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Abstract

We study the problem of traffic routing in non-cooperative networks. In such networks,
users may follow selfish strategies to optimize their own performance measure and there-
fore their behavior does not have to lead to optimal performance of the entire network.
In this paper we investigate the worst-case coordination ratio, which is a game theoretic
measure aiming to reflect the price of selfish routing.

Following a line of previous work, we focus on the most basic networks consisting of
parallel links with linear latency functions. Our main result is that the worst-case coordi-
nation ratio onm parallel links of possibly different speeds is

Θ

(
logm

log log logm

)
.

In fact, we are able to give an exact description of the worst-case coordination ratio de-
pending on the number of links and the ratio of the speed of the fastest link over the speed
of the slowest link. For example, for the special case in which allm parallel links have the
same speed, we can prove that the worst-case coordination ratio isΓ (−1)(m) + Θ(1), with
Γ denoting the Gamma (factorial) function. Our bounds entirely resolve an open problem
posed recently by Koutsoupias and Papadimitriou [KP99].
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1 Introduction

A fundamental problem arising in the management of large-scale communication networks, like the
Internet, is that of routing traffic through the network. Due to the large size of these networks, however,
it is often impossible to employ a centralized traffic management. A natural assumption in the absence
of central regulation is to assume that network users behave selfishly and aim at optimizing their own
individual welfare. To understand such non-cooperative network systems, it is of great importance to
investigate the selfish behavior of users and their influence on the performance of the entire network.

In this paper, we investigate the price of selfish behavior under game theoretic assumptions, that
is, we assume that eachagent(i.e., user) is aware of the situation facing all other agents and aims
at optimizing its own strategy. In particular, we investigate the structure of the network in aNash
equilibrium, i.e., a combination of mixed (randomized) strategies from which no users has an incentive
to deviate. It is well known that such equilibria may be inefficient and do not always optimize the
overall performance (see, e.g., the Prisoner’s dilemma [PY94]).

As proposed by Koutsoupias and Papadimitriou [KP99], we address the most basic case of a routing
problem, a network consisting ofm parallel links1, 2, . . . ,m from an origin to a destination, all with
possibly different speedss1, . . . , sm. There aren agents1, 2, . . . , n, each having an amount of traffic
wi to send from the origin to the destination. Each agenti sends the traffic using a possibly randomized
mixed strategy, with p

j
i denoting the probability that agenti sends the entire trafficwi to a link j. We

assume the agents areselfishin the sense that each of them aims at minimizing its individual cost.
Assuming each agent is aware of the strategies of the other agents and behaves in a non-cooperative

and selfish way, the system results in a Nash equilibrium. In an attempt to understand non-cooperative
network systems, Koutsoupias and Papadimitriou [KP99] (see also, [Pap01a, Pap01b]) proposed to
investigate the behavior of the worst-casecoordination ratio, which is the ratio between the cost in the
worst possible Nash equilibrium and the social (i.e., overall) optimum. In other words, this analysis
seeks the price of uncoordinated individual decisions, the so-called price of anarchy.

We notice that the model considered in this paper is a simplification of the problems arising in real
networks. However, as pointed out in [KP99, MS01, Pap01a], this model seems to be appropriate to
describe several basic networking problems. We believe that understanding the ratio between worst
possible Nash quilibrium and the social optimum in simple situations is necessary for making rigorous
analyses in more complicated networks (see also the recent work of Roughgarden [Rou02] that gives
an additional support to this claim). Readers interested in more detailed exposition of this model and
in its applications are referred to [CKV02, KP99, MS01, Pap01a, Pap01b, RT02].

1.1 Model

We define now our model formally following the notation introduced by Koutsoupias and Papadim-
itriou [KP99].

The routing model described above can be formally defined as an allocation problem withm

independent links with speedss1, . . . , sm andn independent tasks with weightsw1, . . . , wn. The goal
is to allocate the tasks to the links to minimize the maximum load of the links in the system.

We use the notation[N] to denote set{1, . . . ,N}. The set ofpure strategiesfor taski is therefore
[m] and amixed strategyis a distribution on this set.

1



Given a combination(j1, . . . , jn) ∈ [m]n of pure strategies, one for each task, thecostfor taski is∑
jk=ji

wk

sji

,

which is the time needed for linkji chosen by taski to complete all tasks allocated to that link1.
Similarly, for a combination of pure strategies(j1, . . . , jn) ∈ [m]n, theload of link j is defined as∑

jk=j

wk

sj

.

Given n tasks of lengthw1, . . . , wn andm links of speeds1, . . . , sm, let opt denote thesocial
optimum, that is, the minimum cost of a pure strategy:

opt := min
(j1,...,jn)∈[m]n

max
j∈[m]

∑
i:ji=j

wi

sj

.

For example, if all links have the same unit speed (sj = 1 for everyj ∈ [m]) and all weights are
the same (wi = 1 for everyi ∈ [n]), then the social optimum isd n

m
e. Furthermore, it is easy to see

that in any system

opt ≥ maxi wi

maxj sj

. (1)

It is known that computing the social optimum isNP-hard even for identical speeds (see [KP99]).
Let pj

i denote the probability that an agenti ∈ [n] sends the entire trafficwi to a link j ∈ [m]. Let
`j denote theexpected loadon a linkj ∈ [m], that is,

`j :=
1

sj

·
∑
i∈[n]

wi p
j
i .

For a taski, theexpected cost of taski on link j (or its finish timewhen its loadwi is allocated to
link j [KP99]) is equal to

c
j
i :=

wi

sj

+
∑
t 6=i

wt p
j
t

sj

= `j + (1 − p
j
i)

wi

sj

.

Definition 1.1 (Nash equilibrium) The probabilities(pj
i)i∈[n],j∈[m] define aNash equilibriumif and

only if any taski will assign non-zero probabilities only to links that minimizec
j
i, that is, (pj

i) > 0

impliesc
j
i ≤ c

q
i , for everyq ∈ [m].

In other words, a Nash equilibrium is characterized by the property that there is no incentive for any
task to change its strategy. As an example, we observe that in the system considered above in which
all links have the same unit speed and all weights are the same, the uniform probabilitiesp

j
i = 1

m
for

all j ∈ [m] andi ∈ [n] define a system in a Nash equilibrium. In general, the existence of such an

1In the original formulation of Koutsoupias and Papadimitriou [KP99], an additional additive termLji was used. How-
ever, since in all papers we are aware of all analyzes assumedLji = 0, we skipped that term in our presentation. We want
to point out, however, that our bounds are not affected by these additive terms.
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equilibrium over mixed strategies for non-cooperative games was shown by Nash [Nas51]. In fact,
the routing game considered in this paper admits an equilibrium even if all players are restricted to
pure strategies. Rosenthal [Ros73] proved this property for a more general class of routing games by
a simple, elegant potential function argument.

For the rest of the paper, we fix an arbitrary Nash equilibrium, that is, fix the probabilities(pj
i)i∈[n],j∈[m]

that define a Nash equilibrium. Let us consider the randomized allocation strategies in which each task
i is allocated to a single link chosen independently at random according to the probabilitiesp

j
i, that is,

taski is allocated to linkj with probabilityp
j
i. Let Cj, j ∈ [m], be the random variable indicating the

load of link j in our random experiment. We observe thatCj is the weighted sum of independent0-1
random variablesJj

i, Pr[Jj
i = 1] = p

j
i, such that

Cj =
1

sj

n∑
i=1

wi · Jj
i . (2)

Let c denote themaximum expected loadover all links, that is,

c := max
j∈[m]

`j .

Notice thatE[Cj] = `j, and thereforec = maxj∈[m] E[Cj].
Finally, we define thesocial costC to be the expected maximum load (instead of maximum ex-

pected load), that is,
C := E[max

j∈[m]
Cj] .

Observe thatc ≤ C and possiblyc � C. Recall thatopt denotes thesocial optimum(i.e., the
minimum cost of a pure strategy). In this paper our main focus is on estimating thecoordination ratio
which is the worst-case ratio

R := max
C

opt
,

where the maximum is over all Nash equilibria.

1.2 Previous results

Koutsoupias and Papadimitriou [KP99] initiated the study of the worst-case coordination ratio and
showed the following results for networks consisting ofm parallel links:

• For two identical links the worst-case coordination ratio is exactly3
2
.

• For two links (not necessarily identical, that is, with possibly different speeds) the worst-case
coordination ratio is at leastφ = 1+

√
5

2
.

• For m identical links the worst-case coordination ratio isΩ( logm
log logm

) and it is at most3 +√
4m ln m.

• The worst-case coordination ratio for any number of tasks andm (not necessarily identical) links

isO(
√

s1

sm

∑m
j=1

sj

sm

√
logm), wheresj is the speed of linkj, ands1 ≥ s2 ≥ · · · ≥ sm.
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Mavronicolas and Spirakis [MS01] greatly extended some of the bounds above and show the fol-
lowing results in the so-calledfully-mixed model2:

• For m identical links in the fully-mixed Nash equilibrium the worst-case coordination ratio is
Θ( logm

log logm
).

• Form (not necessarily identical) links andn identical weights in the fully-mixed Nash equilib-
rium, if m ≤ n, then the worst-case coordination ratio isΘ( logn

log logn
).

We emphasize that besides the very special case ofm = 2 parallel links, no asymptotically tight
results have been known even for systems with identical links. In particular, even the main conjecture
from the work of Koutsoupias and Papadimitriou [KP99] that the worst-case coordination ratio form

identical linksis Θ( logm
log logm

), has remained unproved prior to our work.

1.3 New results

Our first result is an upper bound for the worst-case coordination ratio.3

Theorem 1 The coordination ratio form parallel links is bounded from above by

O

min

 logm

log log logm
,

logm

log
(

logm
log(s1/sm)

)

 ,

where it is assumed that the speeds satisfys1 ≥ · · · ≥ sm.
In particular, the worst-case coordination ratio form parallel links is

O
(

logm

log log logm

)
.

The theorem follows directly from the following two lemmas.

Lemma 1.2 The maximum expected loadc satisfies

c = opt · O
(

min

{
logm

log logm
, log

(
s1

sm

)})
,

where it is assumed that the speeds satisfys1 ≥ · · · ≥ sm.

Lemma 1.3 The social costC satisfies

C = opt · O

(
logm

log
(

opt·logm
c

) + 1

)
.

2Thefully-mixed modelis a special class of Nash equilibria in which allp
j
i are non-zero.

3To simplify the notation, throughout the entire paper, for any non-negative realx we shall use logx to denote logx =
max{log2 x, 1}.
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Lemmas 1.2 and 1.3 give also some interesting results for a few special cases. We first state their
applications for systems in which all agents follow onlypure strategies. Since in that case,`j = Cj for
everyj ∈ [m], we also haveC = c. Therefore Lemma 1.2 gives immediately the following result.

Corollary 1.4 For pure strategies the worst-case coordination ratio form parallel links is bounded
from above by

O
(

min

{
logm

log logm
, log

(
s1

sm

)})
,

where it is assumed that the speeds satisfys1 ≥ · · · ≥ sm. ut

Theorem 3 below proves that this corollary gives an asymptotically tight bound for the worst-case
coordination ratio for pure strategies.

Furthermore, by Theorem 1, in the special case when all links are identical, the coordination ratio

is O
(

logm
log logm

)
. Recently, and independently of our work, also Koutsoupias et al. [KMS02] obtained

the same upper bound. However, in this special case we get a much stronger bound that is actually
tight up to an additive constant.

Theorem 2 For m identical links the worst-case coordination ratio is at most

Γ (−1)(m) + Θ(1) =
logm

log logm
· (1 + o(1)) .

In Theorem 2 we use standard notation to denote byΓ(N) theGamma (factorial) function, which
for any natural numberN is defined byΓ(N+1) = N! and for an arbitrary real numberx > 0 is defined
asΓ(x) =

∫∞
0

tx−1 e−t dt. We shall use frequently the inverse of the Gamma function,Γ (−1)(N), where
for our applications we shall use the fact thatΓ (−1)(N) = x such thatbxc! ≤ N − 1 ≤ dxe!. It is well
known thatΓ (−1)(N) = logN

log logN
(1 + o(1)) and that(α/e)α = N for α = Γ (−1)(N) + Θ(1).

The bound in Theorem 2 improves upon the result due to Mavronicolas and Spirakis [MS01], not
only by extending the class of Nash equilibria for which the upper bound holds, but also by tightening
the result up to a constant additive factor. Indeed, as it was observed by Koutsoupias and Papadimitriou
[KP99] and by Mavronicolas and Spirakis [MS01], one can obtain a lower bound for the worst-case
coordination ratio form identical links by considering the system in which alln = m tasks have
p

j
i = 1

m
for everyi, j ∈ [n]; the classical result of Gonnet [Gon81] implies that in such a system the

worst-case coordination ratio isΓ (−1)(m) − 3
2

+ o(1).

Furthermore, we prove that the upper bound in Theorem 1 is asymptotically tight.

Theorem 3 The coordination ratio form parallel links is lower bounded by

Ω

min

 logm

log log logm
,

logm

log
(

logm
log(s1/sm)

)

 .

In particular, the worst-case coordination ratio form parallel links is

Ω

(
logm

log log logm

)
.
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In fact, we will show, analogously to the upper bound, that for every positive integerm, positive
realr, andS ≥ 1, there exists a set ofm links with s1

sm
= S being in a Nash equilibrium and satisfying

(i) opt = r,

(ii) c = opt ·Ω
(

min

{
logm

log logm
, log

(
s1

sm

)})
, and

(iii) C = opt ·Ω

(
logm

log
(

opt·logm
c

)) .

Combining Theorems 1 and 3 we obtain an asymptotically tight bound for the worst-case coordi-
nation ratio form parallel links.

1.4 Organization

To provide some intuition behind our proofs, we begin in Section 2 with a simple proof that for iden-
tical links the worst-case coordination ratio isO(logm/ log logm). Then, in Section 3, we present
a proof Theorem 1. The proof follows from Lemmas 1.2 and 1.3 that are proven in Sections 3.1 and
3.2. Then, in Section 3.3, we extend arguments used in Sections 3.1 and 3.2 to prove Theorem 2 that
gives a tight upper bound for the worst-case coordination with identical links. In Section 4 we prove
Theorem 3, a lower bound for the worst-case coordination ratio. In our proof we first investigate in
Section 4.1 pure strategies and then in Section 4.2 we extend our analysis to mixed strategies.

2 Warm up: Simple analysis for identical links

In this section we present some basic ideas behind our proofs for the upper bound on the example of
the system with identical links. We show that form identical links the worst-case coordination ratio
is at mostO(logm/ log logm). The same upper bound was presented by Koutsoupias et al. [KMS02]
with a significantly longer proof. Later, in Section 3.3, we further tighten this bound and show that for
m identical links the worst-case coordination ratio is exactlyΓ (−1)(m) + Θ(1) (Theorem 2).

Let us begin with a simple property of Nash equilibria that will be used frequently in our analysis.

Claim 2.1 In an arbitrary Nash equilibrium, ifpq
i > 0 for certaini ∈ [n] andq ∈ [m], then`j +

wi

sj
≥

`q for everyj ∈ [m]. In particular, if `j + 1 < `q thenwi > sj.

(Actually, the same proof implies that ifpj
i > 0 andp

q
i > 0, then|`j − `q| ≤ opt.)

Proof : First, let us notice thatcj
i ≤ `j +

wi

sj
andc

q
i = `q +(1−p

q
i ) wi

sq
≥ `q. Therefore, sincepq

i > 0,

the definition of Nash equilibria implies thatc
q
i ≤ c

j
i and hence,̀q ≤ `j + wi

sj
.

The second part of the claim follows trivially from the first one. ut

Now, we are ready to proceed with the analysis of the worst-case coordination ratio form identical
links. Let us first re-scale the weights and speeds in the problem and assume, without loss of generality,
that all speeds are identical and equal to1 and that the social optimum isopt = 1.
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Sinceopt = 1, then, by (1), we must have

wi ≤ 1 for all i ∈ [n] .

Furthermore, by Claim 2.1, the assumption that the system is in a Nash equilibrium implies that
(see also [KP99, Theorem 7])

c = max
j∈[m]

`j < 2 for all j ∈ [m] . (3)

Next, to estimate the loadCj of any linkj ∈ [m] we apply to (2) a standard concentration inequality
due to Hoeffding4 to obtain the following bound that holds for anyt > 0:

Pr[Cj ≥ t] ≤ (e · E[Cj]/t)t ≤ (2 e/t)t ,

where the last inequality follows from the fact thatE[Cj] = `j and`j < 2.
Therefore, if we pickt ≥ 3 ln m/ ln ln m, thenPr[Cj ≥ t] � 1/m and therefore it is intuitively

clear thatC = E[maxj∈[m] Cj] = O(t). The following inequalities prove this more formally.

C = E[max
j∈[m]

Cj] ≤ t +

∞∑
τ=t

Pr[∃j∈[m]Cj ≥ τ] ≤ t +

∞∑
τ=t

m · (2 e/τ)τ ≤ t +

∞∑
τ=t

2−τ ≤ t + 1 .

Thus, we can summarize the discussion in this section with the following theorem.

Theorem 4 For m identical links the worst-case coordination ratio isO(logm/ log logm). ut

3 Upper bound: Proof of Theorem 1

In this section we prove Lemmas 1.2 and 1.3, from which Theorem 1 directly follows. Our proofs
follow similar arguments as those used in Section 2. The difficulty with extending the proof from
the previous section directly stems from the fact that for non-identical links we do not have a simple
characterization for the upper bound ofwi andc. The main idea behind our proofs in Lemmas 1.2 and
1.3 is to provide good bounds for these two values: Lemma 1.2 gives a tight upper bound for the value
of c and the main part of Lemma 1.3 is to provide a good bound for the values ofwi (see, Lemma 3.6).

3.1 Proof of Lemma 1.2

Fix an arbitrary Nash equilibrium, that is, fix the probabilities(pj
i)i∈[n],j∈[m] that define a Nash equi-

librium. Without loss of generality, assumes1 ≥ s2 ≥ · · · ≥ sm. Let us normalize (scale) the weights
of all tasks such thatopt = 1. Under this normalization, we have to show thatc = O( logm

log logm
) and

c = O
(

log
(

s1

sm

))
. We prove these bounds in two separate Lemmas 3.1 and 3.4.

Lemma 3.1 c ≤ Γ (−1)(m) + 1 = logm
log logm

(1 + o(1)).

4In this paper we use the following standard version of Hoeffding bound [Hoe63]:Let X1, . . . , XN be independent
random variables with values in the interval [0, z] for some z > 0, and let X =

∑N
i=1 Xi, then for any t it holds that

Pr[
∑N

i=1 Xi ≥ t] ≤ (e · E[X] / t)
t/z.
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Proof : Fork ≥ 1, definejk to be the smallest index in{0, 1, . . . ,m} such that̀ jk+1 < k or, if no such
index exists,jk = m. Let us observe that the following properties hold:

• for everyk ≥ 1 with 0 < jk ≤ m, all links j ≤ jk have load at leastk, and

• for everyk ≥ 1 with 0 ≤ jk < m, link jk + 1 has load less thank.

Let c∗ = bc − 1c. We will show thatj1 ≥ c∗!. Combining this inequality with the obvious constraint
j1 ≤ m will imply the asserted upper bound onc.

In order to estimatej1, we start with estimatingjc∗. Observe that link1 does not need to be the link
with highest expected load. The following claim, however, shows that`1 is close toc∗.

Claim 3.2 jc∗ ≥ 1, and hencè1 ≥ c∗.

Proof : For the purpose of contradiction, assumejc∗ = 0. This implies that̀ 1 < c∗ ≤ c − 1. Let q
denote the link with the maximum expected load. Then`1 + 1 < c = `q.

We observe that all the tasks that have positive probability onq must have weight larger thans1.
Indeed, if one such a taski had weightwi ≤ s1, then it would have expected cost on link1 to be at
most`1 + wi

s1
≤ `1 + 1 < `q, which contradicts to Claim 2.1.

Thus, we have shown the existence of a taski of weightwi > s1. This and inequality (1) contradict
our initial assumption thatopt = 1. This completes the proof of Claim 3.2. ut

The next claim gives a lower bound onjk in terms ofjk+1.

Claim 3.3 For k ≥ 1, jk ≥ (k + 1) jk+1.

Proof : Let T be the set of tasks in the system that have positive probability on at least one of the links
in {1, . . . , jk+1}. Fix an optimal allocation strategy OPTStr . We distinguish between two different
ways of how OPTStr might allocate the tasks inT to the links.

Case 1:Suppose OPTStr allocates at least one of the tasks inT to a link j, j > jk. We will show that
this impliesopt > 1 and hence contradicts our assumptions.

Let WT denote the minimum weight of the tasks inT . We first derive a lower bound onWT . The
expected load of the links in{1, . . . , jk+1} (and hence of all links inT ) is at leastk + 1. The expected
load of link jk + 1 is less thank. Therefore, the requirement of Nash equilibria yieldsWT > sjk+1.
But this implies that allocating a task fromT to link j gives cost at leastWT

sj
≥ WT

sjk+1
> 1 which by (1)

yieldsopt > 1 and hence a contradiction.

Case 2: Now let us assume OPTStr allocates all tasks inT to the links in{1, . . . , jk}. We will show
that this impliesjk ≥ (k + 1) jk+1.

Let WΣT denote the sum of the weights of the tasks inT . On one hand, we observe thatWΣT is
lower bounded by the sum of the expected weight on the links{1, . . . , jk+1}, that is,

WΣT =
∑
i∈T

wi ≥
∑
i∈T

wi ·
jk+1∑
j=1

p
j
i =

jk+1∑
j=1

∑
i∈T

wi p
j
i =

jk+1∑
j=1

n∑
i=1

wi p
j
i =

jk+1∑
j=1

`j sj .
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Therefore, sincèj ≥ k + 1 for all j ≤ jk+1, we obtain

WΣT ≥
jk+1∑
j=1

`j sj ≥ (k + 1)

jk+1∑
j=1

sj .

On the other hand, since we assumed thatopt = 1 and OPTStr allocates all tasks inT to the links
{1, . . . , jk}, we obtain

WΣT ≤
jk∑

j=1

sj .

Combining these inequalities gives
∑jk

j=1 sj ≥ (k + 1)
∑jk+1

j=1 sj. Since the sequence of link speeds is
non-increasing, this implies thatjk ≥ (k + 1) jk+1. This completes the proof of Claim 3.3. ut

Finally, we combine the two claims above and obtain

j1 ≥ (c∗)! · jc∗ ≥ (c∗)! .

By definition,j1 ≤ m. Consequently(c∗)! ≤ m, which impliesc ≤ Γ (−1)(m)+1 = logm
log logm

(1+o(1)).
This completes the proof of Lemma 3.1. ut

Next, we prove another upper bound for the maximum expected costc.

Lemma 3.4 c = O(log(s1/sm)).

Proof : The following claim shows that the speeds of the linksj1, j2, . . . increase in a geometric
fashion.

Claim 3.5 For 1 ≤ k ≤ c − 3, sjk+2+1 ≥ 2 sjk+1.

Proof : Fix an optimal strategy OPTStr . Notice that every linkj ′ ≤ jk+2 has cost̀ j ′ ≥ (k+2) > 1 =

opt. Therefore, OPTStr has to allocate at least one of the tasks that has positive probability on one of
the links1, . . . , jk+2 to the linksjk+2 +1 . . . , m. (Observe that in Claim 3.2 it is shown thatjbc−1c ≥ 1.
Hence, the existence of linkjk+2 ≥ jbc−1c is guaranteed.) Clearly, such a task can have weight at most
sjk+2+1 because otherwise the cost of OPTStr would be larger thanopt. Therefore, there exists a link
j ∈ {1, . . . , jk+2} and a taski of weightwi ≤ sjk+2+1 with p

j
i > 0.

Given that, on one hand, the expected cost of taski on link j in the Nash equilibrium is at least
k + 2 because, forj ≤ jk+2, we havecj

i ≥ `j ≥ k + 2. On the other hand, the expected cost of taski

on link jk + 1 is c
jk+1
i < k + wi/sjk+1. Now, the Nash equilibrium property implies that the cost of

taski on link j is not larger than onjk + 1. Consequently,k + 2 ≤ k + wi/sjk+1 ≤ k + sjk+2+1/sjk+1.
Clearly, this inequality implies that2sjk+1 ≤ sjk+2+1 and hence, Claim 3.5 is shown. ut

Claim 3.5 says that in a Nash equilibrium the speeds increase geometrically with the expected load.
This implies that

sm ≤ sj1 ≤ 2−(c−5)/2 · sc−1 ≤ 2−(c−5)/2 · s1 .

Thus,c ≤ 2 log(s1/sm) +O(1). This completes the proof of Lemma 3.4. ut

We conclude the proof of Lemma 1.2 by observing that it follows directly from Lemmas 3.1 and
3.4. ut
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3.2 Proof of Lemma 1.3

Without loss of generality, let us assume thats1 ≥ s2 ≥ · · · ≥ sm. Recall (see (2)) thatCj is a random
variable describing the load on linkj. We haveE[Cj] = `j ≤ c andC = E[maxj∈[m] Cj]. Our goal is to
show, for everyj ∈ [m], that it is unlikely thatCj deviates much from its expectation. For this purpose,
we will use a Hoeffding bound. In order to apply this bound, we need to show that the weights of the
tasks assigned to linkj cannot be much larger thansj. This is shown in the next lemma.

Lemma 3.6 For every linkj and every taski with p
j
i ∈ (0, 1

4
], wi ≤ 12 · sj · opt.

Proof : Previously, in the proof of Lemma 1.2, we defined indicesjr providedopt = 1. Now, we
extend this definition to hold for arbitraryopt in natural way: fork ≥ 1, we definejk as the smallest
index in{0, 1, . . . ,m} such that̀ jk+1 < k · opt, or, jk = m if no such index exists.

With this modification, we first observe that Claim 3.5 holds without any change. We will apply
Claim 3.5 to show thatwi ≤ 12 · sj · opt for p

j
i ∈ (0, 1

4
]. First, assume thatj ∈ {jk + 1, . . . , jk−1} for

somek ≤ c − 3. Then, on one hand, the expected cost of taski on link j is

c
j
i = `j + (1 − p

j
i)

wi

sj

≥ (k − 1) · opt +
3wi

4 sj

,

becausè j ≥ (k − 1)opt and1 − p
j
i ≥ 3

4
. On the other hand, the expected cost of taski on link

jk+2 + 1 is

c
jk+2+1
i ≤ `jk+2+1 +

wi

sjk+2+1

≤ (k + 2) · opt +
wi

2 sj

,

by applying`jk+2+1 ≤ (k+2)opt, sjk+2+1 ≥ 2 sjk+1 (Claim 3.5), andsjk+1 ≥ sj. Since we assume the
system is in a Nash equilibrium, the cost of taski on link j cannot be larger than the cost of taski on
link jk+2 + 1. Consequently,(k− 1)opt+ 3 wi

4 sj
≤ (k+ 2)opt+ wi

2 sj
, which implieswi ≤ 12 · sj ·opt.

It remains to investigate the casej ≤ jk, wherek = bc − 3c. We observe that the expected cost of
taski on the fastest links1 is at mostc · opt + opt = (c + 1) · opt. The expected cost of taski on
link j, however, is at leastk · opt + 3 wi

4 sj
≥ (c − 4) · opt + 3 wi

4 sj
. Hence, in this casewi ≤ 20

3
· sj · opt.

This proves Lemma 3.6. ut

Now let us focus on a single linkj ∈ [m]. We apply the lemma in order to show that it is unlikely
thatCj deviates much from its expectation. LetT

(1)
j denote the set of tasks withpj

i ∈ (0, 1
4
] andT

(2)
j

the set of tasks withpj
i ∈ (1

4
, 1]. Furthermore, letC(1)

j andC
(2)
j denote random variables that describe

the cost on linkj only counting tasks inT (1)
j andT

(2)
j , respectively. Clearly, only tasks withpj

i > 0 can

be allocated to linkj. Hence,Cj = C
(1)
j + C

(2)
j .

First, let us consider the tasks inT (1)
j only. Recall thatCj is defined as the weighted sum of

independent0-1 random variablesJj
i, see (2). Thus,C(1)

j is a weighted sum of independent0-1 ran-
dom variables as well. Next, by Lemma 3.6, we can bound the maximum weight in this sum by
max

i∈T
(1)
j

wi

sj
≤ 12 ·opt. Hence, we can apply the Hoeffding bound from Section 2. For everyα > 1,

we obtain

Pr[C(1)
j ≥ α · opt] ≤

(
e · E[C

(1)
j ]

α · opt

)α·opt/(12 opt)

≤
(

e · c
α · opt

)α/12

.
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Now, let us consider the tasks inT (2)
j . Sincep

j
i ≥ 1

4
for every i ∈ T

(2)
j , we immediately obtain

C
(2)
j ≤ 4 E[C

(2)
j ] ≤ 4 c. Hence, for everyα > 1,

Pr[Cj ≥ 4 · c + α · opt] ≤
(

e · c
α · opt

)α/12

.

Until now we focused on a single, fixed link. Summing over allm links, by the union bound, the
probability that the maximum costL = maxj∈[m] Cj does exceed4 · c + α · opt can be upper bounded
by m · (e · c/(α · opt))α/12. Recall thatC is defined to be the expectation of the maximum cost over
all links. Hence, for everyλ > 1, we can estimateC as follows.

C = E[L] ≤ 4 · c + λ · opt + opt ·
∫∞

0

Pr[L ≥ 4 c + (λ + t)opt] dt

≤ 4 · c + λ · opt + opt ·m ·
∫∞

0

(
e · c

(λ + t) · opt

)(λ+t)/12

dt

≤ 4 · c + λ · opt + opt ·m ·
(

e · c
λ · opt

)λ/12

·
∫∞

0

(
e · c

λ · opt

)t/12

dt .

Notice that forλ ≥ 21 · e · c
opt

we have
∫∞

0

(
e·c

λ·opt

)t/12

dt = 12

ln

(
λ·opt
e·c

) ≤ 4, and therefore we obtain

C ≤ 4 · c + λ · opt + 4 · opt ·m ·
(

e · c
λ · opt

)λ/12

.

Moreover, forλ ≥ c
opt

·
(
2 + Γ (−1)

(
e ·m12·opt/c

))
, we can show that

(
e·c

λ·opt

)λ/12

≤ 1
m

. To prove this

inequality, let us setλ0 = c
opt

· d1 + Γ (−1)
(
e ·m12·opt/c

)
e. Next, we observe that(k/e)k ≥ (k − 1)! ·

e−1 for any integerk ≥ 1 (this can be easily proven by induction) and therefore
(

λ0·opt
e·c

)λ0·opt/c ≥(
λ0·opt

c
− 1
)
! · e−1. Since our setting ofλ0 ensures that

(
λ0·opt

c
− 1
)
! · e−1 ≥ m12·opt/c, we can

conclude that for anyλ ≥ λ0 we have(
λ · opt

e · c

)λ/12

≥
(

λ0 · opt

e · c

)λ0/12

=

((
λ0 · opt

e · c

)λ0·opt/c
)c/(12·opt)

≥
(
m12·opt/c

)c/(12·opt)
= m .

Therefore, if we set5

λ = max

{
21 · e · c

opt
,

c

opt
·
(
2 + Γ (−1)

(
e ·m12·opt/c

))
, 1

}
= O

(
c

opt
+

c

opt
·

log
(
mopt/c

)
log(log(mopt/c))

+ 1

)
= O

(
c

opt
+

logm

log
(

opt·logm
c

) + 1

)
,

then we obtain

C ≤ 4 · c + λ · opt + 4 · opt = opt · O

(
c

opt
+

logm

log
(

opt·logm
c

) + 1

)
.

5Recall that logx abbreviates max{log2 x, 1}.
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If c ≤ opt, then the inequality above immediately yields Lemma 1.3. Now supposec > opt. By

Lemma 3.1, we havec
opt

= O
(

logm
log logm

)
which, forc > opt, is bounded byO

(
logm

log(opt·log m
c )

)
. Hence,

C = opt · O

(
c

opt
+

logm

log
(

opt logm
c

) + 1

)
= opt · O

(
logm

log
(

opt logm
c

) + 1

)
.

This concludes the proof of Lemma 1.3. ut

3.3 Extension of Lemma 1.3 for identical links: Proof of Theorem 2

It is easy to simplify the proof and to improve Lemma 1.3 when all links are identical, that is, allsj

are the same. In that case, one can assume without loss of generality thatopt = 1 andsj = 1 for
everyj ∈ [m]. Let T j, j ∈ [m], denote the set of all tasksi with p

j
i > 0. Given that, we can show the

following lemma.

Lemma 3.7 In systems with identical links it holds thatp
j
iwi ≥ `j − 1 for all j ∈ [m], i ∈ T j.

Proof : We use similar arguments as in the proof of Lemma 3.6. The cost of taski on link j is
c

j
i = `j +(1−p

j
i)wi. Letq be any link with`q ≤ 1

m

∑
r∈[j] `r. Clearly,`q ≤ 1 and hencecq

i ≤ 1+wi.

Now, the lemma follows from the requirementc
j
i ≤ c

q
i of Nash equilibria. ut

We consider two separate cases. Suppose first that`j − 1 ≥ 2/Γ (−1)(m). Notice that Lemma
3.7 implies that̀ j =

∑
i∈T j p

j
iwi ≥ |T j| · (`j − 1). Since we havèj < 2 (see inequality (3)) and

1/(`j − 1) ≤ Γ (−1)(m)/2, we obtain|T j| ≤ `j/(`j − 1) ≤ Γ (−1)(m). This inequality immediately
impliesCj ≤ Γ (−1)(m) because in this case at mostΓ (−1)(m) tasks have positive probability on linkj.
The other case we have to consider is whenE[Cj] = `j ≤ 1 + 2/Γ (−1)(m). Here, applying Hoeffding
bound in the same way as it is done in the proof of Lemma 1.3 yieldsCj ≤ Γ (−1)(m) + O(1), with
probability at least1 − 1

m
. This immediately implies Theorem 2. ut

4 Lower bound: Proof of Theorem 3

This section is devoted to the proof of Theorem 3, which states that our upper bounds proven in the
previous section are essentially tight.

Our analysis follows a course similar to the one for the upper bound in the previous section. First,

we will describe a mixed strategy in Nash equilibrium withopt = Θ(1) andc = Θ
(

logm
log logm

)
. Then,

we apply a stochastic analysis showingC = c · Θ
(

logm
log((logm)/c)

)
. Finally, we will take into account

also the speeds of the links in our construction. Combining these bounds yields the theorem.
In fact, our construction can be easily generalized to show that for every integerm, every positive

realr and everyS ≥ 1, there exists a set ofm links with s1

sm
= S having a Nash equilibrium satisfying

c = Ω
(
opt ·min

{
logm

log logm
, log

(
s1

sm

)})
, C = opt ·Ω

(
logm

log(opt·log m
c )

)
, andopt = r.
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4.1 Lower bound for pure strategies

We start by defining a pure strategyS that we will transform afterwards into a mixed strategyS ′.
Without loss of generality, let

√
m be an integer. We considerK + 1 groups of links0, 1, . . . , K, for a

suitableK to be defined later. The groups are defined as follows:

• for 1 ≤ k ≤ K, the number of links in groupk is equal to
√

m · K!
k!

(notice that for1 ≤ k < K

the number of links in groupk is exactly(k + 1) times the number of links in groupk + 1),

• the number of links in group0 is at least
√

m · K!,

• for 0 ≤ k ≤ K, the speed of the links in groupk is 2k,

• for 0 ≤ k ≤ K, for each link in groupk, there are exactlyk tasks of weight2k each having
probability one to be allocated to this link.

In our constructionK can be chosen to be any positive integer that satisfies
√

m ·
∑K

k=0
K!
k!
≤ m. Thus,

in particular, our analysis can be carried over for allK satisfying
√

m · K! · e ≤ m, and hence, for all
K ≤ Γ (−1)(

√
m/e) − 1 = Θ(logm/ log logm).

Lemma 4.1 StrategyS satisfies the following properties:

1. the maximum load isc = K,

2. the social optimum is1 ≤ opt ≤ 2, and

3. the system is in Nash equilibrium.

Proof :

1. This property follows from the fact that if a linkj is in groupk then its load isCj = k 2k

sj
= k.

2. The social optimum cost2 can be achieved, for example, by allocating all tasks “assigned” to
the links in groupk, k ≥ 1, to the links in groupk−1. Observe that there are exactlyk ·

√
m · K!

k!

tasks assigned initially to the links in groupk, k > 0 (and zero tasks assigned to the links in
group0) and each such a task has weight2k. On the other hand, there is at least the same number√

m · K!
(k−1)!

of links in groupk − 1, each link with speed2k−1. Therefore, if we allocate each

task from groupk to a single link in groupk − 1, then since the weight of each task is2k and
the speed of each link is2k−1, the cost of every link in the system is at most2. Hence, the social
optimum is at most2.

To see the lower bound foropt, let us observe that any taski in groupK has weightwi = 2K

and the fastest linkj has speedsj = 2K. This implies that the social optimum cannot be smaller
than wi

sj
= 1.

3. Let us take any taski that is allocated to linkr in groupk ≥ 1 and letj be any link,j 6= r, in
groupt, 0 ≤ t ≤ K. In order to prove that the system is in a Nash equilibrium, we must prove
only thatcj

i ≥ cr
i . Observe thatcr

i = k andc
j
i = `j + wi

sj
= t + 2k−t. As t + 2k−t ≥ k for any

non-negativet andr, none of the tasks allocated tor has an incentive to migrate to another link.
Therefore, by Definition 1.1, the system is in a Nash equilibrium.

ut
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4.2 Lower bound for mixed strategies

Clearly, since the strategyS is pure, we havec = C. Now, our aim is to slightly modify the allocation

of tasks to obtain a mixed strategyS ′ for whichC = c ·Θ
(

logm
log((logm)/c)

)
.

We focus our attention on groupK. Let L denote the set of links in this group.L contains
√

m

links. Each of these links has speed2K, and to each link we have assigned exactlyK tasks of size2K

each. LetT denote the set of these tasks. The cardinality of this set is
√

m · K. Now, we change the
pure strategyS into a mixed strategyS ′ by settingp

j
i = 1√

m
for everyi ∈ T , j ∈ L. We observe the

following properties for our new mixed strategyS ′.

Lemma 4.2 StrategyS ′ satisfies the following properties:

1. the maximum load isc = K.

2. the social optimum is1 ≤ opt ≤ 2,

3. the system is in Nash equilibrium, and

4. the social cost isC = Ω
(

logm
log((logm)/K)

)
.

Proof :

1. The maximum loadc is the same as for strategyS.

2. The value ofopt is unaffected by the modification of the probabilities.

3. We have to check that the tasks inT do not have smaller expected costs on other links than on
the links inL. Observe that the expected cost of these tasks onL slightly increased fromK to
K + 1 − 1√

m
≤ K + 1. However, for every linkj /∈ L in groupt < K and anyi ∈ T , we have

c
j
i = `j + wi

sj
= t + 2K−t ≥ K + 1, where the last inequality holds for any two integerst andK.

Consequently, the system is in a Nash equilibrium.

4. To observe this property, we notice that the allocation of the tasks inT to the links inL cor-
responds to the allocation problem of throwing

√
m · K balls uniformly at random into

√
m

bins (see, e.g., [MR95]). In expectation, it is known that the expected maximum occupancy

in this allocation problem isΘ
(
K + logm

log((logm)/K)

)
, which is Θ

(
logm

log((logm)/K)

)
becauseK =

O(logm/ log logm) in our case. Since the sizes of the tasks inT correspond to the speeds
of the links inL, this bound on the maximum occupancy directly implies a lower bound on the
social cost.

ut

Thus, by Lemma 4.2, for every integerm and for every positive integerK ≤ Γ (−1)(
√

m/e) − 1 =
logm

2 log logm
(1 + o(1)), there exists a set ofm links and a Nash equilibrium with log(s1/sm) = K (unless

K = 1, in which cases1 = sm), 1 ≤ opt ≤ 2, c = K, and

C = Ω

(
logm

log
(

opt·logm
c

)) .

Moreover, we can easily extend this construction to hold for arbitrary positive values ofopt. This
completes the proof of Theorem 3. ut
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