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Abstract

We study the problem of traffic routing in non-cooperative networks. In such networks,
users may follow selfish strategies to optimize their own performance measure and there-
fore their behavior does not have to lead to optimal performance of the entire network.
In this paper we investigate the worst-case coordination ratio, which is a game theoretic
measure aiming to reflect the price of selfish routing.

Following a line of previous work, we focus on the most basic networks consisting of
parallel links with linear latency functions. Our main result is that the worst-case coordi-
nation ratio onm parallel links of possibly different speeds is

o ( logm )
logloglogm
In fact, we are able to give an exact description of the worst-case coordination ratio de-
pending on the number of links and the ratio of the speed of the fastest link over the speed
of the slowest link. For example, for the special case in whicimgblarallel links have the
same speed, we can prove that the worst-case coordination ratidign) + 0(1), with

" denoting the Gamma (factorial) function. Our bounds entirely resolve an open problem
posed recently by Koutsoupias and Papadimitriou [KP99].

*A preliminary version of this paper appeared as an extended abstfaideedings of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithpages 413420, San Francisco, CA, January 6-8, 2002. SIAM, Philadelphia, PA.
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1 Introduction

A fundamental problem arising in the management of large-scale communication networks, like the
Internet, is that of routing traffic through the network. Due to the large size of these networks, however,
it is often impossible to employ a centralized traffic management. A natural assumption in the absence
of central regulation is to assume that network users behave selfishly and aim at optimizing their own
individual welfare. To understand such non-cooperative network systems, it is of great importance to
investigate the selfish behavior of users and their influence on the performance of the entire network.

In this paper, we investigate the price of selfish behavior under game theoretic assumptions, that
is, we assume that eacgent(i.e., user) is aware of the situation facing all other agents and aims
at optimizing its own strategy. In particular, we investigate the structure of the networlNask
equilibrium i.e., a combination of mixed (randomized) strategies from which no users has an incentive
to deviate. It is well known that such equilibria may be inefficient and do not always optimize the
overall performance (see, e.g., the Prisoner’s dilemma [PY94]).

As proposed by Koutsoupias and Papadimitriou [KP99], we address the most basic case of a routing
problem, a network consisting ei parallel links1,2, ..., m from an origin to a destination, all with
possibly different speeds, ..., s. There aren agentsl, 2,...,n, each having an amount of traffic
wj to send from the origin to the destination. Each ageeinds the traffic using a possibly randomized
mixed strategywith p{ denoting the probability that agensends the entire traffie; to a linkj. We
assume the agents agelfishin the sense that each of them aims at minimizing its individual cost.

Assuming each agent is aware of the strategies of the other agents and behaves in a non-cooperative
and selfish way, the system results in a Nash equilibrium. In an attempt to understand non-cooperative
network systems, Koutsoupias and Papadimitriou [KP99] (see also, [Pap0la, Pap01b]) proposed to
investigate the behavior of the worst-cas®rdination ratig which is the ratio between the cost in the
worst possible Nash equilibrium and the social (i.e., overall) optimum. In other words, this analysis
seeks the price of uncoordinated individual decisions, the so-called price of anarchy.

We notice that the model considered in this paper is a simplification of the problems arising in real
networks. However, as pointed out in [KP99, MS01, Pap01a], this model seems to be appropriate to
describe several basic networking problems. We believe that understanding the ratio between worst
possible Nash quilibrium and the social optimum in simple situations is necessary for making rigorous
analyses in more complicated networks (see also the recent work of Roughgarden [Rou02] that gives
an additional support to this claim). Readers interested in more detailed exposition of this model and
in its applications are referred to [CKV02, KP99, MS01, PapOla, PapOlb, RT02].

1.1 Model

We define now our model formally following the notation introduced by Koutsoupias and Papadim-
itriou [KP99].

The routing model described above can be formally defined as an allocation problermwith
independent links with speeds, . . ., s,, andn independent tasks with weights, . .., w,,. The goal
is to allocate the tasks to the links to minimize the maximum load of the links in the system.

We use the notatiofiN] to denote sefl, ..., N}. The set ofpure strategiedor taski is therefore
[m] and amixed strategys a distribution on this set.



Given a combinatiofj, ..., jn) € [m]™ of pure strategies, one for each task, thetfor taski is

Wi

Jx =i S
which is the time needed for link chosen by taskto complete all tasks allocated to that ink
Similarly, for a combination of pure strategigs, . ..,j.) € [m]™, theload of link j is defined as

Wi

o
Givenn tasks of lengthwy, ..., w, andm links of speecs;,..., s, letopt denote thesocial
optimum that is, the minimum cost of a pure strategy:

For example, if all links have the same unit spegd=¢ 1 for everyj € [m]) and all weights are
the samen; = 1 for everyi € [n]), then the social optimum ig™|. Furthermore, it is easy to see

that in any system
max wj
opt > allid . (1)
max; s;

It is known that computing the social optimumA§P-hard even for identical speeds (see [KP99]).
Let p] denote the probability that an agert [n] sends the entire traffie; to a linkj € [m]. Let
¢; denote theexpected loa®n a linkj € [m], that is,

1 .
e)' = S—Zwlp’l .
) iem

For a taski, theexpected cost of taskon linkj (or itsfinish timewhen its loadw; is allocated to
link j [KP99]) is equal to

Definition 1.1 (Nash equilibrium) The probabilities(pi)ie[n]‘je[m] define aNash equilibriumif and
only if any taski will assign non-zero probabilities only to links that minimize that is, (p}) > 0
impliesc] < c{, for everyq € [m].

In other words, a Nash equilibrium is characterized by the property that there is no incentive for any
task to change its strategy. As an example, we observe that in the system considered above in which
all links have the same unit speed and all weights are the same, the uniform probar,h[iIitie;é1 for
all j € [m] andi € [n] define a system in a Nash equilibrium. In general, the existence of such an

LIn the original formulation of Koutsoupias and Papadimitriou [KP99], an additional additiveltermas used. How-
ever, since in all papers we are aware of all analyzes assuimed 0, we skipped that term in our presentation. We want
to point out, however, that our bounds are not affected by these additive terms.
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equilibrium over mixed strategies for non-cooperative games was shown by Nash [Nas51]. In fact,
the routing game considered in this paper admits an equilibrium even if all players are restricted to
pure strategies. Rosenthal [Ros73] proved this property for a more general class of routing games by
a simple, elegant potential function argument.

For the rest of the paper, we fix an arbitrary Nash equilibrium, that s, fix the probatﬂﬁﬂi}ggw jem]
that define a Nash equilibrium. Let us consider the randomized allocation strategies in which each task
iis allocated to a single link chosen independently at random according to the probapilitiest is,
taski is allocated to linlj with probabilityp{. Let C;, j € [ml, be the random variable indicating the
load of linkj in our random experiment. We observe tkatis the weighted sum of independeni
random variableg, Pr[J) = 1] = p, such that

1 o :
Ci=—D wili. @)
)=

Let ¢ denote thanaximum expected loawver all links, that is,

c = max{; .
jem]

Notice thatE[C;] = {;, and therefore = maXcm E[C;].
Finally, we define thesocial costC to be the expected maximum load (instead of maximum ex-

pected load), that is,
C = E[maxC;] .

jelm]

Observe that < C and possiblye < C. Recall thatopt denotes thesocial optimum(i.e., the
minimum cost of a pure strategy). In this paper our main focus is on estimatimgdngination ratio
which is the worst-case ratio

R = maxL ,
opt

where the maximum is over all Nash equilibria.

1.2 Previous results

Koutsoupias and Papadimitriou [KP99] initiated the study of the worst-case coordination ratio and
showed the following results for networks consistingroparallel links:

e For two identical links the worst-case coordination ratio is exagtly

e For two links (not necessarily identical, that is, with possibly different speeds) the worst-case
coordination ratio is at leagi = %5

e For m identical links the worst-case coordination ratiom%l) and it is at mos83 +
v4m Inm.

e The worst-case coordination ratio for any number of tasksmaidot necessarily identical) links
isO(y/ 2 > . =L /logm), wheres; is the speed of link, ands; > s, > --- > s,,..

=1 sm
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Mavronicolas and Spirakis [MS01] greatly extended some of the bounds above and show the fol-
lowing results in the so-callefilly-mixed modét

e Form identical links in the fully-mixed Nash equilibrium the worst-case coordination ratio is
O Jam

loglogm

e Form (not necessarily identical) links andidentical weights in the fully-mixed Nash equilib-
rium, if m < n, then the worst-case coordination raticﬂS—log)ﬁ)gn),

We emphasize that besides the very special case ef 2 parallel links, no asymptotically tight
results have been known even for systems with identical links. In particular, even the main conjecture
from the work of Koutsoupias and Papadimitriou [KP99] that the worst-case coordination ratio for

identical linksis @(Iog’ﬁ)glm), has remained unproved prior to our work.

1.3 New results

Ouir first result is an upper bound for the worst-case coordinationatio.

Theorem 1 The coordination ratio fom parallel links is bounded from above by

o | min logm , logm )
log log logm log (ﬁ)

where it is assumed that the speeds satigf - - - > s,,.
In particular, the worst-case coordination ratio fen parallel links is

0 logm
log log logm
The theorem follows directly from the following two lemmas.

Lemma 1.2 The maximum expected loagatisfies

. logm S1
pu— . e — |
c =opt-0O (mm{log logm’ 0og (—Sm>}> ,
where it is assumed that the speeds satigfy - - - > s

Lemma 1.3 The social cos€ satisfies

logm
C=opt- O ——mFr——+1
P <|og<—°vt~':gm> )

2Thefully-mixed modeis a special class of Nash equilibria in Which]ailare non-zero.
3To simplify the notation, throughout the entire paper, for any non-negative rgalshall use log to denote log =
maxlog, x, 1}.




Lemmas 1.2 and 1.3 give also some interesting results for a few special cases. We first state their
applications for systems in which all agents follow oplyre strategiesSince in that casé; = C; for
everyj € [m], we also have& = c. Therefore Lemma 1.2 gives immediately the following result.

Corollary 1.4 For pure strategies the worst-case coordination ratio farparallel links is bounded

from above by
O | min —Iogm , log St ,
loglogm Sm

where it is assumed that the speeds satigfy - - - > s,. O

Theorem 3 below proves that this corollary gives an asymptotically tight bound for the worst-case
coordination ratio for pure strategies.
Furthermore, by Theorem 1, in the special case when all links are identical, the coordination ratio

isO <I0§%§m>. Recently, and independently of our work, also Koutsoupias et al. [KMS02] obtained

the same upper bound. However, in this special case we get a much stronger bound that is actually
tight up to an additive constant.

Theorem 2 For m identical links the worst-case coordination ratio is at most

logm
rey = —— 1 1) .
() +0(1) = 1 ogm (1001
In Theorem 2 we use standard notation to denot&(®Yy) the Gamma (factorial) functionwhich
for any natural numbeéX is defined byi'(N+1) = N! and for an arbitrary real number> 0 is defined
asl'(x) = [ t* e *dt. We shall use frequently the inverse of the Gamma funcfior)(N), where
for our applications we shall use the fact that' (N) = x such thai x|! < N —1 < [x]!. Itis well

known that™—"(N) = |'g+gNN (14 o0(1)) and that{er/e)* = N for « = ' (N) + ©O(1).

The bound in Theorem 2 improves upon the result due to Mavronicolas and Spirakis [MS01], not
only by extending the class of Nash equilibria for which the upper bound holds, but also by tightening
the result up to a constant additive factor. Indeed, as it was observed by Koutsoupias and Papadimitriou
[KP99] and by Mavronicolas and Spirakis [MS01], one can obtain a lower bound for the worst-case
coordination ratio form identical links by considering the system in which all= m tasks have
pi = nil for everyi,j € [n]; the classical result of Gonnet [Gon81] implies that in such a system the
worst-case coordination ratio =" (m) — 3 + o(1).

Furthermore, we prove that the upper bound in Theorem 1 is asymptotically tight.

Theorem 3 The coordination ratio fom parallel links is lower bounded by

ol min logm | logm
log log logm |Og(m|&?ﬁ)

In particular, the worst-case coordination ratio fen parallel links is

a logm
logloglogm



In fact, we will show, analogously to the upper bound, that for every positive intagg@ositive
realr, andS > 1, there exists a set oft links with 2 = S being in a Nash equilibrium and satisfying

(i) opt=r,

. B ) logm 1
(i) ¢ = opt-Q <m|n{w, log (;) }) ,and

logm
(|||) C = Opt -Q (W) .

Combining Theorems 1 and 3 we obtain an asymptotically tight bound for the worst-case coordi-
nation ratio form parallel links.

1.4 Organization

To provide some intuition behind our proofs, we begin in Section 2 with a simple proof that for iden-
tical links the worst-case coordination ratio@¥logm/loglogm). Then, in Section 3, we present

a proof Theorem 1. The proof follows from Lemmas 1.2 and 1.3 that are proven in Sections 3.1 and
3.2. Then, in Section 3.3, we extend arguments used in Sections 3.1 and 3.2 to prove Theorem 2 that
gives a tight upper bound for the worst-case coordination with identical links. In Section 4 we prove
Theorem 3, a lower bound for the worst-case coordination ratio. In our proof we first investigate in
Section 4.1 pure strategies and then in Section 4.2 we extend our analysis to mixed strategies.

2 Warm up: Simple analysis for identical links

In this section we present some basic ideas behind our proofs for the upper bound on the example of
the system with identical links. We show that fiar identical links the worst-case coordination ratio
is at mostO(logm/ loglogm). The same upper bound was presented by Koutsoupias et al. [ KMS02]
with a significantly longer proof. Later, in Section 3.3, we further tighten this bound and show that for
m identical links the worst-case coordination ratio is exaEtly’)(m) + ©(1) (Theorem 2).

Let us begin with a simple property of Nash equilibria that will be used frequently in our analysis.

Claim 2.1 In an arbitrary Nash equilibrium, ip > 0 for certaini € [n] andq € [m], thent; 42 >
£, for everyj € [m]. In particular, if §; + 1 < {4 thenw; > s;.

(Actually, the same proof implies thatp&ﬁL > 0 andp{ > 0, then[¢; — {,] < opt.)
Proof : First, let us notice that! < {;+ rande =g+ (1—p{) {2 > Lq. Therefore, sincey > 0,
the definition of Nash equilibria implies thef < ¢! and hencel, < {; + VS”—]

The second part of the claim follows trivially from the first one. O

Now, we are ready to proceed with the analysis of the worst-case coordination ratiadentical
links. Let us first re-scale the weights and speeds in the problem and assume, without loss of generality,
that all speeds are identical and equal &nd that the social optimum &t = 1.



Sinceopt = 1, then, by (1), we must have
w; < 1 forallien] .

Furthermore, by Claim 2.1, the assumption that the system is in a Nash equilibrium implies that
(see also [KP99, Theorem 7])

c = .m[a>}<£j < 2 forallj e [m] . 3
jelm
Next, to estimate the load; of any linkj € [m] we apply to (2) a standard concentration inequality
due to Hoeffding to obtain the following bound that holds for aty- 0:

PriC; > t] < (e-E[Cjl/t)' < (2e/t)",

where the last inequality follows from the fact tH&ilC;] = ¢; and{; < 2.
Therefore, if we pickt > 3 Inm/InInm, thenPr[C; > t] <« 1/m and therefore it is intuitively
clear thatC = E[maXcm C;] = O(t). The following inequalities prove this more formally.

C = ElmaxC;] < t+ PridiciuC; > 1l < t+ m-(2e/7)" < t+ 277 < t4+1.
[je[m]]]_ ; []e[}i—]_ ; (/)_ ; >

Thus, we can summarize the discussion in this section with the following theorem.

Theorem 4 For m identical links the worst-case coordination ratio@4logm/ log logm). ad

3 Upper bound: Proof of Theorem 1

In this section we prove Lemmas 1.2 and 1.3, from which Theorem 1 directly follows. Our proofs
follow similar arguments as those used in Section 2. The difficulty with extending the proof from
the previous section directly stems from the fact that for non-identical links we do not have a simple
characterization for the upper boundvof andc. The main idea behind our proofs in Lemmas 1.2 and

1.3 is to provide good bounds for these two values: Lemma 1.2 gives a tight upper bound for the value
of ¢ and the main part of Lemma 1.3 is to provide a good bound for the values(ske, Lemma 3.6).

3.1 Proof of Lemma 1.2

Fix an arbitrary Nash equilibrium, that is, fix the probabilitigg)ic e that define a Nash equi-
librium. Without loss of generality, assume > s, > --- > s,,. Let us normalize (scale) the weights
of all tasks such thatpt = 1. Under this normalization, we have to show that O( lgm ) 3nd

loglogm
c=0 (Iog (%)) We prove these bounds in two separate Lemmas 3.1 and 3.4.
_ |
Lemma3.lc <TV(m)+1= ootegm (1+0(1)).
4In this paper we use the following standard version of Hoeffding bound [Hoe638kt X1, ..., XN be independent

random variables with values in the interval [0, z] for some z > 0, and let X = ZiN:1 Xi, then for any t it holds that

PrY N, Xy >t < (e EIXI /)%



Proof: Fork > 1, definejy to be the smallest index {9, 1, ..., m} such tha¥;, ., < k or, if no such
index existsj, = m. Let us observe that the following properties hold:

e for everyk > 1 with 0 < j, < m, all linksj < j, have load at least, and
e for everyk > 1 with 0 < j, < m, link ji + T has load less thak.

Letc* = [c — 1]. We will show thatj; > c*!. Combining this inequality with the obvious constraint
j1 < mwill imply the asserted upper bound on

In order to estimatg;, we start with estimating... Observe that link does not need to be the link
with highest expected load. The following claim, however, showstthigtclose toc*.

Claim 3.2 j.- > 1, and hencd; > c*.

Proof : For the purpose of contradiction, assujpe= 0. This implies that; < ¢* < c— 1. Letq
denote the link with the maximum expected load. Them 1 < c = {,.

We observe that all the tasks that have positive probability amust have weight larger than.
Indeed, if one such a taskhad weightw; < si, then it would have expected cost on lihko be at
most{; + ”:—] < £; + 1 < €4, which contradicts to Claim 2.1.

Thus, we have shown the existence of a taskweightw; > s;. This and inequality (1) contradict
our initial assumption thaipt = 1. This completes the proof of Claim 3.2. O

The next claim gives a lower bound ¢pin terms ofj, ;.
Claim3.3 Fork > 1,5 > (K+ 1) jx1.

Proof: LetT be the set of tasks in the system that have positive probability on at least one of the links
in{1,...,jx1}. Fix an optimal allocation strategyFf@Str . We distinguish between two different
ways of how PTStr might allocate the tasks ihto the links.

Case 1:Suppose @TStr allocates at least one of the taskslimo a linkj, j > jx. We will show that
this impliesopt > 1 and hence contradicts our assumptions.

Let W+ denote the minimum weight of the tasksTin We first derive a lower bound owy. The
expected load of the links if1, ..., ji.1} (and hence of all links i) is at leask + 1. The expected
load of link j + 1 is less thark. Therefore, the requirement of Nash equilibria yieWs > s;, 4.
But this implies that allocating a task frofto link j gives cost at Iea%T > M- > 1 which by (1)

Sj+
yieldsopt > 1 and hence a contradiction. *
Case 2:Now let us assume ©xStr allocates all tasks iff to the links in{1,...,j}. We will show
that this impliegy, > (k+ 1) jx.1.
Let Wgr denote the sum of the weights of the taskg'inOn one hand, we observe thafs is
lower bounded by the sum of the expected weight on the lihks . ,jy,1}, thatis,

Jk+1 Jk+1 jkr1 M Jk+1

Wer = Yowez Swe Y pl= 3 Yowrl= 35 wipl = 3 by
=1

ieT ieT j=1 j=1 ieT =1 i=1



Therefore, sincé; > k + 1 for all j < j,1, we obtain

Jk+1 Jk+1

Wir > ) bys; > (k+1)) s
j=1

=1

On the other hand, since we assumed that = 1 and OPTStr allocates all tasks il to the links
{1,...,9%}, we obtain

jx
Wser < Z Sj .
j=1
Combining these inequalities giv{s?‘:1 s; > (k+1) ;‘;*11 s;. Since the sequence of link speeds is
non-increasing, this implies that > (k + 1) ji,1. This completes the proof of Claim 3.3. O
Finally, we combine the two claims above and obtain
j1 > () je = (e

By definition,j; < m. Consequentlyc*)! < m, which impliesc < TV (m)+1 = 9™ (1 46(1)).

This completes the proof of Lemma 3.1. - ogkam O
Next, we prove another upper bound for the maximum expected:cost

Lemma 3.4 ¢c = O(log(s1/sm)).

Proof : The following claim shows that the speeds of the links,, ... increase in a geometric

fashion.
Claim3.5 For1 <k <c¢—3, 85,41 > 25, 41.

Proof : Fix an optimal strategy ©1Str . Notice that every link’ < j, ;> has cost;, > (k+2) > 1 =

opt. Therefore, @TStr has to allocate at least one of the tasks that has positive probability on one of
the linksT, ... jx 2 tothe linksj, o +1..., m. (Observe thatin Claim 3.2 it is shown that_;, > 1.
Hence, the existence of link,, > j .| is guaranteed.) Clearly, such a task can have weight at most
sj..,+1 because otherwise the cost 0P htr would be larger thaopt. Therefore, there exists a link

j €{1,...,jxs2} and a task of weightw; < s, with p} > 0.

Given that, on one hand, the expected cost of fask link j in the Nash equilibrium is at least
k + 2 because, foj < ji2, We havec{ > {; > k + 2. On the other hand, the expected cost of task
on link ji + 1is cik“ < k 4+ wi/s;, 1. Now, the Nash equilibrium property implies that the cost of
taski on linkj is not larger than o + 1. Consequentlyk +2 < k +wy/s;, 41 < K+ 85, ,11/Sj 41
Clearly, this inequality implies thats;, 1 < s;, ., +1 and hence, Claim 3.5 is shown. O

Claim 3.5 says that in a Nash equilibrium the speeds increase geometrically with the expected load.
This implies that
Sm S Sy, S 27((:75)/2 *Sc—1 < 27((:75)/2 ST .

Thus,c < 2 log(s1/sm) + O(1). This completes the proof of Lemma 3.4. O

We conclude the proof of Lemma 1.2 by observing that it follows directly from Lemmas 3.1 and
3.4. 0



3.2 Proof of Lemma 1.3

Without loss of generality, let us assume that> s, > --- > s,,,. Recall (see (2)) thaf; is a random
variable describing the load on linkWe haveE|[C;] = {; < c andC = E[maXcpy C;]. Our goal is to
show, for every € [m], that it is unlikely thaiC; deviates much from its expectation. For this purpose,
we will use a Hoeffding bound. In order to apply this bound, we need to show that the weights of the
tasks assigned to linkcannot be much larger than This is shown in the next lemma.

1

Lemma 3.6 For every linkj and every task with p} € (0, 2], w; < 12 s; - opt.

Proof : Previously, in the proof of Lemma 1.2, we defined indigeprovidedopt = 1. Now, we
extend this definition to hold for arbitragypt in natural way: fork > 1, we defingj, as the smallest
index in{0, 1,..., m} such that;_.; < k- opt, or,jx = mif no such index exists.

With this modification, we first observe that Claim 3.5 holds without any change. We will apply
Claim 3.5 to show thatv; < 12 - s; - opt for p} € (0, 1]. First, assume thgte {jix +1,...,jx_1} for
somek < ¢ — 3. Then, on one hand, the expected cost of iask link j is

_ o 3wy
= 4+ (1=p) > (k=1)-opt+ St
$j 4Sj

becausd; > (k — 1)opt and1 — pi > 3. On the other hand, the expected cost of task link

]
jrez+ 1is

Wy Wi

]:k+2+1

ot < gt < (k+2)-opt+—

Sjki2+1 2 S;
by applyingl;, ., +1 < (k+2) opt, sj,,,+1 > 255,41 (Claim 3.5), and;, 1 > s;. Since we assume the
system is in a Nash equilibrium, the cost of taskn link j cannot be larger than the cost of tastn
link j1,2+ 1. Consequently(k — 1) opt + 34”:; < (k+2)opt+ ZW—S] which impliesw; < 12-s;- opt.

It remains to investigate the cape ji, wherek = |c — 3]. We observe that the expected cost of
taski on the fastest linls; is at mostc - opt + opt = (¢ + 1) - opt. The expected cost of tagkon
link j, however, is at least - opt + 34—: > (c—4)-opt+ Z—VSV] Hence, in this case; < £ - s; - opt.
This proves Lemma 3.6. a

)

Now let us focus on a single linke [m]. We apply the lemma in order to show that it is unlikely
that C; deviates much from its expectation. LTq(l” denote the set of tasks with] < (0, 1] ande(z)
the set of tasks with) € (1, 1]. Furthermore, le€}" andC|” denote random variables that describe
the cost on linkj only counting tasks if. ].m andem, respectively. Clearly, only tasks Witﬂ > (0 can
be allocated to link. Hence,C; = C]m + C]@.

First, let us consider the tasks Tr]i” only. Recall thatC; is defined as the weighted sum of

independend-1 random variableﬁﬂ, see (2). ThusC](” is a weighted sum of independed ran-

dom variables as well. Next, by Lemma 3.6, we can bound the maximum weight in this sum by
max, o VS”—] < 12-opt. Hence, we can apply the Hoeffding bound from Section 2. For exesyl,
we obtain

(1) ocopt/(12 opt) /12
e EIC; ]) - ( e-c ) .

Pr[C]m > o-opt] < (
o - opt « - opt
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Now, let us consider the tasks ﬂ"){z]. Sincep{ > % for everyi € T].(z), we immediately obtain
C)@ <4 E[C)@] < 4c. Hence, for every > 1,

e.c /12
PriC; >4 -c+ o-opt] < < ) .
o - opt
Until now we focused on a single, fixed link. Summing overrallinks, by the union bound, the
probability that the maximum cogl = maxc, C; does exceed - ¢ + « - opt can be upper bounded

bym- (e-c/(x-opt))*'2. Recall thatC is deflned to be the expectation of the maximum cost over
all links. Hence, for every > 1, we can estimat€ as follows.

(o.¢]

C = El£] < 4-c+7\-opt+opt-J Pri£>4c+ (A+t)opt] dt
0

o0 e.c (A+t)/12
< 4-c+>\-opt+opt~m.J <(—> dt

0 A+1t)-opt
e.c \M12 [0/ e \Y12
< 4. A-opt t-m- : dt .
< c+A-opt+opt-m (A-opt) L (A-opt)

t/12
Notice that forA > 21 - e - oipt we havejgO (7\.65;) dt = W < 4, and therefore we obtain

ecC

e.c \ M2
C < 4-c+?\-opt—|—4-opt-m-< ) .
A-opt

A/12
Moreover, forA > & (2 +1r0 (e m”opt/c)) we can show tha@op& < L. To prove this
inequality, let us sekp = - - [1 4+ T'"Y (e - m'#°PY/€)]. Next, we observe thdk/e)* > (k —1)! -

e~! for any integerk > 1 (thls can be easily proven by induction) and theref@%—é?t)}‘”"pt/c >
(?\0 opt

—1)!-e". Since our setting ok, ensures thaf?2t — 1)1 . e~! > m'>°PYc we can
conclude that for ank > A, we have

A/12 Ao /12 Ao-opt/c c/(12-opt)
<7\ . opt) > (7\0 . opt) _ ((7\0 . opt) ) > (m12~opt/c) ¢/(12-opt) o
€-C e-C e-cC

Therefore, if we sét

= L L (=1 . 12-0pt/c
A= max{Z] € oot opt 2+1"Y (e-m )),1}

_ c c log (mort/c) B c logm
= © (opt * opt log (log (mevt/e)) t1) =0 + |og(optlogm) +1)

then we obtain

I
C<4.c+A-opt+4-opt = opt-0O ¢ + 09171 +1
|Og(optogm)

®Recall that loge abbreviates mdiog, x, 1}.
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If ¢ < opt, then the inequality above immediately yields Lemma 1.3. Now suppaseopt. By

Lemma 3.1, we haves, = O (%) which, forc > opt, is bounded by (Iog(ﬂgt?gm)) Hence,

c logm logm
C = Opt-@( +|Og(optlogm)+]> - Opt-@(W‘i’])

This concludes the proof of Lemma 1.3. O

3.3 Extension of Lemma 1.3 for identical links: Proof of Theorem 2

It is easy to simplify the proof and to improve Lemma 1.3 when all links are identical, that is, all
are the same. In that case, one can assume without loss of generalibpthat 1 ands; = 1 for
everyj € [m]. LetT),j € [m], denote the set of all taskswith p{ > 0. Given that, we can show the
following lemma.

Lemma 3.7 In systems with identical links it holds thaﬂhmi > —1forallje[m],ieT.

Proof : We use similar arguments as in the proof of Lemma 3.6. The cost ofitasklink j is
¢! = {4+ (1—pl) wi. Letq be any link with¢, < nilzrem L. Clearly,l; < 1and hencef < 1+4+w;.

Now, the lemma follows from the requiremerjt< c{ of Nash equilibria. 0

We consider two separate cases. Suppose firsttthatl > 2/T-"(m). Notice that Lemma
3.7 implies thatl; = } p{wi > [T9] - (¢; — 1). Since we have; < 2 (see inequality (3)) and
1/(¢; — 1) < T (m)/2, we obtainT)| < £;/(¢ — 1) < T(m). This inequality immediately
impliesC; < I'=Y(m) because in this case at md$t") (m) tasks have positive probability on lifk
The other case we have to consider is wie6;] = ¢; < 1+ 2/T=Y(m). Here, applying Hoeffding
bound in the same way as it is done in the proof of Lemma 1.3 yig|ds T'~"(m) + O(1), with
probability at leasi — nli This immediately implies Theorem 2. O

4 Lower bound: Proof of Theorem 3

This section is devoted to the proof of Theorem 3, which states that our upper bounds proven in the
previous section are essentially tight.
Our analysis follows a course similar to the one for the upper bound in the previous section. First,

we will describe a mixed strategy in Nash equilibrium witht = ©(1) andc = © ( log m ) Then,

loglogm

logm

we apply a stochastic analysis showiig= c - © <m> Finally, we will take into account

also the speeds of the links in our construction. Combining these bounds yields the theorem.
In fact, our construction can be easily generalized to show that for every integarery positive
realr and everyS > 1, there exists a set ofi links with j—; = S having a Nash equilibrium satisfying

c=0Q (opt . min{log)ﬂ:g“m, log ( )}), C=opt-Q (ﬁ"ﬁ), andopt =r.

12



4.1 Lower bound for pure strategies

We start by defining a pure strategythat we will transform afterwards into a mixed stratefj{
Without loss of generality, lef/m be an integer. We consid&r+ 1 groups of links0, 1, ..., K, for a
suitableK to be defined later. The groups are defined as follows:

e for 1 < k < K, the number of links in groug is equal to,/m - % (notice that forl < k < K
the number of links in groug is exactly(k + 1) times the number of links in group—+ 1),

e the number of links in group is at least/m - K!,
e for 0 < k < K, the speed of the links in groupis 2¥,

e for 0 < k < X, for each link in grougk, there are exactlk tasks of weigh2* each having
probability one to be allocated to this link.

In our constructiork can be chosen to be any positive integer that satigfies E:o % < m. Thus,

in particular, our analysis can be carried over forkaatisfying,/m - K! - e < m, and hence, for all
K <TEY(/m/e) — 1 =0O(logm/loglogm).

Lemma 4.1 StrategysS satisfies the following properties:

1. the maximum load is = K,
2. the social optimum i$ < opt < 2, and
3. the system is in Nash equilibrium.

Proof :
k

1. This property follows from the fact that if a linkis in groupk then its load isC; = % =k.

2. The social optimum cost can be achieved, for example, by allocating all tasks “assigned” to
the links in groupk, k > 1, to the links in grougk — 1. Observe that there are exackly,/m - %
tasks assigned initially to the links in grolgp k > 0 (and zero tasks assigned to the links in
group0) and each such a task has weight On the other hand, there is at least the same number

ym- ﬁ of links in groupk — 1, each link with speed*~'. Therefore, if we allocate each
task from groupk to a single link in grougk — 1, then since the weight of each taskisand
the speed of each link B, the cost of every link in the system is at masHence, the social
optimum is at mosz.

To see the lower bound farpt, let us observe that any taskn groupK has weightw; = 2
and the fastest linkhas speed; = 2¥. This implies that the social optimum cannot be smaller
than: =1.

3. Let us take any taskthat is allocated to link in groupk > 1 and letj be any link,j = r, in
groupt, 0 <t < K. In order to prove that the system is in a Nash equilibrium, we must prove
only thatc! > cI. Observe that! = k andc] = ¢ + Mo—t 425t Ast 4 2% > kforany
non-negative andr, none of the tasks allocatedf(dnas an incentive to migrate to another link.
Therefore, by Definition 1.1, the system is in a Nash equilibrium.

O
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4.2 Lower bound for mixed strategies

Clearly, since the strategyis pure, we have = C. Now, our aim is to slightly modify the allocation

of tasks to obtain a mixed strategy for whichC =c - © (mm(lf%—:lwc))

We focus our attention on grouf. Let L denote the set of links in this group. contains,/m
links. Each of these links has spe&t and to each link we have assigned exaétliasks of sizek
each. Lefl denote the set of these tasks. The cardinality of this sgtis- K. Now, we change the
pure strategys into a mixed strategys’ by settingp{ = %1 for everyi € T, j € L. We observe the

following properties for our new mixed strategy.
Lemma 4.2 StrategyS’ satisfies the following properties:
1. the maximum load is = K.

2. the social optimum i$ < opt < 2,

3. the system is in Nash equilibrium, and

: e logm
4. the social cost i€ = Q <—Iog((logm)/K)>'

Proof :
1. The maximum load is the same as for strategy

2. The value obpt is unaffected by the modification of the probabilities.

3. We have to check that the taskslirdo not have smaller expected costs on other links than on
the links inL. Observe that the expected cost of these tasks slightly increased fronK to

K+1-— \Lﬂ < K+ 1. However, for every lin§ ¢ L in groupt < K and anyi € T, we have

ci ={;+ ™ =t +4 25t > K+ 1, where the last inequality holds for any two integeendK.

S:

Consequehtly, the system is in a Nash equilibrium.
4. To observe this property, we notice that the allocation of the taskstinthe links inL cor-

responds to the allocation problem of throwiggn - K balls uniformly at random intg/m
bins (see, e.g., [MR95]). In expectation, it is known that the expected maximum occupancy

in this allocation problem i®© <K+ wdgg%) which is © (Iog((:gg—;nﬂ/lﬂ> becausek =
O(logm/loglogm) in our case. Since the sizes of the taskd ioorrespond to the speeds
of the links inL, this bound on the maximum occupancy directly implies a lower bound on the

social cost.
O

Thus, by Lemma 4.2, for every integer and for every positive integd¢ < TV (/m/e) — 1 =
ﬂf;]g—lo“;n (1+0(1)), there exists a set ah links and a Nash equilibrium with Idg;/s..) = K (unless
K =1, in which case; = s,,,), 1 < opt < 2,c =K, and

logm
C=0—————
(Iog (oo )

Moreover, we can easily extend this construction to hold for arbitrary positive valugstofThis
completes the proof of Theorem 3. O
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