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Tight-binding theory of tunneling giant magnetoresistance
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Department of Mathematics, City University, London EC1V 0HB, United Kingdom

~Received 11 June 1997!

A unified theory of the tunneling magnetoresistance~TMR! and of the ballistic-current perpendicular-to-
plane giant magnetoresistance~CPP GMR! is developed. It is based on the Kubo-Landauer formula and fully
realistic tight-binding bands fitted to anab initio band structure. The theory is first applied to a single-orbital
tight-binding model to investigate analytically a continuous transition from the CPP GMR of a metallic system
to the TMR of a tunneling junction. The transition takes place when either hopping of electrons between the
ferromagnetic electrodes is gradually turned off or the on-site potentials in the nonmagnetic spacer are varied
so that the Fermi level in the spacer moves into the band gap. It is shown that the TMR approaches rapidly the
same saturation value when either the interelectrode hopping decreases or the height of the insulating barrier
increases. When the insulating barrier is high~band gap is large!, the TMR depends only weakly on the
thickness of the insulating layer. However, when the band gap is small compared to the conduction band width,
the TMR decreases rapidly with increasing thickness of the insulator. The numerical results for a Co~001!
junction, based on a fully realistic band structure of the Co electrodes, show a very similar behavior. As the
tight-binding hopping matrix between the Co electrodes is gradually turned off, the TMR ratio drops initially
very rapidly from its value of 280% in the metallic regime to about 40% but then stabilizes in the range
40–65 %. This is in a very good agreement with the observed value of 40%. The polarization of the current
flowing across the Co junction in the metallic regime is negative~antiparallel to the magnetization! but
becomes positive in the tunneling regime. The sign of the calculated polarization is, therefore, in agreement
with the sign observed in all the experiments on tunneling from transition-metal ferromagnets.
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I. INTRODUCTION

Two ferromagnetic metals separated by an insulating
ide layer exhibit a giant magnetoresistance1–3 of up to 40%
due to tunneling across the insulating layer. The tunne
magnetoresistance~TMR! effect was observed by Julliere4

~see also Maekawa and Ga¨fvert5! but the magnitude of the
TMR in these early experiments was very small.

Theoretical interpretation of the TMR effect has be
based on the conventional theory of tunneling~see, for ex-
ample, Refs. 6, 7!. The main conclusion of the convention
theory of tunneling is that the tunneling current is prop
tional to the product of the densities of states in the left a
right electrodes. This conclusion is arrived at by treating t
neling as a quantum transition from one electrode to
other. The two electrodes between which the transitions t
place are regarded as two separate systems described b
ferent Hamiltonians.8 Such a separation is clearly impossib
in the closely related problem of the current perpendicu
to-plane giant magnetoresistance~CPP GMR! since the two
ferromagnets are strongly coupled in the metallic regime
a nonmagnetic metallic spacer. Given that the CPP GMR
TMR seem to require different theoretical treatment, o
might conclude that they are qualitatively different effects
is, therefore, rather remarkable that the observed magnit
of the CPP GMR and TMR are comparable despite the
that the individual resistances of a tunneling junction in
ferromagnetic and antiferromagnetic configurations are s
eral orders of magnitude higher than those of a meta
trilayer. Experimentally, the two effects seem to be clos
related.
560163-1829/97/56~18!/11810~10!/$10.00
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To establish a theoretical link between the TMR and C
GMR, it is necessary to develop a nonperturbative theory
tunneling that treats the two electrodes together with the t
neling barrier as a single quantum-mechanical system. T
is, indeed, the method one uses to solve the textbook p
lem of tunneling through a rectangular barrier. The rectan
lar barrier model was already applied by Slonczewski9 to
calculate the TMR. However, Slonczewski’s approach
based on a direct calculation of the wave function and t
method is not easily generalizable beyond a simple parab
band.

The extension of Slonczewski’s model to a realistic ba
structure I propose is motivated by a tight-binding descr
tion of the conventional model of tunneling due
Harrison.10 He argues that one should start with two ele
trodes separated by an insulator so thick that no tunne
occurs. The two electrodes are thus regarded as comple
independent systems. When they are brought closer toge
so that their wave functions begin to overlap, tunneling o
curs. The overlap matrix elements correspond directly to
hopping integrals of the tight-binding method and are used
calculate by perturbation theory the probabilities of tran
tion. Note that it is again assumed in this method that
states between which tunneling takes place are those o
electrodes unperturbed by the tunneling process~electrodes
separated by an infinitely thick insulator!.

To develop a unified theory of the TMR and CPP GMR
is necessary to reverse the process adopted by Harrison
start with strongly interacting electrodes~metallic CPP GMR
regime! and obtain the tunneling regime as a limit in whic
the influence of one electrode on the other is weak. It
11 810 © 1997 The American Physical Society



he
rr

g
n
in
t

o
in
th
ac
le
ig
th
ex

ce
th
pi

gu
ag
ur
lli
is
er
ro
n

ng
r
t
th
i-
s

P
ti

e
e
n
in
tu

P
in
le

n
e
u
e
nc
y

le
n

ls
du

ap
y of
ach,
e, a
mon

ce
of a
xact

etic
-
the
in
by
t-
ring
t-

u-
e-
lti-
m

t-
this

is
ss a
igh
the

R
d
al-
c-

a

ion

el
e,

s-

t a
the
ra-
ser-
s
-

the

56 11 811TIGHT-BINDING THEORY OF TUNNELING GIANT . . .
useful to explain first the physical picture on which t
present method is based. One starts with two identical fe
magnetic electrodes in direct contact~no barrier! and as-
sumes that there is a bias applied to them. At this sta
having two electrodes simply means that we have draw
fictitious cleavage plane separating a single ferromagnet
two halves. The electronic structure of the ferromagne
described by a tight-binding Hamiltonian. Since the tw
electrodes are in direct contact, the tight-binding hopp
integrals across the fictitious interface are, of course,
same as in the bulk of the ferromagnets and the interf
offers no resistance to electrons moving between the e
trodes. Let us now assume that the magnetization of the r
ferromagnet is rotated to become antiparallel to that of
left ferromagnet. We have thus created in this thought
periment an abrupt~infinitely narrow! domain wall. Elec-
trons of a given spin orientation impinging on the interfa
will see the potential of electrons of the opposite spin on
other side of the interface and thus experience a s
dependent scattering. It follows that the resistance due
such interfacial scattering in the antiferromagnetic confi
ration of the two electrodes is higher than in the ferrom
netic configuration, i.e., magnetoresistance effect occ
This is completely analogous to the CPP GMR in a meta
trilayer. The abrupt domain wall mechanism of the GMR
also the origin of the TMR. The role of an insulating barri
is merely to decouple magnetically the left and right fer
magnets so that an abrupt rotation of the magnetizatio
possible.

I shall be comparing frequently the metallic and tunneli
regimes of the magnetoresistance refering to the metallic
gime as CPP GMR. To avoid misunderstanding, I wish
stress that CPP GMR in this context means CPP GMR in
ballistic regime in which the effect of impurities is negl
gible. While it is legitimate to neglect the effect of impuritie
in the tunneling limit~for reasons discussed in Sec. II!, the
situation in the metallic limit is different in that the CP
GMR observed in conventional samples is not in the ballis
but in the diffusive~ohmic! regime. One would expect to b
in the ballistic regime only for mesoscopic samples. Nev
theless, since the origin of the CPP GMR in the diffusive a
ballistic regimes is the same, i.e., scattering from sp
dependent potentials at the interfaces, comparison of the
neling limit with the ballistic metallic limit is relevant.

To relate quantitatively the TMR to the metallic CP
GMR, it is necessary to have a realistic model of tunnel
which allows us to pass continuously from strongly coup
ferromagnets~CPP GMR! to the tunneling limit of weakly
coupled ferromagnets~TMR!. The method I propose is to
introduce a real cleavage plane between the ferromag
and move them apart thus creating a vacuum gap betw
them. Tunneling of electrons across the vacuum gap res
in tunneling magnetoresistance and the effect is qualitativ
the same as for tunneling through an insulating barrier si
in both cases electron wave functions decay exponentiall
the region between the two electrodes.10 In fact, it will be
demonstrated in Sec. IV that the two models are equiva
but tunneling across a vacuum gap is physically more tra
parent. Following Harrison,10 I shall model the effect of a
vacuum/insulator gap by tight-binding hopping integra
across the cleavage plane that are made to decrease gra
o-
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from their bulk values to zero as the thickness of the g
increases. However, in contrast to the conventional theor
tunneling, the two ferromagnets are, in the present appro
always connected by a weak hopping and form, therefor
single quantum-mechanical system described by a com
tight-binding Hamiltonian.

Viewed in this way, there is no fundamental differen
between tunneling magnetoresistance and CPP GMR
metallic system. In both cases, one first calculates the e
one-electron wave functions of an insulating~metallic! layer
sandwiched between two electrodes in their ferromagn
~FM! and antiferromagnetic~AF! configurations and then de
termines the current flowing between the electrodes from
transmission coefficient of the structure. This is, indeed,
the spirit of the scattering theory of transport proposed
Landauer11 which is applicable to both metallic and insula
ing systems. I shall, therefore, apply the Landauer scatte
theory cast in a Green’s function formalism to the tigh
binding model of tunneling formulated above.

The plan of the paper is as follows. In Sec. II, the calc
lation of the transmission coefficient in terms of local on
electron Green’s functions is described for a general mu
orbital tight-binding band structure. The general formalis
of Sec. II is first applied in Sec. III to a single-orbital tigh
binding model of tunneling across a vacuum gap since
model allows one to follow analytically the transition from
the strongly coupled~CPP GMR! regime to the tunneling
regime. In Sec. IV, the single-orbital tight-binding model
used to demonstrate that the TMR due to tunneling acro
wide vacuum gap and TMR due to tunneling through a h
insulating barrier are equivalent. Having established
equivalence between the two models of tunneling, the TM
due to tunneling between two Co~001! electrodes separate
by a vacuum gap is investigated in Sec. V using fully re
istic tight-binding bands fitted to a first-principles band stru
ture of ferromagnetic fcc Co.

II. GENERAL EXPRESSION FOR THE TUNNELING
CURRENT IN TERMS OF ONE-ELECTRON

GREEN’S FUNCTIONS

Following Landauer,11 we can write the conductance in
spin channels of any sample~metallic or insulating! sand-
wiched between two electrodes in terms of its transmiss
coefficient

Gs5
e2

h (
ki

Ts~ki!, ~1!

whereTs(ki) is the transmission coefficient in the chann
(ki ,s), ki is the wave vector parallel to the layer structur
and the sum in Eq.~1! is over allki in the two-dimensional
Brillouin zone. As in all the theories of tunneling, it is a
sumed in Eq.~1! that the electron spin andki are conserved
in the tunneling process. The conservation of spin is no
serious issue since inelastic spin-flip scattering at
ferromagnet/insulator interface is unlikely at low tempe
tures. However, interfacial roughness could destroy con
vation of ki in samples with poor interfaces. Finally, it i
assumed implicitly in Eq.~1! that the resistance of the elec
trodes is negligible compared with the resistance of
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11 812 56J. MATHON
sample. This is obviously satisfied in the case of tunnel
and, therefore, the ferromagnetic electrodes can be rega
as perfect conductors. In the strong-coupling limit of C
GMR when the spacer is metallic, the electrodes have to
included in the calculation of the transmission coefficient,
which case, the whole structure~the electrodes and spacer! is
assumed to be placed between two ideal leads~see, e.g.,
Mathonet al.12!. Experimentally, this is achieved in the CP
geometry with superconducting contacts.13

The Landauer formula is valid rigorously in the limit of
weak bias ~linear-response theory! and is known to be
equivalent14 to the Kubo formula. The Kubo/Landauer fro
mula is, of course, applicable both to insulating and meta
spacers and is exact within the linear-response theory.
calculate the transmission coefficient for a realistic multi
bital band structure, it is most convenient to start from
Kubo formula12,15 for the frequency-dependent conductan
at zero temperature

G~v!5
p

vN2 E dE(
r

(
n,m

u^nu j r um&u2d~E1eV2Em!

3d~E2En! lim
T→0

f ~E!@12 f ~E1\v!#, ~2!

where the spin indexs has been suppressed. The quantityj r
in Eq. ~2! is the operator of current flowing from an atom
plane r parallel to the electrodes to the neighboring pla
the sum overr is over allN atomic planes in the sample, th
sum overn,m is over the complete set of energy eigensta
un&,um& of the system with energiesEn , Em , and f is the
Fermi function. Since the current is conserved and, hen
independent ofr , the sum overr in Eq. ~2! is trivially per-
formed and the matrix elements of the current operatorj r can
be calculated anywhere in the structure. In particular, t
will be evaluated between any two neighboring atom
planes labeled 0 and 1. Assuming that both the electro
and sample are described by a tight-binding Hamiltonian
basis which is Bloch-like in the direction parallel to the la
ers and atomiclike in the perpendicular direction, we c
write the current operator in the form

j 05
ie

\ (
ki

(
a,b

@ t0a,1b~ki!c0a
† ~ki!c1b~ki!

2t1b,0a~ki!c1b
† ~ki!c0a~ki!#, ~3!

wherecia
† (ki) @cia(ki)# is the creation~annihilation! opera-

tor of a one-particle stateu i ,a,ki& in an atomic planei , a is
an orbital index, andt0a,1b(ki) is the matrix of tight-binding
hopping integrals between the planes 0 and 1. Using Eq~3!
for the current operator and inserting complete sets of o
electron statesu i ,a,ki& in the current matrix elements, w
can rewrite Eq.~2! in terms of the advanced and retard
one-electron Green’s functionsGia, j b

6 (E,ki)5^ i ,ki ,au(E
2H6 i e)21u j ,ki ,b&. This is achieved by noting that

G̃ia, j b~E,ki!5
1

2i
@Gia, j b

2 2Gia, j b
1 #

5p(
n

^Aun&^nuB&d~E2En!, ~4!
g
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where script letters have been used to label one-elec
states of the typeu i ,a,ki& ande is a small positive number
Taking the limitv→01, it is now easy to show that the tota
conductance in a spin channels is given by

Gs5
e2

h (
ki

Gs~ki!

5
4e2

h (
ki

Re Tr~G̃00
s t01

s G̃11
s t10

s 2t01
s G̃10

s t01
s G̃10

s !. ~5!

Here, the trace is over all orbital indices that are contain
implicitly in the layer indices 0 and 1 and all the Green
functions are evaluated at the Fermi energyEF .

For simplicity, we derived Eq.~5! assuming hopping to
nearest neighbors only. However, Eq.~5! holds also in the
case of hopping to more distant neighbors provided ato
planes are replaced by principal layers.16 For a fully realistic
tight-binding parametrization of a first-principles band stru
ture of transition metals,s,p,d bands with hopping to secon
neighbors are required, in which case each principal la
contains typically two atomic planes and all the Gree
functions and hopping matrices in Eq.~5! are, therefore, 18
318 matrices.

No assumptions about the nature of the sample have b
made in the derivation of Eq.~5! and it is, therefore, valid
generally for any model of tunneling. In particular, it can
used to discuss tunneling through an insulating barrier.
ternatively, it can be applied to the tight-binding model
tunneling across a vacuum gap discussed in the Introduc
In that case, it is convenient to choose the plane labeled b
in Eq. ~5! as the surface plane of the left electrode and
plane 1 as the surface plane of the right electrode. The ma
of tight-binding hopping integralst01

s connecting the left and
right electrodes then plays the role of the tunneling ma
elements. It is determined by the overlap of electron wa
functions in the vacuum gap.

Both for calculational purposes and physical interpre
tion, it is useful to express all the one-electron Green’s fu
tions in Eq.~5! in terms of the surface Green’s functionsg00

s

andg11
s of completely disconnected left and right electrod

~no electron hopping between the planes 0 and 1!. The ma-
trix elementsG00

s , G11
s , andG10

s of the Green’s function for
the connected system are then obtained from the Dy
equation

G00
s 5~ I 2g00

s t01
s g11

s t10
s !21g00

s ,

G11
s 5~ I 2g11

s t10
s g00

s t01
s !21g11

s ,

G10
s 5g11

s t10
s G00

s , ~6!

whereI is a unit matrix.
Equations~5! and ~6! provide a rigorous basis for a rea

istic calculation of the tunneling magnetoresistance and
be now applied to specific systems.
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III. EVOLUTION OF THE CURRENT
PERPENDICULAR-TO-PLANE MAGNETORESISTANCE

INTO TUNNELING MAGNETORESISTANCE

The general formulation of Sec. II is first applied to
single-orbital tight-binding model of tunneling across
vacuum gap. The model allows us to investigate a conti
ous transition from the magnetoresistance of two electro
separated by an abrupt domain wall to the magnetoresist
of a tunneling junction. The transition takes place as
tight-binding hopping integral connecting the two electrod
is gradually turned off.

Consider two ferromagnetic electrodes described b
simple cubic tight-binding Hamiltonian with neares
neighbor hoppingtbulk. They are parallel to an~001! plane
and connected by a nearest-neighbor hopping integralt01.
The one-electron Green’s functions that are required in E
~5! and~6! are calculated assuming that electrons experie
exchange-split potentials in the ferromagnets. The positi
of the centers of the ferromagnet majority-spin~↑! and
minority-spin ~↓! bands are, therefore, given bye↑,↓5eFM
7D/2, whereeFM is the spin-independent on-site potential
the ferromagnet andD is the exchange splitting of the band
All the band energies are measured from the Fermi ene
(EF50) in units of the bulk hoppingtbulk.

Using Eqs.~5! and~6!, it is easy to show that the conduc
tance in a spin channels for the single-orbital tight-binding
model is given by

Gs5
4e2

h (
ki

t01
2

Im gL
s~EF ,ki!Im gR

s~EF ,ki!

u12t01
2 gL

s~EF ,ki!gR
s~EF ,ki!u2

, ~7!

where gL
s(EF ,ki) and gR

s(EF ,ki) are the surface Green’
functions of the completely disconnected left and right el
trodes. To determine the magnetoresistance ratioRTMR , it is
necessary to evaluate from Eq.~7! the conductancesGs of
the junction in the ferromagnetic~FM! and antiferromagnetic
~AF! configurations of the magnetic electrodes. The us
magnetoresistance ratioRTMR is then defined by

RTMR5
GFM
↑ 1GFM

↓ 2GAF
↑ 2GAF

↓

GAF
↑ 1GAF

↓ . ~8!

The qualitative behavior of the TMR ratio can already
deduced from the structure of Eq.~7!. The principal factor
that determines the dependence of the conductance on
hopping integralt01 across the vacuum gap is the multiplic
tive factor t01

2 in the numerator. Since we expectt01 to de-
crease exponentially with increasing separation between
electrodes, the conductanceGs for any given configuration
of the magnetic layers~FM or AF! decreases rapidly with
decreasingt01. On the other hand, since the termt01

2 enters
the numerator of Eq.~7! as a multiplicative factor, it cancel
out in the GMR ratio. The transition from a metallic regim
t01'tbulk to the tunneling regimet01→0 is, therefore, deter
mined entirely by the behavior of the denominator in Eq.~7!.
As electron hoppingt01 between the two electrodes d
creases, the denominator in Eq.~7! reaches a constant valu
in the limit t01→0. It follows that the GMR ratioRTMR ap-
proaches a saturation valueRTMR

sat , which can be identified
with the tunneling magnetoresistance.
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The individual conductancesGs and the TMR ratio itself
can be easily determined from Eqs.~7! and~8! for any value
of t01 since the surface Green’s functions are kno
analytically.18 The dependence of the TMR ratioRTMR on
the reciprocal of the hopping (t01/tbulk)21 across the vacuum
gap is shown in Fig. 1. The reciprocal of the hopping is us
as a measure of the width of the gap since (t01/tbulk)21 in-
creases with increasing separation between the electro
The values of the ferromagnet parameterseFM55.1 andD
51.0 ~in units of tbulk! used in Fig. 1 were chosen to mimi
a junction with cobalt electrodes which is discussed in S
V. However, the qualitative behavior of the TMR ratio
quite insensitive to the choice of the electrode paramete

It can be seen from Fig. 1 that the TMR ratio depen
only very weakly on the hoppingt01 across the vacuum ga
and a saturation value of the tunneling magnetoresista
RTMR

sat '180% is reached very rapidly for values oft01 of the
order of 5210% of the bulk hoppingtbulk. This is in sharp
contrast to the behavior of the individual conductancesGFM

↑ ,
GFM
↓ , andGAF

↑,↓ , shown in Fig. 2, which decrease very rapid
with decreasingt01. A very useful consequence of the rap
approach of TMR to saturation is that one does not requ
the knowledge of the hopping integrals across the interf
to calculate the TMR in the tunneling regime. In fact, the
are two points on the curveRTMR(t01) that can be determined
accurately without any model assumptions aboutt01, i.e., the
perfect metallic limit of GMRt015tbulk ~abrupt domain wall!
and the strict tunneling limitt01→0. It is interesting that the
values of the GMR ratio for an abrupt domain wall~metallic
limit ! and for a tunneling junction predicted by a singl
orbital tight-binding model of tunneling are very close to o
another. It will be shown in Sec. V that the difference b
tween the two values of the GMR ratio is much larger fo
realistic multiorbital band structure.

Although Eq. ~7! is a rigorous result of the scatterin
theory of transport, its formulation in terms of one-electr
Green’s functions is not very illuminating. However, Eq.~7!

FIG. 1. Dependence of the tunneling magnetoresistance on
reciprocal of the electron hopping between the ferromagnetic e
trodes. Single-orbital tight-binding model.
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11 814 56J. MATHON
can be given a very simple physical interpretation. First
all, we note that the total conductance of the junction is
sum of partial conductances in one-dimensionalki channels.
This is, of course, a direct consequence of the assu
conservation of the parallel momentum. Moreov
2(1/p)Im gL

s(EF ,ki) and2(1/p)Im gR
s(EF ,ki) are the one-

dimensional surface densities of states~DOS’s! in a channel
ki for the isolated left and right electrodes. It follows that t
current in every channelki is proportional to the product o
the one-dimensional surface DOS’s of the two electrodes
the product is scaled by the denominator in Eq.~7!. A close
link between the present linear-response theory and the
ventional theory of the tunneling GMR is now obvious. If th
scaling denominator is set equal to unity, Eq.~7! reduces

FIG. 2. Dependences of the conductances of the majo
~squares! and minority ~triangles! electrons in the ferromagneti
configuration and of the electrons of either spin orientation in
antiferromagnetic configuration~circles! on the reciprocal of the
electron hopping between the ferromagnetic electrodes. Sin
orbital tight-binding model.
n
r
a

lk

tin
f
e

ed
,

ut

n-

exactly to the expression for the conductance obtained in
conventional theory of tunneling.6 Note, however, that we
are referring here to tunneling in a singleki channel. The
correspondence appears to be complete sincet01 plays the
role of the usual tunneling matrix element.6 Sincet01 is very
small in the tunneling regime, it is tempting to conclude th
the denominator in Eq.~7! can always be approximated b
unity, which would then lead to the conventional theory
tunneling. However, this simple argument breaks down wh
there are surface states in the electrodes since the
dimensional surface DOS containsd function peaks and the
factor t01

2 gL
sgR

s in the denominator cannot be neglected
matter how small is the hopping integralt01. There is, of
course, no problem in reaching the tunneling limit nume
cally, as has been done in Fig. 1, provided due care is ta
to achieve convergence of theki sum. However, to use in
discriminately the approximation in which the denomina
in Eq. ~7! is simply replaced by unity is dangerous.

IV. TUNNELING MAGNETORESISTANCE DUE TO
TUNNELING THROUGH AN INSULATING BARRIER

The general formulation of Sec. II will be now applied
a junction with an insulating barrier to demonstrate that tu
neling across a vacuum gap and through an insulating la
lead to the same saturation value of the TMR. As in Sec.
a single-orbital tight-binding model is used to describe a t
neling junction. The junction consists of two ferromagne
electrodes separated byN atomic planes of an insulator with
an on-site potentialVins chosen so that the Fermi levelEF
lies outside its band of allowed energies. The same nea
neighbor hopping parametertbulk is used in the ferromagneti
electrodes and in the insulating layer, and all the band e
gies are again measured in units oftbulk.

Formally, the calculation of the TMR from Eqs.~5! and
~8! for such a system is identical to the calculation of t
ballistic CPP GMR of a metallic trilayer.12,19One can, there-
fore, use directly the results derived for the metallic trilay
It was shown by Mathonet al.19 that the conductance of two
semi-infinite ferromagnetic layers separated byN atomic
planes of a metallic spacer is given by

ty

e

le-
Gs5
4e2

h (
ki

sin2~k'a!Im gL
s Im gR

s

usin~N11!k'a2~gL
s1gR

s!sin~Nk'a!1gL
sgR

s sin~N21!k'au2
. ~9!
ave

-
de-

ine
As in Eq. ~7!, gL
s(EF ,ki) and gR

s(EF ,ki) are the surface
Green’s functions of the completely disconnected left a
right electrodes,k'(EF ,ki) is the perpendicular wave vecto
in the spacer, anda is the lattice constant. In the case of
metallic spacer,k' is real and determined from the bu
dispersion EF5Vsp12 cos(k'a)1w(ki), where w(ki)
52@cos(kxa) 1cos(kya)] is the in-plane dispersion andVsp is
the on-site potential in the spacer. In the case of an insula
spacer considered here,k'(EF ,ki) is pure imaginary,k'

5 ik, and all the sine functions in Eq.~9! should, therefore,
d

g

be replaced by hyperbolic sine functions. SinceEF lies out-
side the insulator band, the imaginary perpendicular w
vector is now determined fromEF5Vins12 cosh(ka)
1w(ki).

The qualitative behavior of the TMR for a junction con
taining an insulator with a large band gap can be easily
termined from Eq.~9!. When the Fermi level lies well below
the insulator conduction band~the barrierVins is high!, ka is
large and the decaying exponentials in all the hyperbolic s
functions in Eq.~9! can be neglected, which yields



an
ge

d.

al
u
x

ve
o

in
in

p
u
on
es

ur
a

i-
r

u
he

er

th

w
t-
e
b

ne
g
ti
e

en

u
re
n

p
va-
-
on

er-

o

the
des

the
s of

56 11 815TIGHT-BINDING THEORY OF TUNNELING GIANT . . .
Gs'
4e2

h (
ki

e22kaN Im gL
s Im gR

s

u12~gL
s1gR

s!e2ka1gL
sgR

se22kau2
.

~10!

Moreover, when the distance between the Fermi level
the bottom of the insulator conduction band is much lar
than the in-plane dispersionw(ki), the dependence ofk on
ki can be neglected. This condition is satisfied whenVins
.W, whereW is the width of the insulator conduction ban
In that case, the factor exp@22k(ki)aN# can be taken outside
theki sum in Eq.~10! and replaced by exp@22k0aN#, where
k0 is the value ofk(ki) averaged over the two-dimension
Brillouin zone. The conductance of a junction with an ins
lator having a large band gap is, therefore, well appro
mated by

Gs'S 4e2

h De22k0aN

3(
ki

Im gL
s Im gR

s

u12~gL
s1gR

s!e2k0a1gL
sgR

se22k0au2
. ~11!

The structure of Eq.~11! is virtually identical to that of Eq.
~7! for tunneling across a vacuum gap. The multiplicati
factor e22k0aN, which determines the strong dependence
the conductance on the height and width of the insulat
barrier, again cancels out from the TMR ratio. Moreover,
the absence of surface states, the denominator in Eq.~11!
tends to unity in the limit of a large insulator gap ex
(2k0a)!1. It follows that the TMR ratio approaches a sat
ration value which is determined entirely by the convoluti
of the one-dimensional densities of stat
2(1/p)Im gL

s(EF ,ki) and 2(1/p)Im gR
s(EF ,ki) of the left

and right ferromagnetic electrodes. The saturation value
the TMR ratio is, therefore, exactly the same as the sat
tion value of the TMR due to tunneling across a vacuum g
obtained from Eq.~7! in the limit t01/tbulk!1.

The TMR ratioRTMR can be easily determined numer
cally from Eq. ~9! for any height of an insulating barrie
Vins. The dependence ofRTMR on Vins/W ~W is the band
width! is shown in Fig. 3 for three thicknesses of the ins
lating barrierN51, 3, and 5 atomic planes. The values of t
ferromagnet parameterseFM55.1 andD51.0 ~in units of
tbulk! are the same as in Sec. III. We recall that they w
chosen to mimic a junction with Co electrodes.

It can be seen from Fig. 3 that a saturation value of
TMR is reached for barrier heightsVins of the order of the
band width~saturation is reached most rapidly for the narro
barrierN51!. It follows that for such values of the insula
ing barrier height, Eq.~11! provides a good estimate of th
TMR. Moreover, the same estimate of the TMR ratio is o
tained from Eq.~7! for tunneling across a vacuum gap. O
can, therefore, conclude that tunneling across a vacuum
and through an insulating barrier lead to the same satura
value of the TMR provided the insulator gap is of the ord
of or larger than the conduction band width. This argum
will be used in Sec. IV to estimate the TMR of a Co~001!
junction.

However, there is one important feature of the TMR d
to tunneling through an insulating barrier that cannot be
produced by the vacuum gap model. This is the depende
d
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of the TMR on the barrier width. The width of a vacuum ga
is equivalent to the height of a barrier but there is no equi
lent of the barrier width in the tight-binding model of tun
neling across a vacuum gap. The dependence of the TMR
the width of an insulating barrier can, of course, be det
mined numerically from Eq.~9!. The results are shown in
Fig. 4 for three heights of the tunneling barrier:Vins/W
51.0, 2.0, and also for a very low barrierVins/W50.58~EF
just outside the band!. It should be noted that the TMR rati
for the spacer thicknessN50 is that of a ferromagnet with
an abrupt domain wall~no insulating barrier!.

FIG. 3. Dependence of the tunneling magnetoresistance on
height of an insulating barrier between the ferromagnetic electro
for a barrier whose thickness is one~triangles!, three~squares!, and
five ~circles! atomic planes. Single-orbital tight-binding model.

FIG. 4. Dependence of the tunneling magnetoresistance on
number of atomic planes in an insulating barrier for three height
the barrierVins measured in units of the band widthW: Vins /W
52.0 ~squares!; Vins /W51.0 ~circles!; Vins /W50.58 ~triangles!.
Single-orbital tight-binding model.
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As expected from Eq.~11!, the dependence of the TMR
ratio on N is weak for a high potential barrier (Vins/W
52.0). In fact, the TMR is quite independent ofN in the
limit Vins→`. However, it is most interesting that the TM
ratio depends strongly on the width of the barrier and, in fa
decreases rapidly withN when the insulating barrier is ver
low (Vins/W50.58). The reason for this behavior is easy
understand. The weak dependence of the TMR on the ba
width predicted by Eq.~11! relies on the validity of the ap
proximation exp@22k(ki)aN#'exp@22k0aN# which has
been used to derive Eq.~11! from Eq. ~10!. This approxima-
tion is always valid for smallN as long asEF lies outside the
insulator conduction band. However, it breaks down
large N. In fact, exp(2kNa)'@(EF2Vins)/2#2N@12w(ki)/
(EF2Vins)]

2N, where w(ki)/(EF2Vins) is a small param-
eter. It follows that exp(2kNa)'@(EF2Vins)/2#2N@1
22Nw(ki)/(EF2Vins)1 . . . # and it is, therefore, clear tha
the dependence of the factor exp@22k(ki)aN# on ki cannot
be neglected for largeN.

In the light of the above results, the conclusion that tu
neling across a vacuum gap and through an insulating ba
leads to the same TMR needs to be qualified as follows.
two theoretical models of tunneling~vacuum gap and an in
sulating barrier! lead to the same TMR provided the barri
is at least as high as the conduction band width and
barrier is narrow, not wider than a few atomic planes.

V. TUNNELING MAGNETORESISTANCE DUE TO
TUNNELING BETWEEN Co „001… ELECTRODES

The single-orbital tight-binding model of tunneling use
in Secs. III–IV is too simple to provide quantitative es
mates of the magnitude of the TMR ratio. However, the pr
cipal result of the model that the TMR ratio reaches a sa
ration value in the tunneling limitt01→0 implies that the
TMR can be determined without knowing the precise va
of the tunneling matrix elementt01. It is, therefore, worth-
while to investigate whether this result carries through t
fully realistic multiorbital tight-binding description of TMR

Consider two thick~semi-infinite! cobalt electrodes with
~001! orientation of the surface. To determine the tunnel
magnetoresistance across a vacuum gap, we start again
the well-defined case of an abrupt domain wall. The mag
toresistance can be determined exactly in this limit from E
~5!, ~6!, and~8! since the values of the tight-binding param
eters for ferromagnetic fcc Co are readily available from a
to a first-principles band structure,20 and the matrixt01

s (ki) of
hopping integrals across the interface is, of course, the s
as in bulk Co. The only input required in the calculation a
the matrix elementsg00

s andg11
s of the one-electron Green’

function at the surface of the semi-infinite left and right C
electrodes. They are usually generated by an iterative d
mation technique21 in which the surface Green’s function
approximated by that at the surface of a thick stack of ato
planes. However, to obtain a truly surface Green’s functi
it is necessary to add in the decimation method a sm
imaginary parte to the energy to disrupt quantum interfe
ence between the two surfaces of the slab. Whene is small,
the convergence of the decimation method becomes p
This might lead to complications sincee must be small in a
transport calculation~if e were not small, it would not be
t,

ier
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g
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e-
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e

ci-
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,
ll

or.

possible to discriminate accurately between propagating
localized states!. I have, therefore, used a new noniterati
technique for generating the surface Green’s function22 in
which the convergence problem does not arise. A value
51028 Ry, which was used in all the calculations, is
small that it has no effect on the conductance.

As in Sec. III, the aim is to reach the tunneling limit b
turning off gradually the hopping integralst01

s (ki) connect-
ing the left and right Co electrodes. Compared with t
single-orbital model of Sec. III, there is, however, a numb
of complications for a multiorbital band structure. First
all, the hopping integralst01

s (ki) depend on the parallel mo
mentumki , which means that they cannot be simply fa
tored out of theki sum in Eq.~5!. It is, therefore, not imme-
diately obvious that TMR saturates. The second problem
that the matrix elementst0a,1b

s (ki) connecting different or-
bitals a, b across the vacuum gap scale differently with t
separationr between the electrodes. To investigate the tr
sition from the metallic to the tunneling regime, one nee
therefore, to know explicitly the dependences of all the m
trix elementst0a,1b

s (ki) on r .
I first address the second problem. Usings,p,d orbitals

and hopping to first and second nearest neighbors, the ti
binding parameters for fcc ferromagnetic Co were obtain
from the parameters for paramagnetic Co~Ref. 17! by ad-
justing self-consistently the on-site energies to achieve
best agreement with the first principles band structure20 of
fcc ferromagnetic Co. The matrix elements of the interpla
hopping matrix t01

s (ki) are, therefore, independent of th
spin. They are all generated from the Slater-Koster tw
center integralsl l 8m whose values for paramagnetic coba
were obtained by Papaconstantopoulos.17 Here, l ,l 85s,p,d
are the usual orbital indices andm5s,p,d denotes the pro-
jection of the angular momentum.

To calculate the dependence of the GMR on the width
the gap between the Co electrodes, we require the de
dence of the Slater-Koster parameters on the interatomic
tancer . It is possible to include such a dependence with
performing new first principles calculations. Andersen23 pro-
posed that the distance dependence of the tight-binding
trix elementsVll 8m is given by

Vll 8m5Cll 8mr 2~ l 1 l 811!, ~12!

where Cll 8m are distance-independent material constan
This expression suggests that the matrix elements fors-s
interactions vary asr 21, s-p interactions asr 22, s-d and
p-p interactions asr 23, p-d interactions asr 24, and d-d
interactions asr 25. The scaling law~12! was confirmed by
Papaconstantopulos17 for deviations ofr from their equilib-
rium values as large as 5%.

For small deviations from the bulk interplanar distan
r bulk between the two Co electrodes, the GMR due to el
tron hopping across a gapr .r bulk can be determined from
Eqs. ~5!, ~6!, and ~8! quite rigorously using the scaling law
~12!. For large values ofr , the power-law scaling~12! is not
expected to be valid. However, the key feature of the sca
law ~12! that only thes-s interaction survives for larger is
clearly valid generally in the tunneling limitr @r bulk . Since
we are interested here only in the metallic and tunnel
regimes, I propose to use the scaling law~12! for all values
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of r treating it as anad hocinterpolation scheme between th
metallic limit r'r bulk and the tunneling limitr @r bulk . Given
that only thes-s interactionVsss survives in the tunneling
regime, it is appropriate to use it as a measure of the widt
the vacuum gap between the Co electrodes. It is, theref
convenient to introduce a dimensionless reduceds-s hopping
parameter 0<tsss<1 by tsss5Vsss /Vsss

bulk , where Vsss
bulk is

the bulks-s interaction in Co.
The dependence of the TMR ratio on the reduced re

rocal s-s hopping (tsss)21 between two Co~001! electrodes
is shown in Fig. 5. The corresponding dependences of
conductancesGFM

↑ , GFM
↓ , andGAF

↑,↓ on (tsss)21 are shown in
Fig. 6. It can be seen from a comparison of Figs. 1 and
that the qualitative behavior of the GMR ratio for th
Co~001! junction is very similar to that of the single-orbita
model of tunneling discussed in Sec. III. While the ind
vidual conductancesGs decrease by more than two orders
magnitude when thes-s hoppingtsss is reduced to 10% of
its bulk value, the TMR ratio drops initially rather rapidl
from its metallic CPP GMR value of 280% (tsss51) to
about 40% but then increases only slowly to reach ab
65% for tsss50.1. The rapid initial decrease of the GM
ratio for a Co junction did not occur in the single-orbit
model of Sec. III. It occurs for the Co junction because,
the metallic limittsss'1, a significant proportion of the cur
rent in Co is carried byd electrons that are highly spin po
larized. This explains a large GMR ratio in the metallic r
gime ~abrupt domain wall!. In the tunneling regime, the
current is carried only bys-p electrons which are weakly
spin polarized and, hence, the TMR ratio is much smal
This switching fromd electrons tos-p electrons, as one
moves from the metallic to tunneling regime, cannot be
produced by a single-orbital model.

Another very interesting feature related to the aforem
tioned switching fromd electrons tos-p electrons is that the
polarization of the tunneling electrons changes sign as
moves from the metallic to the tunneling regime. This can

FIG. 5. Dependence of the tunneling magnetoresistance
Co~001! junction on the reciprocal of the reduceds-s hopping be-
tween the Co electrodes.
of
re,

-

e

,

ut

-

r.

-

-

e
e

clearly seen in Fig. 6. In the metallic regime (tsss51), the
conductanceG↓ of the minority-spin electrons~triangles! is
higher than the conductanceG↑ of the majority-spin elec-
trons ~squares!. However, a crossover takes place at ab
tsss50.5 and the conductance of the majority-spin electro
in the tunneling regime becomes higher than that of
minority-spin electrons~G↑/G↓'1.75 for tsss50.1!. The po-
larization of the tunneling electrons has, therefore, the sa
sign as the magnetization, i.e., opposite to that one wo
expect from the conventional density-of-states argume
This is in complete agreement with the results of all t
experiments on tunneling from transition met
ferromagnets.6

I now return to the question of saturation of TMR in th
tunneling regime. The slow variation of TMR after the initi
rapid drop can be traced to the structure of Eq.~5! for the
conductance. We first note that it is a good approximation
set in the tunneling regimet01

s (ki)→0 all the tight-binding
matrix elements equal to zero except for thes-s interaction
Vsss . It follows that all the remaining nonzero matrix ele
ments of the tunneling matrixt01

s (ki) in Eq. ~5! are propor-
tional toVsss , and this is the only parameter in the proble
which depends on the gap widthr . The conductance~5!
contains, therefore, a scalar multiplicative factorVsss

2 (r )
which is independent of the parallel momentumki , and
hence, cancels out in the GMR ratio~8!. As for the single-
orbital model, the entire variation of the TMR ratio in th
tunneling regime is, therefore, determined by a weak dep
dence of the denominators in Eq.~6! on the gap widthr . We
recall that the denominators describe a mutual influence
the Co electrodes on one another, which is very weak in
tunneling regime. In fact, in the absence of surface sta
limr→`G01

s 50 and limr→`Gii
s5gii

s , wheregii
s are the sur-

face Green’s function of completely disconnected lefti

a FIG. 6. Dependences of the conductances of the majo
~squares! and minority ~triangles! electrons in the ferromagneti
configuration and of the electrons of either spin orientation in
antiferromagnetic configuration~circles! on the reciprocal of the
reduceds-s hopping between the Co electrodes.
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50) and right (i 51) Co electrodes. It follows from this
argument that saturation of the TMR in the tunneling lim
t01
s (ki)→0 is inevitable.

The only question that remains is whether the TMR ra
in Fig. 5 has reached its saturation value fortsss'0.1. Un-
fortunately, the numerical evaluation of the conductancesGs

requires a very large number ofki points ('105) to achieve
convergence in the Brillouin zone sum in Eq.~5! and the
number ofki points needed increases with decreasing h
ping tsss . Convergence could, therefore, be achieved o
for tsss>0.1. Since the TMR ratio still increases fortsss
'0.1, the value for TMR of about 65% obtained from Fig.
should, therefore, be regarded as a theoretical lower bo
on the TMR of a Co~001! junction. The calculated saturatio
value of the TMR of 40–65% for a Co~001! junction is in a
remarkably good agreement with the TMR ratio of abo
40% observed3 for a Co junction with an Al2O3 barrier.

Finally, I wish to emphasize that the dependence of
TMR ratio on the vacuum gap width shown in Fig. 5 shou
not be confused with the dependence of the TMR on
width of an insulating barrier. As discussed in Sec. IV, t
width of the vacuum gap is related instead to the height o
narrow insulating barrier. The calculated values of the TM
for a Co~001! junction should, therefore, be relevant only
experiments with narrow insulating barriers.

VI. CONCLUSIONS

The tunneling magnetoresistance was investigated usi
unified theory of the TMR and CPP GMR based on t
Kubo-Landauer formula and a multiorbital tight-bindin
band structure of the ferromagnetic electrodes. The only
sumptions of the theory are that the spin and parallel m
mentum are conserved in tunneling and the applied bia
low ~linear-response theory!. Under these assumptions, th
nonperturbative Kubo-Landauer theory allows one to inv
tigate a continuous transition from the CPP GMR of a m
tallic system to the TMR of a tunneling junction, which tak
place as the band structure parameters of the nonmag
spacer are varied. Within a tight-binding scheme, there
two alternative ways of describing the transition from t
CPP GMR to TMR. In the first approach, used in Secs.
and V, the overlap matrix elements between the ferrom
netic electrodes are gradually turned off to reach the tun
ing regime ~tunneling across a vacuum gap!. The second
method, explored in Sec. IV, is to vary the on-site potenti
in the spacer so that the Fermi level in the spacer la
moves into the band gap~tunneling through an insulating
barrier!.

The TMR due to tunneling across a vacuum gap was
investigated in Sec. III for a single-orbital tight-bindin
model of the ferromagnetic electrodes. It was demonstra
in Sec. III both analytically and numerically that the TM
ratio depends only weakly on the overlap matrix elem
across the vacuum gap and approaches very rapidly a
ration value when the tight-binding hopping integralt01 con-
necting the ferromagnetic electrodes is decreased to 5–1
of its valuetbulk in the ferromagnet. The saturation value
the TMR is very close to the value of the CPP GMR in t
metallic regimet01'tbulk. The present theory of tunnelin
across a vacuum gap reduces in the limitt01→0 to the clas-
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sical theory of tunneling6,8,10 with two important modifica-
tions. First, contrary to popular belief, the tunneling curre
is not proportional to the product of the densities of states
the ferromagnetic electrodes. It is determined instead by
convolution over the parallel momentum of the spectral d
sities of the left and right electrodes. Moreover, all the s
face states are excluded from the convolution and, theref
make no contribution to tunneling.

The TMR due to tunneling through an insulating barr
was investigated in Sec. IV using the same single-orb
tight-binding model as in Sec. III. Starting with a metall
spacer, the on-site potential in the spacer was gradually
creased until the Fermi level moved out of the spacer c
duction band, and thus the tunneling regime was reache
was again found, both analytically and numerically, that
TMR ratio depends only weakly on the on-site potential
the spacer and reaches a saturation value when the insul
barrier height is of the order of the conduction band wid
The saturation values of the TMR due to tunneling acros
vacuum gap and due to tunneling through an insulating b
rier are exactly the same. One can, therefore, conclude
the two models of the TMR are physically equivalent. Ho
ever, this conclusion holds only for thin insulating barrier

The dependence of the TMR on the width of an insulat
barrier was also investigated in Sec. IV. The results
rather interesting in that the dependence on the thicknes
the insulating layer, predicted by the single-orbital model
weak when the barrier is high but becomes very strong w
the barrier is low~the Fermi level lies close to the conductio
band edge!. In fact, the TMR for a low insulating barrie
decreases very rapidly with increasing thickness of the in
lating spacer. This may have implications for the experim
since the height of the barrier in a very thin oxide may
lower than in the bulk material, particularly if oxidation i
imperfect.

Having established an equivalence between the two m
els of tunneling~vacuum gap and insulating barrier!, the
TMR due to tunneling between two Co~001! electrodes sepa
rated by a vacuum gap was investigated in Sec. V using f
realistic tight-binding bands fitted to a first-principles ba
structure of ferromagnetic fcc Co. It is found that, when t
tight-binding hopping integrals between the two Co ele
trodes are gradually turned off, the TMR ratio drops initia
rather rapidly from its metallic CPP GMR value of 280%
about 40% but then increases only slowly to reach ab
65% when the dominants-s hopping is of the order of 10%
of the s-s hopping in Co. The rapid initial decrease of th
GMR ratio for a Co junction occurs because, near the me
lic limit, a significant proportion of the current in Co is ca
ried by d electrons that are highly spin polarized. This e
plains a large GMR ratio in the metallic regime~abrupt
domain wall!. In the tunneling regime, the current is carrie
only by s-p electrons which are weakly spin polarized an
hence, the TMR ratio is much smaller.

Another very interesting feature related to the aforem
tioned switching fromd electrons tos-p electrons is that the
polarization of the tunneling electrons changes sign as
moves from the metallic to the tunneling regime. In the m
tallic regime, the conductanceG↓ of the minority-spin elec-
trons is higher than the conductanceG↑ of the majority-spin
electrons. However, a crossover takes place when thes-s
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hopping drops to about half of its bulk value and the co
ductance of the majority-spin electrons in the tunneling
gime becomes higher than that of the minority-spin electr
(G↑/G↓'1.75). The polarization of the tunneling electro
has, therefore, the same sign as the magnetization, i.e.
posite to what one would expect from the conventio
density-of-states argument. This is in complete agreem
with the results of all the experiments on tunneling fro
transition metal ferromagnets.6

The calculated saturation value of the TMR for a Co~001!
junction in the tunneling regime ranges from 40 to 65
This is in a remarkably good agreement with the TMR ra
of about 40% observed3 for a Co junction with a thin Al2O3
insulating barrier.

Finally, I wish to emphasize yet again that the depende
of the TMR ratio on the vacuum gap width, that was calc
y

A

-
-
s

p-
l
nt

.

e
-

lated in Sec. V, should not be confused with a dependenc
the TMR on the width of an insulating barrier. As shown
Sec. IV, the width of the vacuum gap is related instead to
height of a narrow insulating barrier. The calculated valu
of the TMR for a Co~001! junction are, therefore, relevan
only to experiments with narrow insulating barriers.
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