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The anharmonic e5'ects on phonons in silicon and diamond have been studied by molecular-
dynamics simulations using an empirical tight-binding Hamiltonian. One-phonon spectral intensi-
ties of the zone-center and zone-boundary (X) modes have been calculated through the Fourier
transform of the velocity-velocity correlation functions. This scheme allows a quantitative and non-

perturbative study of phonon frequency shift and phonon linewidth as a function of temperature.
The results obtained are in good agreement with experimental data.

I. INTRODUCTION

The temperature dependence of phonon frequency
shifts and phonon linewidths in semiconductors have
been studied by both light-scattering as well as neutron-
scattering techniques. ' On the theoretical side, calcula-
tions on phonon frequency shifts and phonon linewidths
in these systems have been restricted to perturbative ap-
proaches, where anharmonic coupling constants are usu-
ally derived either by fitting to experimental data, ' or
more recently, extracted from the first-principles total-
energy calculations. Due to the complexity of the calcu-
lation, perturbation expansion is practical only for lowest
orders (rarely beyond fourth order in the force constants).
For strongly anharmonic systems or systems at high tem-
peratures, the perturbation approach becomes unsatisfac-
tory.

In order to provide a better alternative, we have under-
taken a nonperturbative approach where the observable
dynamical quantities related to anharmonic effects are de-
rived from time correlation functions in molecular-
dynamics simulations. While molecular dynamics is the
method of choice in handling the temperature and pres-
sure dependence of atomic motion, the success of the ap-
proach depends on the availability of realistic interatomic
interactions which must give an accurate description of
the anharmonic coupling of the system and yet is simple
enough so that the simulation can be carried out for a
reasonably large ensemble of atoms for a large number of
time steps. Conventionally, molecular dynamics is per-
formed with empirically determined classical potentials,
which in most cases consist of pair, and in some cases
triplet interatomic interactions. Such potentials contain
a set of parameters to be determined usually by fitting to
experimental data. There are very few systems where the
interatomic interactions, particularly the anharmonic in-

teractions, can be accurately and uniquely determined by
such a fitting procedure. Very few studies on anharmonic
effects in solids using molecular dynamics have been re-
ported. Previous studies of anharmonic effects using
molecular dynamics have been restricted to cases where
the interatomic interaction is adequately described by
simple pair potentials as in the case of the alkali metals
and rare-gas solids.

Recently, we have developed a molecular-dynamics
(MD) scheme in which the interatomic forces acting on
the atoms are derived using a tight-binding force model.
This scheme includes the quantum-mechanical multiatom
nature of the covalent bonding present in semiconductors
through explicit evaluation of the electronic structure of
the system at each step in the MD simulation. The total
energy of the system is described as the sum of two terms:
a band-structure energy arising from the sum of all the
occupied electronic eigenvalues and a term due to short-
ranged pairwise interactions between atoms. The param-
eters of our model are determined from first-principles
band-structure and total-energy calculations without any
fitting to experimental data. We note that Khan and
Broughton have developed a similar scheme using a
different algorithm for solving the electronic structure.

The purpose of this paper is to show that our tight-
binding molecular-dynamics (TBMD) scheme is very use-
ful for studying anharmonic effects in silicon and carbon
in the diamond structure. In Sec. II, we will outline the.
TBMD scheme and the tight-binding force model for sil-
icon and diamond. Details of the calculations are given
in Sec. III. Our results on temperature-dependent pho-
non frequency shifts and phonon linewidths in silicon and
in diamond are presented in Sec. IV. Finally, some dis-
cussions on our TBMD scheme in comparison with other
schemes for studying the phonon anharmonic effects in
solids wi11 be given in Sec. V.
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II. TIGHT-BINDING
MOLECULAR-DYNAMICS SCHEME

TABLE II. Value of the parameters in Eqs. (2a) and (2b) for
silicon and diamond.

ro) —(r —r )id
(2a)

and

5
E(0) y ( ( )I

1=0
(2b)

We have an analytic form for the pair potential P(r) as

TABLE I. Empirical tight-binding parameters for Si and C.

Parameters Si

E, (eV)

Ep (eV)
V„(eV)
V,. (eV)
V p (eV)

Vpp (eV)

—5.25
1.20

—1.938
1.745
3.050

—1.075

—2.99
3.71

—5.55
5.91
7.78

—2.50

The basic idea of the TBMD scheme is to incorporate
the electronic effects into molecular dynamics through an
empirical tight-binding Hamiltonian. In this scheme, the
binding energy Eb;„„ofthe system is expressed as

Eb;„d =Eb, + g (t((r, )+const,
j)i

where Eb, is the quantum-mechanical bond energy evalu-
ated by summing over all occupied electronic band ener-
gies s„ from the empirical tight-binding calculation. P(r)
is a pair potential representing the ion-ion interaction
and the correction for double counting the electron-
electron interaction in Eb, .

The details of the TBMD scheme have already been
discussed in an earlier paper. We use a nearest-neighbor
orthogonal tight-binding model with a minimal basis set
of sp orbitals to describe the electronic structure in sil-
icon and diamond. The tight-binding parameters consist
of two on-site energies and four hopping parameters for
each material. These parameters are chosen from the
previous work by Chadi' and by Chadi and Martin" as
listed in Table I. The distance dependence of the hopping
parameters is assumed to be r as proposed by Har-
rison. '

The pair potential P(r) in Eq. (l) extends to the nearest
neighbors for both Si and C. Once we have determined
the tight-binding parameters, the band structure part of
the binding energy as a function of the nearest-neighbor
distance for the ideal diamond structure Et'„'(r) can be
calculated. The pair potential is then determined by sub-
tracting Eb, '(r) from the first-principles local-density-
approximation (LDA) results of the binding energy as a
function of nearest-neighbor distance for the ideal dia-
mond structure Eb;„'d (r), which can be found in the litera-
ture. ' '" Eb;„'d(r) can be described very well by a univer-
sal binding curve' and Eb(, '(r) can be fitted with a poly-
nomial,

Parameters

Eo (eV)

r, (A)

W (A)

r, (A)
Co (eV)

Cl (eV/A)
C, (eV/A )

C3 (eV/A )

C4 (eV/A )

Cq (eV/A )

const (eV)

Silicon

—4.8060
2.3627
0.5076
2.20

—23.37
17.32

—12.42
5.25
0.00
0.00

11.15

Diamond

—7.8410
1.5409
0.3650
1.40

—53.86
87.286

—94.403
88.906

—72.872
38.516
20.22

P(r) =
—,([E„';„d(r)—Eb, '(r) —const] . (2c)

The value of the parameters in (2) for Si and diamond are
listed in Table II. This procedure guarantees that the
volume dependence of the binding eneryg in our model
reproduces that of the LDA results if the crystal stays in
the diamond structure.

As one can see from Tables III and IV, the tight-
binding force model yields good elastic properties and
phonon frequencies for Si and diamond at T =0 K when
compared with experimental data and first-principles cal-
culations. In particular, the good agreement between the
present calculation and experimental values for the mode
Griineisen parameters indicates that we are modeling the
anharmonic interactions correctly. We will demonstrate
in the following that this model, although simple, has
suScient accuracy for the simulation of anharmonic
effects of Si and C in the diamond structure.

III. SIMULATION DETAILS

Molecular-dynamics simulations were performed with
64 Si (and C) atoms enclosed in a cubic "box." The
volume of the MD cells are fixed at a given temperature
according to the lattice thermal expansion given by the
same tight-binding model potentials. The atoms are ini-
tially arranged in the diamond structure with small ran-
dom displacements to start the simulation. Periodic
boundary conditions are imposed in all three directions.
The forces are updated for every MD step along with the
electronic band structure, which we find by diagonalizing
the tight-binding Hamiltonian. The equations of motion
for the atoms are solved by a fifth-order predictor-
corrector algorithm with a time step of At =1.07 X 10
s for silicon and Et=0.7X10 ' s for diamond. Since
the electronic degrees of freedom are not explicitly in-
volved in the dynamics, the simulation time steps used
are similar to those in traditional molecular-dynamics
simulations. The choice of time step ht in the present
simulations conserved the total energy to within
3.9 X 10 and 8. 1 X 10 ' eV, respectively, for silicon
and for diamond over 16400 MD steps at a simulation

temperature of 100 K.
The phonon anharmonic effects were studied through
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TABLE III. T =0 K equilibrium properties of silicon obtained by the present tight-binding model

are compared with the first-principles calculation results and with experiment. The first-principles re-

sults are taken from Refs. 13 and 16. The experimental data are quoted from Ref. 1.

a() (A)
B (10» erg/cm')
C» —C, 2 (10» erg/cm')

C44 (10» erg/cm')
LTO( I ) (THz)
TA(X) (THz)
TO(X) (THz)
LOA(X) (THz)

7LTO( I" )

fTA(X)

XTO( X)

V LOA(X)

'Reference 13.
Reference 16.

Tight-binding

5.456
9.20
7.25

10.26
6.16

16.95
4.96

14.71
12.37
0.98

—1.12
1.37
1.02

LDA

5.456'
9.20'
9.80

11.10b

8.50
15.16'
4.45'

13.48'
12.16'
0.92'

—1.50'
1 34'
0.92'

Experiment

5.44
9.78

10.12

7.96
15.53
4.49

13.90
12.32
0.98

—1.40
1.50
0.90

g(k, co)= f dt e' 'pe
( v„(t).vo(0) )

(v„(o) v,(o))
(3)

where v„(t) is the velocity of the nth atom at time t, R„ is
the lattice position of the nth atom, and k is the phonon
wave vector. With k=(2n/a)(1, 1, 1) and (2n. /a)(1, 0, 0),
we have studied the optical phonon at the center of the
Brillouin zone [LTO(l )] and both optical and acoustic
phonons at the zone-boundary wave vector X, i.e.,
TO(X), LOA(X), and TA(X) for Si and diamond, respec-
tively. The typical output of phonon spectral intensities
of diamond at these two wave vectors is shown in Fig. 1,
where the positions of the resonant peaks represent the

the temperature dependence of one-phonon spectral in-
tensities, which were calculated as Fourier transforms of
velocity-velocity correlation functions in the course of
the molecular-dynamics simluation. ' Namely,

frequencies of the corresponding phonon modes and the
half-width of the peaks is related to the lifetime of the
modes. The optical mode at I, i.e., LTO(I ) and both the
acoustic and optical modes at X, i.e., the TA(X),
LOA(X), and TO(X) modes are well defined in the spec-
tra. The phonon spectral densities for Si are similar and
have been reported in earlier publications. '

At each temperature, we typically run 8000 MD steps
to equilibrate the system, followed by another 16 384 MD
steps (corresponding to a total time period of 17.5 ps) for
Si and 32768 MD steps (corresponding to a total time
period of 23 ps) for diamond to evaluate the velocity-
velocity correlation functions and phonon spectral inten-

sities. The frequency resolutions (-1.0 cm ' for Si and
-0.8 cm ' for diamond) of the calculated phonon spec-
tra are comparable with those of typical optical experi-
ments.

Since molecular-dynamics simulations follow the rules

TABLE IV. T =0 K equilibrium properties of diamond obtained by the present tight-binding model
are compared with the first-principles calculation results and with experiment. The first-principles re-
sults are taken from Ref. 14. The experimental data are quoted from Ref. 1.

a() (A)
8 (10" erg/cm )

C» —C„(10"erg/cm')

C44 (10" erg/cm')
LTO( I ) (THz)
TA(X) (THz)
TO(X) (THz)
LOA(X) (THz)

1 LTO( I )

FTA(X)

VTO(X)

VLOA(X)

Tight-binding

3.56
4.37

80.92
52.71
48.13
45.38
24.96
35.80
38.02
0.95
0.06
1.45
0.89

LDA

3.56
4.37

40.10

Experiment

3.567
4.42

95.12

57.74
39.96
24.21
32.07
35.55
0.96
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FIG. 1. Typical TBMD phonon spectral intensity of dia-
mond calculated by Eq. (3) and with (a) k=(2'/a) (1,1,1) and
(b) k =(2m/a) (1,0,0). The simulation temperature is T = 597 K.
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of classical statistical mechanics, quantum corrections for
the MD results are necessary, particularly at low-
temperature regimes if we want to make quantitative
comparison with experimental results. While the exact
calculation of quantum correction to the MD results is
too complicated for our present calculations, we have
adopted a simple way of performing the quantum correc-
tion by rescaling the MD averaged temperature TMD to a
scaled temperature T determined by requiring the mean
kinetic energy of our system to be the same as that of the
corresponding quantum system at temperature T (includ-
ing zero-point motion). This leads to the following scal-
ing relation:

TMD p g yk T
= 1 1

8

where D(v) is the phonon density of states of Si or dia-
mond crystal. The scaling relation between TMD and T
for Si and diamond are shown in Fig. 2. The MD tem-
perature TMD and the scaled temperature T approach
each other at high temperatures, while at T =0, k~ TMD
corresponds to the zero-point energy of the system. In
what follows, the MD simulation results will be presented
with the scaled temperature T unless otherwise specified.
We note that our previously published results ' have
been presented with TMD as the temperature scale.

IV. RESULTS

A. Phonon frequency shifts and linewidths in Si

Phonon frequency shifts and linewidths in Si have been
subjected to extensive experimental and theoretical stud-

I 000-

0
0 I000 2000

T(K)

3000 4000

FIG. 2. The scaling relation between the MD averaged tem-
perature T~& and scaled temperature T for (a) silicon and (b)
diamond.

ies. ' ' lt therefore serves as the primary example
for comparing our theory with experiments and other ex-
isting theories.

We present in Fig. 3 our results on the temperature-
dependent spectral intensities of the LTO(I ), TO(X),
LOA(X), and TA(X) modes of Si. The shifts in frequen-
cies and the increase in linewidths as the temperature in-
creases are clearly evident in the figure. The shift and the
broadening of the transverse acoustic mode are found to
be much smaller than those of the optic modes.

In order to compare our molecular-dynamics results
with available experimental results, we have estimated
the temperature-dependent frequency shifts and
linewidths from the phonon spectral intensities (Fig. 3).
The frequency shifts have been measured with respect to
the corresponding mode frequencies at T =0 K (or
TMo =235 K). The linewidths have been corrected by
subtracting out the additional broadening due to the
finite simulation time and smoothing procedure. The re-
sulting frequency shifts and linewidths are plotted in
Figs. 4 and 5, respectively, in comparison with the avail-
able experimental data for the optic mode at I and the
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TO and TA modes at point X. We found that the agree-
rnent between the present theory and the experimental
data is very good. Some of our molecular-dynamics re-
sults do not have existing experimental data for compar-
ison, and we will leave them as theoretical predictions. It
should be emphasized that in the present calculations, no
input from any experimental data has been used.

B. Phonon frequency shifts and linewidths in diamond

The TBMD results on the phonon spectral intensities
of the LTO(I ), TO(X), LOA(X), and TA(X) modes of
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FIG. 3. The temperature-dependent phonon spectral intensi-

ties of the LTO(I ), TO(X), LOA(X), and TA(X) modes of sil-
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FIG. 4. The temperature-dependent phonon frequency shifts
of the LTO(I ), TO(X), LOA(X), and TA(X) modes of silicon.
The open circles are the present TBMD results. The solid dots
in (a) are Raman scattering data quoted from Ref. 3. The lines
in (b) and (d) are experimental data quoted from Ref. 21.

FIG. 5. The temperature-dependent phonon linewidths of
the LTO(I ), TO(X), LOA(X), and TA(X) modes of silicon.
The open circles are the present TBMD results. The solid dots
in (a) are Raman scattering data quoted from Ref. 3.
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diamond are presented in Fig. 6. The phonon frequency
shifts and phonon linewidths as a function of temperature
are plotted in Figs. 7 and 8, respectively. The general
features of the results for diamond are very similar to
that of Si. We are not aware of any available experimen-
tal data for comparison.
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In this section, we wish to discuss further the advan-
tages of the TBMD scheme in comparison with other ex-
isting techniques on the subject. In particular, we will

compare the molecular-dynamics scheme with the
quasiharmonic approximation and the perturbation ap-
proach for calculating phonon anharmonic effects and
compare the tight-binding force model with empirical
classical potential models for molecular-dynamics simula-
tions.

In the quasiharmonic approximation, the temperature
dependence of phonon frequency is attributed entirely to
the change of force constants due to thermal expansion.
The absence of explicit phonon interactions in this ap-
proximation generally leads to an underestimate of pho-
non frequency shift and does not predict phonon life-
times. In Fig. 9, we compare our molecular-dynamics re-
sults with the frequency shifts under quasiharmonic ap-
proximation for some zone center and zone boundary
modes of Si. The latter have been calculated by frozen
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FIG. 7. The temperature-dependent phonon frequency shifts
of the LTO( I ), TO(X), LOA(X), and TA(X) modes of dia-
mond.

phonon calculations with the volume chosen exactly
equal to that used in the molecular-dynamics calculation
at the corresponding temperature (i.e., thermal expansion
included). We found that the quasiharmonic approxima-
tion substantially underestimates the frequency shifts. It
is interesting to note that the quasiharmonic contribution
yields opposite shifts for the TA(X) mode due to the neg-
ative Gruneisen constant of this mode.

Perturbative calculation of phonon anharmonic effects
in Si have been carried out by Cowley, who determined
the harmonic force constants by fitting to the experimen-
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FIG. 6. The temperature-dependent phonon spectral intensi-

ties of the LTO( I ), TO(X), LOA(X), and TA(X) modes of dia-
mond.

FIG. 8. The temperature-dependent phonon linewidths of
the LTO( I ), TO(X), LOA(X), and TA(X) modes of diamond.
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TABLE V, The Gruneisen parameters of some selected
modes of Si obtained by using the present tight-binding model
and by using the Stillinger-Weber potential. The corresponding
experimental value is also included for comparison.
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FIG. 9. Phonon frequency shifts in silicon by the quasihar-
monic approximation approach (open circles) and by the
molecular-dynamics approach (solid circles). The same tight-
binding Hamiltonian has been used in both approaches.

tal phonon dispersion and the third-order anharmonic
force constants by fitting to the experimental lattice
thermal expansion data. Although his results on frequen-

cy shifts of the LTO(I ) mode up to 500 K agree with ex-

periment, no data on higher temperature have been re-
ported. Moreover, the linewidths turned out to be much
smaller than Raman scattering data already at T =500 K
(Ref. 20) indicating that it is necessary to take higher-
order anharmonic effects into account for the high-
temperature regime. Higher-order perturbations are not
only cumbersome in form, but the large number of cou-
pling constants that need to be determined also makes the
calculation difficult to perform, while in the molecular-
dynamics approach, higher-order anharmonic efects au-

tomatically enter through the time correlation functions.
Of course one must be able to run the simulation for a
reasonably large system for a long enough time. Also the
necessity of quantum correction at low temperatures
makes molecular-dynamics results less quantitative at low
temperatures. However, the approximate scheme of re-
normalizing the temperature as described in Sec. III
seems to do a satisfactory job in extending the
molecular-dynamics results from high temperatures to
low temperatures in our present calculations.

Recently, there has been a lot of interest in modeling

the interatomic interactions in Si by including three-body
interactions in classical force models. Among the pro-
posed classical potentials for Si the Stillinger-Weber
potential seems to be more widely adopted and it has
also been reported that it yields the best harmonic prop-
erties of Si among its counterparts. However, there have
been no reports on the anharmonic properties of Si using
the Stillinger-Weber potential or other classical poten-
tials. For the purpose of comparison, we have calculated
the mode Griineisen parameters for the LTO{I ), TA(X),
TO(X), and LOA(X) modes of Si using the Stillinger-
Weber potential. The results are listed in Table V in
comparison with our tight-binding results and with ex-
perimental values. We see that the Stillinger-Weber po-
tential gives fairly poor descriptions for the anharmonic
behavior of Si. In particular, the strong negative
Griineisen parameter for the TA(X) mode is well repro-
duced by the tight-binding model, while the Stillinger-
Weber potential gives an almost zero Gruneisen parame-
ter for this mode. We believe that the tight-binding force
model provides a much more accurate description of the
interatomic interactions in crystalline Si than the
Stillinger-Weber potential.

In conclusion, we have shown that the tight-binding
molecular-dynamics scheme provides an efficient ap-
proach for studying the temperature-dependent anhar-
monic effects in crystalline tetrahedral semiconductors.
We are now testing the applicability of this approach to
transition-metal systems, where the d bonding is de-
scribed by a tight-binding Hamiltonian.
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