
Tight Bounds for Connecting Sites Across Barriers ∗

David W. Krumme
Department of Computer Science

Tufts University
Medford, MA 02155

krumme@cs.tufts.edu

Eynat Rafalin
Department of Computer Science

Tufts University
Medford, MA 02155

erafalin@cs.tufts.edu

Diane L. Souvaine
†

Department of Computer Science
Tufts University

Medford, MA 02155

dls@cs.tufts.edu

Csaba D. Tóth
Department of Mathematics

MIT
Cambridge, MA 02139

toth@math.mit.edu

ABSTRACT
Given m points (sites) and n obstacles (barriers) in the
plane, we address the problem of finding a straight-line min-
imum cost spanning tree on the sites, where the cost is pro-
portional to the number of intersections (crossings) between
tree edges and barriers. If the barriers are infinite lines then
there is a spanning tree where every barrier is crossed by
O(

√
m) tree edges (connectors), and this bound is asymp-

totically optimal (spanning tree with low stabbing number).
Asano et al. showed that if the barriers are pairwise disjoint
line segments, then there is a spanning tree such that every
barrier crosses at most 4 tree edges and so the total cost is
at most 4n. Constructions with 3 crossings per barrier and
2n total cost provide a lower bound.

We obtain tight bounds on the minimum cost spanning
tree in the most exciting special case where the barriers are
interior disjoint line segments that form a convex subdivision
and there is a point in every cell. In particular, we show that
there is a spanning tree such that every barrier is crossed by
at most 2 tree edges, and there is a spanning tree of total
cost 5n/3. Both bounds are tight.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problems Com-
plexity]: Nonnumerical Algorithms and Problems—Geo-
metrical problems and computations; G.2.1 [Discrete Math-
ematics]: Combinatorics—Combinatorial algorithms

∗Work by E. Rafalin and D. Souvaine was supported by the
National Science Foundation under Grant #CCF-0431027.
†2005-2006 MIT Visiting Scientist & Radcliffe Inst. Fellow.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’06, June 5–7, 2006, Sedona, Arizona, USA.
Copyright 2006 ACM 1-59593-340-9/06/0006 ...$5.00.

General Terms
Algorithms, Theory

Keywords
Crossing Number, Spanning Trees

1. INTRODUCTION
Chazelle and Welzl [2, 13] proved that for n points in d-

space, there is a spanning tree such that any hyperplane is
stabbed by at most O(n1−1/d) edges of the tree, which is
tight apart from the constant factor: every spanning tree on
n points of an d-dimensional integer lattice section crosses an
axis-aligned hyperplane at least Ω(n1−1/d) times. This re-
sult and its extensions by Matoušek [9] were used for efficient
range searching in finite VC-dimensional range spaces, and
it is closely related to the discrepancy of such range spaces.
For n points and a set of barrier lines in the plane, there is
a spanning tree that crosses every line O(

√
n) times [8, 14].

Interestingly, if the barriers are disjoint line segments rather
than infinite lines, the stabbing number becomes constant.

The study of spanning trees across disjoint barriers was
motivated by the multi-point location problem, the question
of where a set of points lies within the underlying geometric
data structure. This question arises in many geometric mod-
eling system (e.g. robotics, vision, radio wave propagation
prediction, CAD/CAM, and others). Given an O(n)-sized
data structure P (Ep, V p) which subdivides the plane (e.g.
a triangulation) and a set S of m distinct points, we wish
to locate for each si ∈ S the face containing si, for any
i = 1, . . . , m. Through iterated use of one of the worst-case
optimal planar point location algorithms (e.g. [3], [6] or
[10]), one can locate all faces in O(m log n) time. A poten-
tial strategy for locating all m points in O(m+n) time is to
find a combinatorially O(m + n)-sized walk w that visits all
m points.1 A pre-order traversal of a spanning tree T (Et, S)

1This strategy was motivated by Snoeyink and Van Kreveld
[12] who demonstrated empirically that walking to the next
point to be processed with the method of Guibas and Stolfi
[4] during the reconstruction of a triangulation T is better
than traversing the faces of T as defined by their computed

439

with cost(T) = |Et ∩Ep| ∈ O(n) would provide such a walk
at a cost of 2 cost(T).

Snoeyink [11] posed a specific version of this problem:
Given a set S of m distinct points (sites) and a set L of n
segments (barriers) in the plane where the relative interiors
of the barriers are pairwise disjoint and no site lies on any
barrier, does a spanning tree T of S always exist that, when
embedded with straight-line edges, has the property that no
barrier of L crosses more than a constant number of edges
of T ?

Asano et al. [1] gave an upper bound of 4 crossing per
barrier, which implies an upper bound of 4n on the total
cost. Hoffmann and Tóth [5] constructed an example where
every spanning tree crosses a barrier at least three times. For
the restricted problem where barriers form a convex planar
subdivision and each cell contains a site, Krumme et al. [7]
showed that a spanning tree with at most 3 crossings per
barrier always exists.

1.1 Contribution
We obtain tight bounds on the minimum cost spanning

tree in the most exciting special case that the barriers are
interior disjoint line segments that form a convex subdivision
and there is a point in every cell. In this case, we may as well
assume that every cell contains exactly one site by specifying
a single site in each cell (since we can connect the designated
site to all other sites of the same cell without crossing any
barriers). We prove that there exists a straight-line spanning
tree that crosses every barrier at most twice and one with
a total cost of at most 5

3
n. On the other hand, there are

examples where any spanning tree crosses some barrier at
least twice and others where any spanning tree has total cost
at least 5

3
n − O(

√
n).

1.2 Organization
Sections 2 and 3 present the upper and lower bound proofs

for the number of crossings per barrier and total number of
crossings required for connecting all sites. Section 4 contains
conclusions and directions for future work.

2. THE MAXIMAL NUMBER OF CROSS-
INGS PER BARRIER

Theorem 1. Given a set L = {l1, . . . ln} of n pairwise
non-crossing line segments (barriers) in the plane that forms
a convex subdivision, and given a set S of n + 1 points
(sites), one in each cell of the subdivision, then there ex-
ists a straight-line spanning tree T on the sites such that the
edges of T cross every barrier at most twice.

Figure 1 depicts an example where every spanning tree
crosses some barrier at least twice, verifying that Theorem 1
is tight. The n barriers are n half-lines with their initial por-
tion lying along the sides of a regular n-gon C. Site s0 lies at
the center of C. Sites s1, s2, . . . , sn, are centrally symmetric
around s0 such that any segment s0si, i = 1, 2, . . . , n crosses
two consecutive barriers along C. Every spanning tree T
must contain an edge e1 = s0si for some i = 1, 2, . . . , n that
crosses both barriers that bound the cell containing si+1.
Any edge e2 ∈ T incident to si+1 crosses one of these two
barriers a second time.

permutation.

s0

si

e1

e2

si+1

Figure 1: Lower bound construction. At least one
barrier has to cross two edges.

We prove Theorem 1 using a recursive algorithm that com-
putes a spanning graph on the sites. In step i, 1 ≤ i ≤ n, we
compute a connected straight-line graph Ti with vertex set
V (Ti) ⊆ S, |V (Ti)| ≥ i+1, that crosses every barrier at most
twice. Subsection 2.1 presents some basic assumptions and
describes invariants maintained throughout the algorithm,
Subsection 2.2 describes the progress of the algorithm and
Subsection 2.3 proves that it terminates and achieves the
cost of 2 crossings per barrier.

2.1 Basic Assumptions and Invariants
We assume that the barriers and the sites lie in a bounding

box B. We choose a coordinate system such that B is not
axis-parallel, no barrier is vertical, and the left endpoints
of the barriers have distinct x-coordinates. Let b0 denote
the leftmost corner of the bounding box. Observe that the
leftmost corner of every cell of the subdivision is either b0

or a left endpoint of a barrier.

2.1.1 Ordering
Assume that L = {�1, . . . �n} represents the barriers in

increasing order of the x-coordinates of their left endpoints
q1, q2, . . . qn. Let C0 be the cell adjacent to b0, and, for every
i = 1, 2 . . . , n, let Ci denote the cell whose leftmost point is
qi and which contains site si, see Figure 3(a). Let Ĉi denote
the cell adjacent to Ci containing site ŝi such that �i and
qi lie on the line separating Ci and Ĉi. For i = 1, 2, . . . , n,
the V-shape of si is the 2-edge path wi = (si, qi, ŝi), see
Figure 3(a). It can also be considered a single edge from si

to ŝi with a bend at qi. Let W denote the set of all straight
line segments siqj occurring in V-shapes. The set L ∪ W
contains pairwise non-crossing line segments.

Our algorithm proceeds in at most n steps. In step i,
i = 1, 2, . . . , n, it computes a connected straight-line graph
Ti and a weakly simple polygon Pi. For clarity, we adopt the
terminology that graphs have vertices and edges; polygons
have corners and sides; and barriers have endpoints.

2.1.2 Weakly simple polygons
A closed polygonal chain P = (p0, p1, . . . , pk−1, pk = p0)

where any point p in the plane could occur several times
represents a weakly simple polygon if the sides pipi+1 are
pairwise non-crossing segments and if each point pi can be
moved by a distance at most an arbitrarily small ε to a posi-
tion pi

′ so that the closed polygonal chain P ′ = (p0
′, p1

′, . . .,

440

pk−1
′, pk

′ = p0
′) represents the boundary of a simple poly-

gon in counterclockwise order, with the interior lying to the
left. A corner pi ∈ P is convex (reflex) if the counterclock-
wise angle ∠(pi−1, pi, pi+1) measures less (more) than 180◦.
Our algorithm will maintain a weakly simple polygon whose
corners are either sites or apices of V-shapes. Figure 2 de-
picts a weakly simple polygon. We denote the interior of the
polygon by int(P). The weakly simple polygon P and its in-
terior int(P) jointly cover a closed polygonal region, which
we denote by P̄ . The boundary of this region is denoted by
∂P . This polygonal region may have holes and its boundary
may have duplicated edges. These edges may be traveled
several times during a traversal along the boundary of the
polygon.

2.1.3 Initialization
T0 has vertex set {s0} and no edges. P0 is a degenerate

polygon with a single corner s0.

2.1.4 Invariants
The vertex set V (Ti) and the region P̄i are monotone

increasing in every step. That is, V (Ti) ⊂ V (Ti+1) and
Pi ⊂ Pi+1. We maintain the following invariants.

1. The graph Ti. Ti is a connected straight-line graph
with vertex set V (Ti) ⊆ S, |V (Ti)| ≥ i + 1.

2. The polygon Pi. Pi is a weakly simple polygon with
the following properties.

(a) The convex corners of P̄i are in the set V (Ti)∪
{q1, . . . , qn}.

(b) If a left endpoint qi of a barrier is a convex cor-
ner of P̄i, then the V-shape associated with qi

lies on the boundary of the region P̄i, that is,
wi ⊂ ∂P i.

(c) Every side of Pi is either part of the graph Ti or
part of a V-shape.

(d) If a side of Pi intersects a line segment � ∈
L∪W at point r, then the portion of � between r
and one of �’s endpoints is completely contained
in the interior of Pi.

(e) The interior of Pi contains no sites.

Proposition 1. At every step of the algorithm at most
two edges of the graph can cross a barrier.

Proof. By Invariants 2c, 2d, and 2e.

2.2 Progress of the Algorithm
We start with a graph Ti−1 and a weakly simple poly-

gon Pi−1 satisfying the above invariants. To generate Ti

and Pi, we consider two cases. In both cases, we compute
an intermediate graph T ′

i on a vertex set V (T ′
i), |V (T ′

i)| >
|V (Ti−1)|, which has one or two edges with a bend, and
an intermediate polygon P ′

i . Subsection 2.2.1 describes how
the intermediate graph T ′

i is transformed into a straight-line
graph Ti by modifying the non-straight edges and updating
P ′

i .

Case 1. For every site sj �∈ V (Ti−1), the segment sjqj is
disjoint from Pi−1. Consider the smallest index 1 ≤ i ≤ n
such that sj �= V (Ti−1). Note that the leftmost point of Ĉj

is to the left of qj , and so ŝj ∈ V (Ti−1). We augment the

Figure 2: A weakly simple polygon (perturbed by ε
into a simple polygon) that can be constructed by
our algorithm. Polygon sides in bold represent tree
edges of the intermediate graph T ′

i . All other sides
are part of some V-shape. Circles represent polygon
corners. Full (empty) circles represent sites (apices
of V-shapes).

graph Ti−1 by the V-shape wj . We put T ′
i = Ti−1 + wj ,

where wj is an edge with one bend. We append the V-
shape wj to the weakly simple polygon with two different
orientations by letting P ′

i = Pi−1 + (ŝj , qj , sj , qj , ŝj). (See
Figure 3(b,f,h).)

Case 2. There is a site sj �∈ V (Ti−1) such that the seg-
ment sjqj is not disjoint from P̄i−1. By invariant 2e, the
int(Pi−1) contains no site and so sjqj must intersect the
boundary ∂P i−1. Let r be the first intersection point of
sjqj and ∂P i−1. By invariant 2c and since all V-shapes are
noncrossing, r lies on an edge sasb of Ti−1. We replace edge
sasb by two edges (each with one bend), ej1 = (sj , r, sa) and
ej2 = (sj , r, sb), to get T ′

i = Ti−1 − sasb + ej1 + ej2 . We
append the segment rsj to the weakly simple polygon with
two different orientations by letting P ′

i = Pi−1 + (r, sj , r).
(See Figure 3(d).)

In Case 1, it follows from invariant 2d that the segments
qjsj and qj ŝj are disjoint from int(Pi−1). In Case 2, the
segment rsj is disjoint from int(Pi−1) by definition. It fol-
lows that P ′

i is a weakly simple polygon, and it is easy to
check that T ′

i and P ′
i satisfy all conditions of invariant 2.

The graph T ′
i is connected, but it has edges with bends, and

so T ′
i does not satisfy invariant 1. Note, however, that every

bend in the graph T ′
i maps to a reflex corner of the region

P̄ ′
i .

2.2.1 Removing a Bend
We are given a graph G = T ′

i and a weakly simple polygon
P = P ′

i satisfying invariant 2. G and P also satisfy the
following invariant for a fixed integer i.

3. G is a connected graph with vertex set V (G) ⊂ S,
|V (G)| ≥ i + 1. Each edge has at most two bends.
Edges with bends lie along ∂P such that each bend
maps to reflex corner of P̄ .

Intuitively, we place a rubber band along an edge e with
bends. Ideally the rubber band contracts to a straight-line

441

s0

s1

s2

s3

s4

(a) (b) (c)b0

s6

s5

(d) (e) (f)

(g) (h) (i)

s0

s1

s2

s3

s4

s6

s5

s0

s1

s2

s3

s4

b0

s6

s5

s0

s1

s2

s3

s4

b0

s6

s5

s0

s1

s2

s3

s4

b0

s6

s5

s0

s1

s2

s6

s5

s3

s4

b0

s0

s1

s2

s3

s4

b0

s6

s5

s1

b0

s6

s5

s0

s2

s3

s4

s0

s1

s2

s3

s4

b0

s6

s5

q1

T ′
1

T1

T ′
2

r

T2

T ′
3

q4

T3

q6

T ′
4 T4

Figure 3: Six segments, seven sites, and the steps of our algorithm. In each instance the shaded region is
bounded by a weakly simple polygon. Parts b,c reflect a Case 1 update, parts d,e reflect a Case 2 update
and parts f,g and h,i reflect a Case 1 update.

edge, and we add the area swept by the rubber band to the
polygon P (for example, Figure 3(b)-(c)). Pi is supposed
to be weakly simple, however, with its interior disjoint from
the sites, and so the rubber band may wrap around obstacles
represented by S and convex corners of P .

Remove the bends recursively. Consider an edge with at
most two bends e = (sa, r1, r2, sb). By invariant 3, e lies
on the boundary ∂P and all bends are reflex corners of P̄ .
Let π = π(sa, r1, r2, sb) denote the shortest path between sa

and sb that is homotopic to the path (sa, r1, r2, sb) in the
presence of the obstacles P ∪ S. (See Figure 4.)

Let π = (sa = t0, t1, t2, . . . , tk−1, tk = sb), k ≥ 1, passing
through a sequence of sites and convex corners of P (Fig-
ure 4). For every segment tj−1tj ⊂ π, j = 1, 2, . . . , k, we
design a new edge ej (possibly with bends) and a path fj .
If tj−1, tj ∈ S, then ej = fj = tj−1tj . If tj−1 ∈ S and
tj ∈ {q1, q2 . . . , qi} is an apex of a V-shape, then by in-
variant 2b, tj is incident to the sides tjsh and tjsh′ along
the polygon P , where sh, sh′ ∈ V (G). We may assume
w.l.o.g. that sh is on the same side of the line tjsh′ as
tj−1, and let ej = (tj−1, tj , sh) with one bend, and let
fj = (tj−1, tj , sh, tj) that traverses the side tjsh twice. The

case that tj−1 ∈ {q1, q2 . . . , qi} and tj ∈ S is analogous. Fi-
nally, if both tj−1 and tj are apices of V-shapes, then we de-
sign an edge ej = (sg, tj−1, tj , sh) with two bends such that
sg and sh are sites adjacent to tj−1 and tj , respectively (Fig-
ure 4). We also design a path fj = (tj−1, sg, tj−1, tj , sh, tj)
that traverses the sides tj−1sg and tjsh twice, once in each
direction.

We update the graph by setting G := G−e+
Pk

j=1 ej . If Δ

denotes the region enclosed by the closed curve (sa, r1, r2, sb)∪
π(sa, r1, r2, sb), then we let P = P − e +

Pk
j=1 fj , and so

P̄ = P̄ ∪ Δ ∪ Sk
j=1 fj . Note that sa or sb may occur as an

internal vertex in π. Our argument goes through without
any change if this happens, but needs to allow that G has
loops.

Call this subroutine recursively while G has an edge with
bends. The number of edges may increase in each step. Let
f(G, P) = #(non-straight edges of G)+2·#(convex vertices
of P) + 2|S \ V (G)|. Observe that f(G) decreases in each
step. Since the number of convex vertices of P and |S\V (G)|
is bounded, this recursion terminates with a straight-line
graph Ti = G and a polygon Pi = P .

442

sa

P

sb

r1

t3

t2

t1

Δ

t5

t4

Figure 4: A polygon P (gray area) and a graph G
(bold segments). The edge e = (sa, r1, sb), the short-
est path π(sa, r1, sb) and the region Δ which is added
to P . Full circles represent sites, empty circles rep-
resent apices of V-shapes.

2.2.2 Invariant Maintenance

2.2.2.1 Invariant 2.
We have noted that we maintain invariant 2 when pass-

ing from Ti−1 to T ′
i . Here we show that the subroutine in

Subsection 2.2.1 also maintains invariant 2. Since the path
π(sa, r1, r2, , sj) is homotopic to (sa, r1, r2, sj), the open re-
gion Δ contains no additional sites or corners (invariant 2e).
Because π(sa, , r1, r2, sb) is a shortest path homotopic to a
reflex chain along ∂P , π is also a reflex chain, and so we
do not add any new convex corners to polygon P (invari-
ant 2a). The two endpoints sa and sb of π are sites, and so
the neighbors of a convex corner q of P̄ remain unchanged
(invariant 2b). Note, however, that if π passes through a
convex corner r of P̄ , then r will not be a convex corner
anymore and invariant 2b no longer poses restriction on r
(see e.g. Figure 4). Every new side along the boundary ∂P
is covered by new edges of G (invariant 2c).

Since π(sa, r1, r2, sb) is a homotopic shortest path to a
reflex chain (sa, r1, r2, sb) along P̄ , for any barrier partially
contained in this region, the portion between the intersection
point and one of its endpoints must be fully contained in the
region (invariant 2d).

2.2.2.2 Invariants 1 and 3.
We have noted that we maintain the connectivity of the

graph when we pass from Ti−1 to Ti, and the subroutine
of Subsection 2.2.1, iterated recursively, transforms T ′

i into
a straight-line graph Ti. It remains to show that the sub-
routine maintains the connectivity of the graph G. In each
step of the subroutine, we replace an edge e = (sa, r1, r2, sb)
by a sequence of edges M(E) = (e1, e2, . . . , ek), where two
consecutive edges are either adjacent or they are incident to
two sites of a V-shape (si′ , qi′ , ŝi′) along ∂P . Invariants 1
and 3 guarantee that there is a path P (i′) ⊂ G between the
sites si′ and ŝi′ . Hence, it is enough to show that the path
P (i′) is not disconnected when we remove edge e; that is,
we need to show that P (i′) does not pass through the edge
e.

Note a global view of the algorithm. The main algorithm
applied Case 1 in step i = 1 because polygon P0 lies in the

interior of cell C0. For a step i, let h = h(i), 1 ≤ h ≤ i,
denote the last step before (and including) step i when the
algorithm applied Case 1.

Proposition 2. The edges of Th−1 are never removed
from our graph.

Proof. Graph Th−1 has no edge that intersects a cell
containing a site of S \ V (Th−1), otherwise Case 2 would
have been applied in step h.

So Case 2 (which replaces an edge by two bent edges) is
never applied to the edges of Th−1 in subsequent steps. Re-
turn to step i, and consider the subroutine that replaces
an edge of T ′

i recursively by new edges. In one step of
this subroutine, a sequence M(e) of edges replaces a sin-
gle edge e. Our key observation is that if two consecutive
edges ej−1, ej ∈ M(e) are incident to two sites of a V-shape
(si′ , qi′ , ŝi′) added to the polygon before step h, then the
sites si′ and ŝi′ are connected via edges of Th−1, that are
present in graph G. We need focus only on the single V-
shape (sh, qh, ŝh), inserted into P in step h.

We show that in steps h, h + 1, . . . , i, no shortest path π
hits the apex of the V-shape h, proving that Invariants 1
and 3 are maintained. First assume that the leftmost vertex
of the V-shape (sh, qh, ŝh) is the apex qh. By our order-
ing scheme, the apices of V-shapes added previously to the
polygon lie to the left of qh, and so all internal vertices of
π(sh, qh, ŝh) are sites. In every subsequent step i′, h < i′ ≤ i,
we recursively extend the edges of π(sh, qh, ŝh) to the right
along segment si′qi′ , and so by our ordering scheme, no apex
of any V-shape can be an internal vertex of any path π.

Next let us assume that the leftmost vertex of the V-
shape (sh, qh, ŝh) is ŝh, and so its rightmost vertex is sh.
Assume w.l.o.g. that the line segment ŝhsh lies below the V-
shape π(sh, qh, ŝh) (if it lies above the V-shape, we can argue
analogously with the vertical mirror image). We define a
path γ that partitions the bounding box B into two regions
and passes through the V-shape (sh, qh, ŝh): let γ start with
the line segment b0s0, it follows some path in the graph Th−1

from s0 to ŝh; then it follows the V-shape from ŝh to sh, and
terminates with a vertical line segment shb1 connecting sh

to the top side of B (see Figure 5). It suffices to show that no
edge created in steps h, h+1, . . . , i lies in the region above γ.
Indeed, no newly created edge crosses any of b0s0, Th−1, and
(sh, qh, ŝh). It remains to show that the new edges cannot
extend from the right side of the vertical segment shb1 to
its left side. In step h, the new edges may extend along V-
shapes inserted into P prior to step h whose apices lie below
γ. Since the apices of all previous V-shapes lie to the left of
qh, these V-shapes cannot cross shb1. In every subsequent
step i′, h < i′ ≤ i, we recursively extend the edges created
in step h to the right along a segment si′qi′ , and so these
edges cannot extend to the left of shb1, either. We conclude
that no shortest path cannot hit the apex qh of the V-shape
(sh, qh, ŝh).

2.3 Termination
The final graph Ti is a straight line graph over all sites.

Proposition 1 states that at every step of the algorithm at
most two edges of the graph can cross a barrier. It holds
in every step of the algorithm and specifically for the final
graph, proving Theorem 1.

443

s1

b0

s6

s5

s0

s2

s3

s4

q6

T ′
4

γ

Figure 5: The path γ for h = 6 of the instance of the
algorithm depicted in Figure 3.

3. TOTAL NUMBER OF CROSSINGS
In this section, we show that for every input (L, S) of n

line segments forming a convex subdivision and n + 1 sites,
one in each convex cell, one can construct a straight-line
spanning tree T of total cost at most 5

3
n. We also present

a family of inputs for which any spanning tree has a total
cost of at least 5

3
n − O(

√
n). Our upper bound is based

on a two phase algorithm: In the first phase, we greedily
add edges si, sj if sisj crosses at most one barrier and this
barrier was not crossed by any previously added edge. The
resulting graph G crosses every barrier exactly once, but
is not always connected. We analyze the structure of the
connected components of G and show that in the second
phase of our algorithm one can augment the graph G to a
spanning graph T such that the new edges increase the total
cost by at most 2

3
n.

3.1 A Greedy Algorithm that Almost Solves
the Problem

The first phase in our algorithm for constructing a span-
ning tree T is the following simple greedy procedure: Ini-
tialize G to be a graph with vertex set S and no edges. For
any two sites si, sj ∈ S lying in two adjacent cells, if the
line segment sisj crosses at most one barrier � ∈ L and
no edge of G crosses �, then let G = G + sisj . It is clear
that the output graph G crosses every barrier at most once.
We can implement this greedy algorithm in O(n) time if we
pre-compute the list of O(n) pairs of adjacent cells and we
maintain during the algorithm the list of barriers already
crossed by an edge of G.

If G is a spanning graph over all sites S, then our algo-
rithm is complete and we have a spanning tree T ⊆ G of
total cost at most n. Assume, that G has k ≥ 2 connected
components which we denote by S1, S2, . . . , Sk. The second
phase of our algorithm, in Subsection 3.3, will add edges be-
tween the components of G. But first we show, in subsection
3.2, that the components of G have a very special structure.

3.2 Nested structure of components
For every i = 1, 2, . . . k, let Mi denote the union of the

cells corresponding to the vertices of the component Si of
G. Every Mi, i = 1, 2, . . . , k, is a polygonal region in the

qleft

qright

a1 a2

a3

a4

b1
b2 b3

�

q′

�′

Figure 6: Construction in the proof of Lemma 1.
Pairs (1, 1), (1, 2) and (2, 2) are right-leaning. The
pairs (3, 3) and (4, 3) are left-leaning and (3, 2) is nei-
ther left- nor right-leaning.

bounding box B. Since edges of G connect sites in adjacent
cells, every region Mi is connected and the regions jointly
form a subdivision of the bounding box B.

Lemma 1. For every barrier � ∈ L there is an edge e ∈ G
that crosses �.

Proof. Select a coordinate system where � is horizontal,
and let qleft and qright denote its left and right endpoints, re-
spectively. Let us denote the cells above � by A1, A2, . . . , Aα

along � such that A1 is incident to qleft, and let ai denote
the site lying in Ai for i = 1, 2, . . . α. Similarly, the cells
below � are denoted by B1, B2, . . . , Bβ along � such that B1

is incident to qleft, and let bi denote the site lying in Bi for
i = 1, 2, . . . β (see Figure 6).

It is enough to show that there are two indices i ∈ {1, 2.., α}
and j ∈ {1, 2, . . . , β} such that the segment aibj crosses no
other barrier but �. It follows that the greedy algorithm,
when processing the first such adjacent pair (AiBj), puts
the edge aibj into G.

Consider two adjacent cells Ai and Bj lying on opposite
sides of �. Their common boundary tij = Ai∩Bj is an inter-
val along �, which has non-zero length due to the general po-
sition assumption. We say that the pair (i, j) is left-leaning
(right-leaning), if the segment aibj crosses the line through �
on the left (right) of the interval tij (Figure 6). It suffices to
show that there is pair (i, j) which is neither left- nor right-
leaning, and so aibj crosses no other barrier but �. Since
qleft and qright must each lie either in the relative interior
of another segment or on the bounding box, the pair (1, 1)
cannot be a left-leaning and (α, β) cannot be a right-leaning.
Assume that the pair (1, 1) is a right-leaning, and let (i, j)
be the first pair along � that is not right-leaning. This means
that aibj intersects l to the left of the right endpoint of tij .
We may assume w.l.o.g. the previous pair is (i − 1, j), and
since it is right-leaning, ai−1bj crosses � to the right of the
left endpoint of tij . The pair (i, j) is not right-leaning, and
we show that it cannot be left-leaning, either: Let q′ denote
the left endpoint of tij , and let �′ be the barrier along the
boundary of Ai−1 and Ai incident to l at q′. Since (i− 1, j)
is right-leaning, �′ must intersect the line segment ai−1bj .
This implies that ai and bj are on the same side of the line
through �′ and so aibj intersects � to the right of q′.

Since Mi is not necessarily simply connected its bound-
ary ∂Mi may not be connected. A frame γ is a connected
component of a boundary ∂Mi for i = 1, 2, . . . , k. A frame

444

Figure 7: Two examples of frames (in bold) created
by the algorithm. In both cases, all of the arcs are
oriented clockwise.

is a closed curve along portions of barriers and portions of
∂B.

Lemma 2. For every i = 1, 2, . . . , k, the boundary ∂Mi

cannot contain an entire barrier.

Proof. Suppose, to the contrary, that there is a frame γ
along the boundary of a region Mi that contains a barrier
� ∈ L. Since � is on the boundary of Mi, every cell along
one side of � belongs to region Mi and every cell along the
opposite side of � is outside Mi. By Lemma 1, there are two
cells on two opposite sides of � whose sites are connected by
an edge of G (note that � cannot cross any edge of G), a
contradiction. We conclude that γ cannot contain an entire
barrier.

We define the arc as a maximal (nonempty) connected
component of the intersection of γ with either a barrier or
∂B. By Lemma 2, an arc cannot be an entire barrier. For
an arc t, t �⊆ ∂B, we denote by �(t) ∈ L the barrier con-
taining t (note that the same barrier may appear several
times along a frame γ). For every arc t, we define an orien-
tation: σ(t) ∈ {clockwise, counter-clockwise, neutral}. Let
σ(t) = neutral if t ⊆ ∂B or t does not contain either end-
point of �(t); σ(t) = clockwise if the first endpoint of t is an
endpoint of the barrier �(t) when traversing γ in clockwise
order; σ(t) = counter-clockwise if the second endpoint of t
is an endpoint of the barrier �(t) (by Lemma 1, t cannot
contain both endpoints of �(t)), see Figure 7.

Lemma 3. All arcs along a frame have the same orienta-
tion.

Proof. Consider the cyclic sequence of the arcs (t1, . . . , tτ)
along a frame γ. If γ �= ∂B, then this sequence consists of
more than one arc. The common point of every two con-
secutive arcs is an endpoint of a barrier, which contains one
of the arcs: this implies that clockwise and counterclock-
wise arcs cannot be consecutive, and every neutral arc not
on ∂B is preceded by a counter-clockwise and followed by
a clockwise arc. Since a clockwise arc is always followed by
another clockwise arc, there cannot be two consecutive arcs
with different orientations.

It follows that every frame is either ∂B or disjoint from
∂B: if a frame γ contains parts of the boundary ∂B and por-
tions of barriers, then it contains a segment endpoint, and
so it contains arcs of both neutral and non-neutral orienta-
tion, which is impossible by Lemma 3. Only ∂B consists of
arcs of neutral orientations; all other frames consist of arcs
of all clockwise or counter-clockwise orientation.

2

M

M

M

l

p

c

b

a

1

l

Figure 8: Proof of Lemma 4.

Lemma 4. Any point of a frame lies in the boundary of
at most two regions of the subdivision {M1, M2, . . . , Mk}.

Proof. Suppose, to the contrary, that point p lies on
the boundary of three regions Ma, Mb, and Mc. Since the
regions are union of cells and the barriers are in general
position, p must be intersection of two barriers: p is the
endpoint of some �1 ∈ L and lies in the relative interior of
some �2 ∈ L (Figure 8). Assume that Ma and Mb lie on
opposite sides of �1; and �1 and Mc are on opposite sides of
�2. The orientation of the arcs along Ma and Mb are different
(clockwise and counterclockwise) since p is an endpoint of
�1 and it determines the orientation of the arcs along �2.
This incurs two different orientations on the arcs along �2
containing p: A contradiction.

The above lemma reveals an important feature of the
graph created by the greedy algorithm. It proves that the
regions are nested one in the other and that they admit
a specific partial ordering: Every region is a polygon with
holes, where the holes are filled by other regions and every
frame is the outer boundary of exactly one region.

3.3 Total Number of Crossings
To build T , we connect the components of G by edges that

we call bridges. Consider a frame γ separating regions Mi

and Mj . For every point f ∈ γ, we define a potential bridge
B(f) as follows. Let Δ(f) be the closed triangle whose ver-
tices are f and the two sites in the two faces adjacent to
f . Let β(f) be the edge of this triangle opposite f . We
say that β(f) is the main edge of Δ(f) and the other two
edges the secondary edges. If the interior of Δ(f) contains
no sites, then let B(f) = β(f). Otherwise, consider the
convex hull of the sites in Δ(f), including the endpoints of
β(f). Traversing the boundary of this convex hull in the
interior of Δ(f) from one endpoint of β(f) to the other, one
encounters sites from both Si and Sj ; choose as B(f) any
segment on the convex hull which connects a site in Si to a
site in Sj .

We define A(f) to be the triangle whose vertices are f
and the intersections of the line determined by B(f) with
the edges of Δ(f). We say that the edge of this triangle
which is an extension of B(f) is its main edge and the other
two are its secondary edges (Figure 9).

Note that the use of the convex hull ensures that the tri-
angle A(f) is contained within the triangle Δ(f) and that
the secondary edges of A(f) are subsegments of the sec-
ondary edges of Δ(f). The secondary edges impose strong
constraints exploited in the proofs below.

445

Mi

f

Δ(f)

b(f)
b(b(f))

Mj

A(f)

γ

β(f)

B(f)
A(b(f))

Δ(b(f))

β(b(f))

B(b(f))

Figure 9: Construction of Δ(f), β(f), A(f), B(f)
(the two right triangles and their associated primary
edges). Δ(b(f)), A(b(f)) and b(b(f)) are the two left
triangles and the depicted point.

Lemma 5. (a) No barrier crosses a secondary edge except
at the edge’s endpoint at a frame. (b) Secondary edges do
not intersect except at their endpoints.

Proof. (a) By construction, the interior of each secondary
edge lies entirely within one (convex) face, due to the con-
vexity of the faces. Consequently, (b) an intersection of a
secondary edge with the interior of another means two differ-
ent sites (endpoints of those edges) within a single face.

Lemma 6. No site lies in the interior of A(f).

Proof. Follows from B(f) lying on the boundary of the
convex hull of the sites in A(f).

For each point f on the frame, choose a point b(f) in the
intersection of the frame with B(f). Since the endpoints
of B(f) are in different regions, there must be at least one
such point. If there are several such points, choose b(f)
arbitrarily. We apply this process iteratively. For example
the notation b3(f) denotes b(b(b(f))).

Lemma 7. If b(f) �= f , then the interior of A(b(f)) shares
no point with the interior of A(f).

Proof. The line determined by B(f) creates two half
planes. Neither of the endpoints of β(b(f)) lies in the same
open half-plane as f . If one endpoint s does, by Lemma 6, it
lies outside A(f). Then the secondary edge [b(f), s] crosses
one of the secondary edges of Δ(f), violating Lemma 5.
Now, none of the vertices of Δ(b(f)) lies in the open half-
plane that includes f , whereas by construction the interior
of A(f) lies entirely within that half-plane. The result fol-
lows.

Lemma 8. If b3(f) �= b2(f) �= b(f), then A(b2(f))∩A(f) =
∅.

Proof. By Lemma 7, b2(f) lies on the opposite side of
the line determined by B(f) from f . If a secondary edge
of A(b2(f)) crosses a secondary edge of A(f), then Lemma
5 is violated. If a secondary edge of A(b2(f)) crosses B(f)

and terminates within A(f), then either Lemma 6 is vio-
lated or the associated secondary edge of α(b2(f)) crosses
a secondary edge of A(f), violating Lemma 5. If B(b2(f))
is the only edge of A(b2(f)) which intersects A(f), then a
secondary edge of A(f) crosses B(b2(f)) and once again ei-
ther Lemma 6 is violated or the associated secondary edge of
Δ(f) crosses a secondary edge of A(b2(f)), violating Lemma
5. There are no other ways for the triangles to intersect.

Lemma 9. If a barrier intersects the boundary of A(f) in
two points, then one of them is f .

Proof. If not, then one of the points is in a secondary
edge of A(f), violating Lemma 5.

Lemma 10. Suppose there is no point f such that b(f) =
f . Then there is a sequence of points on the frame (f0, f1, . . . ,
fd = f0), d ≥ 3, such that fi = b(fi−1) for all 1 ≤ i ≤ d.

Proof. Since there are only finitely many sites, the exis-
tence of such a sequence for some d is assured. By hypoth-
esis, d ≥ 2. But b2(f) = f would mean the entire segment
[f, b(f)] would lie within both A(f) and A(b(f)), contradict-
ing Lemma 7.

Lemma 11. A total of at most 5
3
n crossings suffice to con-

struct a spanning tree of S.

Proof. Construct G. Suppose there are k regions M1, . . . ,
Mk. Every Mi, i = 1, 2, . . . k, has a unique frame γi as an
outer boundary. Graph G has n+1 vertices, k components,
and by Lemma 1 it has n edges. We can remove k− 1 edges
from G and obtain a graph G− with n−k +1 edges and the
same connected components as G.

For each frame, add a bridge determined as follows. If the
frame contains a point f for which b(f) = f , use B(f). Oth-
erwise, consider B(f0), B(f1), and B(f2) from Lemma 10.
Choose the bridge that intersects the fewest barriers, say it
is B(fi). Note that by Lemmas 7 and 8, the interiors of no
two of A(f0), A(f1), and A(f2) have any point in common.

We now label all barrier endpoints that lie on this frame
to facilitate counting. If a barrier is crossed by a bridge
B(fj) and its endpoint lies in the interior of triangle A(fj),
then we label the endpoint crossed. We label all remaining
endpoints of barriers uncrossed. By our choice of bridges,
and since the interiors of the triangles A(fi) for i = 1, 2, 3 are
disjoint, at most 1

3
of the endpoints are labeled as crossed.

For every bridge, each barrier endpoint labeled crossed
corresponds to a crossing between the barrier and the bridge,
with one possible exception. The exception is the one barrier
which under Lemma 9, has no endpoint in the interior of
triangle A(fi) but may be crossed as well. Since there are
k bridges, there are at most k exceptional barriers. There
are at most 2n endpoints of barriers and therefore at most
2n/3+k crossings of barriers by bridges. The tree G− creates
n − k crossings. The total count is thus 5n/3.

3.4 Lower Bound for the Total Number of
Crossings

Lemma 12. There are examples where every straight-line
spanning tree on S has a total cost of at least 5

3
n.

Proof. Construct a honey-comb with n barriers as de-
picted in Figure 10. Suppose T is a spanning tree of con-
nectors. We distinguish two types of sites: blue sites within

446

(a) (b)

Figure 10: Construction of the lower bound using a honey-comb: (a) The construction of arrangement. Only
blue sites within hexagonal faces and blue-blue edges connecting two blue sites are drawn. (b) Enlargement of
one section in the honey-comb. A connector to a red site in the shaded region of a triangular face will always
cross at least two barriers. This proves the lower bound of two crossings per barrier and total of 5

3
n crosses.

the hexagonal faces and red sites within the triangular faces.
The perimeter’s effect vanishes (there are O(

√
n) cells along

the perimeter) as the example grows in size. Ignoring the
perimeter’s effect, the number of red sites is 2

3
n and the

number of blue sites is 1
3
n. We classify the edges between

the sites as blue-blue, red-blue, and red-red. Each blue-blue
edge crosses some barrier, and each red-blue or red-red edge
crosses two or more barriers. Consider the graph (a forest)
R formed from just the red sites and the red-red edges. Be-
cause T is a spanning tree, each component of R is connected
to some blue site with a distinct red-blue edge. Thus the
combined number of red-blue and red-red edges cannot be
less than the number of red sites. Thus T has n−1 edges, all
of which cross some barrier and at least 2

3
n of which cross

at least two barriers. This yields a total of at least 5
3
n − 1

crossings.

4. SUMMARY AND FUTURE WORK
We defined a restricted version of a problem posed by

Snoeyink and proved a tight bound of 2 crossings per edge
and total cost of 5

3
n. The problem presented by Snoeyink

still remains open, with a lower bound of 3 crossings per
edge and 2n− 2 total cost and an upper bound of 4 and 4n,
respectively. The techniques described here do not apply
directly to the original problem because of the existence of
empty faces (holes).

Two natural extensions of our results appear to be plau-
sible. Given a set of pairwise disjoint barriers (segments)
and a set of sites (points) such that the sites visually cover
the entire plane (that is, for every point p in the plane there
is a site s such that the open segment sp is disjoint from
the barriers), is it true that there is a spanning tree on the
sites that crosses every barrier twice and has a total cost of
at most 5n/3? We are also studying a connection between
the infinite lines barriers and pairwise disjoint segment barri-

ers: Given m line segments with O(mα) intersections (where
0 ≤ α ≤ 2) and n points in the plane, is there a straight line
spanning tree on the points such that every segment crosses
O(nα/4) edges of the spanning tree?

5. REFERENCES
[1] T. Asano, M. de Berg, O. Cheong, L. J. Guibas,

J. Snoeyink, and H. Tamaki. Spanning trees crossing
few barriers. Discrete Comput. Geom., 30(4):591–606,
2003.

[2] B. Chazelle and E. Welzl. Quasi-optimal range
searching in spaces of finite VC-dimension. Discrete
Comput. Geom., 4(5):467–489, 1989.

[3] H. Edelsbrunner, L. Guibas, and J. Stolfi. Optimal
point location in a monotone subdivision. SIAM J.
Comput., 15(2):317–340, 1983.

[4] L. J. Guibas and J. Stolfi. Primitives for the
manipulation of general subdivisions and the
computation of Voronoi diagrams. ACM Trans.
Graph., 4(2):74–123, 1985.

[5] M. Hoffmann and C. D. Tóth. Connecting points in
the presence of obstacles in the plane. In Proc. 14th
Canad. Conf. on Comput. Geom. , pp. 63–67, 2002.

[6] D. G. Kirkpatrick. Optimal search in planar
subdivisions. SIAM J. Comput., 12(1):28–35, 1983.

[7] D. Krumme, G. Perkins, E. Rafalin, and D. L.
Souvaine. Upper and lower bounds for connecting sites
across barriers. TUFTS-CS technical report 2003-6,
Tufts University, Medford, MA, 2003.

[8] J. Matoušek. Spanning trees with low crossing
number. RAIRO Inform. Théor. Appl., 25(2):103–123,
1991.

[9] J. Matoušek. Efficient partition trees. Discrete
Comput. Geom., 8:315–334, 1992.

447

[10] N. Sarnak and R. Tarjan. Planar point location using
persistent search trees. Commun. of the ACM,
29(7):669–679, 1986.

[11] J. Snoeyink. Open problems session, 1997. 9th
Canadian Conference on Computational Geometry.

[12] J. Snoeyink and M. van Kreveld. Linear-time
reconstruction of Delaunay triangulations with
applications. In Proc. 5th European Sympos. on
Algorithms, volume 1284 of Lecture Notes in Comp.
Sci., pages 459–471. Springer, Berlin, 1997.

[13] E. Welzl. Partition trees for triangle counting and
other range searching problems. In Proc. 4th Sympos.
on Comput. Geom., pages 23–33, ACM Press, New
York, NY, 1988.

[14] E. Welzl. On spanning trees with low crossing
numbers. In Data structures and efficient algorithms,
volume 594 of Lecture Notes in Comp. Sci., pages
233–249. Springer, Berlin, 1992.

448

