of known malware and protection from many
old but still active threats. However, they are helpless against
new threats and any code modification or data obfuscation
techniques.

B. BEHAVIOR-BASED METHODS
Variance of signatures and similarity of behavior triggered
developing behavior-based methods of malware detection.
They are able to detect malicious behavior during runtime,
recognize the style of malware and unidentified malicious
processes, and thereby detect unknown malware. Various

types of behavior may be considered suspicious: reduc-
ing computer speed, disabling security protocols, pop-ups,
modifying autostart, installing rootkits, accessing critical
files, executing OS instructions, creating and executing
files, etc.

Behavior can be determined by monitoring network activ-
ities, processes, system calls as well as resource changes.
Typically, a behavior-based mechanism must be adjusted to
the environment and requires the selection of appropriate
features. There are several main groups of features: network
features (e.g., network usage, flow length in packets and
bytes, used port numbers, number of TCP packets with SYN
flag on), software features (e.g., system calls, event logs,
user activity) [96] and hardware features (e.g., counts of
microarchitectural events, battery monitoring, access to the
IMEI of a smartphone, device information) [97]. Malware
behavior description and analysis techniques have been com-
prehensively presented in [11].

Behavior-based detection is strongly related to anomaly
detection. This approach has the potential to detect unseen
malware, although is burdened with a high rate of false pos-
itives. Many intrusion detection systems (IDSs) containing a
malware detection component detect anomalies by the anal-
ysis of Netflow-like features [98]. In [99], the author showed
that extending the list of network parameters, e.g., by adding
the count of the TCP packets with a sequence number equal
to 0, or the ICMP checksum error count, clearly improved the
detection of DoS attacks. In [100], the authors described that
observing histograms of, e.g., the source and the destination
port numbers, TCP flags, flow duration values, improves
detection of network anomalies. Histograms of inter-packet
times also helped in detection of hidden communication
channels in [101], which can be used in the detection of
stegomalware.

In general, modeling network behavior allows for reliably
detecting novel types of malware infections in the wild.
In particular, passively monitoring DNS, i.e., observing real
traffic traces of users in large networks, such as those of
Internet Service Providers (ISPs), constitutes a key point of
observation to detect malware C&C. Valid resolutions of
malware domains may be seen in large-scale networks weeks
or even months before the corresponding malware samples
are discovered and dynamically analyzed [75], [102].

In [96], the k-means algorithm was used for classifying
feature vectors, in which each element represented a count
of the specific system call. In [103], the authors described
malware detection based on low-level hardware features such
as architectural events, memory addresses and instructions.
In [104], the use of hardware performance counters (HPCs)
to detect malware for Android (and Linux) platform has been
proposed. The paper presented a novel analytical framework
to investigate the security provided by HPC-based malware
detection techniques. The HPC readings were periodically
monitored over the duration of the program execution for
comparison with a golden HPC reading. The authors devel-
oped a mathematical framework to investigate the probability
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of malware detection, where HPCs were monitored at a
pre-determined sampling interval.

Behavior-based techniques are often used for Android mal-
ware detection. To respond to malware collusion (a new
emerging attack model, where two or more malicious apps
work together via ICC channels) the authors of [105] pre-
sented a flow analysis for app pairs that computes the risk
level associated with their potential communications. Their
approach statically analyzes the sensitivity and context of
each inter-app flow based on inter-component communica-
tion between communicating apps, and defines fine-grained
security policies for inter-app ICC risk classification.

In complex environments, behavior-based methods are
prone to false alarms and dynamic analysis of behavior can
affect performance by introducing high latency. Therefore,
they should be tuned to specific features of the environment,
and the security policy should be monitored and adapted to
changing behavior. Unfortunately, the behavior-based meth-
ods can be evaded by mimicry attacks, when the malicious
code is embedded in a program that behaves properly. Fur-
thermore, advanced malware is able to detect the presence
of the sandbox and will try to avoid detection by limiting its
activity [106].

C. HEURISTIC AND SPECIFICATION-BASED METHODS
Heuristic-based methods have evolved from the signature
and behavior-based methods [107], combining these two
approaches. Heuristic methods use data mining and ML
techniques to learn about the behavior and characteristics of
executable files [108], [109]. While the behavior-based mal-
ware detection needs to run a sample of malware, the heuris-
tic approach examines their features, such as: API calls,
byte N-grams, operational codes (OpCodes), control flow
graphs (CFGs) or their combinations. Also, other factors are
used as a feature in heuristic-based methods: file content, file
relationships, or dependency graph. Most modern heuristic
techniques are able to automatically detect known malware,
but heuristic analysis is not able to detect malicious code if the
code is effectively obfuscated [23]. Furthermore, they often
exhibit a high false positive rate, they are time consuming,
and usually require additional manual analysis.
Specification-based methods are rule-based techniques

similar to anomaly detection methods; however, instead of
relying on ML, they work under behavior specification pre-
definedmanually by a security expert. Thesemethods assume
that any policy violation is malicious. Specification-based
methods are able to detect known and unknown malware
and have a low level of false positives. However, they are
reported to be time consuming and exhibit a high level of false
negatives [110].

D. ENERGY-BASED METHODS
A class of methods progressively gaining the attention of the
scientific community is the one exploiting information about
the energetic footprint of hardware and software as a possible
indicator of ongoing attacks or security flaws [111]. To this

aim, different energy-related aspects can be exploited. For
instance, the literature already proposes techniques consid-
ering deviations from reference energetic footprints, anoma-
lous consumption of specific hardware components or sys-
tem daemons, increased battery depletion of mobile nodes
and per-application power drains [112]. Despite the specific
approach, such methods are often grouped under the energy-
based umbrella definition [111], [112].

A typical example of the use of energy-based mechanisms
is [113], which experimentally confirms that many rootkits
change the CPU power profile. This trait can be used to
detect the attack via specific time series-based algorithms.
In this case, the consumed power ‘‘condenses’’ critical infor-
mation and allows to outperform detection based on other
features. Another idea could be the use of the energy-related
information to enrich more ordinary data used for detect-
ing attacks. For instance, the work in [114] showcased how
power measurements (e.g., minimum, median or skewness
of the energy consumed) can be combined with the features
observed in network traffic. Specifically, the authors exper-
imented with different voltage rails and various supervised
ML algorithms to spot anomalies by jointly observing power
and network usages. A similar idea is presented in [115],
where the authors noticed that an observation of the power
channel can be an effective way for detecting attacks on
shared micro-architectures, even if the attacker tries to hide
behind benign programs via a power-mimicry technique.

Indeed, energy-based methods represent a promising tool
to counteract the emerging stegomalware. To this aim,
power can be used as a high-level indicator enabling to
abstract the detection process without having to consider
attack-dependent aspects. For the specific case of malware
targeting mobile devices, in [116] authors exploited anoma-
lous battery consumption to spot the presence of a mal-
ware based on the colluding applications scheme. Especially,
authors used neural networks and decision trees to recognize
whether two processes leaked data via various covert chan-
nels (e.g., using file locks, enumeration of sockets or abusing
Android-specific inter-process communication). Similar to
other works available in the literature, also this approach
has the following limits: it requires to precisely quantify the
‘‘normal’’ power utilization of a device, and it relies upon
measurements, which could be not precise or account for
additional hardware [111].

A possible workaround is to relax the needed level of
detail and use additional, related information. For the case
of colluding applications, in [117], the authors showcased
how to exploit activity correlation to refine the detection.
In fact, the processes wanting to communicate through a
covert channel tend to be active in overlapping periods as to
encode/decode the secret in the carrier before other processes
or the guest OS disrupt it.

Nevertheless, when energetic measurements are not pos-
sible (e.g., due to the need of modifications in the device
drivers), an effective generalization is to relate the consump-
tion to the CPU usage. Yet, the approach can be improved
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by considering additional features, such as the used RAM or
the threading of running processes [118]. Another possible
improvement concerns the use of in-kernel measurements to
precisely evaluate the behavior of the software, e.g., in terms
of statistical distributions of system calls [119]. Even if
energy-based approaches have been originally introduced for
‘‘legacy’’ malware and to support network intrusion detection
(see, e.g., [120]), an increasing research effort has been put in
extending the approach to other emerging topics or scenarios,
too. As a paradigmatic example, the work in [121] addresses
the crypto/ransomware threats targeting IoT environments
and exploits the energy consumption to feed a classifier.

E. BIO-INSPIRED AND OTHER DETECTION METHODS
Due to the increasing technological heterogeneity, attack-
ers are in general advantaged with respect to defendants.
This is even truer when in the presence of stegomalware,
as the use of information hiding makes the detection process
carrier-dependent and thus poorly generalizable. Therefore,
during the last decade, many ‘‘non-mainstream’’ approaches
have been proposed for rebalancing the arms race between
attackers and defendants.

A class of methods which has recently gained momen-
tum combines bio-inspired principles with ML techniques.
Methodologies such as Genetic Algorithms (GA) [122], Par-
ticle Swarm Optimization (PSO) [123] and Ant Colony Opti-
mization (ACO) [124]) are now used for feature selection
and optimization for solving problems ranging from the
detection of malware in Android OS to the improvement of
intrusion detection systems. Unfortunately, to be efficiently
deployed to production-quality scenarios, the bio-inspired
methods require facing several problems, such as solving the
imbalance of a dataset [125], tuning the configurations of
neural network models [126], as well as finding the optimal
combination of parameters while avoiding the problem of
falling into local optimal solution [127]. However, GA algo-
rithms demonstrated their capability for obtaining a strong
generalization ability and robustness by finding the best
learner group for ensemble models [128]. As a paradigmatic
example of the use of bio-inspired approaches, in [129] the
authors proposed a novel way for detecting code hidden with
three commonly used steganographic tools via an Artificial
Immune System.

With the aim of preventing the attacks affecting users’
privacy, many works investigated the use of blockchain tech-
nologies [130]–[133]. In essence, the blockchain ensures
secure and reliable storing and sharing of signatures as well
as a framework for using them for detection duties. In this
vein, the joint use of blockchain in IDSs has been discussed
in [134], and the authors presented its ability to improve the
performance through enforcing trust and data privacy, secure
alert exchange, and enhance the process of trust computa-
tion in a collaborative detection environment. Unfortunately,
the use of blockchain to face threats in production-quality
environment is not yet mature and there are still not enough
proof-of-concept implementations.

VII. EVOLUTION IN MACHINE LEARNING APPLIED TO
MALWARE DETECTION
Since the late 1990s, a constantly growing number of appli-
cations of ML algorithms to malware detection has been
observed. Nowadays a great majority of malware detection
methods involve ML-based techniques. The main develop-
ment trends within ML are described below.

A. SHALLOW MACHINE LEARNING ALGORITHMS
Since malware detection is typically a classification task,
various classical ML-based classifiers have been employed,
such as logistic regression [135], SVMs [136], [137],
k-nearest neighbors (k-NNs) [138], [139], decision trees [140],
RFs [141], Naïve Bayes classifiers [142]. They operate in
various feature spaces, containing either static features, such
as strings (e.g., filenames, code fragments), N-grams, API
calls, entropy, malware representation as a gray scale image,
function call graphs (FCGs), CFGs, or dynamic ones: values
of the memory contents at runtime, dynamic instruction
traces (sequences of processor instructions called during the
execution of a program), OpCodes [143], network traffic
parameters or API call traces [16].

Recently, new types of ML algorithms have been proposed
for malware detection. For example, a novel mechanism
called Tree Augmented Naïve Bayes (TAN) was proposed
for Android malware detection [144]. The method was based
on a hybrid analysis of the conditional dependencies between
API calls, permissions and system calls. After inspection of
API calls, requested permissions and system calls belonging
to an application for finding an anomaly with three distinct
Ridge regularized logistic regression classifiers, the method
triggered a second phase: the prediction of malicious behav-
ior by using the TAN model.

B. RESEARCHING NEW FEATURES FOR SHALLOW
MACHINE LEARNING
Newest articles on the ML-based malware detection also
report innovative feature spaces. In [145], the authors pro-
posed an Application Program Interface Call Transition
Matrix (API-CTM) to generate network topology and analyse
various network metrics to extract features. A novel mal-
ware detection method based on audio signal processing is
presented in [146]. The authors proposed to convert data
bytes into audio signals and search for similar patterns in
the audio signals, using well-known acoustic feature space:
mel-frequency cepstral coefficients (MFCCs).

Malware detection in mobile systems is constantly a chal-
lenge due to the huge number of applications, parameters and
features; therefore is often approached using the ML-based
methods. A new graph-based feature generation approach
for Android applications was presented in [147]. Combining
the original features and their contexts together, the authors
generated new features which hold richer semantic infor-
mation than the original ones. They compared several ML
techniques (Naïve Bayes, k-NN, RF, logistic regression, and
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SVM) for this approach and achieved the best accuracy and
performance for the RF algorithm.

In [148], the authors proposed a new static ML-based
method called fine-grained dangerous permission (FDP),
which gathers the features that better represent the differ-
ence between malicious and benign applications than other
known methods, although it cannot extract more information
from dynamic loading or encryption. Among several ML
methods (J48, k-NN, SVM, Naïve Bayes), J48 proved to
be the best. In [149], the researchers presented an effective
prototype for detecting repackaged malware. They addressed
the problem of detecting repackaged malware through static
code heterogeneity analysis. Their solution strategically par-
titioned the code structure of an application into multiple
dependence-based regions (subsets) and each region was
independently classified on its behavioral features. They
compared decision trees, RF, k-NN, and SVM algorithms,
and RF achieved the best accuracy. The paper [150] presented
an SVM-based approach to detecting malicious Android
applications and delivered the results highly competitive with
the existing approaches.

Even though ML algorithms have not always been suc-
cessful in detecting zero-day attacks, the recent studies seem
to challenge this. In [151], the authors presented a solution
based on a refined one class classification (OCC) models
which were selected based on the application running in
the foreground. Using the scenarios of information theft,
currency-mining bot, and DDoS attack on a smartphone,
the authors showed that their method was able to detect
zero-day malware effectively, without significant overhead.

C. INTRODUCING DEEP LEARNING
Since the early 2010s, various deep ML models have
been employed for malware detection, in parallel to clas-
sical, ‘‘shallow’’ ML-based algorithms. Malware detection
has employed various architectures of deep neural net-
works (DNNs): multilayer perceptrons (MLPs) [152], recur-
rent (RNNs) or convolutional neural networks
(CNNs) [94], [153], convolutional recurrent neural networks
(CRNNs) [154], autoencoders [155] and long short-term
memory (LSTM) models [154], [156].

Multiple studies have compared the efficacy of deep and
shallow approaches. Many studies proved prevalence of deep
methods (e.g., [152], [153], [157]) – their authors reported
that DL-based methods yielded lower false positive rates
and high accuracy rates for both known and zero-day mal-
ware compared to the classical ML-based methods. However,
the authors of other studies showed the contrary – that shallow
methods, such as RFs, outperformed various DNN setups
(e.g., [94], [155]), both in terms of accuracy and computa-
tional load.

Nevertheless, the newest studies tend to favor the
DL-basedmethods. Researchers highlight that specific setups
(e.g., CRNN network with dynamic signatures) allowed to
recognise malware despite the obfuscation [154]. Several
studies show the advantages of using the LSTM networks,

which, apart from being effective, can also be much less time
consuming compared to, e.g., the RF algorithm [158].

A remarkable effort has been put towards improving
the existing DNNs. An improved DL method (called Col-
Caps) based on capsule network was proposed in [159].
In this approach, the malware was transformed into a color
image, and then the dynamic routing-based capsule net-
work was used to detect and classify the color image. The
experimental results showed 20% higher level of detection
accuracy than SVM and classical CNN. Detection of mali-
cious code variants using CNN was also presented in [160].
In the work, the malicious code was converted into a visual
grayscale image and then a CNNwas built. However, in order
to improve the effectiveness, the authors introduced the
self-attention mechanism into their neural network, achieving
the accuracy outperforming reference methods.

Recently DL with reinforcement learning (DRL) has been
shown to work effectively for malware detection. In [161],
the authors presented a DRL-based method for efficient mal-
ware detection in a cloud environment. This method was able
to achieve near-optimal detection rates while reducing costs.
A DRL-based approach was also used to learn the real-time
feature distribution of the latest malware variants [162] and
in the feature selection process [163].

D. RESEARCHING NEW FEATURES WITH DEEP LEARNING
The DL-based models can learn complex feature hierarchies
and combine diverse steps of malware detection pipeline into
one solid model. The techniques that utilize multiple fea-
tures reflecting various characteristics of applications, pro-
cesses or network are also an important research area. The
DL-based methods based on multimodal features were pre-
sented in [164] and [165]. In [166], the authors presented a
hybrid solution combining automatic feature learning with a
DL-based detector.

Several studies apply DL techniques with system call
analysis. The authors of [167] showed that studying behav-
ior of a system-call sequence is a promising approach for
the detection of unknown attacks. They addressed the task
proposing a system-call behavioral language (SBL) and
sensitivity-based attention calculation methods. They used
an LSTM to learn the context dependencies and semantic
relationships of system-call sequences. The sensitivity-based
LSTM achieved higher classification accuracy than the exist-
ing ML methods based on feature engineering.

Modeling the system calls as graphs can help in captur-
ing the structural dependencies between the system calls.
Recently, the interest in extending DL models, such as Graph
Convolutional Nets (GCN) for graph data, has been growing.
Motivated by this, the authors of [168] described a novel
Android malware dynamic detection mechanism using GCN,
which uses centrality measures of the graph as input features.
Another GCN-based DL framework can be found in [169].
The system learns multiple embedding representations for
Android malware detection and family attribution. This novel
and highly reliable approach was based on independently
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recurrent neural network (IndRNN) model with strong time
series modeling used to extract useful context-dependency
information.

E. ENSEMBLE CLASSIFIERS
A growing trend of successful application of ensemble clas-
sifiers to malware detection can be observed. The goal of
ensemble methods is to combine several base models into
one powerful model to increase the accuracy of the output
model. In general, an ensemble model falls into one of the
three categories: sequential, parallel and stacking. In case of
sequential methods (like boosting), models are generated in
sequence, trying to improve the results by re-weighting mis-
classified examples during the learning process. On the other
hand, parallel methods (like bagging) use voting or averaging
the results after training several models on different samples
of the dataset, whereas stacking combines the decisions of
different base classifiers while training a meta-model on
the outputs of base models. There are also multi-component
approaches that combine the above methods.

As an example, in [170] new variants of decision trees:
XGBoost and LightGBM, were proposed for detection of
malicious JPEG images. The authors compared them with
classical decision trees, RFs and k-NN algorithms, showing
that the LightGBM classifier outperformed the remaining
classifiers. In turn, in [171] the authors proposed a two-level
solution called DeepRefiner which achieved an accuracy of
97.74% on a dataset containing 110, 440 benign and mali-
cious applications. In the first detection layer, DeepRefiner
efficiently classified applications by MLP with multiple hid-
den layers. At the second level, DeepRefiner detected mal-
ware in applications that could not be reliably classified in
the first stage. This process involved multiple stacked LSTM
hidden layers followed by a Max pooling and a Softmax
layers.

Multi-level classifiers have become one of the popular
approaches in detecting malware in the Android-based sys-
tems. The first two-level anomaly-based IDS system for
Android was MADAM [172], that combined features at the
kernel-level and application level and used two classifiers
of the same type (k-NNs). Another multi-level detection
mechanism was proposed in [173]. The authors also designed
two-level classification mechanism and tested more clas-
sifiers: at the kernel-level they applied the decision trees,
k-NNs, Naïve Bayes, J48, JRip and logistic regression, and at
the application-level – AdaBoost and RF algorithms. Droid-
Fusion detection system designed for Android [174] was
capable of leveraging ensemble learning algorithms using
RFs, random subspace, boosting, and others.

The authors of [175] proposed aDL-basedmethod employ-
ing an ensemble of base MLP classifiers and a fusion
SVM classifier. In [176], the authors presented an algorithm
that classified malware samples (even unknown) into fami-
lies. The algorithm combined clustering methods and super-
vised classifiers to even deal with sophisticated obfuscation
problem.

An ensemble classifier fed with malware represented as
an image was shown in [177]. The authors proposed a new
method that used space filling curve mapping (SFCM) to
visualize malware, extracted image features by a CNN, and
classified the images using a SVM. They worked with the
Shannon entropy which helped to detect encrypted or com-
pressed malicious code.

Although the effectiveness of malware detection using
ensemble classifiers is very promising, several researchers
note that thememory and processing requirementsmake large
ensemble classifiers unsuitable for malware detection in big
data environments [178]. To address this problem, a pruning
method has been recently proposed [179], as well as a novel
method of selecting optimal classifiers based on weighted
voting [180].

In [181], an automated multi-level approach based on
the reconstructed semantic view of executables was pro-
posed for virtualized environment. The Online Malware
Detector (OMD) of the Automated Multilevel Malware
Detection System (AMMDS) was able to recognize known
malware whereas the Offline Malware Classifier (OFMC)
was capable of detecting and classifying unknown malware
by using various ML techniques. In addition, the AMMDS
system used both the Virtual Machine Introspection (VMI)
and Memory Forensic Analysis (MFA) techniques to pre-
dict early symptoms of malware execution by detect-
ing stealthy hidden processes on a live guest operating
system.

An improvement to multi-level approach was proposed
in [182]. The authors of the article applied transfer learning
in a three-stage DL-based detection process. This modifi-
cation accelerated the convergence and improved detection
accuracy.

F. MACHINE LEARNING IN RESPONSE TO SECURITY
CHALLENGES
To guarantee the privacy of data used for ML training,
a federated learning mechanism has recently been proposed.
This concept of distributed ML was used in a multicloud
environment, where multiple clouds worked together against
the spread of malware without exposing sensitive informa-
tion [183]. A federated learning system for Android mal-
ware detection was proposed in [184], where mobile devices
worked together to learn the master classifier based on local
learning on each mobile device.

On the other hand, a detection algorithm must be able
to adapt in adversarial and unpredictable environments.
In response to ML attacks (see Section IV-G), adversarial
ML techniques have been developed. Adversarial ML deals
with the development of ML systems capable of provid-
ing security guarantees when exposed to adversarial attacks.
Adversarial ML can be seen as a ‘‘wiser’’ way of learn-
ing from examples, which considers the possible presence
of deliberately polluted examples, malicious probing and
manipulations [76].

VOLUME 9, 2021 5387



L. Caviglione et al.: Tight Arms Race: Overview of Current Malware Threats and Trends in Their Detection

VIII. ATTACK TRENDS AND RESEARCH DIRECTIONS
As discussed, modern threats target a wide-array of
hardware and software technologies, often accessed in
mobility. Besides, the Internet is becoming a continuum
of different technological domains embracing home net-
works, telecommunication carriers and multi-tiered comput-
ing infrastructures. As a consequence, attackers can move
through a complex and almost boundless surface. Moreover,
the use of information hiding and steganographic techniques
can contribute to the ‘‘sense of loss’’, that defenders expe-
rience when inspecting traffic traces or dissecting malware
samples.

Our investigation hints at malware increasingly specializ-
ing to assault devices, assets and smart scenarios, which are
becoming popular and profitable. To give a possible idea of
the trends that we expect, we borrow from [185] the following
taxonomy highlighting exploitable security risks. In more
detail:
• buildings: with the advent of smart buildings, the possi-
bility of compromising a variety of nodes, IoT devices
and software frameworks exploded. For instance, mid-
dleware used to manage IoT technologies and actuators
will make it hard to precisely track data or an execu-
tion flow with the aim of developing detection tech-
niques or countermeasures. In this vein, smart buildings
are a candidate to be targeted by ransomware block-
ing core functionalities or endanger mission-critical
activities. Nevertheless, the complex ecosystem could
be used to profile users, host botnets as well as to
offer a place where to store stolen data to be covertly
exfiltrated.

• devices: Internet-enabled devices are often endowed
with enough computing and storage resources to make
them relevant targets, for instance to orchestrate a bot-
net, conduct a DDoS or mine cryptocurrencies. Gam-
ing consoles, set-top-boxes, actuators for cyber-physical
systems and household appliances can be both weak
points exploited by ransomware and weaponized assets
to bridge attacks or implement air-gapped covert chan-
nels for spreading an infection, even when network con-
nectivity is absent [186].

• smartphones: since they are equipped with a variety
of sensors that can be used to gather informa-
tion, smartphones are prime targets for malware,
especially if endowed with steganographic capabili-
ties [41], [185], [187]. Nevertheless, smartphones are
centralizing an unprecedented amount of personal data,
thus they are prone to mass profiling campaigns or a
candidate for becoming the prime source for developing
social engineering-based scams, like phishing. Thus,
cyber criminals appeared to be very active in developing
ideas to bypass the various security policies deployed
by vendors, software providers, network operators and
security firms. In this sense, stegomwalware targeting
phones can be envisaged as an important source of inse-
curity in the near future. For instance, steganography

can allow malicious software to remain published in
online stores for months, despite containing harmful
code [188].

• vehicles: currently, vehicles are offering services for
localization and route planning, fleet management,
remote telemetry as well as connections with personal
devices for entertainment and communication. More-
over, the observed trend continues towards even tighter
inter-connectivity between vehicles and the surrounding
infrastructure. Hence, vehicles will represent a major
challenge for cybersecurity [189]. Specifically, mali-
cious software can be inoculated via the onboard diag-
nostic port, firmware updates, embeddedWeb browsers,
aftermarket devices or ports allowing to connect mass
storage devices like SD cards or USB memories.
A new-wave of malware implementing low-level attacks
can disrupt the privacy of the driver or perform sabotage,
e.g., by implementing a sort of functional-locker, freez-
ing functionalities rather than information. ML can also
be exploited to conduct data-centric attacks, for instance
by poisoning the data used to train algorithms assisting
the driver [190].

Despite the scenarios, skills and goals of the attackers, and
the targeted technology, surprise will always play a major
role. In this vein, as it has been highlighted in Section V,
information-hiding-capable threats and steganographic mal-
ware can become the new ingredient for the creation of
even more sophisticated malware, which can endanger a
variety of setups (even not unimaginable today). For instance,
the authors of [191] dissected the various techniques used by
the Mirai malware targeting IoT nodes. Even if not strictly
related to steganography, Mirai also exploits mechanisms to
hide the presence of the process, to avoid being spotted. As a
consequence, new threats can leverage different frameworks
conjugating ICT and legacy technologies making difficult to
outline a precise evolutionary path. Accordingly, the expected
evolution and diffusion of stegomalware can have the follow-
ing long-term implications:
• New information hiding techniques will be intro-
duced continually, and their degree of sophistication
will increase. For this reason, the detection of future
attacks could require being able to shift the atten-
tion from the networking to computing aspects (and
vicecersa). For instance, network covert channels may
void traffic-based detection and require more holistic
approaches.

• Information hiding offers a decoupled design. There-
fore, steganographic layers and functionalities can easily
be incorporated in almost every type of malware to
provide stealthiness of communication even in isolated
environments/networks.

• Stegomalware proved to remain cloaked for a long
period of time, while slowly but continuously leaking
sensitive user data. Thus, it must be considered as a new
class of APT, and must be addressed with adequate tools
and sanitization techniques.
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Concerning the future research, the investigation of such
a relevant corpus of works in the area of malware detection
(including past survey attempts) allowed us to precisely iso-
late some dominant research directions. Specifically:
• Need of appropriate and trusted datasets. Malware
authors can modify datasets by marking legitimate data
as malicious, thus causing malfunctions. Such informa-
tion can be then exploited by the production-quality
services, engineers wanting to design new mitiga-
tion techniques or researchers having to validate
their algorithms. Thus, poisoned data may lead to
compromised implementations that can generate false
positives remaining undetected for a long time. There-
fore, there is a need for trusted, open, public datasets,
which could also be used as benchmarks for malware
detection systems.

• Adversarial attacks. In addition to the above-
mentioned poisoning attacks, other novel attack types
targeting AI components have recently gained signifi-
cant attention. This new threat, collectively identified
as ’Adversarial attacks’ can also be used to subvert
the ML algorithms used in IDS. Defensive methods
against adversarial attacks against IDS are an emerging
research direction [192], which should be strengthen and
consolidated.

• Pursue explainability.The presence of AI in IDS can be
a contentious issue due to the black-box nature of some
of the best-performing ML algorithms. The notion of
explainability of artificial intelligence (xAI) is currently
at the frontier of scientific research, with the attention of
a vast fraction of the security community. In IDS, just as
in other domains utilising ML, the techniques to ’peek
inside the black-box’ slowly emerge [193], [194], and
are highly worth further development.

• Do not neglect fileless malware. Since this type of
malware does not affect the filesystem of the infected
machine, standard mechanisms such as system monitor-
ing, firewalling and proxying, restricted access to com-
mand prompts, website analysis, whitelisting, and user
education could be ineffective. Thus, a research effort
is needed to efficiently detect and counteract fileless
threats.

• Predict and follow. The rise of zero-day malware and
the use of advanced evasion methods is a fact. Among
the others, malware attribution to a given developer or
an organized group (as it is done, e.g., in the Malpedia
project [195]) is a research area worth investigation.
In fact, attributing malware to a certain developer(s)
can help isolate the modus operandi and deploy similar
countermeasures. To this aim, ML can help in producing
a new-wave of tools for code and similarity analysis.

• Avoid the ‘‘IoT bloodbath’’. As shown, IoT malware
is becoming more and more complex. Even if dictio-
nary attacks targeting remote accesses (e.g., legacy tel-
net or SSH) are still among the most effective ones,
new types of malware, such as ransomware attacks,
are quickly emerging. Since IoT will be a pervasive
component of urban, personal and industrial deploy-
ments, it is expected that it will be a favorite target
of many malware campaigns, possibly orchestrated by
state-wide groups. Thus, there is the need of intensifying
the research towards improving malware detection in
IoT environment.

• Take advantage of virtualization. Since the Soft-
ware Defined Networking (SDN) solutions are now
a de-facto standard, the presence of a controller with
a network-wide view can be a promising feature for
blocking the malicious network traffic. Several research

FIGURE 1. Schematic diagram of evolution in the approach to malware detection.
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FIGURE 2. Schematic diagram of evolution of machine learning applied to malware detection.

attempts have already been made to investigate this
topic: for instance, the authors of [196] presented
an SDN system which dynamically modifies the net-
work structure when malware activity is discovered,
and there are also a few studies focused on the
ransomware [197]–[199], botnets [200] as well as
zero-day attacks [201] detection. However, much more
research is needed. For example, an interesting direction
would be to enrich the SDN-based solutions with ML
techniques.

A. WRAP UP
As shown by the heterogeneity of the corpus of considered
research papers and the vast overlapping, incomplete nature
of past surveys, the development of malware detection is by
far more deterministic, and our survey revealed two major
trends. The first is depicted in Figure 1, which portraits
a diagram capturing the evolution of detection techniques.
As shown, the detection techniques developed decades ago
(e.g., signature-based ones) are still in use, especially against
known threats. However, newer, more sophisticated methods
have emerged (e.g., the bio-inspired or energy-based ones)
mainly to react against the hidden, obfuscated and complex
attacks.

The second trend concerns the adoption of ML and its
role surging to a major one. As depicted in Figure 2, even
though shallow methods are still in use and often yield good
results, deep neural methods are on a quickly ascending
curve. Complex neural architectures tend to replace the fea-
ture engineering process, as they are driven by raw input.
We also observed a clear tendency towards ensemble classi-
fiers and new training methods, such as transfer or federated
learning.

Lastly, we point it out that cyber criminals very quickly
incorporate new technologies into their ‘‘products’’ and they

contribute to the acceleration of the development of certain
threats. A notable example is the joint use of cryptocur-
rencies and blockchain technologies. Advancements in this
area allowed ransomware (as it was possible to anonymously
receive the ransom that had been paid) and cryptojacking (as
mining is an essential component of blockchain) to maturate
and spread.

IX. CONCLUSION
In this paper, we have presented a bird’s eye perspective on
the development and detection trends of malware. Specif-
ically, we focused on the aspects often neglected or only
partially covered in past surveys, i.e., the development of new
threats and the evolution the related detection techniques.

The results of our analysis have indicated that drawing
general, high-level conclusions is difficult, since cybercrim-
inals often undertake opportunistic actions without precise
development directions. Despite this, a clear driver emerged
from outr investigation: the main weapons of offenders are
surprise, hunting and dispersion.

Yet, since the efficacy of malware detection techniques
increases, offenders also improve their tools by misleading,
obfuscation or masquerade. Detection modules leveraging
ML get offended in adversarial attacks, which causes a ripple
in the proliferation of ML techniques. Such attacks trigger
the search for defensive methods, which results in a vicious
circle. The arms race continues.
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