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A b s t r a c t .  The list marking problem involves marking the nodes of an 
~-node linked list stored in the memory of a (/9, n)-PRAM, when only the 
location of the head of the list is initially known. Under the assumption 
that memory cells containing list nodes bear no distinctive tags distin- 
guishing them from other cells, we establish an 12 (min{~, n/p}) random- 
ized lower bound for e-node lists and present a deterministic algorithm 
whose running time is within a logarithmic additive term of this bound. 
In the case where list cells are tagged in a way that differentiates them 

from other cells, we es tab l i sh  a t i g h t  O(min~i,,Ip+x/(nlp)logn~) 
bound for randomized algorithms. 

1 I n t r o d u c t i o n  

Linked structures are widely used in non numerical as well as sparse numerical 
computat ions.  Therefore, it is impor tant  to ascertain whether parallelism can be 
exploited to process such structures effectively. 

In this paper,  we focus on lists, possibly the simplest type of linked structures, 
and on a very basic operation, which we call marking, consisting of writing a 
given value in each node of a given list. The essence of marking is that  each 
node in the list has to be affected and no other. This feature is common to 
several basic list operations such as searching an element or ranking all nodes 
(determining their distance from the head). Marking itself is used in impor tan t  
practical applications, such as garbage collection, for identifying active structures 
in a large memory  heap. 

The complexity of parallel list operations crucially depends on the list rep- 
resentation, and is often affected by features that  are irrelevant to sequential 
complexity. When managing lists in parallel, a favourable case arises if the the 
growth process affords keeping all list nodes in a compact  region of memory.  
Specifically, the list could be represented as an array of ~ records, each record 
corresponding to a list node, with a field storing the array index of its successor. 
Indeed, most  list-based parallel algorithms in the literature (e.g., searching and 
ranking [2]) do assume such compact  representation. 

In other scenarios, unfortunately, list nodes become natural ly scattered through- 
out a port ion of memory  whose size is much larger than the length of the list. 
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This case arises when a sequence of concatenations and splittings is performed 
on a set of lists. 

We also distinguish between tagged and untagged lists, a tagged list being 
one where each node contains a tag that uniquely identifies the list. Tags can 
be maintained with small overhead if lists are modified only by insertion and 
deletion of nodes. However, the overhead is not negligible if other operations, 
such as concatenation and splitting, are allowed. 

We investigate the extent to which parallelism, randomization, and tagging 
can be profitably exploited to improve upon sequential performance when lists 
are scattered throughout the memory. Specifically, we develop deterministic and 
randomized upper and lower bounds for marking a (tagged or untagged) list of 
nodes stored in the memory of a p-processor PRAM with n memory cells, when 
only the location of the head of the list is initially known. 

1.1 R e l a t e d  W o r k  a n d  N e w  R e s u l t s  

A restricted version of the list marking problem was introduced and analyzed 
by Luccio and Pagli in [7]. Under the assumption that list elements are dis- 
tinguishable from non-list elements by inspection, the authors prove a deter- 
ministic J'2 (min{i, n/p}) lower bound and provide a tight upper bound when 
p = O(s and n = O(~logs In this paper we improve and generalize 
these results in the following directions: 

1. In the case where list elements are indistinguishable from non-list elements, 
we prove that  an f2 (min{s n/p)) lower bound also holds for randomized 
algorithms. Moreover, we give a deterministic algorithm optimal to within a 
logarithmic additive term, therefore showing that  randomization can not be 
exploited in any significant way in this setting. 

2. In the case where list elements are tagged in a way that  makes them recog- 

nizable by inspection, we establish a tight 19 (min {s v/(n/p)logn}) 
bound for randomized algorithms, showing that ,  for a wide range of list 
lengths, considerable speedups can be attained by means of randomization. 

1.2 P r e l i m i n a r i e s  

We will assume that  each memory cell has the same format  and contains a 
memory address which will be interpreted as a pointer (called the successor 
pointer) to another cell, a tag field, capable of holding a distinctive symbol, a 
data field, and a small constant amount of additional space, called scratch space. 
The head of the list, denoted by h, occupies cell 0 and its data  field contains 
some arbitrary symbol which we will refer to as the signature of the list. Finally, 
each node points to the next node in the list, and the pointer field of the last 
node r contains the address of cell 0, which we will interpret as a nil pointer. 

We identify two variants of the problem. The list is untagged if list nodes 
bear no distinctive mark or symbol that  renders them instantly identifiable as 
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such. The list is tagged if each list node bears a distinctive symbol in its tag 
field which no non-list node bears, thus allowing list nodes to be identified by 
inspection. In both cases, the goal of the list marking problem is to copy the 
signature into the data  field of every node in the list; the data fields of all other 
nodes should remain unchanged. A node is said to be marked once its data  field 
bears the appropriate signature. 

Since each memory cell contains a successor pointer, the entire memory can 
be interpreted as a directed graph G of n nodes. Each node must have outdegree 
zero or one, but  a node (including list nodes) may have indegree zero (leaves), 
one (unary nodes), or higher. Such a graph is known as a pseudoforest. (Such 
structures feature in some connected component algorithms, for example [5].) 
Within the pseudoforest, the chain of list nodes forms a directed path in a 
structure T that  we may interpret as a tree, the edges of which are oriented from 
child to parent. The node h is a leaf of T and the list nodes are the ancestors 
of h in T located along the directed path from h to r, the root of T. In fact, 
G consists of T plus a collection of node-disjoint components each of which is 
either a tree or one or more trees joined by a cycle connecting their roots. In 
this setting, the objective is to mark all those nodes in G that  are ancestors of 
h i n T .  

The algorithms presented here all assume the ARBITRARY CRCW variant 
of the PRAM model of shared-memory computation [5]. Thus concurrent reads 
and writes are permitted. Whenever a number of processors a t tempt  to write 
simultaneously to a cell, one of them, chosen arbitrarily, succeeds, while the 
others fail. For convenience, we will refer to a PRAM with p-processors and 
n-cells of memory as a (p, n)-PRAM and will assume throughout that  p < n. 
We will also assume that  each processor has a private area of O(1) storage for 
workspace. 

In Section 2 we investigate the problem of marking untagged lists and present 
a randomized lower bound and an almost matching deterministic upper bound. 
Section 3 deals with the tagged case. Section 4 offers some concluding remarks. 

2 M a r k i n g  U n t a g g e d  L i s t s  

In this section we determine the complexity of the untagged variant of the list 
marking problem. In Subsection 2.1, we prove that  any randomized Las Vegas 
algorithm for the problem requires 1-2 (min{~, n /p ) )  t ime with high probabil- 
ity. In Subsection 2.2, we give a deterministic algorithm whose running time is 
within an additive logarithmic term of the lower bound, thereby proving that  
randomization can not be conveniently exploited in this case. 

2.1 A R a n d o m i z e d  L o w e r  B o u n d  

The intuition behind the lower bound is that  a list element becomes distinguish- 
able from a non-list element only when every element along the directed path 
from the head of the list to that  element has been marked. Therefore random 
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probes of the memory cells will not speed-up the computat ion in any significant 
way. This argument is formalized in the following theorem. 

T h e o r e m  1. Suppose that with probability 1 - o(1) a randomized parallel algo- 
rithm on a (p, n ) - P R A M  marks every element of a list of  length ~ within t t ime 
steps. Then t = / 2  (min{l, n/p) ) .  

Proof. Observe that a randomized algorithm can be seen as one chosen uniformly 
at random from a set 7) of deterministic algorithms (each deterministic algorithm 
being characterized by the outcome of a sequence of random choices). In order to 
prove our lower bound for the untagged case, we construct a set of inputs with 
the property that  every algorithm in 7) fails to mark the list in less than the 
time prescribed by the lower bound for a constant fraction of the inputs. From 
this, it immediately follows that,  for some input in the set, a constant fraction 
among all the deterministic algorithms fail to mark the list in the prescribed 
time. Therefore, the failure probability of a randomly chosen algorithm, on that  
particular input, is bounded below by a positive constant. 

We will assume that  ~ is fixed and will restrict our attention to the following 
set of inputs. The contents of the memory are organized as a circular list of 
length n. The target list of length t is stored as a contiguous sublist, and the 
address of the head and tail of the target list is given as input to the algorithm. 
There are n! different inputs, corresponding to the ( n -  1)! different circular 
lists of length n and the choice for the address of the head of the target list. 
This formulation of the problem is essentially equivalent to that  presented in 
the introduction, but more convenient in the current context. 

Without loss of generality, suppose that  t < ~ .  At any time step, the al- 
gorithm probes a set of at most p memory cells. At step i < t, we can think 
of the nodes on the circular list to be grouped into sublists. A sublist consists 
of a maximal set of adjacent probed nodes terminated by an unprobed node. 
According to this definition, we initially have n sublists, each consisting of a 
single distinct unprobed node. When a node v is probed, its pointer to the next 
element v I in the list becomes known, and their corresponding sublists merge. 
We will refer to the sublist containing the head of the target list as the principal 
sublist. This sublist will contain a prefix of the target list that  grows in length 
as the algorithm executes. Notice that  each step of the algorithm causes up to p 
merges and hence at least n - pi sublists remain after i steps. 

At the beginning of the i th step, suppose that  the nodes are parti t ioned 
into a total of ki sublists of various lengths (including the principal sublist), 

i denote the number of nonprincipal sublists of length j .  Note that  and let nj 

n j ki 1. For convenience, we assume that  each step consists of a first C j = I  n i  ---- - -  
substep during which p -  1 arbitrary cells are probed, followed by a second 
substep when the tail of the principal sublist is probed, which has the effect of 
grafting a single sublist onto the end of the principal sublist. Clearly, conforming 
to this discipline will not alter the running t ime of an algorithm by more than 
a constant factor. The merges provoked by the p - 1 probes of the first substep 
yield ki+l nonprincipal sublists. With the possible exception of the single sublist 
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that  will be grafted onto the principal sublist during the second substep, there 
are at most n~ +1 sublists of length j .  One of these sublists is grafted onto the 
principal sublist during this step, and because all input lists are equally likely, 
each of these sublists is equally likely to be chosen. Thus, the expected value of 
~i, the increase in the length of the principal sublist during step i, is bounded 
as follows 

fij n} +1 n 2n 
E[Ji] < - -  + < <: 4 

j=l ki+l ~ -  n - p i -  ' 

since ki+l >_ n - p i  > n/2: (Note the sum accounts for all but one of the nonprin- 
cipal sublists; the term n/ki+l accounts for the contribution of the remaining 
one.) 

Therefore, only constant progress is made, on average, at each step on the 
prefix of the list, and the proof follows. 

Note that  the above bound is obtained under the optimistic assumption that  
a node belonging to the target list is marked as soon as all the other nodes 
between the head of the target list and that  node are probed, even though the 
algorithm, by the time it touches the corresponding memory cells, may not have 
sufficient information to determine that  these cells actually contain list elements. 

2.2 A Determin i s t i c  U p p e r  B o u n d  

We begin by outlining a relatively simple but slightly inefficient deterministic al- 
gorithm for the untagged list marking problem. We then provide a fast technique 
to transform the input instance into an equivalent, smaller one so that  the run- 
ning time of the algorithm on the new instance is within the desired bound. The 
"shrinking" process is accomplished by deleting nodes and rearranging edges of 
the pseudoforest underlying the original input instance. 

Consider an untagged list of ~ nodes stored in the memory of a (p, n)-PRAM, 
and let h be the (given) distinguished pointer to the head of the list. As we ob- 
served in Section 1.2, the nodes to be marked are the ancestors of h in a tree T 
whose root is r, the tail of the list. Suppose that  we are given the preorder and 
postorder number of every node in T. Then, a particular node x is an ancestor 
of h if and only if preorder(z) < preorder(h) and postorder(z) > postorder(h). 
Although the Euler-tour techniques of Tarjan and Vishkin[8] can be used to 
efficiently compute the preorder and postorder numberings in trees, these may 
not be applied immediately in the present context. Firstly, the presence of other 
components in the pseudoforest may complicate matters, and secondly the tech- 
niques rely on an adjacency list representation for trees. 

We circumvent the first difficulty as follows. Using a straightforward pointer- 
jumping technique, each node in T can identify the root r in O(log n) time per 
node or O((n/p) log n) time overall. Nodes not in T executing the same algorithm 
will "converge" on some node other than r and will hence be clearly identifiable 
as not belonging to T. All such nodes will remain dormant for the remainder of 
the algorithm. 
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Having eliminated all nodes not in T, we may now construct an adjacency 
list representation for T. Label the i th cell Ci with the pair < s, i > where s 
is the address of its parent in T. By sorting the cells lexicographically using 
Colt's algorithm [1], the children of each node occupy adjacent positions, and 
so they may be easily linked together in an adjacency list for that  node. (These 
linking pointers are distinct from the successor pointers for the nodes and are 
stored in the scratch storage associated with the nodes in question.) The cells 
are then resorted with respect to their original addresses in order to reconstruct 
the original structure of T and to attach adjacency lists to the appropriate 
tree nodes. The implementation details are straightforward. The sorting steps 
dominate the running time and so the adjacency list representation for T can be 
constructed in O((n/p) log n) time. 

Given the adjacency list representation for T, the preorder and postorder 
numberings can be computed in O((n/p)logn)  time. The identification and 
marking of the ancestors of h can be completed within the same time bounds. 
Interleaving this O((n/p)log n) algorithm with the obvious 0(s sequential al- 
gorithm, we obtain the following result. 

P r o p o s i t i o n 2 .  An untagged list of length s in the memory of an (p, n ) -PRAM 
can be marked deterministieally in 0 (min{e, (n/p) log n} ) time. 

We now proceed to extend Proposition 2 to provide a more work-efficient 
algorithm. Our algorithm will consist of a sequence of pruning steps applied 
to the pseudoforest G. Each pruning step will be applied to the result of the 
previous one and each will reduce the size of the problem (the number of nodes 
in the pseudoforest) by a constant factor by deleting some nodes and rearranging 
pointers among the active (undeleted) nodes. After a certain number of stages, 
the original pseudoforest G will have been reduced to one G ~ of significantly 
smaller size. Because of its smaller size, it is faster to identify and mark the 
ancestors of h in G ~ than in G using the techniques of Proposition 2. Moreover, 
the ancestors of h in G ~ are among the ancestors of h in G and so the marking 
of G ~ can be extended to mark all the ancestors of h in G. 

The following lemma provides the basis for pruning steps. 

L e m m a  3. There is a constant I~ < 1 such that for any pseudoforest H = (V, E) 
containing h, there is a subset W C V consisting entirely of leaves and unary 
nodes, but not containing h, such that : 

(i) IWl > ~lVl-  1; 
(ii) No pair of nodes in W are neighbours in H. 

Moreover, set W can be computed in 0 (IVI/P + log n~ log log n) time. 

Proof. Let H = (V, E) be a pseudoforest. We show that  there exists an indepen- 
dent subset W of V consisting entirely of leaves and unary nodes that  has size 
at least  lVI- 1. 

The nodes eligible for inclusion in W are the nodes in H of indegree at most 
one apart from h. This set induces a set of maximal node-disjoint linear chains 
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of eligible nodes. Apply the following operation to each such chain. If the chain 
is of length one or two, select the first node; if the chain length has length three 
or more select a subset of the nodes such that  (i) no two adjacent nodes are 
selected, and (ii) the maximum number of consecutive unselected nodes on the 
chain is two. The union of the selected nodes for the various chains forms the 
desired set W. 

The identification of nodes in H of indegree at most one is straightforward 
a n d  requires only constant work per node. The selection of nodes belonging to 
chains of length three or greater is instead accomplished by applying the 2-ruling 
algorithm of Cole and Vishkin [2] and selecting the nodes in the ruling. (The 
latter algorithm is formulated in terms of circular lists, but  this is not an essential 
restriction.) This latter step can be completed in O(]Y]/p+log n~ loglog n) time. 

Consider a chain of length k. If k < 2 then, clearly at least k/2 of the nodes 
on the chain are selected. If k > 3, then each pair of selected nodes is separated 
by at most two unselected nodes. Allowing for the possibility that  the first two 
nodes on a chain might be unselected, we see that  the number of selected nodes 
is at least [(k - 2)/3] > (1/9)k. 

If we let s denote the number of nodes in H of indegree at most one (including 
h), it is clear that  s > (IV] + 1)/2. However the s - 1 eligible nodes are arranged 
into chains of length one, two, or greater, and so we are guaranteed that  at least 
(1/9)(s - 1) _> (1/18)IV I - 1 nodes are selected. 

Notice that  it is easy to delete a node w in W from H by redirecting the edge 
incident on w (if any) to point to w's parent. (Recall that  w has at most one 
child.) By the above lemma, the graph H '  thus obtained contains significantly 
fewer nodes than H (at most (1 - /~)]Y] + 1). It is also easy to verify that  for 
every pair of nodes x and y in H ' ,  z is an ancestor of y in H ~ if and only if z is 
an ancestor of y in H.  Thus, while smaller in size, the graph H '  retains some of 
the ancestor-descendent information of the original graph H.  

Before we describe the implementation of the pruning step in greater detail, 
we must introduce some auxiliary data  structures employed by the algorithm, 
the role of which will become clear in due course. 

Each processor maintains a private stack that  is empty before the first prun- 
ing. When a processor deletes a node during a pruning step, it pushes that  node 
onto its stack. This facilitates the reconstruction of the graph at a later stage in 
the algorithm. Each processor also has a private list called its work list. Collec- 
tively the p work lists hold all the active nodes in the graph. Between pruning 
steps, nodes are redistributed among work lists to ensure that  each processor's 
work list contains an equal number of items. A processor is responsible for per- 
forming whatever operations are required for the nodes on its work list during 
a pruning step. 

It should be emphasized that  the only space overhead for these stacks and 
work lists is O(1) per processor for a header pointer: the objects in these struc- 
tures are nodes linked by pointers. These linking pointers are distinct from the 
successor pointers of the nodes in question and are represented within the scratch 
space of the nodes. 
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The pruning step applied to H = (V, E)  may be described as follows. 

1. Identify the set W. 
2. Perform the following step for each active node z in W: mark z deleted, label 

the node with the current time and the name of its lone child, and push the 
node onto the local stack. For each active node c whose parent z is in W do 
the following: redirect c's successor pointer to point to z 's parent, or to nil 
if x has no parent. (Each processor is responsible for the nodes on its own 
work list.) 

3. Update the work lists. 

From Lemma 3 it follows that Step I is completed in O([Y[/p+log n~ log log n) 
time. Assuming for the moment that  every processor list holds O(IVI/P) items 
at the start of the pruning step, it is easy to see that  Step 2 requires O([V]/p) 
time. To update the work lists in Step 3, each processor scans through its own 
list removing the deleted nodes and counting the active nodes. Let a denote the 
total number of active nodes. Using a straightforward combination of parallel 
prefix [3] and routine pointer manipulations, it is possible to redistribute the 
active nodes among the work lists so that  each processor's list receives at most 
[a/p] in O(a/p + l ogn / l og  log n) time. Thus, each stage can be completed in 
O([Y[/p + log n~ log log n) time. 

The following recurrence provides an upper bound governing the number of 
active nodes remaining active after the i th pruning step: 

= ~ ( 1 - / ~ ) a i _ l + l ,  f o r i > O  , 
ai 

l n, for i = 0 . 

. v--,i-i "l Thus, ai _~ (l - #)in + 2~j=0t -/~)J, which is bounded above by ~-In/log n for 
i > [ loglogn/ log(1 - # ) -1] .  Selecting k to be this latter quantity, we see that  
the number of active nodes can be reduced to at most #-ln/logn in 

O ( ~ ( 1 - ~ ) i n + # - l + k l o g n / l o g l o g n )  =O(n/p+logn) 
\ i = 0  P 

time. 
In conclusion, the overall algorithm is as follows. 

1. Apply k stages to G to produce G' of size at most p-ln/logn. 
2. Apply the algorithm of Proposition 2 to mark all nodes in G' that  are an- 

cestors of h. 
3. Reincorporate the nodes deleted during Step 1 in the reverse order to which 

they were deleted. In other words, first undo the deletions of the k t~' pruning, 
then those of the ( k - 1 )  st pruning, and so on. For each reinserted node, mark 
it if its child is marked. 

We have already noted that  Step 1 runs in O (nip + log n) time, and since 
Step 3 is similar, it too has the same time bound. By Proposition 2, Step 2 
requires O(((l~-ln/log n)/p) log n) = O(n/p + log n) time. 
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By using the facts that  an ancestor of a node z in G ~ is also an ancestor of z 
in G, and that  only leaves and unary nodes are deleted, it is not difficult to see 
that  all of the nodes marked by this algorithm are ancestors of h in G. On the 
other hand, suppose that  some node along the directed path from h to r is not 
marked by the algorithm, and let x be the first such node. This node must have 
been deleted during one of the pruning operations in Step 1, otherwise it would 
have been marked during Step 2. Suppose that  c was the lone child of z at the 
t ime that  z was deleted. By assumption, the node c is marked by the algorithm, 
and so when z is reinserted during Step 3, it too would be marked. 

The main result of this section is summarized in the following theorem: 

T h e o r e m 4 .  An untagged list of length ~ stored in the memory of a (p, n ) -PRAM 
may be marked deterministically in 0 (min{~, n / p +  log n}) time. 

3 Marking Tagged Lists 

Recall that  in a tagged list each node carries a special symbol in its tag field 
so that  it can be distinguished from non-list elements by inspection. Although 
deterministic list-marking algorithms cannot exploit this property to improve 
upon the worst-case performance of Theorem 4 [7], we sketch a simple but opti- 
mal randomized strategy which takes advantage of these tags. 

The randomized algorithm is quite simple and proceeds in two stages. In the 
first stage, each processor randomly accesses q memory locations and retains 
the addresses of those locations that  contain list elements. Successful probes 
parti t ion the original list into chains of nodes whose heads are marked and 
randomly distributed among the processors. Our intuition is that  the qp random 
probes in the first stage will select list elements so that  g, the length of longest 
chain, is sufficiently small. Once the list has been "chopped" this way, in second 
stage we invoke a standard randomized search algorithm [6] that  marks all the 
list nodes while balancing the load among the processors in time O(e/p + g), 
with high probability. Note that  this idea is not new: Greene and Knuth [4] have 
analyzed it in the context of graph traversal, and Ulhnan and Yannakakis [9] 
have used it for searching graphs. 

By interleaving the above strategy with the straightforward O(t) sequential 
algorithm we can see that  the list can be marked in O(min{t,  ~/p + q + g}) time, 
with high probability. The following lemma illustrates the tradeoff between the 
parameters q and g, the two quantities that  determine the running time of the 
algorithm. 

P r o p o s i t i o n 5 .  Suppose that a tagged list of length ~ is stored in the memory of 
a (p, n)-PRAM, into which t probes are made at random. Let random variable X 
denote the length of a longest contiguous subsequence of unprobed list elements. 
Then P r ( X  > g) < s -t9/". 

Proof. The probability that  no probes are made within a fixed subsequence of 
length g _< ~ equals (1 - g/n) t < e -tg/~, and there are at most t - g + 1 such 
subsequences. 
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With p processors making a total  of pq probes, we have P r ( X  > g) < 
s -pag/'~. Setting q = g = x/k(n/p)logn where k is an arbi t rary positive in- 
teger, we can see that  

P r ( X  > ~/k(n/p)logn) < s -k < n - ( k - l )  

f 
Thus our algorithm runs in O(min~ t , t / p+  v/(n/p) logn[)  time, with high 

probability. 
Next, we establish a lower bound that  is within a constant factor of this 

upper bound. 

T h e o r e m  6. For any randomized list marking algorithm, if the probability that 
it terminates in time t is at least 1 - n -k, k > O, then 

t =  Y2(g/p+ min{g,  v/k(n/p) logn})  , 

where ~ is the length of the input list stored in a memory of size n. 

Proof. First note that  i /p  is a trivial work-based lower bound for the problem. 
Next, assume that  in i steps the first i list elements are marked,  for all 1 < i < L 
This assumption does not weaken the argument  for the lower bound. 

Let Wj be the event tha t  each of the first j + 1 list elements is marked 
within the first j steps. Also, let Ct be the event that  every list element has been 
marked within t or fewer steps. Assuming for the moment  tha t  t < ~, we can see 
Ct C_ Wt, which means that  Pr(Ct) <_ Pr(Wt) and, therefore Pr(Ct) > Pr(Wt). 

Now, the probabil i ty tha t  the (i + 1)st list element was touched by a random 
probe within the first i steps does not exceed pi/n. Hence, gr(WilWi_l) <_ pi/n, 
and consequently, Pr(W-~iIW----~._l) _> 1 -p i / n .  Combining this with the observation 
that  Pr(Wl) = 1 - n ~, we can see that  

t 

Pr(Wt) >_ H ( 1  - p i / n )  
i = 1  

_> (1 - pt/n) t 

= e O ( - P t 2 / n ) ,  

for t > 1. 
Thus, if Pr(~tt)  < n -k ,  it must  be the case that  n -k = ea(-pt2/n), hence 

t = log n ) ,  

and the theorem follows. 
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4 Conclusions 

The results of this paper are summarized in the following table. 

Deterministic and O (min {g, nip + log n}) 
Rand. Untagged /2 (min {g, n/p}) 

Rand. Tagged O(min{g ,g /p+@(n/p ) lo 'gn} )  

The table shows that in all cases, speed-ups over sequential performance can 
be obtained only for a number of processors larger than a certain threshold 
p0. Namely, p0 = O(n/s and log n = o(g) in the deterministic untagged case, 
and P0 = O(nlogn/g 2) for the randomized tagged case. Moreover, in the un- 
tagged case, the deterministic upper bound and the randomized lower bound 
match except for p = /2 (n / log  n), therefore randomization can not be exploited 
in any significant way. In the case of tagged lists, however, for g in the range 
~/(n/p) logn < g < n / p +  logn the speedup attainable by exploiting random- 
ization can be considerable. 

Finally, preliminary investigations indicate that aspects of the above be- 
haviour remain when extending the algorithms for marking to other basic oper- 
ations and/or to broader classes of linked structures. 
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