
Parallel Algorithms I

Tight Bounds on Parallel List Marking

Sandeep N. Bhat t 1, Gianfranco Bilardi 2, Kieran T. Herley 3,
Geppino Pucci 2, Abhi ram G. Ranade 4

i Bell Communications Research, Morristown NJ 07960, USA
2 Dip. di Elettronica e Informatica, Univ. di Padova, Padova 35131, Italy

3 Dept. of Computer Science, Univ. College Cork, Cork, Ireland
Computer Science Div., Univ. of California at Berkeley, Berkeley CA 94720, USA

A b s t r a c t . The list marking problem involves marking the nodes of an
~-node linked list stored in the memory of a (/9, n)-PRAM, when only the
location of the head of the list is initially known. Under the assumption
that memory cells containing list nodes bear no distinctive tags distin-
guishing them from other cells, we establish an 12 (min{~, n/p}) random-
ized lower bound for e-node lists and present a deterministic algorithm
whose running time is within a logarithmic additive term of this bound.
In the case where list cells are tagged in a way that differentiates them

from other cells, we es tab l i sh a t i g h t O(min~i,,Ip+x/(nlp)logn~)
bound for randomized algorithms.

1 I n t r o d u c t i o n

Linked structures are widely used in non numerical as well as sparse numerical
computat ions. Therefore, it is impor tant to ascertain whether parallelism can be
exploited to process such structures effectively.

In this paper, we focus on lists, possibly the simplest type of linked structures,
and on a very basic operation, which we call marking, consisting of writing a
given value in each node of a given list. The essence of marking is that each
node in the list has to be affected and no other. This feature is common to
several basic list operations such as searching an element or ranking all nodes
(determining their distance from the head). Marking itself is used in impor tan t
practical applications, such as garbage collection, for identifying active structures
in a large memory heap.

The complexity of parallel list operations crucially depends on the list rep-
resentation, and is often affected by features that are irrelevant to sequential
complexity. When managing lists in parallel, a favourable case arises if the the
growth process affords keeping all list nodes in a compact region of memory.
Specifically, the list could be represented as an array of ~ records, each record
corresponding to a list node, with a field storing the array index of its successor.
Indeed, most list-based parallel algorithms in the literature (e.g., searching and
ranking [2]) do assume such compact representation.

In other scenarios, unfortunately, list nodes become natural ly scattered through-
out a port ion of memory whose size is much larger than the length of the list.

232

This case arises when a sequence of concatenations and splittings is performed
on a set of lists.

We also distinguish between tagged and untagged lists, a tagged list being
one where each node contains a tag that uniquely identifies the list. Tags can
be maintained with small overhead if lists are modified only by insertion and
deletion of nodes. However, the overhead is not negligible if other operations,
such as concatenation and splitting, are allowed.

We investigate the extent to which parallelism, randomization, and tagging
can be profitably exploited to improve upon sequential performance when lists
are scattered throughout the memory. Specifically, we develop deterministic and
randomized upper and lower bounds for marking a (tagged or untagged) list of
nodes stored in the memory of a p-processor PRAM with n memory cells, when
only the location of the head of the list is initially known.

1.1 R e l a t e d W o r k a n d N e w R e s u l t s

A restricted version of the list marking problem was introduced and analyzed
by Luccio and Pagli in [7]. Under the assumption that list elements are dis-
tinguishable from non-list elements by inspection, the authors prove a deter-
ministic J'2 (min{i, n/p}) lower bound and provide a tight upper bound when
p = O(s and n = O(~logs In this paper we improve and generalize
these results in the following directions:

1. In the case where list elements are indistinguishable from non-list elements,
we prove that an f2 (min{s n/p)) lower bound also holds for randomized
algorithms. Moreover, we give a deterministic algorithm optimal to within a
logarithmic additive term, therefore showing that randomization can not be
exploited in any significant way in this setting.

2. In the case where list elements are tagged in a way that makes them recog-

nizable by inspection, we establish a tight 19 (min {s v/(n/p)logn})
bound for randomized algorithms, showing that , for a wide range of list
lengths, considerable speedups can be attained by means of randomization.

1.2 P r e l i m i n a r i e s

We will assume that each memory cell has the same format and contains a
memory address which will be interpreted as a pointer (called the successor
pointer) to another cell, a tag field, capable of holding a distinctive symbol, a
data field, and a small constant amount of additional space, called scratch space.
The head of the list, denoted by h, occupies cell 0 and its data field contains
some arbitrary symbol which we will refer to as the signature of the list. Finally,
each node points to the next node in the list, and the pointer field of the last
node r contains the address of cell 0, which we will interpret as a nil pointer.

We identify two variants of the problem. The list is untagged if list nodes
bear no distinctive mark or symbol that renders them instantly identifiable as

233

such. The list is tagged if each list node bears a distinctive symbol in its tag
field which no non-list node bears, thus allowing list nodes to be identified by
inspection. In both cases, the goal of the list marking problem is to copy the
signature into the data field of every node in the list; the data fields of all other
nodes should remain unchanged. A node is said to be marked once its data field
bears the appropriate signature.

Since each memory cell contains a successor pointer, the entire memory can
be interpreted as a directed graph G of n nodes. Each node must have outdegree
zero or one, but a node (including list nodes) may have indegree zero (leaves),
one (unary nodes), or higher. Such a graph is known as a pseudoforest. (Such
structures feature in some connected component algorithms, for example [5].)
Within the pseudoforest, the chain of list nodes forms a directed path in a
structure T that we may interpret as a tree, the edges of which are oriented from
child to parent. The node h is a leaf of T and the list nodes are the ancestors
of h in T located along the directed path from h to r, the root of T. In fact,
G consists of T plus a collection of node-disjoint components each of which is
either a tree or one or more trees joined by a cycle connecting their roots. In
this setting, the objective is to mark all those nodes in G that are ancestors of
h i n T .

The algorithms presented here all assume the ARBITRARY CRCW variant
of the PRAM model of shared-memory computation [5]. Thus concurrent reads
and writes are permitted. Whenever a number of processors a t tempt to write
simultaneously to a cell, one of them, chosen arbitrarily, succeeds, while the
others fail. For convenience, we will refer to a PRAM with p-processors and
n-cells of memory as a (p, n)-PRAM and will assume throughout that p < n.
We will also assume that each processor has a private area of O(1) storage for
workspace.

In Section 2 we investigate the problem of marking untagged lists and present
a randomized lower bound and an almost matching deterministic upper bound.
Section 3 deals with the tagged case. Section 4 offers some concluding remarks.

2 M a r k i n g U n t a g g e d L i s t s

In this section we determine the complexity of the untagged variant of the list
marking problem. In Subsection 2.1, we prove that any randomized Las Vegas
algorithm for the problem requires 1-2 (min{~, n /p)) t ime with high probabil-
ity. In Subsection 2.2, we give a deterministic algorithm whose running time is
within an additive logarithmic term of the lower bound, thereby proving that
randomization can not be conveniently exploited in this case.

2.1 A R a n d o m i z e d L o w e r B o u n d

The intuition behind the lower bound is that a list element becomes distinguish-
able from a non-list element only when every element along the directed path
from the head of the list to that element has been marked. Therefore random

234

probes of the memory cells will not speed-up the computat ion in any significant
way. This argument is formalized in the following theorem.

T h e o r e m 1. Suppose that with probability 1 - o(1) a randomized parallel algo-
rithm on a (p, n) - P R A M marks every element of a list of length ~ within t t ime
steps. Then t = / 2 (min{l, n/p)) .

Proof. Observe that a randomized algorithm can be seen as one chosen uniformly
at random from a set 7) of deterministic algorithms (each deterministic algorithm
being characterized by the outcome of a sequence of random choices). In order to
prove our lower bound for the untagged case, we construct a set of inputs with
the property that every algorithm in 7) fails to mark the list in less than the
time prescribed by the lower bound for a constant fraction of the inputs. From
this, it immediately follows that, for some input in the set, a constant fraction
among all the deterministic algorithms fail to mark the list in the prescribed
time. Therefore, the failure probability of a randomly chosen algorithm, on that
particular input, is bounded below by a positive constant.

We will assume that ~ is fixed and will restrict our attention to the following
set of inputs. The contents of the memory are organized as a circular list of
length n. The target list of length t is stored as a contiguous sublist, and the
address of the head and tail of the target list is given as input to the algorithm.
There are n! different inputs, corresponding to the (n - 1)! different circular
lists of length n and the choice for the address of the head of the target list.
This formulation of the problem is essentially equivalent to that presented in
the introduction, but more convenient in the current context.

Without loss of generality, suppose that t < ~ . At any time step, the al-
gorithm probes a set of at most p memory cells. At step i < t, we can think
of the nodes on the circular list to be grouped into sublists. A sublist consists
of a maximal set of adjacent probed nodes terminated by an unprobed node.
According to this definition, we initially have n sublists, each consisting of a
single distinct unprobed node. When a node v is probed, its pointer to the next
element v I in the list becomes known, and their corresponding sublists merge.
We will refer to the sublist containing the head of the target list as the principal
sublist. This sublist will contain a prefix of the target list that grows in length
as the algorithm executes. Notice that each step of the algorithm causes up to p
merges and hence at least n - pi sublists remain after i steps.

At the beginning of the i th step, suppose that the nodes are parti t ioned
into a total of ki sublists of various lengths (including the principal sublist),

i denote the number of nonprincipal sublists of length j . Note that and let nj

n j ki 1. For convenience, we assume that each step consists of a first C j = I n i ---- - -
substep during which p - 1 arbitrary cells are probed, followed by a second
substep when the tail of the principal sublist is probed, which has the effect of
grafting a single sublist onto the end of the principal sublist. Clearly, conforming
to this discipline will not alter the running t ime of an algorithm by more than
a constant factor. The merges provoked by the p - 1 probes of the first substep
yield ki+l nonprincipal sublists. With the possible exception of the single sublist

235

that will be grafted onto the principal sublist during the second substep, there
are at most n~ +1 sublists of length j . One of these sublists is grafted onto the
principal sublist during this step, and because all input lists are equally likely,
each of these sublists is equally likely to be chosen. Thus, the expected value of
~i, the increase in the length of the principal sublist during step i, is bounded
as follows

fij n} +1 n 2n
E[Ji] < - - + < <: 4

j=l ki+l ~ - n - p i - '

since ki+l >_ n - p i > n/2: (Note the sum accounts for all but one of the nonprin-
cipal sublists; the term n/ki+l accounts for the contribution of the remaining
one.)

Therefore, only constant progress is made, on average, at each step on the
prefix of the list, and the proof follows.

Note that the above bound is obtained under the optimistic assumption that
a node belonging to the target list is marked as soon as all the other nodes
between the head of the target list and that node are probed, even though the
algorithm, by the time it touches the corresponding memory cells, may not have
sufficient information to determine that these cells actually contain list elements.

2.2 A Determin i s t i c U p p e r B o u n d

We begin by outlining a relatively simple but slightly inefficient deterministic al-
gorithm for the untagged list marking problem. We then provide a fast technique
to transform the input instance into an equivalent, smaller one so that the run-
ning time of the algorithm on the new instance is within the desired bound. The
"shrinking" process is accomplished by deleting nodes and rearranging edges of
the pseudoforest underlying the original input instance.

Consider an untagged list of ~ nodes stored in the memory of a (p, n)-PRAM,
and let h be the (given) distinguished pointer to the head of the list. As we ob-
served in Section 1.2, the nodes to be marked are the ancestors of h in a tree T
whose root is r, the tail of the list. Suppose that we are given the preorder and
postorder number of every node in T. Then, a particular node x is an ancestor
of h if and only if preorder(z) < preorder(h) and postorder(z) > postorder(h).
Although the Euler-tour techniques of Tarjan and Vishkin[8] can be used to
efficiently compute the preorder and postorder numberings in trees, these may
not be applied immediately in the present context. Firstly, the presence of other
components in the pseudoforest may complicate matters, and secondly the tech-
niques rely on an adjacency list representation for trees.

We circumvent the first difficulty as follows. Using a straightforward pointer-
jumping technique, each node in T can identify the root r in O(log n) time per
node or O((n/p) log n) time overall. Nodes not in T executing the same algorithm
will "converge" on some node other than r and will hence be clearly identifiable
as not belonging to T. All such nodes will remain dormant for the remainder of
the algorithm.

236

Having eliminated all nodes not in T, we may now construct an adjacency
list representation for T. Label the i th cell Ci with the pair < s, i > where s
is the address of its parent in T. By sorting the cells lexicographically using
Colt's algorithm [1], the children of each node occupy adjacent positions, and
so they may be easily linked together in an adjacency list for that node. (These
linking pointers are distinct from the successor pointers for the nodes and are
stored in the scratch storage associated with the nodes in question.) The cells
are then resorted with respect to their original addresses in order to reconstruct
the original structure of T and to attach adjacency lists to the appropriate
tree nodes. The implementation details are straightforward. The sorting steps
dominate the running time and so the adjacency list representation for T can be
constructed in O((n/p) log n) time.

Given the adjacency list representation for T, the preorder and postorder
numberings can be computed in O((n/p)logn) time. The identification and
marking of the ancestors of h can be completed within the same time bounds.
Interleaving this O((n/p)log n) algorithm with the obvious 0(s sequential al-
gorithm, we obtain the following result.

P r o p o s i t i o n 2 . An untagged list of length s in the memory of an (p, n) -PRAM
can be marked deterministieally in 0 (min{e, (n/p) log n}) time.

We now proceed to extend Proposition 2 to provide a more work-efficient
algorithm. Our algorithm will consist of a sequence of pruning steps applied
to the pseudoforest G. Each pruning step will be applied to the result of the
previous one and each will reduce the size of the problem (the number of nodes
in the pseudoforest) by a constant factor by deleting some nodes and rearranging
pointers among the active (undeleted) nodes. After a certain number of stages,
the original pseudoforest G will have been reduced to one G ~ of significantly
smaller size. Because of its smaller size, it is faster to identify and mark the
ancestors of h in G ~ than in G using the techniques of Proposition 2. Moreover,
the ancestors of h in G ~ are among the ancestors of h in G and so the marking
of G ~ can be extended to mark all the ancestors of h in G.

The following lemma provides the basis for pruning steps.

L e m m a 3. There is a constant I~ < 1 such that for any pseudoforest H = (V, E)
containing h, there is a subset W C V consisting entirely of leaves and unary
nodes, but not containing h, such that :

(i) IWl > ~lVl- 1;
(ii) No pair of nodes in W are neighbours in H.

Moreover, set W can be computed in 0 (IVI/P + log n~ log log n) time.

Proof. Let H = (V, E) be a pseudoforest. We show that there exists an indepen-
dent subset W of V consisting entirely of leaves and unary nodes that has size
at least lVI- 1.

The nodes eligible for inclusion in W are the nodes in H of indegree at most
one apart from h. This set induces a set of maximal node-disjoint linear chains

237

of eligible nodes. Apply the following operation to each such chain. If the chain
is of length one or two, select the first node; if the chain length has length three
or more select a subset of the nodes such that (i) no two adjacent nodes are
selected, and (ii) the maximum number of consecutive unselected nodes on the
chain is two. The union of the selected nodes for the various chains forms the
desired set W.

The identification of nodes in H of indegree at most one is straightforward
a n d requires only constant work per node. The selection of nodes belonging to
chains of length three or greater is instead accomplished by applying the 2-ruling
algorithm of Cole and Vishkin [2] and selecting the nodes in the ruling. (The
latter algorithm is formulated in terms of circular lists, but this is not an essential
restriction.) This latter step can be completed in O(]Y]/p+log n~ loglog n) time.

Consider a chain of length k. If k < 2 then, clearly at least k/2 of the nodes
on the chain are selected. If k > 3, then each pair of selected nodes is separated
by at most two unselected nodes. Allowing for the possibility that the first two
nodes on a chain might be unselected, we see that the number of selected nodes
is at least [(k - 2)/3] > (1/9)k.

If we let s denote the number of nodes in H of indegree at most one (including
h), it is clear that s > (IV] + 1)/2. However the s - 1 eligible nodes are arranged
into chains of length one, two, or greater, and so we are guaranteed that at least
(1/9)(s - 1) _> (1/18)IV I - 1 nodes are selected.

Notice that it is easy to delete a node w in W from H by redirecting the edge
incident on w (if any) to point to w's parent. (Recall that w has at most one
child.) By the above lemma, the graph H ' thus obtained contains significantly
fewer nodes than H (at most (1 - /~)]Y] + 1). It is also easy to verify that for
every pair of nodes x and y in H ' , z is an ancestor of y in H ~ if and only if z is
an ancestor of y in H. Thus, while smaller in size, the graph H ' retains some of
the ancestor-descendent information of the original graph H.

Before we describe the implementation of the pruning step in greater detail,
we must introduce some auxiliary data structures employed by the algorithm,
the role of which will become clear in due course.

Each processor maintains a private stack that is empty before the first prun-
ing. When a processor deletes a node during a pruning step, it pushes that node
onto its stack. This facilitates the reconstruction of the graph at a later stage in
the algorithm. Each processor also has a private list called its work list. Collec-
tively the p work lists hold all the active nodes in the graph. Between pruning
steps, nodes are redistributed among work lists to ensure that each processor's
work list contains an equal number of items. A processor is responsible for per-
forming whatever operations are required for the nodes on its work list during
a pruning step.

It should be emphasized that the only space overhead for these stacks and
work lists is O(1) per processor for a header pointer: the objects in these struc-
tures are nodes linked by pointers. These linking pointers are distinct from the
successor pointers of the nodes in question and are represented within the scratch
space of the nodes.

238

The pruning step applied to H = (V, E) may be described as follows.

1. Identify the set W.
2. Perform the following step for each active node z in W: mark z deleted, label

the node with the current time and the name of its lone child, and push the
node onto the local stack. For each active node c whose parent z is in W do
the following: redirect c's successor pointer to point to z 's parent, or to nil
if x has no parent. (Each processor is responsible for the nodes on its own
work list.)

3. Update the work lists.

From Lemma 3 it follows that Step I is completed in O([Y[/p+log n~ log log n)
time. Assuming for the moment that every processor list holds O(IVI/P) items
at the start of the pruning step, it is easy to see that Step 2 requires O([V]/p)
time. To update the work lists in Step 3, each processor scans through its own
list removing the deleted nodes and counting the active nodes. Let a denote the
total number of active nodes. Using a straightforward combination of parallel
prefix [3] and routine pointer manipulations, it is possible to redistribute the
active nodes among the work lists so that each processor's list receives at most
[a/p] in O(a/p + l ogn / l og log n) time. Thus, each stage can be completed in
O([Y[/p + log n~ log log n) time.

The following recurrence provides an upper bound governing the number of
active nodes remaining active after the i th pruning step:

= ~ (1 - / ~) a i _ l + l , f o r i > O ,
ai

l n, for i = 0 .

. v--,i-i "l Thus, ai _~ (l - #)in + 2~j=0t -/~)J, which is bounded above by ~-In/log n for
i > [loglogn/ log(1 - #) -1] . Selecting k to be this latter quantity, we see that
the number of active nodes can be reduced to at most #-ln/logn in

O (~ (1 - ~) i n + # - l + k l o g n / l o g l o g n) =O(n/p+logn)
\ i = 0 P

time.
In conclusion, the overall algorithm is as follows.

1. Apply k stages to G to produce G' of size at most p-ln/logn.
2. Apply the algorithm of Proposition 2 to mark all nodes in G' that are an-

cestors of h.
3. Reincorporate the nodes deleted during Step 1 in the reverse order to which

they were deleted. In other words, first undo the deletions of the k t~' pruning,
then those of the (k - 1) st pruning, and so on. For each reinserted node, mark
it if its child is marked.

We have already noted that Step 1 runs in O (nip + log n) time, and since
Step 3 is similar, it too has the same time bound. By Proposition 2, Step 2
requires O(((l~-ln/log n)/p) log n) = O(n/p + log n) time.

239

By using the facts that an ancestor of a node z in G ~ is also an ancestor of z
in G, and that only leaves and unary nodes are deleted, it is not difficult to see
that all of the nodes marked by this algorithm are ancestors of h in G. On the
other hand, suppose that some node along the directed path from h to r is not
marked by the algorithm, and let x be the first such node. This node must have
been deleted during one of the pruning operations in Step 1, otherwise it would
have been marked during Step 2. Suppose that c was the lone child of z at the
t ime that z was deleted. By assumption, the node c is marked by the algorithm,
and so when z is reinserted during Step 3, it too would be marked.

The main result of this section is summarized in the following theorem:

T h e o r e m 4 . An untagged list of length ~ stored in the memory of a (p, n) -PRAM
may be marked deterministically in 0 (min{~, n / p + log n}) time.

3 Marking Tagged Lists

Recall that in a tagged list each node carries a special symbol in its tag field
so that it can be distinguished from non-list elements by inspection. Although
deterministic list-marking algorithms cannot exploit this property to improve
upon the worst-case performance of Theorem 4 [7], we sketch a simple but opti-
mal randomized strategy which takes advantage of these tags.

The randomized algorithm is quite simple and proceeds in two stages. In the
first stage, each processor randomly accesses q memory locations and retains
the addresses of those locations that contain list elements. Successful probes
parti t ion the original list into chains of nodes whose heads are marked and
randomly distributed among the processors. Our intuition is that the qp random
probes in the first stage will select list elements so that g, the length of longest
chain, is sufficiently small. Once the list has been "chopped" this way, in second
stage we invoke a standard randomized search algorithm [6] that marks all the
list nodes while balancing the load among the processors in time O(e/p + g),
with high probability. Note that this idea is not new: Greene and Knuth [4] have
analyzed it in the context of graph traversal, and Ulhnan and Yannakakis [9]
have used it for searching graphs.

By interleaving the above strategy with the straightforward O(t) sequential
algorithm we can see that the list can be marked in O(min{t, ~/p + q + g}) time,
with high probability. The following lemma illustrates the tradeoff between the
parameters q and g, the two quantities that determine the running time of the
algorithm.

P r o p o s i t i o n 5 . Suppose that a tagged list of length ~ is stored in the memory of
a (p, n)-PRAM, into which t probes are made at random. Let random variable X
denote the length of a longest contiguous subsequence of unprobed list elements.
Then P r (X > g) < s -t9/".

Proof. The probability that no probes are made within a fixed subsequence of
length g _< ~ equals (1 - g/n) t < e -tg/~, and there are at most t - g + 1 such
subsequences.

240

With p processors making a total of pq probes, we have P r (X > g) <
s -pag/'~. Setting q = g = x/k(n/p)logn where k is an arbi t rary positive in-
teger, we can see that

P r (X > ~/k(n/p)logn) < s -k < n - (k - l)

f
Thus our algorithm runs in O(min~ t , t / p+ v/(n/p) logn[) time, with high

probability.
Next, we establish a lower bound that is within a constant factor of this

upper bound.

T h e o r e m 6. For any randomized list marking algorithm, if the probability that
it terminates in time t is at least 1 - n -k, k > O, then

t = Y2(g/p+ min{g, v/k(n/p) logn}) ,

where ~ is the length of the input list stored in a memory of size n.

Proof. First note that i /p is a trivial work-based lower bound for the problem.
Next, assume that in i steps the first i list elements are marked, for all 1 < i < L
This assumption does not weaken the argument for the lower bound.

Let Wj be the event tha t each of the first j + 1 list elements is marked
within the first j steps. Also, let Ct be the event that every list element has been
marked within t or fewer steps. Assuming for the moment tha t t < ~, we can see
Ct C_ Wt, which means that Pr(Ct) <_ Pr(Wt) and, therefore Pr(Ct) > Pr(Wt).

Now, the probabil i ty tha t the (i + 1)st list element was touched by a random
probe within the first i steps does not exceed pi/n. Hence, gr(WilWi_l) <_ pi/n,
and consequently, Pr(W-~iIW----~._l) _> 1 -p i / n . Combining this with the observation
that Pr(Wl) = 1 - n ~, we can see that

t

Pr(Wt) >_ H (1 - p i / n)
i = 1

_> (1 - pt/n) t

= e O (- P t 2 / n) ,

for t > 1.
Thus, if Pr(~tt) < n -k , it must be the case that n -k = ea(-pt2/n), hence

t = log n) ,

and the theorem follows.

241

4 Conclusions

The results of this paper are summarized in the following table.

Deterministic and O (min {g, nip + log n})
Rand. Untagged /2 (min {g, n/p})

Rand. Tagged O(min{g ,g /p+@(n/p) lo 'gn})

The table shows that in all cases, speed-ups over sequential performance can
be obtained only for a number of processors larger than a certain threshold
p0. Namely, p0 = O(n/s and log n = o(g) in the deterministic untagged case,
and P0 = O(nlogn/g 2) for the randomized tagged case. Moreover, in the un-
tagged case, the deterministic upper bound and the randomized lower bound
match except for p = /2 (n / log n), therefore randomization can not be exploited
in any significant way. In the case of tagged lists, however, for g in the range
~/(n/p) logn < g < n / p + logn the speedup attainable by exploiting random-
ization can be considerable.

Finally, preliminary investigations indicate that aspects of the above be-
haviour remain when extending the algorithms for marking to other basic oper-
ations and/or to broader classes of linked structures.

Acknowledgments

This research was supported, in part, by the Istituto Trentino di Cultura through
the Leonardo Fibonacci Institute, in Trento, Italy. Further research support for
G. Bilardi and G. Pucci by MURST and CNR of Italy, and by the ESPRIT III
Basic Research Programme of the EC under contract No. 9072 (project GEP-
PCOM); for K.T. Herley by the ESPRIT III Basic Research Programme of the
EC under contract No. 9072 (project GEPPCOM).

The authors wish to thank the referees for their thoughtful reading of the pa-
per and their many suggestions, which resulted in improvements of the manuscript.

References

1. R. Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770-785, 1988.
2. R. Cole and U. Vishkin. Deterministic coin tossing with appfications to optimal

parallel fist ranking. Information and Control, 70:32-53, 1986.
3. R. Cole and U. Vishkin. Faster optimal prefix sums and fist ranking. Information

and Computation, 81(3):344-352, 1989.
4. D. H. Greene and D. E. Knuth. Mathematics for the Analysis of Algorithms.

Birkauser, Boston MA, 1982.
5. J. JaJa. An Introduction to Parallel Algorithms. Addison-Wesley, Reading MA,

1992.
6. R. M. Karp and Y. Zhang. A randomized parallel branch and bound procedure. In

Proceedings of the 20 th Annual A CM Symposium on Theory of Computing, pages
290-300, May 1988.

242

7. F. Luccio and L. Pagli. A model of sequential computation with pipelined access to
memory. Mathematical Systems Theory, 26:343-356, 1993.

8. R. E. Tarjan and U. Vishkin. Finding biconnected components and computing tree
functions in logarithmic time. SIAM Journal on Computing, 14(4):862-874, 1985.

9. J. D. UUman and M. Yannakakis. High-probability parallel transitive closure algo-
rithms. In Proceedings o] the 2 na Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 200-209, July 1990.

