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Abstract

This paper addresses the following fundamental problem: Suppose that in a
group of n people, where each person knows all other group members, a single
person holds a piece of information that must be disseminated to everybody within
the group. How should the people propagate the information so that after short
time everyone is informed?

The classical approach, known as the push model, requires that in each round,
every informed person selects some other person in the group at random, whom it
then informs. In a different model, known as the quasirandom push model, each
person maintains a cyclic list, i.e., permutation, of all members in the group (for
instance, a contact list of persons). Once a person is informed, it chooses a random
member in its own list, and from that point onwards, it informs a new person per
round, in the order dictated by the list.

In this paper we show that with probability 1 − o(1) the quasirandom protocol
informs everybody in (1± o(1)) log2 n + ln n rounds; furthermore we also show that
this bound is tight. This result, together with previous work on the randomized
push model, demonstrates that irrespectively of the choice of lists, quasirandom
broadcasting is as fast as broadcasting in the randomized push model, up to lower
order terms. At the same time it reduces the number of random bits from O(log2

n)
to only ⌈log2 n⌉ per person.

1 Introduction

Randomized Broadcast in Networks Information spreading in large networks is an
important topic of study with several applications in distributed systems. Consider, for
instance, the task of maintaining replicated databases on name servers in large networks
[5, 9]. Here, the goal is to propagate updates (that originate at some specific vertex
or vertices) to all other vertices in the network. This is typically done by means of
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information exchange between pairs of nodes. Namely, a pair of neighboring vertices
check whether their copies of the database are in agreement, and subsequently perform
the necessary updates. In order to guarantee fast dissemination of the information, it is
important that these pairs of vertices are chosen suitably. Moreover, it is desirable, and
many times a requirement, that the broadcasting algorithms are simple, resilient against
failures, and that they operate locally, i. e., the vertices should not require knowledge of
the global network topology. Similar broadcasting scenarios have been investigated in the
mathematics of infectious diseases (see e.g. [12]). Here, the desired event in such a setting
is that not too many nodes become infected. These requirements have also motivated the
study of gossip-based multicast protocols in distributed networks (see, for instance, [1],
and references therein).

The classical broadcasting protocol is the so-called push model, also known, in more in-
formal terms, as randomized rumor spreading. In this protocol, the information is initially
known to a single vertex and is spread iteratively to all other vertices in a randomized
fashion. More specifically, the protocol proceeds in rounds (and as a consequence, we must
assume some form of synchronization). We assume an underlying network, modeled by an
unweighted graph, in which a vertex can transmit messages to all its neighbors, but only
one message per vertex may be transmitted in any round, due to bandwidth constraints.
In each round, every informed vertex chooses a neighbor uniformly at random, to which
it then sends the information. This protocol is simple, local, and robust on sufficiently
dense graphs. The important question is how many rounds are required in order to inform
all vertices in the graph.

If the underlying network is the complete graph Kn on n vertices, Frieze and Grimmet
[11] showed that (1 + o(1))(log2 n + ln n) rounds suffice with probability 1 − o(1). This
was improved to log2 n + ln n + h(n) for every h ∈ ω(1) by Pittel [15]. Feige, Peleg,
Raghavan, and Upfal [9] were the first to give bounds for general graphs. Moreover, they
proved that O(log n) rounds suffice for the hypercube and the random graph Gn,p with
p > (1 + ε) lnn/n. Elsässer and Sauerwald determined in [8] similar bounds for several
Cayley graphs.

The Quasirandom Push Model Recently, Doerr, Friedrich, and Sauerwald [7] pro-
posed a quasirandom model for randomized rumor spreading. The basic setup is the same
as in the randomized push model, where in each time-step every informed vertex contacts
one of its neighbors. However, the choices of these neighbors are not stochastically inde-
pendent. Instead, each vertex has a fixed, cyclic list of its neighbors, which dictates the
order in which the vertex contacts them. The first neighbor to be contacted by the vertex
is determined by choosing a starting position in this cyclic list at random, and indepen-
dently of the choices of the other vertices. From that point onwards, in each round, the
vertex informs one new vertex per round, in the order dictated by the list. The appealing
property of this protocol is that each vertex needs to make only a single random choice, as
opposed to a new random choice in each round of the game. This adds to the simplicity
and robustness of the protocol. However, it is not immediately clear whether the protocol
is as efficient as the (standard) push model, in terms of the number of rounds required to
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guarantee full dissemination of the rumor.
The work of [7] initiated a study of the quasirandom push model, and showed that this

model is efficient in the following sense. For the complete graph, the hypercube and the
random graph as defined earlier, they showed that all nodes are informed within O(log n)
rounds, with probability 1 − o(1), independently of the particular choice of the lists.
The O(log n) bound also holds for much sparser random graphs, for which the classical
model needs incurs more rounds. We refer the reader to [7] for a detailed exposition and
comparison.

Our contribution: results and methods In this paper, we provide an exact eval-
uation of the quasirandom push model in the setting in which each node has complete
knowledge of every other node (neighbor) in the network, and thus can inform all nodes,
i. e., the setting can be modeled by a complete graph. This is a simple, yet fundamental
model that has been studied extensively in the context of distributed networks, as well
as in the context of randomized broadcast protocols in the push model. We emphasize
that [7] has shown only an asymptotic analysis of the performance of the quasirandom
protocol that ignores all multiplicative factors (which could be fairly large). In other
words, it could be the case that the quasirandom protocol is far inferior to the standard
push model. Our main result affirms the efficiency of quasirandomness:

Theorem 1. Let Sn denote the number of rounds necessary to inform all vertices in
the quasirandom model on the complete graph on n vertices. Then, independently of the
choice of the lists, with probability 1 − o(1),

|Sn − (log2 n + lnn)| = o(log n).

Combined with the main result in [11] on rumor spreading in complete graphs, the
above theorem demonstrates that quasirandom broadcasting is asymptotically precisely
as fast as random broadcasting, irrespectively of the choice of the lists at each vertex.
An important corollary is that the quasirandom model matches the performance of the
fully random model, while at the same time reducing the number of random bits from
O(log2 n) to only log2 n at each vertex.

Theorem 1 is derived by obtaining tight lower and upper bounds on the number of
required rounds (c.f. Theorem 3, and Theorem 4, respectively). The crucial difficulty
in obtaining tight bounds is that the transmission of messages at various nodes is not
independent, but instead may vary by very little or by very much, depending on the
choice of the lists. To circumvent this difficulty, we need to introduce some techniques,
which we believe could be applicable to the analysis of existing or future randomized
protocols with varying degrees of dependency. For the lower bound, we define and analyze
a random experiment based on the definition of the quasirandom protocol, which is much
more “powerful”, in the sense that it allows some vertices to be informed at no cost.
This enables us to describe the process with the help of supermartingales, which makes a
precise analysis possible.

For the upper bound, we use so-called delaying techniques, where we assume that a
vertex stops informing, or that a vertex does not transfer the information on for a certain
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number of rounds. This makes the protocol only slower. On the other hand, it enables us
to perform a very precise analysis by applying well-known tools from probability theory
like Chernoff’s and Azuma’s inequalities.

Very recently, by using different methods, Fountoulakis and Huber [10] showed that
the “o(log n) ” error-term in the statement of Theorem 1 can be replaced by slower growing
functions.

Related Work In this subsection we sketch briefly the connection of our work to the
general concept of quasirandomness. The main underlying idea is to imitate particular
properties of a random process deterministically. This concept occurs in several areas of
mathematics and computer science. Prominent examples are low-discrepancy point sets
and Quasi-Monte Carlo Methods (see, e. g., [14]).

A particular example that inspired our work is a quasirandom analogue of random
walks introduced by [16] and later popularized by Jim Propp (see, e. g., [4, 2, 3]). To
imitate the property of a random walk that many visits to a vertex result in a balanced
number of moves going from it to each of its neighbors, each vertex is equipped with a
rotor always pointing to a neighbor together with a cyclic permutation of the neighbors.
A walk arises from leaving the current vertex in the rotor direction and then updating
the rotor to the next neighbor according to the order given by the permutation. Some
beautiful results exist on this model. Particularly, Cooper and Spencer [4] showed that if
an arbitrary large population of particles does such a quasirandom walk on an infinite grid
Z

d, then (under some mild conditions) the number of particles on any vertex at each time
deviates from the corresponding expected value by only a constant cd. This constant is
independent of the number of particles, their initial position, and the cyclic permutations
used by the rotors. More specifically, for d = 1, that is, the graph being the infinite path,
the best possible constant is c1 ≈ 2.29 [3]. For the two-dimensional grid, the best possible
constant satisfies c2 < 8.03 [6].

2 Model, Notation and Preliminaries

We denote by G = (V, E) the underlying complete graph and by n := |V | the number of
vertices (or nodes). Each vertex v ∈ V is associated with a (cyclic) list Lv of its neighbors
that can be viewed as a permutation Lv of V \ {v}.

Suppose that v ∈ V obtains the rumor for the first time in round t. Then it chooses a
position pv on its list uniformly at random as its starting point. In the following round,
t + 1, vertex v contacts the vertex Lv[pv] and informs it, if it was not already. In each
subsequent round t + 1 + t′, where t′ = 1, 2, . . ., it sends the rumor to vertex Lv[pv +
t′ mod |N(v)|]. This vertex then becomes informed, if it was not already.

The focus of this work is to investigate how long it takes until some rumor initially
known only to a single vertex is broadcast to all other vertices. We adopt a worst-case
view in that we aim at bounds that are independent of all the lists.
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As a technical tool, in order to estimate the sizes of sets of informed vertices we will
apply Azuma’s inequality several times. We will use it in the following form, see e. g. [13,
Lemma 1.2].

Lemma 2 (Azuma’s inequality). Let X1, . . . , Xn be independent random variables, with
Xk taking values in a set Ak for each k. Suppose a function f :

∏n
k=1 Ak → R is measurable

and there exist quantities ck > 0 such that |f(x)− f(x′)| 6 ck whenever the vectors x and
x′ differ only in the kth coordinate. Let Y be the random variable f(X1, . . . , Xn). Then
for any t > 0,

Pr (|Y − E(Y )| > t) 6 2 exp

(

−
2t2

∑n
k=1 c2

k

)

.

3 The Lower Bound

This section is devoted to the proof of the lower bound in Theorem 1. In particular, we
show the following statement.

Theorem 3. Let ε ∈ (0, 1). With high probability, for any choice of the lists, the number
of rounds required in the quasirandom model to inform all n vertices of a complete graph
is at least

log2 n + (1 − ε) lnn.

Proof. Let ℓ = ⌊(1− ε
2
) lnn⌋, and denote by X an execution of the quasirandom protocol

on a complete graph with |V | = n vertices. Our proof will proceed by first defining an
auxiliary experiment X ′, which is based on the execution X. This experiment is related
to X, but has a considerably simpler structure, which will make the further analysis more
accessible.

We begin by describing X ′, which consists of the following three phases:

• Phase 1: Run X until
⌈

n
ln2 n

⌉

vertices are informed. Let A denote the set of these
vertices, and denote by R the number of elapsed rounds.

• Phase 2: For each vertex v ∈ A denote by iv the number of vertices contacted by
v in Phase 1. Designate all vertices Lv[pv], . . . , Lv[pv + iv + ℓ − 1 (mod n − 1)] as
informed. Let

B =
⋃

v∈A

{

Lv[pv], . . . , Lv[pv + iv + ℓ − 1 (mod n − 1)]
}

\ A.

Set also C = V \ (A∪ B).

• Phase 3: The last phase consists of m = |B ∪ C| = n − |A| iterations, where we
shall write B ∪ C = {v1, . . . , vm}. In iteration i, vertex vi informs simultaneously all
the vertices Lvi

[pvi
], . . . , Lvi

[pvi
+ ℓ − 1 (mod n − 1)].
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Informally, in the first phase X ′ simulates X, until a certain number of vertices has
been informed. This defines the vertex set A. In Phase 2 we allow every vertex in A
to contact immediately ℓ additional vertices. Finally, X ′ considers each vertex in the
set B ∪ C, and contacts ℓ consecutive vertices in its list, starting at the same index as the
one chosen in X.

Clearly, the random experiment X ′ and the execution X of the quasirandom protocol
are related. However, there are two important differences: First, we allow all vertices in B
to become informed at no cost (i.e., immediately). More importantly, in the third phase
we allow a vertex v ∈ C to start informing other vertices, even though v is not informed
yet. At an informal level, we may then expect that the total number of vertices that never
became informed after X ′ is completed does not exceed the number of vertices that never
became informed after the first R + ℓ rounds in X.

We will now formalize the latter claim. Let UX be the random variable that denotes
the number of vertices that are not informed after ξ = R + ℓ rounds of X. Similarly,
let UX′ denote the number of vertices that are not informed after X ′ terminates. We
argue below that

UX > UX′ , (1)

i.e., for every admissible choice of the pv’s, the total number of uninformed vertices after ξ
rounds in X is at least as big as the total number of uninformed vertices after X ′ was
executed. Moreover, we will show that with high probability over the random choice of
the pv’s there will be uninformed vertices after the termination of X ′, i.e.,

Pr (UX′ > 0) = 1 − o(1). (2)

With this facts in hand we can prove the theorem as follows. First, note that (1) and (2)
imply that with high probability, after R + ℓ rounds in the execution of X, there will
be at least one uninformed vertex. Second, note that R > log2(

n
ln2 n

) = log2 n − o(ln n)
always, as the number of informed vertices at most doubles in each round. The proof is
completed.

What remains is to show (1) and (2). To see (1), note that in X ′ every v ∈ A
contacted iv + ℓ vertices, while every v ∈ V \ A contacted ℓ vertices (where the sets of
contacted vertices consist of consecutive vertices in the corresponding lists Lv, starting at
the corresponding index pv). On the other hand, due to the definition of the quasirandom
model, after ξ rounds each vertex v ∈ V informed ξ − Q(v) other vertices, where Q(v)
is the number of the round in which v was informed for the first time (or ξ if it was
not informed during the first ξ rounds). By definition, Q(v) = R − iv for all v ∈ A.
Moreover, Q(v) > R for all v ∈ V \ A, due to the definition of A. It follows that in X,
the number of vertices informed by any v ∈ A is iv + ℓ, and otherwise it is 6 ℓ. This
completes the proof of (1).

Next we show (2). Let us make some auxiliary observations first. Note that for large n

|B| 6 |A| · ℓ = Θ
( n

ln n

)

and hence |C| > n

(

1 − Θ

(

1

ln n

))

. (3)
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For 0 6 i 6 m = |B ∪ C| denote by Zi the number of uninformed vertices after the ith
iteration in Phase 3 of X ′. Clearly, Z0 = |C|. We will show that for all i > 0

E (Zi) > αi|C| and E
(

Z2
i

)

6 βi|C|2 + ℓn(αi − βi) + ℓ, (4)

where we abbreviated

α = 1 −
ℓ

n − 1
and β = 1 −

2ℓ

n − 1
.

This, combined with the Second Moment Method, proves (2) as follows:

Pr (UX′ = 0) = Pr (Zm = 0) 6
Var[Zm]

E (Zm)2 =
E (Z2

m)

E (Zm)2 − 1

(3),(4)

6 (1 + o(1))
βmn2 + ℓnαm + ℓ

α2mn2
− 1.

Recall that m = n − |A| = (1 − o(1))n. Using this, the claim then follows from the easy
observations ℓ

αmn
= Θ( log n

nε/2 ) = o(1), βm

α2m 6 1, and ℓ
α2mn2 = o(1).

We now prove the first statement in (4). Denote by Zi−1 the set of uninformed vertices
after the first i− 1 iterations in Phase 3 were executed, and define for v ∈ Zi−1 by Iv the
indicator variable for the event that vertex v becomes informed in iteration i. Clearly,
as there are precisely ℓ indexes such that vi informs any v ∈ Zi−1 \ {vi} we readily
obtain E (Iv | Zi−1) = ℓ

n−1
. Using that Zi = Zi−1 −

∑

v∈Zi−1
Iv we obtain by linearity of

expectation

E (Zi | Zi−1) > Zi−1 − Zi−1
ℓ

n − 1
= αZi−1.

By using this the first statement in (4) follows from E (Zi) = E (E (Zi | Zi−1)) and induc-
tion. Similarly, we obtain E (Zi | Zi−1) 6 Zi−1 − (Zi−1 − 1) ℓ

n−1
= αZi−1 + ℓ

n−1
, which

implies
E (Zi) 6 αi|C| + 1. (5)

Finally, we show the second statement in (4). Again, using that Zi = Zi−1 −
∑

v∈Zi−1
Iv

we obtain

E
(

Z2
i | Zi−1

)

= Z2
i−1 − 2Zi−1E





∑

v∈Zi−1

Iv

∣

∣

∣
Zi−1



+ E





(

∑

v∈Zi−1

Iv

)2 ∣
∣

∣
Zi−1



 . (6)

Let jv be the position of v in the list Lvi
, and denote for v, v′ ∈ Zi−1 by d(v, v′) the

distance of the positions of v and v′, i.e. d(v, v′) = min{|jv − jv′ |, (n − 1) − |jv − jv′ |}.
With this notation we may write

E (Iv · Iv′ | Zi−1) =
max{ℓ − d(v, v′), 0}

n − 1
,
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as there are precisely max{ℓ − d(v, v′), 0} indexes such that vi informs both v and v′.
As for every v ∈ Zi−1 and every 0 < d < ℓ there are two distinct vertices v′, v′′ such
that d(v, v′) = d(v, v′′) = d we obtain with the above facts that

E





(

∑

v∈Zi−1

Iv

)2 ∣
∣

∣
Zi−1



 6
∑

v∈Zi−1

∑

0<d<ℓ

2(ℓ − d)

n − 1
+ Zi−1

ℓ

n − 1
6 Zi−1

ℓ2

n − 1
.

By plugging this bound into (6) we obtain

E
(

Z2
i | Zi−1

)

6 Z2
i−1 − 2Zi−1 · Zi−1

ℓ

n − 1
+ Zi−1

ℓ2

n − 1

=

(

1 −
2ℓ

n − 1

)

Z2
i−1 + Zi−1

ℓ2

n − 1
.

Using this and the upper bound in (5) we may infer that E (Z2
i ) 6 βE

(

Z2
i−1

)

+αi−1ℓ2+ ℓ2

n−1
.

A simple inductive argument then shows that

E
(

Z2
i

)

6 βi|C|2 + ℓ2 ·
αi − βi

α − β
+

ℓ2

n − 1
·
1 − βi

1 − β
6 βi|C|2 + ℓn(αi − βi) + ℓ,

and the proof of (4) is completed.

4 The Upper Bound

In this section we will bound the broadcast time of the quasirandom model on complete
graphs from above. We show the following version of the upper bound in Theorem 1,
which also includes an estimate on the failure probability.

Theorem 4. Let ε > 0. There exist η = η(ε) > 0 and n0 ∈ N such that for all n > n0

the quasirandom model on the complete graph on n vertices informs all vertices in

(1 + ε)(log2 n + ln n)

time-steps with probability at least 1 − n−η.

In the following we give an overview of the main techniques in our proof.

Delaying techniques In the analysis of the upper bound of the quasirandom push
model it will occasionally be convenient to assume that a vertex stops informing (cut
off ) or that a vertex does not transfer the information on for a certain number of rounds
after receiving the rumor (delay). This means that other vertices receive the rumor later.
Consequently, the random variable describing the broadcast time of in these ways modified
models strictly dominates the broadcast time of the quasirandom model. Of course, this
also holds if several vertices stop or delay the propagation of the rumor. Any quasirandom
push model with arbitrary cut offs and delays is called a delayed model.

Lemma 5. Any random variable describing the broadcast time of a delayed model domi-
nates the broadcast time of the quasirandom model.
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Lazy and busy phases We split the analysis into phases consisting of several rounds.
In each phase we assume that the only vertices that can inform are those which informed
nobody else in the previous phases. Note that by invoking the delaying concept, we
have an influence over which vertices have not informed other vertices. The vertices that
become informed during the current phase and do not inform any other vertices are called
newly informed in this phase.

In lazy phases we will assume that the action of all nodes that become informed
during the phase is delayed until the next phase. This means that only the newly informed
vertices from the previous phase inform, and all vertices, which become informed by them,
form the set of newly informed vertices.

The concept of lazy phases was already used in [7]. They greatly simplify the analysis,
but they often leave a constant fraction of the informed vertices inactive. In order to
obtain bounds for the broadcasting time that are correct up to the leading constant, we
need to perform a much tighter analysis. The new contribution of this work is to show
how phases with much less delaying can be analyzed. That is, we allow and exploit
the fact that vertices, which become informed within the current phase, start informing
other vertices already from the very next round on. We call such a phase a busy one.
The analysis of busy phases is the heart of this work, and differs substantially from the
strategy used in [7].

Overview of the Analysis The proof of Theorem 4 is divided into four main steps
described in the lemmas below. To improve readability, we often allow non-integer values
in contexts where integers are called for (numbers of rounds, vertices, etc.). In all such
cases, however, it is easy to see that rounding up or down appropriately yields a correct
proof.

The following lemma says that after only a few rounds we have logarithmically many
newly informed vertices. We will use lazy phases in the proof.

Lemma 6. Let δ > 0. There exists a delayed model on the complete graph on n vertices
such that after 2δ ln n rounds there will be (δ ln n)2 newly informed vertices and 1+δ ln n+

(δ ln n)2 overall informed vertices with probability 1 − (δ lnn)4

n−1
.

The main part of our proof is to show the following lemma, which states that after
roughly log2 n phases, a constant fraction of the vertices will be informed. The proof uses
busy phases.

Lemma 7. Let δ ∈ (0, 1
4
) and assume that in some delayed model on the complete graph

on n vertices we have (δ ln n)2 newly informed vertices and 1 + δ ln n + (δ ln n)2 overall
informed vertices. Then there exist ν = ν(δ), ζ = ζ(δ) with 0 < ν 6 ζ and limδ→0 ζ = 0
and a delayed model such that after (1 + 3δ) log2 n rounds, we will have at least νn newly
informed vertices and at most ζn informed vertices with probability 1 − n−ω(1).

Once a constant fraction of the vertices knows the rumor, we may again go on with
lazy phases to show that after a constant number of rounds, almost all vertices will be
informed.
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Lemma 8. Let 0 < ν 6 ζ < 1
4

and assume that in some delayed model on the complete
graph on n vertices we have at least νn newly informed vertices and at most ζn informed
vertices. Then there exist constants K = K(ν, ζ), c = c(ν, ζ) such that after performing
a lazy phase of K rounds, we will have at least (1 − 4ζ)n newly informed vertices with
probability 1 − e−cn.

The fact of having all but a constant fraction of vertices newly informed will allow us
to show that after roughly lnn additional rounds all vertices will be informed.

Lemma 9. Let η ∈ (0, 1) and assume that in some delayed model on the complete graph
on n vertices we have at least (1 − η)n newly informed vertices. Then within (1 + α) lnn
rounds, where α = α(η) := 2η

1−η
, we will have all vertices informed with probability 1−ηn−η.

We now show how to derive the proof of Theorem 4, using Lemmas 6–9.

Proof of Theorem 4. Let ε > 0. Let 0 < δ < 1
4

be such that if we choose ζ = ζ(δ) as in
Lemma 7, η = 4ζ and α = α(η) as in Lemma 9, we have α 6

ε
4

and 3δ 6 ε.
We will construct a delayed model in which all vertices are informed within (1 +

ε)(log2 n+ln n) steps with probability 1−n−η. First, we apply Lemma 6. This guarantees
that after at most 2

3
ε lnn rounds there are (δ ln n)2 newly informed vertices and 1+δ ln n+

(δ ln n)2 overall informed vertices. Next, by applying Lemma 7 and Lemma 8 we infer
that there are at least (1 − 4ζ)n newly informed vertices. For this we used at most
(1+ ε) log2 n+K more rounds, where K is the constant guaranteed to exist by Lemma 8.
Finally, we apply Lemma 9 with η := 4ζ , which guarantees the existence of a delayed
model that will inform all remaining vertices after at most (1 + ε

4
) ln n more rounds. The

phases we described above consist in total of at most 2
3
ε lnn+(1+ε) log2 n+K+(1+ ε

4
) ln n

rounds, which is at most (1 + ε)(log2 n + ln n) for suitably large n.
It remains to estimate the probability for the above events. Via a straightforward

union bound argument, the probability that a vertex remains uninformed is at most the
sum of the failure probabilities of the four stages. The largest failure probability is ηn−η

in the last stage. Hence, the overall failure probability is bounded from above by n−η. In
other words, there exists a delayed model in which with probability 1 − n−η all vertices
are informed within (1+ ε)(log2 n+ ln n) steps. By Lemma 5 this yields the theorem.

The proofs of Lemmas 6–9 can be found in Sections 4.1 to 4.4. Let us introduce some
notation. For each time-step t, we will denote by It the set of informed vertices after that
time-step and by Nt the set of newly informed vertices after that time-step. Recall that
for a lazy phase consisting of rounds t1 + 1, . . . , t2, Nt2 contains all vertices informed in
rounds t1 + 1, . . . , t2, whereas for a busy phase, Nt2 contains just the vertices that were
informed in round t2. Furthermore let I0 = N0 be the set containing only the initially
informed vertex.

4.1 Proof of Lemma 6

Let δ > 0 and t1 := δ ln n. We will perform two lazy phases of t1 rounds each. In the
first one, the initially informed vertex informs exactly δ ln n other vertices and we have
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|Nt1 | = δ ln n and |It1 | = 1 + δ ln n with probability 1.
Let t2 := 2t1. The second lazy phase now comprises of the rounds t1 + 1, . . . , t2.

Throughout the whole phase only the vertices of Nt1 are assumed to contact other vertices.

We shall show that with probability at least 1− (δ ln n)4

n−1
, only uninformed vertices are called

and none of them more than once. Hence we will end up with |Nt2 | = (δ ln n)2 newly
informed vertices at the end of the phase. To this purpose, we will bound the probability
that a given vertex v from Nt1 contacts a vertex, which has already been informed or
is contacted also by another vertex of Nt1 . Apart from v itself, there are δ ln n vertices
already informed in the beginning of the phase. And there are at most (δ ln n − 1)δ ln n
vertices contacted by one of the other δ ln n − 1 vertices of Nt1 . So independent from
the choices of the other vertices, there are at most (δ ln n)2 vertices v has to “avoid” in
the random segment of its list of length δ ln n. This means that the probability that v
contacts a vertex, which has already been informed or is contacted also by another vertex

of Nt1 is bounded from above by (δ ln n)(δ ln n)2

n−1
= (δ ln n)3

n−1
. Hence by a simple union bound,

the probability that there exists such a vertex v in the set Nt1 is bounded from above by
(δ lnn)(δ lnn)3

n−1
= (δ ln n)4

n−1
. In conclusion,

Pr
(

|Nt2 | = (δ ln n)2
)

> 1 −
(δ lnn)4

n − 1
.

4.2 Proof of Lemma 7

Before we proceed with the proof of this lemma we will introduce and investigate a delayed
model that performs busy phases of constant length k > 5. Recall that in a busy phase, all
vertices that become informed during the phase may start informing from the very next
round on. Nevertheless, we will use some delaying in form of the “early bird assumption”,
which will be explained later. We stop after the phase where we have for the first time at
least λn informed vertices in total, where

λ := 2−kζ and ζ :=
1 − 2−1/k

4k
. (7)

We will first analyze a busy phase that consists of k rounds for any constant k > 5.

Analysis of a Single Busy Phase Let us assume that a busy phase of constant length
k > 5 starts after time-step t, and additionally, that |It| < λn, where λ is as in (7).

Let us make a few preliminary observations. First, for all i ∈ {1, . . . , k} we have

|Nt+i| 6 2i−1|Nt|, (8)

as |Nt+1| 6 |Nt| and after that step the number can at most double during each step.
Thus, since |Nt| 6 |It| < λn, we have

|It+k| = |It| +

k
∑

i=1

|Nt+i| 6 |It| +

k
∑

i=1

2i−1|Nt| 6 2k|It| < 2kλn = ζn. (9)
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The following proposition completes the analysis of a busy phase by giving corresponding
lower bounds in the case that |Nt| > (δ ln n)2 for a δ ∈ (0, 1

4
), i.e., we are in a situation

where the previous phase produced at least (δ ln n)2 newly informed vertices.

Proposition 10. Let k > 5 and δ ∈ (0, 1
4
). Assume that in some delayed model on the

complete graph on n vertices after t rounds we have |Nt| > (δ ln n)2 and |It| < λn, where
λ is as in (7). Then there exists a delayed model such that with probability 1− n−ω(1) the
number of newly informed vertices after k rounds satisfies

|Nt+k| > 2k−2|Nt|, (10)

and the total number of vertices informed at the end of the phase is

|It+k| > |It| +
2k − 1

2
|Nt|. (11)

With this proposition at hand, we now can prove Lemma 7.

Proof of Lemma 7. Let 0 < δ < 1
4

and assume that at time-step t2 in some delayed model
on the complete graph on n vertices we have |Nt2 | = (δ ln n)2 newly informed vertices
and |It2 | = 1 + δ ln n + (δ ln n)2 overall informed vertices. We perform busy phases of k
rounds each, where

k :=
5

4δ
,

and we stop after the phase where we have for the first time at least λn informed vertices
in total, where λ as in (7). Let ℓ be the number of accomplished phases.

The preconditions of Proposition 10 are satisfied for all t ∈ t2 + {0, . . . , ℓ − 1}k with
probability 1 − n−ω(1), as |It| < λn by definition of ℓ and

|Nt| > (δ ln n)2

follows inductively from |Nt2 | > (δ ln n)2 and

|Nt+k|
(10)

> 2k−2|Nt| > |Nt|.

Having this, we can apply Proposition 10 to all t ∈ t2 + {0, . . . , ℓ − 1}k and obtain that
(10) and (11) hold with probability 1 − n−ω(1) . By an iterative use of these equations,
we get

ζn
(9)
> |It2+ℓk|

(11)

> |It2 | +
2k − 1

2

ℓ−1
∑

s=0

|Nt2+sk|
(10)

>
2k − 1

2

ℓ−1
∑

s=0

(

2k−2
)s
|Nt2 | > 2(k−2)ℓ

with probability 1 − n−ω(1), and thus

ℓ < 1
k−2

log2 ζn.
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So overall we performed

kℓ < k
k−2

log2 ζn < k
k−2

log2 n = 5
5−8δ

log2 n < (1 + 3δ) log2 n

time-steps with probability 1 − n−ω(1).
What remains is to show the lower bound for the number of newly informed vertices.

For this we set ν := λ
5
. Let

t3 := t2 + ℓk.

By definition of ℓ this is the first time step where we have λn informed vertices in total,
after an accomplished phase. This means that λn 6 |It3 | < ζn. We will show that

|Nt3 | >
1

5
|It3| > νn

holds with probability 1−n−ω(1). To this aim we will prove by induction the more general
statement that for all s ∈ {0, . . . , ℓ} and t := t2 + sk one has

|Nt| >
1

5
|It|

with probability 1−n−ω(1). For s = 0 the assertion holds as we have |Nt2 | > (δ ln n)2 and
thus |It2 | = |Nt2 | + |It1 | = |Nt2 | + δ ln n + 1 6 5|Nt2 | if n is sufficiently large.

Let s ∈ {0, . . . , ℓ − 1} and t := t2 + sk and assume |Nt| >
1
5
|It|. Then we have by (8)

|It+k| = |It| +
k
∑

i=1

|Nt+i| 6 5|Nt| +
k
∑

i=1

|Nt+i| 6 5|Nt| +
k
∑

i=1

2i−1|Nt| =
(

2k + 4
)

|Nt|

with probability 1 − n−ω(1). By (10) and as k > 5 this yields

|It+k| 6
2k + 4

2k−2
|Nt+k| 6 5|Nt+k|,

which shows that the statement is true for s + 1.

The main work in the proof of Proposition 10 is a detailed analysis of how the infor-
mation is propagated to uninformed vertices. To reduce the dependencies in this random
experiment, we introduce a delaying concept as follows.

Early bird assumption. If some vertex v that was not informed at the beginning of
a busy phase is contacted by two vertices x and y during that phase, and x was informed
strictly before y, then we shall assume that v is informed at the time-step when x contacts
v (even if y would have informed v much earlier). If there are several such x, we shall
take into account the earliest contact time among them.

This assumption invokes the delaying concept: v does not start informing after being
informed by y, but only after being contacted by x. Hence the resulting model is a delayed
model, in the sense of Lemma 5.
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One consequence of this assumption is the following. Suppose that a vertex x was
informed within a busy phase with k′ rounds remaining. Then, each vertex contacted by
x during these k′ rounds becomes actually informed by x except for the following cases:
Either such a vertex y was already informed at the time when x does its random decision,
or another vertex informed in the same round as x contacted y earlier.

For all i ∈ {0, . . . , k} we write Nt+i for the set of vertices that are newly informed in
round t + i, under the early bird assumption. For the further investigation of this set, we
introduce the following notation. For j ∈ {0, . . . , i − 1} let N t+j

t+i be the set of vertices
that become informed by vertices of Nt+j in round t + i under the early bird assumption.

Remark 11. The early bird assumption ensures that N t+j
t+i depends only on the random

decisions of vertices informed up to round t + j. That means, at round t + j we can
explicitly say which vertices will be informed by vertices of Nt+j during the rest of the
phase. Without the early bird assumption, the vertices informed by vertices of Nt+j might
also depend on random decisions of vertices informed in some later round between j + 1
and k − 1. So they could not be described with the knowledge of the process up to round
t + j.

For all j ∈ {0, . . . , k − 1} let N t+j be the set of all vertices that were informed during
the actual phase by vertices of Nt+j under the early bird assumption. This means in
particular that

N t+j =
k
⋃

i=j+1

N t+j
t+i .

The formal, necessarily recursive definitions look as follows. Nt+0 is just the set of newly
informed vertices stemming from the previous phase. By the early bird assumption, for
all i ∈ {1, . . . , k}, the vertices in

N t+0
t+i := {v ∈ V \ It | t + i is the first time a vertex in Nt+0 contacts v}

are newly informed precisely in round t + i. Let

Nt+1 := N t+0
t+1 , It+1 := It ∪ Nt+1

and

N t+0 :=

k
⋃

i=1

N t+0
t+i .

Having defined Nt+j+1, It+j+1 and N t+j for some j ∈ {0, . . . , k − 2}, the early bird
assumption yields for all i ∈ {j + 2, . . . , k} that the vertices in

N t+j+1
t+i := {v ∈ V \ (It ∪ N t ∪ . . . ∪ N t+j)

∣

∣ t + i is the first time a vertex in Nt+j+1

contacts v}

are newly informed precisely in round t + i. Let

Nt+j+1 :=

j
⋃

j′=0

N t+j′

t+j+1, It+j+1 := It+j ∪ Nt+j+1 (12)
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and

N t+j :=

k
⋃

i=j+1

N t+j
t+i .

The main work of this section is the proof of the following proposition, where we
estimate the sizes of the sets N t+j

t+i . Here we make use of the early bird assumption.

Proposition 12. For all i ∈ {0, . . . , k} one has with probability 1 − n−ω(1) that

|Nt+i| > 2i−1− i
k |Nt|, and (13)

∀j ∈ {0, . . . , i − 1}: |N t+j
t+i | > 2−

1
k |Nt+j |. (14)

With this, we can prove Proposition 10.

Proof of Proposition 10. By putting i = k in (13) we directly get (10). It remains to show
that (11) holds with probability 1 − n−ω(1). By (14)

|It+k|
(12)
= |It| +

k
∑

i=1

i−1
∑

j=0

|N t+j
t+i |

(14)

> |It| +

k
∑

i=1

i−1
∑

j=0

2−
1
k |Nt+j |,

and by (13) this is at least

|It| + 2−
1
k

k
∑

i=1

(

|Nt| +
i−1
∑

j=1

2j−1− j
k |Nt|

)

> |It| +
1

2

k
∑

i=1

(

|Nt| +
i−1
∑

j=1

2j−1|Nt|

)

= |It| +
2k − 1

2
|Nt|.

To prove Proposition 12, we first estimate the expectation of |N t+j
t+i |.

Proposition 13. For all i ∈ {0, . . . , k} and j ∈ {0, . . . , i − 1},

E
(

|N t+j
t+i |
)

> (1 − 2ζ)|Nt+j|.

Proof. Let i ∈ {0, . . . , k} and j ∈ {0, . . . , i − 1}. Then by (9), the number of vertices a
priori excluded from being in N t+j

t+i is

|It| +

j−1
∑

ν=0

|N t+ν | +

i−1
∑

µ=j+1

|N t+j
t+µ| 6 |It+k|

(9)
< ζn. (15)

Since 1 − x 6 e−x 6 1 − x + x2

2
holds for all x > 0, we get the following bound on the

probability that one vertex gets contacted by any vertex from Nt+j in round t + i.

1 −

(

1 −
1

n − 1

)|Nt+j|

> 1 − e−
|Nt+j |

n−1 >

(

1 −
|Nt+j |

2(n − 1)

)

|Nt+j|

n − 1
(9)
>

(

1 −
ζn

2(n − 1)

)

|Nt+j |

n − 1
> (1 − ζ)

|Nt+j |

n − 1
. (16)
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Thus, conditional on the values of the outcomes of the rounds up to t + i − 1,

E
(

|N t+j
t+i |
)

=

(

n − |It| −

j−1
∑

ν=0

|N t+ν | −
i−1
∑

µ=j+1

|N t+j
t+µ|

)(

1 −

(

1 −
1

n − 1

)|Nt+j|
)

.

It readily follows from (15) and (16) that this is at least

n(1 − ζ)2 |Nt+j |

n − 1
> (1 − ζ)2|Nt+j| > (1 − 2ζ)|Nt+j|.

In the following proof of Proposition 12, we make finally use of the early bird assumption
in form of Remark 11.

Proof of Proposition 12. We will use induction on i. The case i = 0 is clear, so let
i ∈ {0, . . . , k − 1} and assume

|Nt+i′| > 2i′−1|Nt|2
− i′

k for all i′ ∈ {0, . . . , i} and (17)

|N t+j
t+i | > |Nt+j|2

− 1
k for all j ∈ {0, . . . , i − 1}.

We first show that for all j ∈ {0, . . . , i} one has

|N t+j | > |Nt+j|(k − j − 1 + 2−
1
k ) (18)

with probability 1−n−ω(1). To this aim we will give a bound on the expectation of |N t+j |
and then use Azuma’s inequality. As the N t+j

t+i , i ∈ {j + 1, . . . , k} are disjoint, we have

|N t+j | =
k
∑

i=j+1

|N t+j
t+i |

by definition of N t+j , and so one has by Proposition 13

E
(

|N t+j |
)

=

k
∑

i=j+1

E
(

|N t+j
t+i |
)

> (k − j)(1 − 2ζ)|Nt+j| > (k − j − 2kζ)|Nt+j|

=
(

k − j − 1−2−1/k

2

)

|Nt+j|. (19)

Number the nodes of Nt+j from 1 to |Nt+j|. For all v ∈ {1, . . . , |Nt+j|} let Xv denote
the random set of size k − j of all vertices contacted by v. Note that X1, . . . , X|Nt+j| are
mutually independent. Now we make use of the early bird assumption: By Remark 11,
the value |N t+j | depends only on X1, . . . , X|Nt+j|, namely we have

|N t+j | =

∣

∣

∣

∣

∣

∣

|Nt+j|
⋃

v=1

Xv

∖

It+j

∣

∣

∣

∣

∣

∣

=: f(X1, . . . , X|Nt+j |).
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For all v ∈ {1, . . . , |Nt+j|} and for realizations x1, . . . , x|Nt+j|, x
′
v of the random sets one

has
|f(x1, . . . , x|Nt+j |) − f(x1, . . . , xv−1, x

′
v, xv+1, . . . , x|Nt+j|)| 6 k − j.

For j = 0, |Nt+j | > (δ ln n)2 = 2−
j
k (δ ln n)2 trivially holds. By applying the induction

hypothesis (17), we see that for j ∈ {1, . . . , i},

|Nt+j| > 2j−1− j
k |Nt| > 2−

j
k |Nt| > 2−

j
k (δ ln n)2.

With (19) and Lemma 2 we compute

Pr
(

|N t+j | < |Nt+j|(k − j − 1 + 2−
1
k )
)

6 Pr
(

|N t+j | 6 E
(

|N t+j |
)

− 1−2−1/k

2
|Nt+j|

)

6 Pr
(

∣

∣E
(

|N t+j |
)

− |N t+j |
∣

∣ >
1−2−1/k

2
|Nt+j |

)

6 2e
−

(1−2−1/k)
2
|Nt+j |

2

2|Nt+j |(k−j)2 6 2e
−

(1−2−1/k)
2
(δ ln n)2

21+j/k(k−j)2

= 2n
−

(1−2−1/k)
2

δ2 ln n

21+j/k(k−j)2 = n−ω(1).

As for all j ∈ {0, . . . , i} we have |N t+j
t+i+1| 6 |Nt+j|, (18) yields for all j ∈ {0, . . . , i} that

|N t+j
t+i+1| > 2−

1
k |Nt+j | (20)

with probability 1 − n−ω(1). As the N t+j
t+i+1, j ∈ {0, . . . , i} are disjoint, (20) and the

induction hypothesis give us

|Nt+i+1| =

i
∑

j=0

|N t+j
t+i+1| >

i
∑

j=0

2−
1
k |Nt+j | = 2−

1
k

(

|Nt| +

i
∑

j=1

|Nt+j|

)

> 2−
1
k

(

|Nt| +
i
∑

j=1

2j−1− j
k |Nt|

)

> 2−
i+1
k

(

|Nt| +
i
∑

j=1

2j−1|Nt|

)

= 2i− i+1
k |Nt|

with probability 1 − n−ω(1).

4.3 Proof of Lemma 8

Let 0 < ν 6 ζ < 1
4

and assume that in some delayed model on the complete graph on n
vertices after t3 rounds we have νn 6 |Nt3 | and |It3 | 6 ζn. We perform one lazy phase of
K := 1

ν
ln 1

ζ
steps. The probability that a given vertex from V \ It3 does not get informed

during this phase is

(

1 −
K

n − 1

)|Nt3 |

6 e−
K|Nt3

|

n−1 6 e−Kν = ζ.
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So the probability that a given vertex from V \ It3 becomes informed is at least 1− ζ, and
with t4 := t3 + K we obtain

E (|Nt4 |) > (n − |It3|)(1 − ζ) > (n − ζn)(1 − ζ) > (1 − 2ζ)n. (21)

Let c := 4ζ
K2 . To show that |Nt4 | > (1− 4ζ)n with probability at least 1− e−cn we will use

Azuma’s inequality. Number the nodes of Nt3 from 1 to |Nt3 |. For all i ∈ {1, . . . , |Nt3 |}
let Xi denote the random set of size K of all vertices contacted by i. Then X1, . . . , X|Nt3 |

are mutually independent and

|Nt4 | =

∣

∣

∣

∣

∣

∣

|Nt3 |
⋃

i=1

Xi

∖

It3

∣

∣

∣

∣

∣

∣

=: f(X1, . . . , X|Nt3 |
).

For all i ∈ {1, . . . , |Nt3|} and for realizations x1, . . . , x|Nt3 |
, x′

i of the random sets

|f(x1, . . . , x|Nt3 |
) − f(x1, . . . , xi−1, x

′
i, xi+1, . . . , x|Nt3 |

)| 6 K.

With Lemma 2 the proof completes as follows:

Pr (|Nt4 | < (1 − 4ζ)n)
(21)

6 Pr (|Nt4 | 6 E (|Nt4 |) − 2ζn)

6 Pr (|E (|Nt4 |) − |Nt4 || > 2ζn)

6 2e
− 8ζ2n2

ζnK2

6 e−cn.

4.4 Proof of Lemma 9

Let η > 0 and assume that in the quasirandom model on the complete graph on n vertices
after t4 rounds we have |Nt4 | > (1 − η)n. To inform the remaining few vertices, we use
one lazy phase consisting of (1 + α) lnn rounds, where α = α(η) := 2η

1−η
. The probability

that a given vertex from V \ It4 does not get informed in this phase is

(

1 −
(1 + α) lnn

n − 1

)|Nt4 |

6

(

1 −
(1 + α) lnn

n − 1

)(1−η)n

6 e−(1+α)(1−η) ln n = e−(1+ 2η
1−η

)(1−η) lnn = n−(1+η).

So the probability that all vertices get informed is

1 − Pr (there is a vertex in V \ It4 which does not get informed)

> 1 − |V \ It4 | Pr (a given vertex from V \ It4 does not get informed)

> 1 − |V \ It4 | n−(1+η)

> 1 − ηn n−(1+η)

= 1 − ηn−η.
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