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Abstract

Consider a round-robin tournament on n teams, where a winner must be (possibly randomly)
selected as a function of the results from the

(
n
2

)
pairwise matches. A tournament rule is said to be k-

SNM-α if no set of k teams can ever manipulate the
(
k
2

)
pairwise matches between them to improve

the joint probability that one of these k teams wins by more than α. Prior work identifies multiple
simple tournament rules that are 2-SNM-1/3 (Randomized Single Elimination Bracket [SSW17],
Randomized King of the Hill [SWZZ20], Randomized Death Match [DW21]), which is optimal
for k = 2 among all Condorcet-consistent rules (that is, rules that select an undefeated team with
probability 1).

Our main result establishes that Randomized Death Match is 3-SNM-(31/60), which is tight (for
Randomized Death Match). This is the first tight analysis of any Condorcet-consistent tournament
rule and at least three manipulating teams. Our proof approach is novel in this domain: we explicitly
find the most-manipulable tournament, and directly show that no other tournament can be more
manipulable.

In addition to our main result, we establish that Randomized Death Match disincentivizes Sybil
attacks (where a team enters multiple copies of themselves into the tournament, and arbitrarily ma-
nipulates the outcomes of matches between their copies). Specifically, for any tournament, and any
team u that is not a Condorcet winner, the probability that u or one of its Sybils wins in Randomized
Death Match approaches 0 as the number of Sybils approaches∞.

1 Introduction

Consider a tournament on n teams competing to win a single prize via
(
n
2

)
pairwise matches. A tourna-

ment rule is a (possibly randomized) map from these
(
n
2

)
matches to a single winner. In line with several

recent works [AK10, APT10, SSW17, SWZZ20, DW21], we study rules that satisfy some notion of
fairness (that is, “better” teams should be more likely to win), and non-manipulability (that is, teams
have no incentive to manipulate the matches).

More specifically, prior work identifies Condorcet-consistence (Definition 2.4) as one desirable
property of tournament rules: whenever an undefeated team exists, a Condorcet-consistent rule selects
that team as the winner with probability 1. Another desirable property is monotonicity (Definition 2.6):
no team can unilaterally increase the probability that it wins by throwing a single match. Arguably,
any sensible tournament rule should at minimum satisfy these two basic properties, and numerous such
simple rules exist.

[APT10, AK10] further considered the following type of deviation: what if the same company
sponsors multiple teams in an eSports tournament, and wants to maximize the probability that one
of them wins the top prize?1 In principle, these teams might manipulate the outcomes of the matches

1Similarly, perhaps there are multiple athletes representing the same country or university in a traditional sports tournament.

1

ar
X

iv
:2

30
1.

07
86

2v
1 

 [
cs

.G
T

] 
 1

9 
Ja

n 
20

23



they play amongst themselves in order to achieve this outcome. Specifically, they call a tournament rule
k-Strongly-Non-Manipulable (k-SNM, Definition 2.5), if no set of k teams can successfully manipulate
the
(
k
2

)
pairwise matches amongst themselves to improve the probability that one of these k teams wins

the tournament. Unfortunately, even for k = 2, [APT10, AK10] establish that no tournament rule is
both Condorcet-consistent and 2-SNM.

This motivated recent work in [SSW17, SWZZ20, DW21] to design tournament rules which are
Condorcet-consistent as non-manipulable as possible. Specifically, [SSW17] defines a tournament rule
to be k-SNM-α if no set of k teams can manipulate the

(
k
2

)
pairwise matches amongst themselves to

increase total probability that any of these k teams wins by more than α (see Definition 2.5). These
works design several simple Condorcet-consistent and 2-SNM-1/3 tournament rules, which is optimal
for k = 2 [SSW17]. In fact, the state of affairs is now fairly advanced for k = 2: each of [SSW17,
SWZZ20, DW21] proposes a new 2-SNM-1/3 tournament rule. [SWZZ20] considers a stronger fairness
notion that they term Cover-consistent, and [DW21] considers probabilistic tournaments (see Section 1.3
for further discussion).

However, significantly less is known for k > 2. Indeed, only [SWZZ20] analyzes manipulability
for k > 2. They design a rule that is k-SNM-2/3 for all k, but that rule is non-monotone, and it is
unknown whether their analysis of that rule is tight. Our main result provides a tight analysis of the
manipulability of Randomized Death Match [DW21] when k = 3. We remark that this is: a) the first
tight analysis of the manipulability of any Condorcet-consistent tournament rule for k > 2, b) the first
analysis establishing a monotone tournament rule that is k-SNM-α for any k > 2 and α < 1, and c) the
strongest analysis to-date of any tournament rule (monotone or not) for k = 3. We overview our main
result in more detail in Section 1.1 below.

Beyond our main result, we further consider manipulations through a Sybil attack (Definition 2.9).
As a motivating example, imagine that a tournament rule is used as a proxy for a voting rule to select a
proposal (voters compare each pair of proposals head-to-head, and this constitutes the pairwise matches
input to a tournament rule). A proposer may attempt to manipulate the protocol with a Sybil attack,
by submitting numerous nearly-identical clones of the same proposal. This manipulates the original
tournament, with a single node u1 corresponding to the proposal, into a new one with additional nodes
u2, . . . , um corresponding to the Sybils. Each node v /∈ {u1, . . . , um} either beats all the Sybils, or
none of them (because the Sybil proposals are essentially identical to the original). The questions then
become: Can the proposer profitably manipulate the matches within the Sybils? Is it beneficial for a
proposer to submit as many Sybils as possible? We first show that, when participating in Randomized
Death Match, the Sybils can’t gain anything by manipulating the matches between them. Perhaps more
surprisingly, we show that Randomized Death Match is Asymptotically Strongly Sybil-Proof : as the
number of Sybils approaches ∞, the collective probability that a Sybil wins RDM approaches zero
(unless the original proposal is a Condorcet winner, in which case the probability that a Sybil wins is
equal to 1, for any number of Sybils > 0).

1.1 Our Results

As previously noted, our main result is a tight analysis of the manipulability of Randomized Death
Match (RDM) for coalitions of size 3. Randomized Death Match is the following simple rule: pick two
uniformly random teams who have not yet been eliminated, and eliminate the loser of their head-to-head
match.

Informal Theorem 1.1 (See Theorem 4.1) RDM is 3-SNM-3160 . RDM is not 3-SNM-α for α < 31
60 .

Recall that this is the first tight analysis of any Condorcet-consistent tournament rule for any k > 2
and the first analysis establishing a monotone, Condorcet-consistent tournament rule that is k-SNM-α
for any k > 2, α < 1. Recall also that previously the smallest α for which a 3-SNM-α (non-monotone)
Condorcet-consistent tournament rule is known is 2/3.

Our second result concerns manipulation by Sybil attacks. A Sybil attack is where one team starts
from a base tournament T , and adds some number m − 1 of clones of their team to create a new
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tournament T ′ (they can arbitrarily control the matches within their Sybils, but each Sybil beats exactly
the same set of teams as the cloned team) (See Definition 2.9). We say that a tournament rule r is
Asymptotically Strongly Sybil-Proof (Definition 2.10) if for any tournament T and team u1 ∈ T that is
not a Condorcet winner, the maximum collective probability that a Sybil wins (under r) over all of u1’s
Sybil attacks with m Sybils goes to 0 as m goes to infinity. See Section 2 for a formal definition.

Informal Theorem 1.2 (See Theorem 5.3) RDM is Asymptotically Strongly Sybil-Proof.

1.2 Technical Highlight

All prior work establishing that a particular tournament rule is 2-SNM-1/3 follows a similar outline: for
any T , cases where manipulating the {u, v} match could potentially improve the chances of winning
are coupled with two cases where manipulation cannot help. By using such a coupling argument, it is
plausible that one can show that RDM is 3-SNM-(12 + c) for a small constant c. However, given that
Theorem 4.1 establishes that RDM is 3-SNM-31/60, it is hard to imagine that this coupling approach
will be tractable to obtain the exact answer.

Our approach is instead drastically different: we find a particular 5-team tournament, and a manipu-
lation by 3 teams that gains 31/60, and directly prove that this must be the worst case. We implement our
approach using a first-step analysis, thinking of the first match played in RDM on an n-team tournament
as producing a distribution over (n− 1)-team tournaments.

The complete analysis inevitably requires some careful case analysis, but is tractable to execute
fully by hand. Although this may no longer be the case for future work that considers larger k or more
sophisticated tournament rules, our approach will still be useful to limit the space of potential worst-case
examples.

1.3 Related Work

There is a vast literature on tournament rules, both within Social Choice Theory, and within the broad
CS community [Ban85, Fis77, FR92, GLM93, KSW17, KW15, Mil80, SW11]. The Handbook of Com-
putational Social Choice provides an excellent survey of this broad field, which we cannot overview in
its entirety [Mou16]. Our work considers the model initially posed in [AK10, APT10], and continued
in [DW21, SSW17, SWZZ20], which we overview in more detail below.

[AK10, APT10] were the first to consider Tournament rules that are both Condorcet-consistent and
2-SNM, and proved that no such rules exist. They further considered tournament rules that are 2-SNM
and approximately Condorcet-consistent. [SSW17] first proposed to consider tournament rules that are
instead Condorcet-consistent and approximately 2-SNM. Their work establishes that Randomized Single
Elimination Bracket is 2-SNM-1/3, and that this is tight.2 [SWZZ20] establish that Randomized King
of the Hill (RKotH) is 2-SNM-1/3,3 and [DW21] establish that Randomized Death Match is 2-SNM-
1/3. [SWZZ20] show further that RKotH satisfies a stronger fairness notion called Cover-consistence,
and [DW21] extends their analysis to probabilistic tournaments. In summary, the state of affairs for
k = 2 is quite established: multiple 2-SNM-1/3 tournament rules are known, and multiple different
extensions beyond the initial model of [SSW17] are known.

For k > 2, however, significantly less is known. [SSW17] gives a simple example establishing that
no rule is k-SNM-k−1−ε2k−1 for any ε > 0, but no rules are known to match this bound for any k > 2.
Indeed, [SWZZ20] shows that this bound is not tight, and proves a stronger lower bound for k → ∞.
For example, a corollary of their main result is that no 939-SNM-1/2 tournament rule exists. They also
design a non-monotone tournament rule that is k-SNM-2/3 for all k. Other than these results, there is
no prior work for manipulating sets of size k > 2. In comparison, our work is the first to give a tight

2Randomized Single Elimination Bracket iteratively places the teams, randomly, into a single-elimination bracket, and then
‘plays’ all matches that would occur in this bracket to determine a winner.

3Randomized King of the Hill iteratively picks a ‘prince’, and eliminates all teams beaten by the prince, until only one team
remains.
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analysis of any Condorcet-consistent tournament rule for k > 2, and is the first proof that any monotone,
Condorcet-consistent tournament rule is k-SNM-α for any k > 2, α < 1.

Regarding our study of Sybil attacks, similar clone manipulations have been considered prior in
Social Choice Theory under the name of composition-consistency. [LLL96] introduces the notion of a
decomposition of the teams in a tournament into components, where all the teams in a component are
clones of each other with respect to the teams not in the component. [LLL96] defines a deterministic
tournament rule to be composition-consistent if it chooses the best teams from the best components4. In
particular, composition-consistency implies that a losing team cannot win by introducing clones of itself
or any other team. [LLL96] shows that the tournament rules Banks, Uncovered Set, TEQ, and Min-
imal Covering Set are composition-consistent, while Top Cycle, the Slater, and the Copeland are not.
Both computational and axiomatic aspects of composition-consistency have been explored ever since.
[EFS12] studies the structural properties of clone sets and their computational aspects in the context
of voting preferences. In the context of probabilistic social choice, [BBS16] gives probabilistic exten-
sions of the axioms composition-consistency and population-consistency and uniquely characterize the
probabilistic social choice rules, which satisfy both. In the context of scoring rules, [Özt20] studies the
incompatibility of composition-consistency and reinforcement (stronger than population-consistency)
and decomposes composition-consistency into four weaker axioms. In this work, we consider Sybil
attacks on Randomized Death Match. Our study of Sybil attacks differs from prior work on the relevant
notion of composition-consistency in the following ways: (i) We focus on a randomized tournament rule
(RDM), (ii) We study settings where the manipulator creates clones of themselves (i.e. not of other
teams), (iii) We explore the asymptotic behavior of such manipulations (Definition 2.10, Theorem 5.3).

1.4 Roadmap

Section 2 follows with definitions and preliminaries, and formally defines Randomized Death Match
(RDM). Section 3 introduces some basic properties and examples for the RDM rule as well as a recap
of previous work for two manipulators. Section 4 consists of a proof that the manipulability of 3 teams
in RDM is at most 31

60 and that this bound is tight. Section 5 consists of our main results regarding Sybil
attacks on a tournament. Section 6 concludes.

2 Preliminaries

In this section we introduce notation that we will use throughout the paper consistent with prior work in
[DW21, SSW17, SWZZ20].

Definition 2.1 (Tournament) A (round robin) tournament T on n teams is a complete, directed graph
on n vertices whose edges denote the outcome of a match between two teams. Team i beats team j if the
edge between them points from i to j.

Definition 2.2 (Tournament Rule) A tournament rule r is a function that maps tournaments T to a
distribution over teams, where ri(T ) := Pr(r(T ) = i) denotes the probability that team i is declared
the winner of tournament T under rule r. We use the shorthand rS(T ) :=

∑
i∈S ri(T ) to denote the

probability that a team in S is declared the winner of tournament T under rule r.

Definition 2.3 (S-adjacent) Two tournaments T, T ′ are S-adjacent if for all i, j such that {i, j} 6⊆ S,
i beats j in T if and only if i beats j in T ′.

In other words, two tournaments T, T ′ are S-adjacent if the teams from S can manipulate the out-
comes of the matches between them in order to obtain a new tournament T ′.

4For a full rigorous mathematical definition see Definition 10, [LLL96]
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Definition 2.4 (Condorcet-Consistent) Team i is a Condorcet winner of a tournament T if i beats every
other team (under T ). A tournament rule r is Condorcet-consistent if for every tournament T with a
Condorcet winner i, ri(T ) = 1 (whenever T has a Condorcet winner, that team wins with probability
1).

Definition 2.5 (Manipulating a Tournament) For a set S of teams, a tournament T and a tournament
rule r, we define αrS(T ) be the maximum winning probability that S can possibly gain by manipulating
T to an S-adjacent T ′. That is:

αrS(T ) = max
T’: T’ is S-adjacent to T

{rS(T ′)− rS(T )}

For a tournament rule r, define αrk,n = supT,S:|S|=k,|T |=n{αrS(T )}. Finally, define

αrk = sup
n∈N

αrk,n = sup
T,S:|S|=k

{αrS(T )}

If αrk ≤ α, we say that r is k-Strongly-Non-Manipulable at probability α or k-SNM-α.

Intuitively, αrk,n is the maximum increase in collective winning probability that a group of k teams
can achieve by manipulating the matches between them over tournaments with n teams. And αrk is the
maximum increases in winning probability that a group of k teams can achieve by manipulating the
matches between them over all tournaments.

Two other naturally desirable properties of a tournament rule are monotonicity and anonymity.

Definition 2.6 (Monotone) A tournament rule r is monotone if T, T ′ are {u, v}-adjacent and u beats v
in T , then ru(T ) ≥ ru(T ′)

Definition 2.7 (Anonymous) A tournament rule r is anonymous if for every tournament T , and every
permutation σ, and all i, rσ(i)(σ(T )) = ri(T )

Below we define the tournament rule that is the focus of this work.

Definition 2.8 (Randomized Death Match) Given a tournament T on n teams the Randomized Death
Match Rule (RDM) picks two uniformly random teams (without replacement) and plays their match.
Then, eliminates the loser and recurses on the remaining teams for a total of n− 1 rounds until a single
team remains, who is declared the winner.

Below we define the notions of Sybil Attack on a tournament T , and the property of Asymptotically
Strongly Sybil-Proof (ASSP) for a tournament rule r, both of which will be relevant in our discussion in
Section 5.

Definition 2.9 (Sybil Attack) Given a tournament T , a team u1 ∈ T and an integerm, define Syb(T, u1,m)
to be the set of tournaments T ′ satisfying the following properties:

1. The set of teams in T ′ consists of u2 . . . , um and all teams in T
2. If a, b are teams in T , then a beats b in T ′ if and only if a beats b in T .
3. If a 6= u1 is a team in T and i ∈ [m], then ui beats a in T ′ if and only if u1 beats a in T
4. The match between ui and uj can be arbitrary for each i 6= j

Intuitively, Syb(T, u1,m) is the set of all Sybil attacks of u1 at T with m Sybils. Each Sybil attack
is a tournament T ′ ∈ Syb(T, u1,m) obtained by starting from T and creating m Sybils of u1 (while
counting u1 as a Sybil of itself). Each Sybil beats the same set of teams from T \ u1 and the matches
between the Sybils u1, . . . , um can be arbitrary. Every possible realization of the matches between
the Sybils gives rise to new tournament T ′ ∈ Syb(T, u1,m) (implying Syb(T, u1,m) contains 2(m2 )

tournaments).
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Definition 2.10 (Asymptotically Strongly Sybil-Proof) A tournament rule r is Asymptotically Strongly
Sybil-Proof (ASSP) if for any tournament T , team u1 ∈ T which is not a Condorcet winner,

lim
m→∞

max
T ′∈Syb(T,u1,m)

ru1,...,um(T ′) = 0

Informally speaking, Definition 2.10 claims that r is ASSP if the probability that a Sybil wins in the
most profitable Sybil attack on T with m Sybils, goes to zero as m goes to∞.

3 Basic Properties of RDM and Examples

In this section we consider a few basic properties of RDM and several examples on small tournaments.
We will refer to those examples in our analysis later. Throughout the paper we will denote RDM by r
and it will be the only tournament rule we consider. We next state the first-step analysis observation that
will be central to our analysis throughout the paper. For the remainder of the section let for a match e
denote by T |e the tournament obtained from T by eliminating the loser in e. Let S|e= S \ x, where x
is the loser in e. Let dx denote the number of teams x loses to and T \ x the tournament obtained after
removing team x from T .

Observation 3.1 (First-step analysis) Let S be a subset of teams in a tournament T . Then

rS(T ) =
1(
n
2

)∑
e

rS|e(T |e) =
1(
n
2

)∑
x

dxrS\x(T \ x)

(if S = {v}, then we define rS\v(T \ v) = 0, and if x 6∈ S, then S \ x = S)

Proof. The first equality follows from the fact that after we play e we are left with the tournament T |e
and we sum over all possible e in the first round. To prove the second equality, notice that for any x the
term rS\x(T \ x) appears exactly dx times in

∑
e rS|e(T |e) because x loses exactly dx matches.

As a first illustration of first-step analysis we show that adding teams which lose to every other team
does not change the probability distribution of the winner.

Lemma 3.2 Let T be a tournament and u ∈ T loses to everyone. Then for all v 6= u, we have
rv(T ) = rv(T \ u).

Proof. We prove the statement by induction on |T |. If |T |= 2, then clearly rv(T ) = rv(T \ u) = 1.
Suppose it holds on all tournaments T ′ such that |T ′|< |T |= n and we will prove it for T . By first-step
analysis (Observation 3.1) we have that

rv(T ) =
1(
n
2

)∑
e

rv(T |e) =
1(
n
2

)∑
x 6=v

dxrv(T \ x)

where team x loses dx matches in T . By the inductive hypothesis we have that rv(T \x) = rv(T \{x, u})
for x 6= u, v and du = n− 1. Thus,

rv(T ) =
1(
n
2

)∑
x 6=v

dxrv(T \ x) =

=
1(
n
2

)(
∑

x/∈{u,v}

dxrv(T \ {x, u}) + (n− 1)rv(T \ u)) =

=
1(
n
2

)(

(
n− 1

2

)
rv(T \ u) + (n− 1)rv(T \ u)) = rv(T \ u)
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where in the second to last line we used
∑

x/∈{u,v} dxrv(T \ {x, u}) =
(
n−1
2

)
rv(T \ u), which follows

from first-step analysis (Observation 3.1) and because x loses dx matches in T \ u as u loses to every
team in T

As a natural consequence of Lemma 3.2 we show that the most manipulable tournament on n + 1
teams is at least as manipulable as the most manipulable tournament on n teams.

Lemma 3.3 αrk,n ≤ αrk,n+1

Proof. See Appendix A.1 for a proof.

We now show another natural property of RDM, which is a generalization of Condorcet-consistent
(Definition 2.4), namely that if a group of teams S wins all its matches against the rest of teams, then a
team from S will always win.

Lemma 3.4 Let T be a tournament and S ⊆ T a group of teams such that every team in S beats every
team in T \ S. Then, rS(T ) = 1.

Proof. See Appendix A.1 for a proof.

As a result of Lemma 3.4 RDM is Condorcet-Consistent. As expected, RDM is also monotone (See
Definition 2.6).

Lemma 3.5 RDM is monotone.

Proof. See Appendix A.1 for a proof.

Lemma 3.2 tells us that adding a team which loses to all other teams does not change the probability
distribution of the other teams winning. Lemmas 3.2, 3.3, 3.4, 3.5 will be useful in our later analysis
in Sections 4 and 5. Now we consider a few examples of tournaments and illustrate the use of first-step
analysis (Observation 3.1) to compute the probability distribution of the winner in them.

1. Let T = {a, b, c}, where a beats b, b beats c and c beats a. By symmetry of RDM, we have
ra(T ) = rb(T ) = rc(T ) = 1

3 .

2. Let T = {a, b, c} where a beats b and c. Then clearly, ra(T ) = 1 and rb(T ) = rc(T ) = 0.

3. By Lemma 3.2, it follows that the only tournament on 4 teams whose probability distribution
cannot be reduced to a distribution on 3 teams is the following one T = {a1, a2, a3, a4}, where ai
beats ai+1 for i = 1, 2, 3, a4 beats a1, a1 beats a3 and a2 beats a4. By using what we computed
in (1) and (2) combined with Lemma 3.2 we get by first step analysis

ra1(T ) =
1

6
(ra1(T \ a2) + 2ra1(T \ a3) + 2ra1(T \ a4)) =

1

6
(
1

3
+

2

3
+ 2) =

1

2

ra2(T ) =
1

6
(ra2(T \ a1) + 2ra2(T \ a3) + 2ra2(T \ a4)) =

1

6
(1 +

2

3
) =

5

18

ra3(T ) =
1

6
(ra3(T \ a1) + ra3(T \ a2) + 2ra3(T \ a4)) =

1

6
(
1

3
) =

1

18

ra4(T ) =
1

6
(ra4(T \ a1) + ra4(T \ a2) + 2ra4(T \ a3)) =

1

6
(
1

3
+

2

3
) =

1

6

The above examples are really important in our analysis because: a) we will use them in later for
our lower bound example in Section 4.1, and b) they are a short illustration of first-step analysis.

In the following subsection, we review prior results for 2-team manipulations in RDM, which will
also be useful for our treatment of the main result in Section 4.
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3.1 Recap: Tight Bounds on 2-Team Manipulations in RDM

[DW21] (Theorem 5.2) proves that RDM is 2-SNM-13 and that this bound is tight, namely αRDM2 = 1
3 .

We will rely on this result in Section 4.

Theorem 3.6 (Theorem 5.2 in [DW21]) αRDM2 = 1
3

[SSW17] (Theorem 3.1) proves that the bound of 1
3 is the best one can hope to achieve for a

Condorcet-consistent rule.

Theorem 3.7 (Theorem 3.1 in [SSW17]) There is no Condorcet-consistent tournament rule on n players
(for n ≥ 3) that is 2-SNM-α for α < 1

3

We prove the following useful corollary, which will be useful in Section 4.

Corollary 3.8 Let T be a tournament and u, v ∈ T two teams such that there is at most one match in
which a team in {u, v} loses to a team in T \ {u, v}. Then

ru,v(T ) ≥ 2

3

Proof. If u and v beat every team in T \ {u, v}, then by Lemma 3.4, ru,v(T ) = 1 ≥ 2
3 . WLOG suppose

that there is some team t which beats u, loses to v and all other teams lose to both u and v. Let T ′ be
{u, v}-adjacent to T such that v is a Condorcet winner in T ′. Clearly we have ru,v(T ′) = 1 as RDM is
Condorcet-Consistent. By Theorem 3.6 we have ru,v(T ′)−ru,v(T ) ≤ 1

3 . This, implies that ru,v(T ) ≥ 2
3

as desired.

4 Main Result: αRDM3 = 31/60

The goal of this section is to prove that no 3 teams can improve their probability of winning by more
than 31

60 and that this bound is tight. We prove the following theorem

Theorem 4.1 αRDM3 = 31
60

Our proof consists of two parts:

• Lower bound: αRDM3 ≥ 31
60 , for which we provide a tournament T and a set S of size 3, which

can manipulate to increase their probability by 31
60

• Upper bound: αRDM3 ≤ 31
60 , for which we provide a proof that for any tournament T no set S of

size 3 can increase their probability of winning by more than 31
60 , i.e. RDM is 3-SNM-3160

4.1 Lower Bound

Let r denote RDM. Denote by Bx the set of teams which team x beats. Consider the following tourna-
ment T = {u, v, w, a, b} (shown in Fig 1):

Ba = {u, v, b}, Bb = {u, v}, Bu = {v, w}, Bv = {w}, Bw = {a, b}

The tournament is also shown in Figure 1. Let S = {u, v, w}. By first-step analysis (Observation 3.1)
and by using our knowledge in Section 3 for tournaments on 4 teams we can write

ru,v,w(T ) =
1

10
(3ru,w(T \ v) + 2ru,v(T \ w) + 2ru,v,w(T \ b) + ru,v,w(T \ a) + 2rv,w(T \ u)) =

=
1

10
(3× (

1

2
+

1

6
) + 2× 0 + 2× (

5

18
+

1

18
+

1

6
) + (

5

18
+

1

18
+

1

6
) + 2× (

1

2
+

1

6
)) =

=
1

10
(2 + 1 +

1

2
+

4

3
) =

29

60
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Now suppose that u and v throw their matches with w. i.e. T ′ is S-adjacent to T , where in T ′, w beats
u and v and all other matches have the same outcomes as in T . Then, since w is a Condorcet winner,
ru,v,w(T ′) = rw(T ′) = 1. Therefore,

αRDM3 ≥ ru,v,w(T ′)− ru,v,w(T ) = 1− 29

60
=

31

60

Thus, αRDM3 ≥ 31
60 as desired.

Figure 1: The tournament T in which S = {u, v, w} achieves a gain of 31
60 by manipulation.

4.2 Upper Bound

Suppose we have a tournament T on n ≥ 3 vertices and S = {u, v, w} is a set of 3 (distinct) teams,
where S will be the set of manipulator teams. Let I be the set of matches in which a team from S loses
to a team from T \ S. Our proof for αRDMk ≤ 31

60 will use the following strategy

• In Sections 4.2.1 and 4.2.2 we introduce the first-step analysis framework by considering possible
cases for the first played match. In each of these cases the loser of the match is eliminated and
we are left with a tournament with one less team. We pair each match in T with its corresponding
match in T ′ and we bound the gains of manipulation in each of the following cases separately
(these correspond to each of the terms A,B, and C respectively in the analysis in Section 4.2.2).

– The first match is between two teams in S (there are 3 such matches).

– The first match is between a team in S and a team in T \ S and the team from S loses in the
match (there are |I| such matches).

– The first match is any other match not covered by the above two cases

• In Section 4.2.3 we prove that if |I|≤ 4, then αRDMS (T ) ≤ 31
60 (i.e. the set of manipulators cannot

gain more than 31
60 by manipulating).

• In Section 4.2.4 we prove that if T is the most manipulable tournament on n vertices (i.e. αRDMS (T ) =

αRDM3,n ), then αRDMS (T ) ≤ |I|+7
3(|I|+3)

• In Section 4.2.5 we combine the above facts to finish the proof of Theorem 4.1

We first introduce some notation that we will use throughout this section. Suppose that T ′ and T
are S-adjacent. Recall from Section 3 that for a match e = (i, j), T |e is the tournament obtained after
eliminating the loser in e. Also dx is the number of teams that a team x loses to in T . For x ∈ S, let `x
denote the number of matches x loses against a team in S when considered in T and let `′x denote the

9



number of matches that x loses against a team in S when considered in T ′. Let d∗x denote the number
of teams in T \ S that x loses to. Notice that since T and T ′ are S-adjacent, x ∈ S loses to exactly d∗x
teams in T ′ \ S when considered in T ′. Let G = I ∪ {uv, vw, uw} be the set of matches in which a
team from S loses.

4.2.1 The First Step Analysis Framework

Notice that in the first round of RDM, a uniformly random match e from the
(
n
2

)
matches is chosen. If

e ∈ G then we are left with T \ x where x loses in e for some x ∈ S. If e 6∈ G, we are left with T |e and
all teams in S are still in the tournament. For x ∈ S, there are `x matches in which they lose to a team
from S and d∗x matches in which they lose to a team from T \S. By considering each of these cases and
using first-step analysis (Observation 3.1), we have

ru,v,w(T ) =
1(
n
2

)[ ∑
x∈{u,v,w}

`xr{u,v,w}\x(T \ x) + d∗urv,w(T \ u) + d∗vru,w(T \ v) + d∗wrv,u(T \ w)

+
∑
e/∈G

ru,v,w(T |e)

]

Since T and T ′ are S-adjacent each x ∈ S loses to exactly d∗x, teams form T ′ \ S, and we can similarly
write

ru,v,w(T ′) =
1(
n
2

)[ ∑
x∈{u,v,w}

`′xr{u,v,w}\x(T ′ \ x) + d∗urv,w(T ′ \ u) + d∗vru,w(T ′ \ v) + d∗wrv,u(T ′ \ w)

+
∑
e/∈G

ru,v,w(T ′|e)

]

By subtracting the above two expression we get

ru,v,w(T ′)− ru,v,w(T ) =

=
1(
n
2

)[ ∑
x∈{u,v,w}

`′xr{u,v,w}\x(T ′ \ x)− `xr{u,v,w}\x(T \ x) + d∗u(r{v,w}(T
′ \ u)− r{v,w}(T \ u))

+ d∗v(r{u,w}(T
′ \ v)− r{u,w}(T \ v)) + d∗w(r{v,u}(T

′ \ w)− r{v,u}(T \ w))

+
∑
e/∈G

ru,v,w(T ′|e)− ru,v,w(T |e)

]

Thus,

ru,v,w(T ′)− ru,v,w(T ) =
1(
n
2

)(A+B + C) (1)

where

A =
∑

x∈{u,v,w}

`′xr{u,v,w}\x(T ′ \ x)− `xr{u,v,w}\x(T \ x)

B =
∑
x∈S

d∗x(r{u,v,w}\x(T ′ \ x)− r{u,v,w}\x(T \ x))

C =
∑
e/∈G

ru,v,w(T ′|e)− ru,v,w(T |e)

10



4.2.2 Upper Bounds on A,B and C

We now prove some bounds on the terms A, B and C (defined in Section 4.2.1) which will be useful
later. Recall that I denotes the set of matches in which a team from S loses from a team from T \S. We
begin with bounding A in the following lemma

Lemma 4.2 For all S-adjacent T and T ′, we have A ≤ 7
3 . Moreover, if |I|≤ 1, then A ≤ 1.

Proof. See Appendix A.2 for a proof.

Next, we show the following bound on the term B.

Lemma 4.3 For all S-adjacent T, T ′ we have

B ≤ d∗u + d∗v + d∗w
3

=
|I|
3

Moreover, if |I|≤ 1, then B = 0

Proof. See Appendix A.2 for a proof.

We introduce some more notation. For n ∈ N, define Mn(a1, a2, a3) as the maximum winning
probability gain that three teams {u, v, w} can achieve by manipulation in a tournament T of size n, in
which there are exactly ai teams in T \ S each of which beats exactly i teams of S. Formally,

Mn(a1, a2, a3) = max
{
rS(T ′)− rS(T )|T, T ′ are S-adjacent, |T |= n, |S|= 3,

ai teams in T \ S beat exactly i teams in S
}

Additionally, let Li be the set of teams in T \ S each of which beats exactly i teams in S. Let Q be
the set of matches in which two teams from Li play against each other or in which a team from Li loses
to a team from S for i = 1, 2, 3. Notice that |Q|= 2a1 + a2 +

(
a1
2

)
+
(
a2
2

)
+
(
a3
2

)
if there are ai teams

in S \ T each which beat i teams from S.
With the new notation, we are now ready to prove a bound on the term C. Recall that

C =
∑
e/∈G

ru,v,w(T ′|e)− ru,v,w(T |e)

where G = I ∪ {uv, vw, uw} is the set of matches in which a team from S loses. Then we have the
following bound on C.

Lemma 4.4 For all S-adjacent T and T ′ we have that C is at most

(2a1 +

(
a1
2

)
)Mn−1(a1 − 1, a2, a3) + (a2 +

(
a2
2

)
)Mn−1(a1, a2 − 1, a3) +

(
a3
2

)
Mn(a1, a2, a3 − 1)

+
∑

e/∈G∪Q

ru,v,w(T ′|e)− ru,v,w(T |e)

Proof. See Appendix A.2 for a proof.

4.2.3 The case |I|≤ 4

We summarize our claim when |I|≤ 4 in the following lemma

Lemma 4.5 Let T be a tournament, and S a set of 3 teams. Suppose that there are at most 4 matches
in which a team in S loses to a team in T \ S (i.e. |I|≤ 4). Then αRDMS (T ) ≤ 31

60
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(a1, a2, a3) f(a1, a2, a3)

(0,0,0) 0

(1,0,0) 1
6

(2,0,0) 23
60

(3,0,0) 407
900

(4,0,0) 4499
9450

(0,1,0) 1
2

(0,2,0) 31
60

(1,1,0) 1
2

(2,1,0) 131
260

(0,0,1) 0

(1,0,1) 11
27

Table 1: Upper bounds on Mn(a1, a2, a3)

Proof. We will show that Mn(a1, a2, a3) ≤ f(a1, a2, a3) by induction on n ∈ N for the values of
(a1, a2, a3) and f(a1, a2, a3) given in Table 1 below. Notice that when there are at most 4 matches
between a team in S and a team in T \ S, in which the teams from S loses, then we fall into one of the
cases shown in the table for (a1, a2, a3).

1. Base case Our base case is when n = 3. If we are in the case of 3 teams then S wins with
probability 1, so the maximum gain S can achieve by manipulation is clearly 0, which satisfies all of the
bounds in the table.

2. Induction step Assume that Mk(a1, a2, a3) ≤ f(a1, a2, a3) hold for all k < n and a1, a2, a3 as
in Table 1. We will prove the statement for k = n. Notice that by Table 1 it is clear that f is monotone
in each variable i.e. if a′i ≤ ai for i = 1, 2, 3, then

f(a′1, a
′
2, a
′
3) ≤ f(a1, a2, a3) (2)

Suppose that e /∈ G ∪ Q5. Then since e /∈ G, S remains in T |e. Let for a tournament H define
t(H) = (a′1, a

′
2, a
′
3), where in H there are exactly a′i teams in H \ {u, v, w} that beat exactly i out of

{u, v, w}. Clearly, we have t(T |e) = (a′1, a
′
2, a
′
3), where a′i ≤ ai. By monotonicity of f in (2) and the

inductive hypothesis it follows that

ru,v,w(T ′|e)− ru,v,w(T |e) ≤Mn−1(a
′
1, a
′
2, a
′
3) ≤ f(a′1, a

′
2, a
′
3) ≤ f(a1, a2, a3)

Since |G ∪Q|= 3(1 + a1 + a2 + a3) +
(
a1
2

)
+
(
a2
2

)
+
(
a3
2

)
, we have that

∑
e/∈G∪Q

ru,v,w(T ′|e)−ru,v,w(T |e) ≤ (

(
n

2

)
−3(1+a1+a2+a3)−

(
a1
2

)
−
(
a2
2

)
−
(
a3
2

)
)f(a1, a2, a3)

Also, by the inductive hypothesis we have

Mn−1(a1 − 1, a2, a3) ≤ f(a1 − 1, a2, a3)

Mn−1(a1, a2 − 1, a3) ≤ f(a1, a2 − 1, a3)

Mn−1(a1, a2, a3 − 1) ≤ f(a1, a2, a3 − 1)

5Recall G is the set of matches in which a team from S loses and Q is the set of matches in between two teams from Li or
when a team from Li loses to a team from S (see discussion before Lemma 4.4)
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Therefore, by Lemma 4.4, combined with the inequalities above we have

C ≤ (2a1 +

(
a1
2

)
)f(a1 − 1, a2, a3) + (a2 +

(
a2
2

)
)f(a1, a2 − 1, a3) +

(
a3
2

)
f(a1, a2, a3 − 1)

+ (

(
n

2

)
− 3(1 + a1 + a2 + a3)−

(
a1
2

)
−
(
a2
2

)
−
(
a3
2

)
)f(a1, a2, a3)

By Lemma 4.3 we have

B ≤ d∗u + d∗v + d∗w
3

=
a1 + 2a2 + 3a3

3
=
|I|
3

Combining the above with bounds and plugging into (1) we get

ru,v,w(T ′)− ru,v,w(T ) ≤ 1(
n
2

)(A+B + C) ≤

≤ 1(
n
2

)[A′ +B′ + (2a1 +

(
a1
2

)
)f(a1 − 1, a2, a3) + (a2 +

(
a2
2

)
)f(a1, a2 − 1, a3)

+

(
a3
2

)
f(a1, a2, a3 − 1) + (

(
n

2

)
− 3(1 + a1 + a2 + a3)−

(
a1
2

)
−
(
a2
2

)
−
(
a3
2

)
)f(a1, a2, a3)

]

where A′ = 1 and B′ = 0 if |I|≤ 1 and A′ = 7
3 and B′ = |I|

3 if |I|≥ 2 by Lemma 4.2 and Lemma 4.3.
As the RHS depends only on (a1, a2, a3) we can take the maximum over all tournaments on n teams so
we can get

Mn(a1, a2, a3) ≤
1(
n
2

)[A′ +B′ + (2a1 +

(
a1
2

)
)f(a1 − 1, a2, a3) + (a2 +

(
a2
2

)
)f(a1, a2 − 1, a3)

+

(
a3
2

)
f(a1, a2, a3 − 1)

+ (

(
n

2

)
− 3(1 + a1 + a2 + a3)−

(
a1
2

)
−
(
a2
2

)
−
(
a3
2

)
)f(a1, a2, a3)

]
(∆)

Now, apply the formula (∆) to each of the cases in Table 1. We present the computations for (a1, a2, a3) ∈
{(0, 0, 0), (1, 0, 0), (0, 2, 0)} in the body to illustrate the method and we defer the other cases from Table
1 to Appendix A.2. Note the manipulators can achieve 31

60 only when (a1, a2, a3) = (0, 2, 0).
Case 1 (a1, a2, a3) = (0, 0, 0). By Lemma 3.4 it follows that Mn(0, 0, 0) = 0 = f(0, 0, 0) as a

team from S wins with probability 1 regardless of the matches within S.

Case 2 (a1, a2, a3) = (1, 0, 0). In this case |I|= 1. So by applying ∆ with A′ = 1 and B = 0 we
obtain

Mn(1, 0, 0) ≤ 1(
n
2

)(1 + 2f(0, 0, 0) + (

(
n

2

)
− 6)

1

6
) =

1

6
= f(1, 0, 0)

Case 3 (a1, a2, a3) = (0, 2, 0). Applying ∆, we get

Mn(0, 2, 0) ≤ 1(
n
2

)(
7

3
+

4

3
+ (2 + 1)f(0, 1, 0) + (

(
n

2

)
− 10)f(0, 2, 0))

=
1(
n
2

)(
11

3
+

3

2
+ (

(
n

2

)
− 10)

31

60
)

=
31

60
+

1(
n
2

)(
22 + 9

6
− 31

6
) =

31

60
= f(0, 2, 0)
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Case 4 (a1, a2, a3) = (2, 0, 0). See Appendix A.2.
Case 5 (a1, a2, a3) = (3, 0, 0). See Appendix A.2.
Case 6 (a1, a2, a3) = (4, 0, 0). See Appendix A.2.
Case 7 (a1, a2, a3) = (0, 1, 0). See Appendix A.2.
Case 8 (a1, a2, a3) = (1, 1, 0). See Appendix A.2.
Case 9 (a1, a2, a3) = (2, 1, 0). See Appendix A.2.
Case 10 (a1, a2, a3) = (0, 0, 1). See Appendix A.2.
Case 11 (a1, a2, a3) = (1, 0, 1). See Appendix A.2.
This, finishes the induction and the proof for the bounds in Table 1. Note that f(a1, a2, a3) ≤ 31

60 for
all a1, a2, a3 in Table 1 and this bounds is achieved when (a1, a2, a3) = (0, 2, 0) i.e. there are 2 teams
that beat exactly two of S as is the case in the optimal example in Section 4.1. Thus,we get that if there
are at most 4 matches that a team from S loses from a team in T \S, then αRDMS (T ) ≤ 31

60 . This finishes
the proof of the lemma.

4.2.4 General Upper Bound for the Most Manipulable Tournament

Lemma 4.6 Suppose that αRDMS (T ) = αRDM3,n . Let I be the set of matches a team of S loses to a team
from T \ S. Then

αRDM3,n = αRDMS (T ) ≤ |I|+7

3(|I|+3)

Proof. Let T and T ′ be S-adjacent tournaments on n vertices such that S = {u, v, w} and

αRDM3,n = αRDMS (T ) = rS(T ′)− rs(T )

I.e. T is the ”worst” example on n vertices. By (1) we have

αRDM3,n =
1(
n
2

)(A+B + C)

where A,B and C were defined in Section 4.2.1. By Lemma 4.2 we have

A ≤ 7

3

and by Lemma 4.3

B ≤ d∗u + d∗v + d∗w
3

=
|I|
3

Let e /∈ G. Notice that both T ′|e and T |e are tournaments on n− 1 vertices and by definition of G,
u, v, w are not eliminated in both T ′|e and T |e. Moreover, T ′|e and T |e are S-adjacent. Therefore, for
every e /∈ G, we have by Lemma 3.3

ru,v,w(T ′|e)− ru,v,w(T |e) ≤ αRDM3,n−1 ≤ αRDM3,n

By using the above on each term in C and the fact that |G|= 3 + |I|, we get that

C ≤ (

(
n

2

)
− (3 + |I|))αRDM3,n

By using the above 3 bounds we get

αRDM3,n ≤ 1(
n
2

)(
7

3
+
|I|
3

+ (

(
n

2

)
− (3 + |I|))αRDM3,n )

⇐⇒ (|I|+3)αRDM3,n ≤ |I|+7

3

⇐⇒ αRDM3,n = αRDMS (T ) ≤ |I|+7

3(|I|+3)

as desired.
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4.2.5 Proof of Theorem 4.1

Suppose that T is the most manipulable tournament on n vertices i.e. it satisfies αRDMS (T ) = αRDM3,n .
If |I|≤ 4, then by Lemma 4.5, we have that

αRDM3,n = αRDMS (T ) ≤ 31

60

If |I|≥ 5, then by Lemma 4.6

αRDM3,n = αRDMS (T ) ≤ |I|+7

3(|I|+3)
≤ 5 + 7

3(5 + 3)
=

1

2

where above we used that x+7
3(x+3) is decreasing for x ≥ 5. Combining the above bounds, we obtain

αRDM3,n ≤ 31
60 for all n ∈ N. Therefore,

αRDMk = max
n∈N

αRDMk,n ≤ 31

60

which proves the upper bound and finishes the proof of Theorem 4.1.

5 Sybil Attacks on Tournaments

5.1 Main Results on Sybil Attacks on Tournaments

Recall our motivation from the Introduction. Imagine that a tournament rule is used as a proxy for a vot-
ing rule to select a proposal. The proposals are compared head-to-head, and this constitutes the pairwise
matches in the resulting tournament. A proposer can try to manipulate the protocol with a Sybil attack
and submit many nearly identical proposals with nearly equal strength relative to the other proposals.
The proposer can choose to manipulate the outcomes of the head-to-head comparisons between two of
his proposals in a way which maximizes the probability that a proposal of his is selected. In the tourna-
ment T his proposal corresponds to a team u1, and the tournament T ′ resulting from the Sybil attack is a
member of Syb(T, u1,m) (Recall Definition 2.9). The questions that we want to answer in this section
are: (1) Can the Sybils manipulate their matches to successfully increase their collective probability of
winning? and (2) Is it beneficial for the proposer to create as many Sybils as possible?

The first question we are interested is whether any group of Sybils can manipulate successfully to
increase their probability of winning. It turns out that that the answer is No. We first prove that the
probability that a team which is not a Sybil wins does not depend on the matches between the Sybils.

Lemma 5.1 There exists a function q that takes in as input integer m, tournament T , team u1 ∈ T , and
team v ∈ T \ u1 with the following property. For all T ′ ∈ Syb(T, u1,m), we have

rv(T
′) = q(m,T, u1, v)

where the dependence on u1 is encoded as the outcomes of its matches with the rest of T .

Proof. See Appendix A.3 for a full proof.

Note that by Lemma 5.1 rv(T
′) = q(m,T, u1, v) does not depend on which tournament T ′ ∈

Syb(T, u1,m) is chosen. Now, we prove our first promised result. Namely, that no number of Sybils in
a Sybil attack can manipulate the matches between them to increase their probability of winning.

Theorem 5.2 Let T be a tournament, u1 ∈ T a team, and m and integer. Let T ′1 ∈ Syb(T, u1,m). Let
S = {u1, . . . , um}. Then

αRDMS (T ′1) = 0
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Proof. Let T ′1 and T ′2 be S-adjacent. By Definition 2.9, T ′2 ∈ Syb(T, u1,m). Therefore by Lemma 5.1,
rv(T

′
1) = rv(T

′
2) = q(m,T, u1, v) for all v ∈ T \ u1. Using this we obtain

rS(T ′1) = 1−
∑

v∈T\u1

rv(T
′
1) = 1−

∑
v∈T\u1

rv(T
′
2) = rS(T ′2)

Therefore, rS(T ′1) = rS(T ′2) for all S-adjacent T ′1, T
′
2, which implies the desired result.

Theorem 5.2 says that any number of Sybils cannot manipulate to increase their collective probability
of winning. This leaves the question whether it is beneficial for the proposer to send many (nearly)
identical proposals to the tournament to maximize the probability that a proposal of his is selected. We
show that Randomized Death Match disincentivizes such behaviour. When u1 is a Condorcet winner in
T , then by Lemma 3.4 a Sybil will win with probability one. We prove that if u1 is not a Condorcet
winner in T then as m goes to infinity, the maximum probability (over all Sybils attacks of u1) that any
Sybil wins goes to 0. Or equivalently, RDM is Asymptotoically Strongly Sybil-Proof (recall Definition
2.10).

Before we state our second main theorem let’s recall some notation. Let u1 ∈ T be a team (which
is not a Condorcet winner). Let A be the set of teams in T that u1 beats, and B the of teams u1
loses to. Let T ′ ∈ Syb(T, u1,m) and v ∈ T \ u1. By Lemma 5.1, rv(T ′) = q(m,T, u1, v) for all
T ′ ∈ Syb(T, u1,m). Also, by Lemma 5.1,

ru1,...,um(T ′) = 1−
∑

v∈T\u1

rv(T
′) = 1−

∑
v∈T\u1

q(m,T, u1, v) (3)

and
rA(T ′) =

∑
v∈A

q(m,T, u1, v) (4)

Note that the terms in the RHS of each of (3) and (4) depends only on T, u1 and m. Thus, we can define
the functions

h(m,T, u1) = ru1,...,um(T ′)

g(m,T, u1) = rA(T ′)

and
p(m,T, u1) = h(m,T, u1) + g(m,T, u1)

(here p(m,T, u1) is the total collective probability that a Sybil or a team from A wins)
We are now ready to prove our second main result. Namely, that RDM is Asymptotically Strongly

Sybil-Proof (Definition 2.10). Before we present the result (Theorem 5.3) we will try to convey some
intuition for why RDM should be ASSP. Observe that the only way a Sybil can win is when all the teams
from B are eliminated before all the Sybils. The teams from B can only be eliminated by teams from A.
However, as m increases there are more Sybils and, thus, the teams from A are intuitively more likely to
all lose the tournament before the teams from B. When there are no teams from A left and at least one
team from B left, no Sybil can win. In fact, this intuition implies something stronger than RDM being
ASSP: the collective winning probability of the Sybils and the teams from A (denoted by p(m,T, u1))
converges to 0 as m converges to∞ (or, equivalently, the probability that a team from B wins goes to
1). This intuition indirectly lies behind the technical details of the proof of Theorem 5.3.

Theorem 5.3 Randomized Death Match is Asymptotically Strongly Sybil-Proof. In fact a stronger state-
ment holds, namely if u1 ∈ T is not a Condorcet winner, then

lim
m→∞

p(m,T, u1) = 0

Proof. See Appendix A.3 for a full proof.
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5.2 On a Counterexample to an Intuitive Claim

We will use Theorem 5.3 to prove that RDM does not satisfy a stronger version of the monotonicity
property in Definition 2.6. First, we give a generalization of the definition for monotonicity given in
Section 3

Definition 5.4 (Strongly monotone) Let r be a tournament rule. Let T and letC∪D be any splitting of
the teams in T into two disjoint sets. A tournament rule r is strongly monotone for every (u, v) ∈ C×D,
if T ′ is {u, v}-adjacent to T such that u beats v in T ′ we have rC(T ′) ≥ rC(T )

Intuitively, r is Strongly monotone if whenever flipping a match between a team fromC and a team from
D in favor of the team from C makes C better off. Notice that if |C|= 1 this is the usual definition of
monotonicity (Definition 2.6), which is satisfied by RDM by Lemma 3.5. However, RDM is not strongly
monotone, even though strong monotonicity may seem like an intuitive property to have.

Claim 5.5 RDM is not strongly monotone

Proof. Suppose the contrary i.e. RDM is strongly monotone. Start with a 3-cycle tournament T where
a1 beats b, b beats c, and c beats a1. Let T ′ ∈ Syb(T, a1,m) be a Sybil attack of a1 on T with m Sybils.
Let the Sybils be C = {a1, a2, . . . , am} where ai beats aj in T ′ for i < j. By Theorem 5.3 we can
take m large enough so that rC(T ′) < 1

6 . Suppose all Sybils in C but a1 throw all of their matches
with b and denote the tournament resulting from that T ′′. Then, if RDM were strongly monotone we
would have rC(T ′′) ≤ rC(T ′) < 1

6 (start with T ′′ and iteratively apply strong monotonicity). Note that
starting from T ′′ and iteratively applying Lemma 3.2 to ai and removing ai from the tournament for
i = m,m − 1, . . . , 2 we will obtain the tournament T , and the probability distribution over the winner
in T ′′ will be the same as in T . Therefore, rC(T ′′) ≥ ra(T

′′) = ra(T ) = 1
3 , but ra(T ′′) < 1

6 , a
contradiction with our assumption that RDM is strongly monotone.

6 Conclusion and Future Work

We use a novel first-step analysis to nail down the minimal α such that RDM is 3-SNM-α. Specifically,
our main result shows that αRDM3 = 31

60 . Recall that this is the first tight analysis of any Condorcet-
consistent tournament rule for any k > 2, and also the first monotone, Condorcet-consistent tournament
rule that is k-SNM-α for any k > 2, α < 1. We also initiate the study of manipulability via Sybil
attacks, and prove that RDM is Asymptotically Strongly Sybil-Proof.

Our technical approach opens up the possibility of analyzing the manipulability of RDM (or other
tournament rules) whose worst-case examples are complicated-but-tractable. For example, it is unlikely
that the elegant coupling arguments that work for k = 2 will result in a tight bound of 31/60, but
our approach is able to drastically reduce the search space for a worst-case example, and a tractable
case analysis confirms that a specific 5-team tournament is tight. Our approach can similarly be used
to analyze the manipulability of RDM for k > 3, or other tournament rules. However, there are still
significant technical barriers for future work to overcome in order to keep analysis tractable for large
k, or for tournament rules with a more complicated recursive step. Still, our techniques provide a clear
approach to such analyses that was previously non-existent.
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A Omitted proofs

A.1 Omitted proofs from Section 3

Proof of Lemma 3.3. Consider a tournament T , on n vertices and a set S of size k such that S can
manipulate the matches between them to a tournament T ′ so that their probability of winning increases
by αrk,n, i.e.

αrS(T ) = rS(T ′)− rS(T ) = αrk,n

Let u be a new team which loses to all teams in T . By Lemma 3.2 it follows that rS(T ′) = rS(T ′ ∪ u)
and rS(T ) = rS(T ∪ u). Therefore,

αrk,n+1 ≥ rS(T ′ ∪ u)− rS(T ∪ u) = rS(T ′)− rS(T ) = αrk,n

�

Proof of Lemma 3.4. Suppose the contrary i.e. there is some v ∈ T \S which wins in some execution
of RDM. Consider the round in which the last team u ∈ S is eliminated by some team u′. Clearly,
u′ /∈ S and thus it cannot eliminate u, i.e. a contradiction. �

Proof of Lemma 3.5 If u beats v in T ′, then ru(T ) = ru(T ′). Suppose v beats u in T ′. Consider an
execution E of RDM in T ′ in which u wins. Notice that this execution cannot contain the match (u, v)
since u will get eliminated before v. Therefore, E is also a valid execution of RDM in T . This, provides
an injective mapping from the valid executions in T ′ where u wins to the valid executions in T where u
wins. Therefore, ru(T ) ≥ ru(T ′). �

A.2 Omitted proofs from Section 4

Proof of Lemma 4.2 We claim that there exists some x∗ ∈ {u, v, w} such that min(`x∗ , `
′
x∗) ≥ 1.

Indeed the possible values for (`u, `v, `w) and (`′u, `
′
v, `
′
w) are (1, 1, 1) or some permutation of {2, 1, 0}.

Therefore, as there are least 2 non-zero entries in each of (`u, `v, `w) and (`′u, `
′
v, `
′
w), there must be

a non-zero entry on which they overlap. This means that there is some x∗ ∈ {u, v, w} such that
min(`x∗ , `

′
x∗) ≥ 1. Let {u, v, w} \ x∗ = {y∗, z∗}. By Theorem 3.6, we have

r{u,v,w}\x∗(T
′ \ x∗)− r{u,v,w}\x∗(T \ x∗) ≤

1

3
(5)

By using the above results and the fact that `′x∗ + `′y∗ + `′z∗ = 3 we get the following bound

A =
∑

x∈{u,v,w}

`′xr{u,v,w}\x(T ′ \ x)− `xr{u,v,w}\x(T \ x) ≤

≤ `′x∗r{u,v,w}\x∗(T ′ \ x∗)− `x∗r{u,v,w}\x∗(T \ x∗) + `′y∗r{u,v,w}\y∗(T
′ \ y∗)

+ `′z∗r{u,v,w}\z∗(T
′ \ z∗) ≤

≤ r{u,v,w}\x∗(T ′ \ x∗)− r{u,v,w}\x∗(T \ x∗) + (`′x∗ − 1)r{u,v,w}\x∗(T
′ \ x∗)

+ `′y∗r{u,v,w}\y∗(T
′ \ y∗) + `′z∗r{u,v,w}\z∗(T

′ \ z∗) ≤
≤ r{u,v,w}\x∗(T ′ \ x∗)− r{u,v,w}\x∗(T \ x∗) + (`x∗ − 1) + `y∗ + `z∗ ≤ (by (5))

≤ 1

3
+ 3− 1 =

7

3

where in the second line, we used `x∗ ≥ 1 to get −`x∗r{u,v,w}\x∗(T \ x∗) ≤ −r{u,v,w}\x∗(T \ x∗) and
in the in third line we used `′x∗ ≥ 1 to get (`′x∗ − 1)r{u,v,w}\x∗(T

′ \ x∗) ≤ (`′x∗ − 1). Thus,

A ≤ 7

3
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Suppose that |I|≤ 1. Then, for every x ∈ S, there is at most one match in which a team in {u, v, w} \ x
loses from a team in (T \ x) \ (S \ x). Therefore, by Corollary 3.8, r{u,v,w}\x(T \ x) ≥ 2

3 . Also, we
clearly have that r{u,v,w}\x(T ′ \ x) ≤ 1. Thus,

A =
∑

x∈{u,v,w}

`′xr{u,v,w}\x(T ′\x)−`xr{u,v,w}\x(T \x) ≤ `′u+`′v+`′w−
2

3
(`u+`v+`w) = 3− 2

3
×3 = 1

Thus,
A ≤ 1

when |I|≤ 1 as desired. �

Proof of Lemma 4.3 By Theorem 3.6 we have that for all permutations (x, y, z) of {u, v, w}

r{z,y}(T
′ \ x)− r{z,y}(T \ x) = r{u,v,w}\x(T ′ \ x)− r{u,v,w}\x(T \ x) ≤ αRDM2 =

1

3

By using the above for each of the 3 terms in the sum B we get

B =
∑
x∈S

d∗x(r{u,v,w}\x(T ′ \ x)− r{u,v,w}\x(T \ x)) ≤ d∗u + d∗v + d∗w
3

=
|I|
3

Suppose |I|≤ 1. If |I|= 0, then d∗u = d∗v = d∗w = 0, so B = 0. Suppose |I|= 1 and WLOG team a /∈ S
beats u and {u, v, w} win all other matches with teams outside of S (in particular v, w beat t). Then
d∗v = d∗w = 0. Thus,

B = d∗u(rv,w(T ′ \ u)− rv,w(T \ u)) = 0

since rv,w(T ′ \ u) = rv,w(T \ u) = 1 by Lemma 3.4, as v, w beat every team outside of {v, w} in both
T ′ \ u and T \ u. �

Proof of Lemma 4.4 For a tournament H , where u, v, w ∈ H , define t(H) = (a′1, a
′
2, a
′
3), where in

H there are exactly a′i teams in H \ {u, v, w} each of which beats exactly i teams out of {u, v, w} for
i = 1, 2, 3. Suppose that e ∈ Q. Then we have 3 cases for e:

• Suppose e is a match between two teams from L1 or between some team from L1 and one of the
two teams in {u, v, w} to which it loses. Then clearly, t(T |e) = (a1 − 1, a2, a3) and thus

ru,v,w(T ′|e)− ru,v,w(T |e) ≤Mn−1(a1 − 1, a2, a3)

Notice that there are
(
a1
2

)
+ 2a1 such matches.

• Suppose now that e is a match between two teams from L2 or between some team from L2 the the
unique team in {u, v, w} to which it loses. Then, clearly, t(T |e) = (a1, a2 − 1, a3). Thus,

ru,v,w(T ′|e)− ru,v,w(T |e) ≤Mn−1(a1, a2 − 1, a3)

There are
(
a2
2

)
+ a2 such matches.

• Finally, if e is a match between two teams in L3, then t(T |e) = (a1, a2, a3 − 1). Thus,

ru,v,w(T ′|e)− ru,v,w(T |e) ≤Mn−1(a1, a2, a3 − 1)

There are
(
a3
2

)
such matches.
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Therefore, by applying the the above 3 bounds we get

C =
∑
e/∈G

ru,v,w(T ′|e)− ru,v,w(T |e) ≤

≤ (2a1 +

(
a1
2

)
)Mn−1(a1 − 1, a2, a3) + (a2 +

(
a2
2

)
)Mn−1(a1, a2 − 1, a3)

+

(
a3
2

)
Mn(a1, a2, a3 − 1) +

∑
e/∈G∪Q

ru,v,w(T ′|e)− ru,v,w(T |e))

as desired. Notice that |Q|= 2a1 + a2 +
(
a1
2

)
+
(
a2
2

)
+
(
a3
2

)
. �

Remark A.1 Notice that in Lemma 4.4 one can obtain an even better bound for C by also considering
the matches between two different sets Li and Lj for i 6= j. This could potentially be helpful in getting
more precise upper bounds in Table 1. However, for our purposes the above bounds suffice.

Omitted cases from the proof of Lemma 4.5
Case 4: (a1, a2, a3) = (2, 0, 0). Applying ∆, we get

Mn(2, 0, 0) ≤ 1(
n
2

)(
7

3
+

2

3
+ (4 + 1)f(1, 0, 0) + (

(
n

2

)
− 10)f(2, 0, 0)) =

=
1(
n
2

)(3 +
5

6
+ (

(
n

2

)
− 10)

23

60
) =

23

60
= f(2, 0, 0)

Case 5: (a1, a2, a3) = (3, 0, 0). Applying ∆, we get

Mn(3, 0, 0) ≤ 1(
n
2

)(
7

3
+

3

3
+ (6 + 3)f(2, 0, 0) + (

(
n

2

)
− 15)f(3, 0, 0)) =

=
1(
n
2

)(
10

3
+ 9× 23

60
+ (

(
n

2

)
− 15)

407

900
) =

=
407

900
+

1(
n
2

)(
200 + 207

60
− 407

60
) =

407

900
= f(3, 0, 0)

Case 6 (a1, a2, a3) = (4, 0, 0). Applying ∆, we get

Mn(4, 0, 0) ≤ 1(
n
2

)(
7

3
+

4

3
+ (2× 4 + 6)f(3, 0, 0) + (

(
n

2

)
− 21)f(4, 0, 0)) =

=
1(
n
2

)(
11

3
+ 14× 407

900
+ (

(
n

2

)
− 21)

4499

9450
) =

=
4499

9450
+

1(
n
2

)(
3300 + 4098 + 1600

900
− 8998

900
) =

4499

9450
= f(4, 0, 0)

Case 7 (a1, a2, a3) = (0, 1, 0). Applying ∆, we get

Mn(0, 1, 0) ≤ 1(
n
2

)(
7

3
+

2

3
+ f(0, 0, 0) + (

(
n

2

)
− 6)f(0, 1, 0)) =

=
1(
n
2

)(
7

3
+

2

3
+ (

(
n

2

)
− 6)

1

2
) =

1

2
= f(0, 1, 0)
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Case 8 (a1, a2, a3) = (1, 1, 0). Applying ∆, we get

Mn(1, 1, 0) ≤ 1(
n
2

)(
7

3
+

3

3
+ 2f(0, 1, 0) + f(1, 0, 0) + (

(
n

2

)
− 9)f(1, 1, 0)) =

=
1(
n
2

)(
10

3
+

2

2
+

1

6
+ (

(
n

2

)
− 9)

1

2
) =

=
1

2
+

1(
n
2

)(
27

6
− 9

2
) =

1

2
= f(1, 1, 0)

Case 9 (a1, a2, a3) = (2, 1, 0). Applying ∆, we get

Mn(2, 1, 0) ≤ 1(
n
2

)(
7

3
+

4

3
+ (4 + 1)f(1, 1, 0) + f(2, 0, 0) + (

(
n

2

)
− 13)f(2, 1, 0)) =

=
1(
n
2

)(
11

3
+

5

2
+

23

60
+ (

(
n

2

)
− 13)

131

260
) =

=
131

260
+

1(
n
2

)(
393

60
− 131

20
) =

131

260
= f(2, 1, 0)

Case 10 (a1, a2, a3) = (0, 0, 1). In this case a vertex t beats u, v, w and they lose to everyone else.
By symmetry the probability a team from u, v, w wins is the same no matter what the matches between
them are. Thus, M(0, 0, 1) = 0 = f(0, 0, 0).

Case 11 (a1, a2, a3) = (1, 0, 1). Applying ∆, we get

Mn(1, 0, 1) ≤ 1(
n
2

)(
7

3
+

4

3
+ f(0, 0, 1)(

(
n

2

)
− 9)f(1, 0, 1)) =

=
1(
n
2

)(
7

3
+

4

3
+ (

(
n

2

)
− 9)

11

27
) =

11

27
+

1(
n
2

)(
11

3
− 11

3
) =

11

27
= f(1, 0, 1)

�

A.3 Omitted proofs from Section 5

Proof of Lemma 5.1 We will construct q and prove the statement by induction on the quantity |T |+m.
As a base case suppose |T |+m ≤ 3. In order to define q, we need |T |≥ 2 and this implies m = 1 and
|T |= 2. In this case there is a single tournament in T ′ = T ∈ Syb(T, u1, 1). One can simply define
q(1, T, u1, v) = rv(T ). Suppose that we have defined q(m,T, u1, v) for all T, u1 ∈ T, v ∈ T \ u1
and m that satisfy |T |+m < N and that rv(T ′) = q(m,T, u1, v) for all T ′ ∈ Syb(T, u1,m) when the
parameters satisfy the former constraints.

We will now construct q and show the statement of the Lemma simultaneously for all settings which
satisfy m+ |T |= N . Let T, u1 ∈ T, v ∈ T \ u1,m ∈ N satisfy m+ |T |= N . If m = 1 the statement is
clear because there is a single tournament T ′ = T ∈ Syb(T, u1,m) and thus q(1, u1, T, v) = rv(T ) =
rv(T

′). Suppose m ≥ 2 and T ′ ∈ Syb(T, u1,m). Let A be the set of teams in T \ u1 that u1 beats
and B the set of teams in T \ u1 that u1 loses to. Suppose |A|= a ≥ 0 and |B|= b ≥ 0. If the
first match is between a team from B and a Sybil or between two Sybils, then a Sybil is eliminated
and the resulting tournament is a member of Syb(T, u1,m − 1) (possibly after relabeling u1). By the
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induction hypothesis, v wins with probability q(m− 1, T, u1, v). There are
(
m
2

)
+ bm such matches. If

a match in which a team t ∈ T \ {v, u1} loses is played, then the resulting tournament is a member of
Syb(T \ t, u1,m). Thus, by the induction hypothesis v wins in the resulting tournament with probability
q(m,T \ t, u1, v). If dt is the number of teams t loses to in T , there are dt + m − 1 such matches if
t ∈ A and dt such matches if t ∈ B. If v loses then, it clearly wins with probability 0. Thus, by first-step
analysis we have that

rv(T
′) =

(
m
2

)
+ bm(

m+a+b
2

) q(m− 1, T, u1, v) +
∑
t∈A\v

dt +m− 1(
m+a+b

2

) q(m,T \ t, u1, v)

+
∑
t∈B\v

dt(
m+a+b

2

)q(m,T \ t, u1, v)

Notice that dt depends only on the matches within T . Therefore, all terms in the RHS only depend on
T, u1,m and v, which finishes the induction and gives us a way to define q(m,T, u1, v) as the above
expression. Also, since T ′ ∈ Syb(T, u1,m) was arbitrary we get rv(T ′) = q(m,T, u1, v) for all
T ′ ∈ Syb(T, u1,m).

�

Proof of Theorem 5.3 Let T be a tournament and u1 ∈ T a team, which is not a Condorcet winner.
As in Definition 2.10, we need to show that

lim
m→∞

max
T ′∈Syb(T,u1,m)

ru1,...,um(T ′) = 0

Notice that
max

T ′∈Syb(T,u1,m)
ru1,...,um(T ′) = h(m,T, u1)

and that h(m,T, u1) ≤ p(m,T, u1) so it suffices to show the stronger claim limm→∞ p(m,T, u1) = 0
Recall that A (B) denotes the set of teams u1 beats (loses to) in T . We prove the statement by

induction on |A|. If |A|= 0, then clearly T \ u1 consists of only teams of B, which beat u1, . . . , um and
thus, p(m,T, u1) = 0 for all m by Lemma 3.4. Let |A|= a ≥ 1 and |B|= b ≥ 1 (u1 is not a Condorcet
winner). Suppose that the statement is true for all T and u1 with |A|= a′ < a. By above |T |≥ 3. Let
for a team v denote by dv the number of teams to which it loses in T . Similarly to the proof of Lemma
5.1 by first-step analysis we have the following relation

p(m,T, u1) =

(
m
2

)
+ bm(

m+a+b
2

) p(m−1, T, u1)+
∑
v∈B

dv(
n+a+b

2

)p(m,T \v, u1)+
∑
v∈A

dv +m− 1(
m+a+b

2

) p(m,T \v, u)

Notice that if v ∈ B, then dv ≤ a + b as v beats the Sybils of u1, |B|≤ b, and p(m,T \ v, u1) ≤ 1.
Therefore, ∑

v∈B

dv(
m+a+b

2

)p(m,T \ v, u1) ≤ b(a+ b)(
m+a+b

2

) ≤ C

m2

for some C = C(a, b). Also we know that for every v ∈ A, u1 loses to at least one team in T \v (a team
in B). Therefore, by the inductive hypothesis limm→∞ p(m,T \ v, u1) = 0 for all v ∈ A. Let ε > 0 and
as A does not depend on m, we can choose N such that for m > N , p(m,T \ v, u1) < ε for all v ∈ A.
Also notice that

∑
v∈A dv + m − 1 ≤ ma +

(
a+b+1

2

)
≤ Dm, where D is some constant depending on

a and b. Thus, collecting the above observations we get for all n big enough that

p(m,T, u) ≤
(
m
2

)
+ bm(

m+a+b
2

) p(m− 1, T, u1) +
mD(
m+a+b

2

)ε+
C

m2
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By Lemma A.2 the function (m2 )+bm
(m+1+b

2 )
is decreasing in b for b ≥ 1. We use this, fact together with a ≥ 1

to show (m2 )+bm
(m+a+b

2 )
≤ (m2 )+m

(m+2
2 )

. We also use that mD

(m+a+b
2 )

ε ≤ F
mε for some constant F . Therefore, by upper

bounding the above we get

p(m,T, u1) ≤
(
m
2

)
+m(

m+2
2

) p(m− 1, T, u) +
F

m
ε+

C

m2
=

(
m+1
2

)(
m+2
2

)p(m− 1, T, u1) +
F

m
ε+

C

m2

Therefore, (
m+ 2

2

)
p(m,T, u1) ≤

(
m+ 1

2

)
p(m− 1, T, u1) + Smε+Q

where S,Q are some constants that depend only on the tournament T and the above holds for m > N
sufficiently large. Repeating the above inequalitym−N times and adding them up as a telescoping sum
we get that (

m+ 2

2

)
p(m,T, u1) ≤

(
N + 1

2

)
p(N − 1, T, u1) + S′εm2 +Q(m−N)

and thus

p(m,T, u1) ≤
(
N+1
2

)
p(N − 1, T, u)(
m+2
2

) +
S′εm2(
m+2
2

) +
Q(m−N)(

m+2
2

)
The first and the third term go to 0 as m→∞, and the second term goes to 2S′ε. Therefore,

lim
m→∞

p(m,T, u1) ≤ 2S′ε

Now, letting ε→ 0, we get the desired result. �

Lemma A.2 The function (m2 )+bm
(m+1+b

2 )
is decreasing in b ∈ Z for b ≥ 1

Proof. Indeed, one can show that for b ≥ 1(
m
2

)
+ bm(

m+1+b
2

) ≥ (m2 )+ (b+ 1)m(
m+2+b

2

)
⇐⇒ m− 1 + 2b

(m+ b+ 1)(m+ b)
≥ m− 1 + 2b+ 2

(m+ 2 + b)(m+ b+ 1)

⇐⇒ (m− 1 + 2b)(m+ 2 + b) ≥ (m+ b)(m+ 2b+ 1)

⇐⇒ 2b ≥ 2

which holds for b ≥ 1.
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