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1. INTRODUCTION 

Throughout this paper all rings are commutative, with identity, and Noethe-
rian, unless otherwise specified. We introduce the notion of the tight closure 
of an ideal in prime characteristic p and for algebras essentially of finite type 
over a field of characteristic O. Later, we extend the theory to submodules of 
modules. As a consequence, we are able to give new proofs, which are remark-
ably simple in characteristic p (often just a few sentences), of several results 
that were not thought to be particularly related, i.e., that rings of invariants of 
linearly reductive groups acting on regular rings are Cohen-Macaulay, that the 
integral closure of the nth power of an n generator ideal of a regular ring is con-
tained in the ideal (the Brian!;on-Skoda theorem), of the monomial conjecture, 
and of the syzygy theorem. 

(Cf. [HRl, B, Ke, and Bor] for the background on invariant theory, [BrS, 
Sk, LS, and LT] for information about the Brian!;on-Skoda theorem, and [Wall 
for the question of J. Mather that initially motivated the work of Brian!;on and 
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32 MELVIN HOCHSTER AND CRAIG HUNEKE 

Skoda. Cf. [PSI, H03, Ho4, H09, RoI, R05, R06, Du2, EvGl, and EvG2] for 
more about the monomial conjecture, the syzygy theorem, and the other local 
homological conjectures.) 

The new proofs yield much more general theorems. For example, we shall 
show in [HH7] that if S is any Noetherian regular ring containing a field and 
R is a direct summand of S as an R-module (we shall sometimes say, briefly, 
that R is a summand of S to describe this situation: we always mean R --- S 
is R-split), then R is Cohen-Macaulay. This result was not previously known 
in this generality. Moreover, this illustrates a general principle. The results 
proved here using tight closure techniques but which do not refer specifically 
to tight closure can be extended to the general equicharacteristic case by l:sing 
Artin approximation to reduce to a situation in which tight closure is defined. 

One of the most important characteristics of tight closure is that in a regular 
ring every ideal is tightly closed. We call the Noetherian rings all of whose 
localizations have this property "F-regular." This is an important class of rings 
that includes the rings of invariants of linearly reductive groups acting on regular 
rings. A key point is that if S is F-regular and R is a direct summand of S 
as an R-module, then R if F-regular. It turns out that, under mild conditions 
(like being a homomorphic image of a Cohen-Macaulay ring or a weakening of 
the requirements for excellence), F-regular rings, which are always normal, are 
Cohen-Macaulay as well. One of our objectives in the sequels to this paper is 
to explore the theory of these rings, including its connection with the theory of 
rational singularities. (The F stands for Frobenius. The reason for this usage 
will become clear once tight closure is defined.) 

Suppose, for simplicity, that R is local. One of the characterizations of the 
Cohen-Macaulay (C-M) property for R is that for elements XI' ... ,xn that 
are part of a system of parameters, (XI' ... ,xn_I)R: RXn = (XI' ... ,xn_I)R. 
(Recall that I: RX = I: X = {r E R : xr E I}, the pullback of the annihilator of 
X in Rj I to R.) A critically important property of tight closure is that, under 
mild conditions on R, (XI' ... ' x n_ l ) : xn ~ (XI' ... , xn_ l )* . Of course, we 
are not assuming that R is C-M. We describe this property briefly by saying 
"the tight closure captures colons." This gives an important form of control 
of the cohomological obstruction to the C-M property. (Note that whenever 
the tight closure captures colons and R is F-regular, R must be C-M.) What 
is more, there is a similar result that is global and applies to a sequence of 
operations (such as intersection, colon, sum, and product) on ideals generated 
by monomials in elements that are locally parameters. There is an "expected" 
answer, which is correct in the case where the Xi'S form an R-sequence, and 
the correct answer, in general, is in the tight closure of the "expected" answer. 
See §7. 

Suppose that R ~ S are domains for which tight closure is defined, and S 
is regular (or F-regular). Another important point is that for any ideal I ~ R, 
1* S = IS. In particular, the tight closure of an ideal I in a domain R is 
contained in the contraction to R if IS for every (F-)regular domain S ;2 R. 
In consequence, the tight closure of an ideal is contained in the integral closure, 
but is usually much smaller. 
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Combining this result with the preceding paragraph, one can show that, under 
mild conditions on the equicharacteristic ring R, if Xl' ..• 'Xn are locally pa-
rameters in Rand R ~ S, where S is regular, then «Xl' .,. , X n_ l ) : RXn)S = 
(Xl' .•. , Xn_I)S, a very surprising result. 

Here is an example of a theorem proved using tight closure for submodules 
that is closely allied to the result on colons cited just above. 

Theorem (Vanishing Theorem). Let A ~ R ~ S be excellent equicharacteristic 
rings such that A, S are regular domains and R is module-finite over A. Let M 
be a finitely generated A-module. Then the map Tor1(M, R) -> Tor1(M, S) 
is 0 for all i ~ 1 . 

We have not attempted to state the most general version of this result here. 
Improved versions can be derived from the phantom acyclicity criterion of §9 
of this paper, and this will be carried through in [HH4]. But we note that 
the version given already implies that direct summands of regular rings are 
C-M (using only the case M = K) and the direct summand (or monomial) 
conjecture (using only the case where S is a discrete valuation ring). The proof 
uses Artin approximation to reduce to a case where tight closure techniques can 
be employed. One shows that appropriate boundaries are in the tight closure of 
the cycles, which makes the homology vanish after one maps to a regular ring. 

The structure of the manuscript is as follows. In the next section, we give 
some important notation and conventions. In §3 we discuss the basic defini-
tions for tight closure for ideals. We felt it worthwhile to include the charac-
teristic 0 definitions for ideals, although the detailed study of characteristic 
o is postponed until [HH7]. In §4 we establish the basic properties for tight 
closure in the case of ideals and prove that direct summands of regular rings 
are Cohen-Macaulay in characteristic p. §5 deals with results related to the 
Brian90n-Skoda theorem. 

In §6 we introduce the notion of a test element. In certain circumstances, 
one can show that fixed elements of the ring can be used in all tight closure 
tests. In §7 we study operations on ideals generated by parameters and prove 
results about when they are contained in the tight closure of the answer one 
would expect if they formed an R-sequence. The next section introduces the 
notion of tight closure for submodules in characteristic p and establishes many 
basic properties. 

In §9 we introduce the notion of phantom homology. This occurs when the 
cycles in a module of a complex are in tight closure, within that module, of 
the boundaries. We give a criterion, referred to as the "phantom acyclicity 
criterion," for a free complex along with all its images under iterations of the 
Frobenius functor to have higher phantom homology. 

In § lOwe explore various alternative notions of tight closure and use one of 
them to give a new proof of the syzygy theorem. In § 11 we refine our phan-
tom acyclicity criteria in the case where the ring is a homomorphic image of a 
Gorenstein ring of finite Krull dimension. The present paper ends with § 11, but 
we want to describe briefly the planned contents of some sequels to this paper. 

The techniques discussed here are still insufficient to deal with the case of 
rings that are not locally equidimensional. In [HH4] we solve that problem by 
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using the notion of minheight and the related notion of being weakly Cohen-
Macaulay, which are introduced in [HH4], as well as generalizing certain phan-
tom acyclicity results to the case of complexes that are not necessarily free. 
These results are then applied in [HH4] to prove numerous vanishing theorems 
for maps of homology and cohomology that may be thOUght of as enormous 
generalizations of the Vanishing T~eorem (for maps of Tor) discussed above. 

In [HH4] we also study the notion of regular closure, which can be used as a 
substitute for tight closure in characteristic O. In a Noetherian domain R, an 
element is in the regular closure of an ideal if it is in the contraction back to R 
of the expansion of the ideal to every regular domain that contains R. The tight 
closure is contained in the regular closure (which is obviously contained in the 
integral closure, where one uses contracted expansions from discrete valuation 
rings instead). Every theorem on tight closure in characteristic p has a weaker 
version expressed in terms of regular closure which has the advantage of being 
capable of generalization to the equal characteristic 0 case. The generalizations 
are carried out in [HH7]. It should be noted that we do not know whether, when 
tight closure is defined, it coincides with the regular closure. Regular closure 
has the advantage of being defined much more generally. However, we cannot 
prove any interesting results about it directly. What we know is a consequence 
of tight closure techniques. 

When R is not a domain, one considers contracted expansions for maps to 
regular domains whose kernels are minimal primes. There is also a notion of 
regular closure for submodules of a module that plays a similar role when one 
studies tight closure for submodules. 

In [HH4, Theorem 6.2] we give a new proof of a result of Roberts used 
in his demonstration of the new intersection theorem in mixed characteristic 
(see [RoS] and [R06]) as well as a new proof of a greatly strengthened form 
of the improved new intersection theorem in characteristic p using phantom 
acyclicity techniques. This result is generalized to the equal characteristic 0 
case in [HH7]. 

In [HHS] we investigate rings in which every ideal generated by parameters is 
tightly closed. These are called F-rational by Fedder and Watanabe [FeW] and 
may coincide with rings with rational singularities in the affine equicharacteristic 
o case. They coincide with F-regular rings in the Gorenstein case, and this fact 
is used to prove some results on behavior of F-regular Gorenstein rings. This 
theory has the important corollary that a Gorenstein local ring of characteristic 
p is F-regular provided that one ideal generated by a system of parameters is 
tightly closed. 

In [HHS] we discuss the notion of a strongly F-regular ring. This class of 
rings is in many ways better behaved than the class of F-regular rings, but the 
notion is defined only for reduced rings R of characteristic p such that R1jp 

is module-finite over R. In the Gorenstein case, when strong F-regularity is 
defined, it coincides with F-regularity and weak F-regularity. See also [HH3]. 
[HHS] also gives a further treatment of test elements and discusses the behavior 
of tight closure under smooth base change. 

In [HH6] we discuss the notion of a phantom extension, which can be used 
to give a new proof of several local homological conjectures in characteristic p , 
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including the existence of big Cohen-Macaulay modules and strengthenings in 
various directions of the direct summand conjecture. We also study a number 
of splitting problems. We show that weakly F-regular rings are direct summands 
of all module-finite extensions in characteristic p and that the converse holds 
for locally excellent Gorenstein domains. One tool introduced in studying the 
converse is a sort of "Artin-Schreier closure" of an ideal. We give a general-
ization of the Brian~on-Skoda theorem for the caSe of an isolated singularity 
whose statement does not refer to tight closure. 

In [HH7], we develop tight closure theory and phantom homology theory in 
the equicharacteristic zero case, and study connections with rational singulari-
ties in characteristic zero. 

Tight closure ideas are used in [HH8] to prove some surprising splitting theo-
rems for cyclic R-modules generated by elements of small order in module-finite 
extension algebras of an F-regular ring R. 

In [HH9], ideas closely connected with our study of Artin-Schreier closures 
of ideals in [HH6], with the theory of test elements for tight closure, and with 
the notion of Cohen-Macaulay tight closure discussed in §§ 1 0 and 11 of this 
paper are used to prove the following result. 

If R is an excellent, semilocal, biequidimensional domain of characteristic 
p, then the integral closure R+ of R in an algebraic closure of its fraction 
field is a big Cohen-Macaulay module for R (every system of parameters for R 
in its Jacobson radical is a regular sequence in R+). Although the idea of the 
proof of the main result in [HH9] evolved from tight closure theory, the paper 
has been written so as to make it largely independent of the other tight closure 
papers. 

Parts of this manuscript have been discussed in the announcement [HH 1], in 
the expository papers [HH2] and [Hu2], and in [HH3]. 

2. NOTATION AND TERMINOLOGY 

Unless otherwise specified, A, R, and S denote Noetherian commutative 
rings with 1. By a local ring we always mean a Noetherian ring with a unique 
maximal ideal. RO denotes the complement of the union of the minimal primes 
of R. I and J always denote ideals. Thus, "given I ~ R" means given an 
ideal I in the Noetherian ring R. Unless otherwise specified, given modules 
M and N are assumed to be finitely generated. 

(2.1) Definition. We say that elements Xl' •.. ' xn in a Noetherian ring R 
are parameters if for every prime ideal P containing them, their images in Rp 
are part of a system of parameters (s.o.p.). 

Note that, with this definition, elements that generate the unit ideal are pa-
rameters. Since no prime contains them all, the condition holds vacuously. 

We recall that R is said to be a pure subring of S (or that R -+ S is pure) 
if for every R-module W, the induced map of R ® R W -+ S ® R W is injective 
(of course, the first module is simply W). 

If R is Noetherian, this is equivalent to assuming that R is a direct sum-
mand, as an R-module, of every finitely generated R-submodule of S con-
taining R. In particular, it suffices that R be a direct summand of S as an 
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R-module. If R is a complete local ring, then R ~ S is pure iff R is a direct 
summand of S as an R-module. See [HRI] and [HR2]. 

We make the following notational conventions in discussing characteristic p. 
We shall always use p to denote a positive prime integer. We shall use e for 
a variable element of N, the set of nonnegative integers, and q for a variable 
element of the set {pe; e E N}. Thus, "for all e" is synonymous with "for all 
e E N" while "for some q" is synonymous with "for some q of the form pe 
with e EN." 

If R is reduced of characteristic p, we write R 1/q for the ring obtained 
by adjoining all qth roots of elements of R. The inclusion map R ~ R 1/ q 

is isomorphic with the map Fe ; R -+ R, where q = pe, F is the Frobenius 
endomorphism of R, and Fe is the eth iteration of F, i.e., Fe (r) = rq . When 
R is reduced, we write ROO for the R-algebra Uq R 1/q . Note that ROO is a 
chronic exception to the rule that the rings we consider be Noetherian. When 
R is a reduced Noetherian ring of characteristic p, we use (ROO)O for the 
complement of the union of the minimal primes of Roo; (ROO)o = Uq(R1/q)O . 

If I ~ Rand q = pe, then i q] denotes (iq; i E I) = Fe(I)R. If S 
generates I, then {iq ; i E S} generates i q]. 

3. THE DEFINITION OF TIGHT CLOSURE FOR IDEALS IN CHARACTERISTIC P 
AND IN CHARACTERISTIC 0 

In this section we give briefly the definitions of tight closure for both ideals in 
characteristic p and for algebras finitely generated over a field in characteristic 
O. We also give a definition for algebras essentially of finite type over a field of 
characteristic O. 

(3.1) Definition. Let I ~ R of characteristic p be given. We say that x E 1* , 
the tight closure of I , if there exists c E RO such that cxq E I[q] for all q » 0 , 
i.e., for all sufficiently large q of the form pe. If I = 1* , we say that I is 
tightly closed. 

(3.2) Remarks. Note that if R is a domain, which is by far the most important 
case, the condition that c E RO is simply the condition that c not be O. Note 
also that if R is reduced, then cxq E i q] iff cl/qx E IR 1/q . Thus, if x E 1*, 
then for some c E RO , we have that cl/q x E I ROO for all q (this condition gets 
stronger as q gets larger). This gives a heuristic argument for regarding x as 
being "nearly" in I, or, at least, I ROO . It is multiplied into I ROO by elements 
that, in a formal sense, are getting "closer and closer" to 1 (since 1/ q -+ 0 as 
q -+ 00). See Remark (6.12) for an additional perspective on tight closure. 

In a preliminary version of this manuscript a slightly different definition of 
tight closure was used. It was required that cxq E I[q] for all q instead of all 
sufficiently large q. This change does not affect what 1* turns out to be when 
I has positive height or when R is reduced (cf. Proposition (4.1)(c)) and yields 
a more satisfactory theory in other cases. 

(3.3) Definition. Let R be a finitely generated algebra over a field K of char-
acteristic 0, I ~ R, and x, c E R. We call a triple (D, RD , I D) descent data 
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for R, I, x, and c if D is a finitely generated Z-subalgebra of K, RD is a 
finitely generated D-subalgebra of R, and ID is an ideal of RD such that 

(a) ID and RDIID are D-free. 
(b) The canonical map K ® D R D -+ R induced by the inclusions of K and 

RD in R is a K-algebra isomorphism. 
(c) I = IDR. 
(d) x, C E RD. 

(3.4) Remarks. Condition (a) also implies that RD is D-free. Note that if 
we are given D, RD , and ID such that all conditions but (a) are satisfied, 
we can achieve (a) by replacing D, RD , I D by their tensor products with D a 
for a suitable nonzero element a ED, by the lemma of generic flatness (cf. 
[Mat, Chapter 8, §22, p. 156] or [HR1, §8, p. 146]). When L is aD-algebra, 
we use the sUbscript L to denote objects and images after applying L® D. If 
D' denotes any finitely generated subalgebra of K containing D, then D', 
RD" I D, also constitute descent data (one must identify RD, with a subring 
of R. This is possible because it is free and so torsion-free over D' , and so, 
if L denotes the fraction field of D' , we have RD, ~ RL ~ RK ~ R). Strictly 
speaking, we should use the compositum RD[D'] instead of RD" but the two 
are canonically isomorphic, and we identify them. 

Note that descent data always exist, for if we represent R as T I J , where 
T = K[x1 , ••• , x n] is a polynomial ring and J = (~, ... , Im)T, choose 
g[, ... , g, E T whose images in R generate I, and choose w, U E T whose 
images in R are x, c, respectively, then we may, as a first approximation, 
take D to be the algebra generated over Z by the coefficients of all of the 
polynomials f, g, W, u, take RD to be D[x[, ... , xn]/(~ , ... ,1m)' take 
ID = (gv: v)RD' and take x', c' to be the images of w, u, respectively, 
in RD. We then modify D by localizing at one nonzero element (without 
changing notation) so that I D , RDIID , and hence RD are D-free. If L is 
the fraction field of D, it is clear that RD injects into L ®D RD and hence 
into K ®L (L ®D RD) ~ K ®D RD ~ R by the presentation. Thus, RD may be 
identified with a subring of R. It is easy to see that x' , c' are identified with 
x, c once this is done, that K ®D ID = IDR = I, and that, in fact, all of the 
conditions which must be satisfied by descent data hold. 

We are now ready for 

(3.5) Definition. Let R be a finitely generated algebra over a field K of char-
acteristic 0 and I ~ R. We say that x E I* , the tight closure of I, if there 
exist c E RO and descent data (D, RD, I D) such that for every maximal ideal 
m of D, if K = Dim and p denotes the characteristic of K, then cKx! E I~ql 
in RK ~ R DI mR D for every q = pe » 0 , where the subscript K denotes images 
after applying K®D. If I = I* , we say that I is tightly closed. 

It is not even clear from this definition that I* is an ideal. We return to this 
and other basic characteristic zero issues in [HH7]. 

We next define tight closure in a slightly larger context. 
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(3.6) Definition. Let R be an algebra essentially of finite type over a field 
K of characteristic 0, and I ~ R. We define the tight closure, 1*, of I as 
UB(lnB)* , where the union is extended over all finitely generated K-subalgebras 
B of R such that R is a localization of B. Again, if I = 1* , we say that I is 
tightly closed. 
(3.7) Remark. We do not know whether the notion given by Definition (3.6) 
for fields K of characteristic p coincides with the characteristic p definition of 
tight closure. The difficulty is that we do not know that tight closure commutes 
with localization. 

4. BASIC PROPERTIES OF TIGHT CLOSURE 
FOR IDEALS IN CHARACTERISTIC P 

The following proposition shows that tight closure has the usual characteris-
tics of a closure operation. 
(4.1) Proposition. Let R be a Noetherian ring of characteristic p, and let I, 
J be ideals of R. 

(a) 1* is an ideal of R containing I. 
(b) If I ~ J, then 1* ~ J*. The intersection of an arbitrary family of 

tightly closed ideals is tightly closed. 
(c) If I has positive height or if R is reduced, then x E 1* iff there exists 

c E RO such that cxq E i q] for all q = pe . 
(d) For every I there exists c E RO such that c(I*)[q] ~ I[q] for all q :» O. 

If I has positive height or if R is reduced, then c can be chosen so that 
the inclusion holds for all q. 

(e) 1*=1**. 
(f) (I n J)* ~ 1* n J* . 
(g) (/ + J)* = (/* + J*)* . 
(h) (I J)* = (1* J*)* . 
(i) (0)* = Rad(O). In particular, 1* contains the nilradical of R for all 

I~R. 

(j) For any I ~ R, 1* is the inverse image in R of (I R red )* . 
(k) If I is tightly closed, then I: J is tightly closed for any ideal J. 

Proof. (a) and (b) are immediate from the definition. To prove (c), note that 
an ideal of positive height is generated by the elements in its intersection with 
RO , since it is contained in the union of the ideal they generate and the minimal 
primes. The set of elements satisfying the condition that cxq E I[q] for all q 
is an ideal contained in 1*. It suffices to show that each element of 1* n RO 
satisfies the stronger condition. Suppose x E RO and cxq E I[q] for all q 2: q' . 
Then we may simply replace c by cxq' to see that x satisfies the stronger 
condition. On the other hand, if R is reduced and cxq E i q] for q 2: q' with 
C E RO , then since S = (RO)-I R is a finite product of fields, IS is generated by 
an idempotent and so I[q]S = IS for all q. It follows that for each q < q' , we 
can choose cq E RO such that cqx E i q] , and if we then take c' = c(I1q<q' cq') , 
we have c' x q E i q ] for all q. 
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To prove (d), choose a finite set of generators It for 1* , and choose ci E RO 
for each i such that cJ; E i q] for q 2:': qi' Then c = TIi ci has the required 
property for q 2:': maxi{qJ. If I has positive height or if R is reduced, choose 
the ci to work for all q. 

To prove (e), suppose that r E 1** and choose dE RO such that drq E (I*)[q] 
for all q 2:': O. Choose c as in part (d). Then (cd)rq E i q] for all q 2:': O. 

(f) is immediate from (b). To prove (g), first note that since 1+ J <; 1* + J* , 
we have (l + J)* <; (l* + J*)* . But, 1*, J* <; (l + J)* by (b) and so 1* + J* <; 
(l + J)* , and then (l* + J*)* <; (I + J)** = (I + J)* by (b) and (e). For h), 
we have I J <; 1* J* and so (l J)* <; (l* J*)* . To prove the other inclusion it 
suffices to show that 1* J* <; (I J)*. But if cuq E i q] and dvq E J[q] for all 
q» 0, then cd(uv)q E I[q] J[q] = (l J)[q] for all q» O. 

For (i), note that x E (0)* iff for some c E RO, cxq = 0 for all q» 0, and 
this holds iff cxn = 0 for some c E RO and some n EN. This forces xn into 
all minimal primes of R, and so x is nilpotent. To prove (j), first observe that 
the image of RO in Rred is (Rredt and the inverse image of (Rredt in R is 
RO . It is clear that 1* maps into (l Rred )* . Now assume that for all q 2:': q' , we 
have cxq E i q] + N , where c E RO ,i.e., x is in the inverse image of (l Rred )* . 

Choose q" such that N[q"] = O. Then cxq E I[q] for all q 2:': q' q" , and so 
x E 1*. 

To prove (k), first note that since I: J = nUEJ I : u, we may suppose that 
J = uR. Suppose c E RO is such that cxq E (l: u)[q] for q » O. Since 
(I: u)[q] <; I[q] : uq , c(xu)q E i q] for all q » 0, whence xu E 1* = I and 
xEI:u .• 

We note that * does not commute with n or : in general. For example, 
if R = K[[x 2 , x 3]] <; K[[x]] and m = (x2 , x 3 ), then (x 2 R)* = m, (x3 R)* = 
(x 3 , x 4 ) (by Corollary (5.8), the tight closure of a principal ideal in a domain 
is the same as its integral closure), and so (x 2 R)* n (x 3 R)* = (x3 , X4), while 
x 2 R n x 3 R = (x5 , x 6 ), which is already tightly closed. Likewise, (x2 R)* : 
(x3 R)* = m: (x 3 , x 4 ) = R while x 2 R: x 3 R = m is tightly closed. 

Neither the sum nor the product of two tightly closed ideals is necessarily 
tightly closed. In R = K[[x, y, z]]/(x2 + i + z8), where K is of characteristic 
p > 2, yR and zR are tightly closed, since R is a normal domain, but we shall 
see in a moment that yR+zR is not. In fact, x E (yR+zR)* . In the same ring, 
the maximal ideal m is tightly closed (by Theorem (5.2)), but x E (m 2 )* - m2 • 

In fact, x 2 E ((i, z2)2)2 => X E ((i, z2)2)- => x E (i, z2)* (by Theorem 
(5.4)), which is contained in both (m2)* and (yR + zR)* . The discussion of 
Gorenstein rings in [HH5] and the discussion of rational singularities in [HH7] 
are relevant. 
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Our next objective is to prove that in regular rings every ideal is tightly closed. 
We first note 
(4.2) Lemma. Let R, S be arbitrary Noetherian rings such that S is a flat 
R-algebra, and let I, J be ideals of R. Then IS: sJS = (I: RJ)S, where 
I: RJ = {r E R: rJ ~ I}. 

Proof. See [N, Theorem 18.1, part 2]. • 
(4.3) Corollary. In a regular ring R of characteristic p, for any two ideals I, 
J we have [lq]: RJ[q] = (/: RJ)[q] for all q. In particular, [lq] : x q = (/ : x)[q] 
for all q. 
Proof. The statement is immediate from Lemma (4.2), since the iterated Frobe-
nius endomorphism Fe : R -+ R is flat when R is regular (see [Ku 1, He, PS 1]) 
and i q ] = Fe (/)R. • 

The following result, while easy, is extremely important. 
(4.4) Theorem. If R is regular, then every ideal is tightly closed. 

Proof. Suppose c E RO and cxq E [lq] for all q 2: q' but x is not in I. Then 
these conditions are preserved when we localize at a prime containing I: x. 
Hence, we may assume that (R, m) is regular local and that I: x ~ m. But 
then c E nq~q' i q] : x q = nq~q,(l: x)[q] ~ nq~q' mq = (0), a contradiction . • 
(4.5) Definition. A Noetherian ring of characteristic p is called weakly F-
regular if every ideal is tightly closed. If every localization of R at a multi-
plicative system is weakly F-regular, we say that R is F-regular. 

With this terminology, Theorem (4.4) immediately yields 
(4.6) Theorem. A regular ring of characteristic p is F-regular. 

We do not know of an example of a weakly F-regular ring that is not F-
regular. To the contrary, what we know suggests that weak F-regularity ought 
to imply F-regularity, at least for well-behaved rings. 

We shall ultimately prove numerous results that either generalize or are par-
allel to the next theorem. We prefer to give the result in its simplest form early 
because the proof is transparent and covers many of the most important cases 
in characteristic p. 

(4.7) Theorem. Let R be a Noetherian ring of characteristic p module-finite 
and torsion-free over a regular domain A. Let Xl' ••• , xn be elements of A 
that are parameters in R (cf Definition (2.1». Then the colon ideal 

(Xl' ••. , X n_ l ) R: RXn S; ((Xl' ... , Xn_ l ) R)*. 

Proof· We first note that (Xl' ... , xn_I)A : AXn = (Xl' ... , xn_I)A. It suffices 
to check this locally. Since the equality is automatic if the first ideal in the colon 
is the unit ideal or if Xn is a unit, we need only consider the case where all the 
Xi are in the maximal ideal of A. But then they must form an A-sequence, for 
if they were contained in a prime ideal of A of height less than n, they would 
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also be contained in a prime ideal of R of height less than n lying over it. We 
therefore need only prove Theorem (4.8) below. • 

(4.8) Theorem. Let R be a Noetherian ring of characteristic p module-finite 
and torsion-free over a regular domain A. Let I, J be ideals of A. Then 
IR: RJR r;; ((I: AJ)R)* and IRnJRr;;((InJ)R)*. 

Proof. Let F == At be an A-free submodule of R whose rank t is equal to the 
torsion-free rank of R as an A-module. Then Rj F is a torsion A-module, and 
we can choose a nonzero element c E A such that cR r;; F . Let x E I R : RJ R 
(resp. I R n J R). Then, for all q, x q E i q] R : Riq] R (resp. I[q] R n J[q] R) , 
whence cxq E i q] F: FJ[q] (resp. I[q] F n J[q] F). Since F is A-free, we see 
cxq E (iq] : AJ[q])F (resp. (I[q] n J[q])F) , and by the flatness of the Frobenius 
endomorphism of A, we then have that cxq E (I: AJ)[q]F r;; ((I: AJ)R)[q] 
(resp. (I n J)[q] F r;; ((I n J)R)[q]) for all q, which yields the desired result. 

• 
We note that the argument given is quite similar to the use of amiable systems 

of parameters in [H03]. 

(4.9) Theorem. Let R be a Noetherian ring of characteristic p module-finite 
and torsion-free over a regular domain A. If every ideal generated by parameters 
is tightly closed, then R is C-M. In particular, if R is F-regular or even weakly 
F-regular, then R is Cohen-Macaulay. 

Proof. Let P be a prime ideal of R of height n. Then we can choose Xl' ... , 
Xn E P n A such that (Xl"'" x)A has height i for 0 :::; i :::; n, since the 
height of P n A is also n, and it follows that Xl"'" Xi are parameters 
in R for every i. By Theorem (4.7), we have that (x" ... , xi_,)R: RXi r;; 
(x, ' ... , xi_,)R* = (x, ' ... ,xi_,)R for every i, and so Xl' ... ,xn is a reg-
ular sequence in R, and depthp R = n. Since this holds for every prime ideal 
of R, R is C-M. • 

Later, we shall relax the condition that R be module-finite over a regular 
ring in various ways. But we want to point out that the present result suffices 
to prove 

(4.10) Theorem. Let R r;; S, where S is regular of characteristic p, and sup-
pose that R is a direct summand of S as an R-module or, more generally, that 
R is a pure subring of S (cJ §2). Then R is C-M. 

Proof. It is easy to reduce to the case where R is complete local and S is 
a regular domain. See the beginning of §7 of [HR1, pp. 141-142]. In this 
situation, every ideal of R is contracted from S. The result follows at once 
from Proposition (4.12) below and Theorem (4.9), since the complete local ring 
R is a domain and module-finite over a regular ring. • 

(4.11) Lemma. Let R, S be Noetherian rings of characteristic p. Suppose h 
is a homomorphism from R to S. If heRo) r;; SO (which is equivalent to the 
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assertion that every minimal prime of S contracts to a minimal prime of R), 
then we have the following. 

(a) If I ~ R, then h(l*) ~ (lS)* . 
(b) If J is tightly closed in S, its contraction to R is tightly closed in R. 

In particular, (a), (b) hold if S is a domain containing R, if S is a localiza-
tion of R, and, more generally, if the going-down theorem holds for R -* S . 

Proof. To see (a), note that c E RO and cxq E i q] for all q » 0 implies that 
h(c) E SO and h(c)h(x)q E (lS)[q] for all q» O. (b) is immediate from (a) . 

• 
(4.12) Proposition. Let R ~ S be Noetherian rings of characteristic p such 
that every ideal of R is contracted from S (which holds, in particular, when 
R is a direct summand of S as an R-module or when R is pure in S) and 
RO ~ SO . If S is F-regular or weakly F-regular, then R has the same property. 

Proof. Since the hypothesis is stable under localization (cf. [H05], where the 
contractedness condition is called "cyclic purity"), this follows immediately 
from Lemma (4.11). • 

The characteristic zero version of this result will be given in [HH7]. It is 
important to note that when a linearly reductive linear algebraic group over a 
field K acts K -rationally on a K -algebra R, the ring of invariants RG is a 
direct summand of R as an RG -module. If R is regular, F-regular, or weakly F-
regular, it will follow that RG has the same property and so is Cohen-Macaulay. 
A result of this type was first obtained in [HR1], by reduction to characteristic 
p. Other proofs were given in [Ke] and [B]. The results of [B] suggest a connec-
tion between F-regularity and rational singUlarity. This is pursued in [HH7]. 
See also [Bor, HoE, HoI, and HR2] for further background. 

(4.13) Remark. Let R be a product 117=1 Ri . We note that RO = 117=1 R;. 
Every ideal I of R has the form n7=1 Ii' where Ii ~ R i . We also note that 
1* = 117=1 It· The verification is straightforward and is left to the reader. It 
follows that R is (weakly) F-regular iff each Ri is. 

We do not know, in general, how tight closure behaves under localization. 
However, the situation with respect to localization at a maximal ideal could 
not be better. 

(4.14) Proposition. Let R be a Noetherian ring of characteristic p, and let I 
be an ideal primary to a maximal ideal m. Then (lRm)* = I*(Rm)' Hence, if 
I is tightly closed, so is IRm' Moreover, 1* is the contraction of (IRm)*' 

Proof. It is clear that RO maps into (Rmt, whence 1* maps into (I Rm)* 
and ;;2 follows. Now let x be an element of R such that x/I E (lRm)* . We 
must show that x E 1*. We can choose c E R such that c/l E (Rmt and 
(c /1 )(x /1)q E I[q] Rm for all q» O. We first claim that we can choose c E RO . 
To see this, let <5 be an element of R that belongs precisely to those minimal 
primes of R to which c does not belong. Then <5 is in every minimal prime 
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contained in m, and so is nilpotent in Rm' Replacing tJ by a power, we may 
assume tJ /1 is 0 in Rm' We may then replace c by c + tJ , which is clearly 
in RO. Since I is m-primary, so is each i q]. This uses strongly that m is 
maximal. Since cxq /1 E i q] Rm for all q» 0, cxq E I[q] for all q» 0 . • 
(4.15) Corollary. R is weakly F-regular iff Rm is weakly F-regular Jor every 
maximal ideal m. 

This is immediate from Propositions (4.14) and (4.16) below. Proposition 
(4.16) is clear from the fact that every ideal in a Noetherian ring is an intersec-
tion of ideals primary to maximal ideals. 
(4.16) Proposition. A Noetherian ring oj characteristic p is weakly F-regular 
if and only if every ideal primary to a maximal ideal is tightly closed. 

We conclude this section with a discussion of the obstruction to proving 
that tight closure commutes with localization. In fact, we consider the easier 
problem of proving that a localization of a weakly F-regular ring at an arbitrary 
prime (and, hence, at an arbitrary multiplicative system) is weakly F-regular. 
Since we can localize at maximal ideals and then move down to an arbitrary 
prime by localizing repeatedly at primes of coheight one, we reduce at once 
to considering the following situation. (R, m) is local and weakly F-regular, 
P is a prime ideal of R such that dim R/ P = 1, and we want to show that 
every ideal of Rp is tightly closed. It suffices to show that for each ideal I 
of R primary to P, I remains tightly closed upon localization at P. Let J 
be an element of R whose image in R/ P is a parameter. It suffices, then, to 
show that a P-primary ideal I remains tightly closed when expanded to R f ' 
for P R f is a maximal ideal of R f and so localizing at P does not present a 
problem once we have localized at J. 

Suppose that u is an element of R that is in (I R f)* . We want to show that 
u E 1* . We know that for a certain c E RO and for all q, cuq E I[q] R f' and 
so we know that for every q there is a positive integer N(q) depending on q 
such that cJN(q)uq E i q] . for all q. 

Approached this way, the problem is that we cannot prove a sufficiently good 
bound for the integer N(q). It would suffice if we could show that there is a 
constant integer B > 0 such that N(q) could be chosen ~ Bq for all q. For 
then C(JBU)q E I[q] for all q, and this yields JB U E 1* = I and then u E I, 
since it is P-primary. 

The fact that cuq is killed by a power of f modulo I[q] means that it 
represents an element of HIR(R/ i q]) = H~(R/ I[q]). The limited problem of 
localization that we are considering would be solved if we could show that there 
is a fixed integer B > 0 such that J Bq kills H~ (R/ I[q]) for all q . However, we 
have not been able to prove such a bound even for very good rings R (not even 
for complete, normal, Cohen-Macaulay domains, and not even if R is weakly 
F-regular). On the other hand, it appears to be possible that such bounds exist 
even under much weaker hypotheses. 

When R is reduced and every ideal of R is contracted from R 1/p (and, 
hence, from ROO as well), it would suffice to prove instead that there is an 
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integer B > 0 such that fB kills H~(Roo /IRoo ). This is equivalent to the 
assertion that the annihilators of the powers of f in Roo /1 Roo stabilize. This 
version of the problem does not appear to be any more tractable than the other. 

Of course, one may ask whether localization commutes with tight closure in 
even more general situations. Attacking this question in general leads to similar 
problems on bounding exponents that, naturally, are even more difficult. 

5. INTEGRAL CLOSURE AND THE BRIANCON-SKODA THEOREM 
IN CHARACTERISTIC P 

(5.1) Remarks on integral closure of ideals. In the next four paragraphs we 
suspend the conditions that rings be Noetherian and that the characteristic be 
p and discuss integral closure of ideals in arbitrary commutative rings with 
identity. We recall that an element x of a ring R is integral over an ideal I 
provided there exists a positive integer k and an equation 

k . k-I . J . . 0 
X +IIX +···+IJX +···+lk_IX+1k= , 

where iJ E I J for 1 ::; j ::; k. This is easily seen to be equivalent to the 
assertion that there is an integer k 2: 1 such that xk E 1(1 + Rx)k-I , and this 
holds iff (I +Rxl = 1(1 +RX)k-1 . From this last equation it is trivial to prove 
by induction on m that 

(#) 

for every integer mEN. Thus, x is integral over I iff there exists a positive 
integer k > 0 such that (#) holds for all mEN. 

We also note that the set of elements r integral over I is an ideal, called 
the integral closure of I. The integral closure of I may be characterized alter-
natively as follows. If t is an indeterminate over R, the integral closure of the 
Rees ring R[It] in the polynomial ring R[t] is 

00 L (IJ) - r1 = R + r t + (12) - t2 + ... + (IJ) - r1 + . .. , 
J=O 

and when R is a normal domain, we may even characterize the displayed ring 
as the integral closure of R[It] in its fraction field. 

Yet another characterization of integral closure for ideals is given by valu-
ations. Let R be a ring with finitely many minimal prime ideals (this is, of 
course, automatic when R is Noetherian) and I ~ R. Then x is integral over 
I iff for every homomorphism h of R into a valuation domain V such that 
Ker h is a minimal prime of R, h(x) E IV. If R is Noetherian, the same 
result holds with V restricted to being a discrete valuation ring (by which we 
always mean a rank one discrete valuation ring). 

Finally, we remark that if R ~ S is an integral extension of rings and I ~ R 
is an ideal, then IS n R ~ r . 

We refer the reader to [L] for background on integral closures of ideals. 
This completes our general discussion of integral closure of ideals. We now 

return to our usual notational conventions. Moreover, throughout the remainder 
of this section all rings will have characteristic p . 
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(5.2) Theorem. Let R be a Noetherian ring of characteristic p and I ~ R an 
ideal. Then 1* ~ r. In particular, every integrally closed ideal, and, hence, 
every radical ideal is tightly closed. 

Proof. Suppose x E 1* and c E RO is such that cuq E I[q] for all q. Let 
h : R -> V have as its kernel a minimal prime of R, where V is a DVR. Then 
h(c)h(u)q E (IV)[q] for all q and h(c) =f. O. Thus, h(u) E (IV)* = IV (since 
V is regular). • 
Alternate proof. Let I = (XI' ... , x h) . Applying the discrete valuation v to the 
equation cxq = E: I rq/xi yields v(c) + qv(x) 2:: qmin{v(x/): t}. Dividing 
by q and taking the limit as q -> 00 yields the result. • 
(5.3) Example. If X and yare any two elements of a ring R, then (xn , yn)-

( n n-I n-i i n-I n) ( )n . h . I 2 x ,x y, ... , x y, . .. , xy , y = x, y ,SInce t e monomla 
x n- i/ satisfies zn - (xn)n-i(yn/ = O. On the other hand, if R is regular or 
F-regular, e.g., if R = K[x , y] , where K is a field, then (xn , yn)* = (xn , yn) , 
since every ideal is tightly closed. Thus, the tight closure is, in general, much 
smaller than the integral closure. The tight closure is a "tight fit" for the original 
ideal, which is the reason for the choice of the term. 

We are now in a position to prove a result, at least in characteristic p, which 
greatly generalizes the Brian!(on-Skoda theorem (cf. [BrS, LT, and LSJ). 
(5.4) Theorem (generalized Brian!(on-Skoda theorem). Let R be a Noetherian 
ring of characteristic p, and let I be an ideal of positive height generated by 
n elements, say u I ' ... , un' Then for every mEN, (In+m)- ~ (Im+I)*. In 
particular, (In) - ~ 1* . 

Hence, if R is weakly F-regular and, in particular, if R is regular, then 
(In+m)- ~ Im+1 and (In)- ~ I. 

Proof. If (In+m) - is contained in the union of (Im+ I ) * and the minimal primes 
of R, then it must be contained in one of them, and then it must be contained 
in (Im+I)* , since height I is positive. Hence, we assume to the contrary that it 
is not contained in this union, and we choose y E (In+m) - - (Im+ 1)* not in any 
minimal prime of R. Let J = I n+m . By Remark (5.1) we can choose an integer 
k > 0 such that (J + yR)k+h = Jh+I(J + yRl- I for every hEN, and then 
(/)l E Jh for all hEN. Jh = I hn+hm is generated by monomials of degree 
hn +hm in the ui . Then I hn+hm ~ (u~ , ... , u:)m+1 . (We may assume h > O. 
Consider a monomial generator v of I hn+hm in which the exponent of ui is bi , 
1 ::; i ::; n, where Ei bi = hn + hm. Let ai be the integer part of b) h for each 
i. Then ai + 1 > b)h, and so Ei(ai + 1) = (Eia) + n > (Eib)/h = n + m, 
so that Ei ai > m ,i.e., Ei ai 2:: m + 1 , whence 

II (u7) a, E (u~ , ... , u:) m+ I 
i 

and divides the given monomial generator v of I hn+hm .) Then we may take 
c = yk E RO , and when h has the form q = pe , we obtain cyq E J q ~ 
(ui, ... , u~)m+1 = (Im+1 )[q] , and so y E (Im+I)* . This completes the proof of 
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the first statement. The second is simply the case m = O. The final statement 
is immediate from the definition of a weakly F-regular ring. • 

(5.5) Remarks on analytic spread. If J ~ 1= J- , where J has n generators 
and height I> 0, then (lm+n)- ~ (lm+!)* in this case as well, since (lm+n)- = 
(Jm+n) - ~ (Jm+!)* ~ (lm+!)*. If R is local with infinite residue class field, 
then every ideal is integral over an ideal generated by at most dim R elements. 
See [NoRl]. Hence, in this situation, we may take n to be the minimum of 
the number of generators of I and the dimension of the ring in the statement 
of Theorem (5.4). More generally, we may take n to be the analytic spread 
a(I) of I (the Krull dimension of K ®R grI R) when R is local with residue 
field K, since I is integral over an ideal generated by a(I) elements when 
K is infinite. However, the assumption that K be infinite is not essential. 
If K = Rim is finite, choose y in R as in the proof of Theorem (5.4) and 
then carry through the argument in R(t) (the localization of R[t] at mR[T]) 
working with an a(I)-generated ideal I' ~ R(t) over which I is integral. One 
then obtains cyq E (I'm+!)[q] ~ (lm+!)[q]R(t). Then, since R(t) is faithfully 
flat over R, we have cyq E (lm+1 R)[q] , and the result follows. (Note that c is 
a fixed power of y and hence in R.) Formally 

(5.6) Theorem. Let R be any Noetherian local ring of characteristic p. Let 
I be an ideal of positive height. Then (lm+a(I))- ~ (Im+!)* for all mEN. In 
particular, (la(I))- ~ 1* 

(5.7) Corollary. Let R be a weakly F-regular ring of characteristic p, and let 
I be an ideal of positive height. Let a(I) = sup a(I Rm) for maximal ideals 
m containing I. Then (Im+a(J))- ~ I m+! for all mEN. In particular, 
(Ia(l))- ~ I. 

Proof. If not, we can obtain a counterexample after localizing at a maximal 
ideal m. But Rm is still weakly F-regular, by Corollary (4.15), and we may 
now apply Theorem (5.6). • 

(5.8) Corollary. Let R be a Noetherian ring of characteristic p, and let x be 
an element of RO. Then (x)* = (x)- . 

Proof. (x)* ~ (x)- by Theorem (5.2). The other inclusion is immediate from 
Theorem (5.4) by taking n = l, m = O. • 

(5.9) Lemma. Let R be an arbitrary Noetherian ring such that no prime is 
both minimal and maximal, i.e., such that Spec(R) has no zero-dimensional 
component. Suppose that every principal ideal of R of height one is integrally 
closed. Then R is normal. 

Proof. Let N denote the nilradical of R. Every integrally closed ideal contains 
N. For each minimal prime P of R, we may choose an element not in any 
minimal prime and not invertible modulo P (if Q is any prime containing 
P, Q is not contained in the union of the minimal primes). The product 
a of these elements is in RO and not invertible modulo any minimal prime. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TIGHT CLOSURE, INVARIANT THEORY 47 

N ~ ni(aiR)- = ni(aiR) , whence there exists an element r E R such that 
bN = 0 with b = 1 - ra. But then bE RO , and there exists an element r' E R 
such that (1 - r' b) N = 0, by the same argument, and so N = 0 . 

Thus, R is reduced. Let r Is, r, s E R, s a nonzerodivisor, be in the total 
quotient ring of R and be integral over R. Then r is integral over sR, and 
so riSER. • 
(5.10) Corollary. Let R be a Noetherian ring of characteristic p such that no 
prime is both minimal and maximal. If every principal ideal of height one is 
tightly closed, then R is normal. 

(5.11) Corollary. A weakly F-regular ring R is normal. 

Proof. Since (0) is tightly closed, R is reduced. If R is a product with some 
O-dimensional factors, they must be fields, while the other factors are weakly 
F-regular by Remark (4.13) and hence normal by Corollary (5.10). • 

6. TEST ELEMENTS 

In the definition of tight closure, the multiplier c is permitted to vary in RO 
as I changes when one tests whether various elements are in 1*. For many 
important choices of R, it is not necessary to let c vary. A single choice of 
c can be used for all tight closure tests. We explore this phenomenon in this 
section. 

If R is a Noetherian ring of characteristic p, we shall say that c E RO is a 
q' -weak test element if there exists q' such that for all I ~ R and all x E 1* , 
we have cxq E i q) for all q :?: q'. If this holds with q' = 1 , we call c a test 
element. Note that if J is the ideal of R generated by the (weak) test elements, 
then every element of J nRc is a (weak) test element. It is not clear, in general, 
whether R has a test element. Note, for example, that if R is weakly F-regular, 
then 1 (and, for that matter, every element of RO) is a test element. 

We say that an element of R is a locally stable q' -weak test element if its 
image in every local ring of R is also a q' -weak test element. Finally, we say 
that an element of R is a completely stable q' -weak test element if it is locally 
stable and its image in the completion of each local ring of R is a q' -weak test 
element. When q' = 1 , we omit the phrase" q' -weak." 

We shall see, in fact, that a reduced ring R that is a localization of a torsion-
free module-finite extension of a regular domain A has a completely stable 
q' -weak test element and that if R is, in addition, generically smooth over A, 
it has a completely stable test element. If R is reduced, equidimensional, and 
either essentially of finite type over a field or a localization of a complete local 
ring, then, likewise, R has a completely stable test element. Moreover, we shall 
also see that the existence of test elements provides a technique for transition 
between a local ring and its completion in studying questions about tight closure. 

In §8, we shall show that the theory of test elements that we develop for ideals 
in this section extends without essential modification to the case of tight closure 
of submodules of a module. In all cases where we have been able to construct 
test elements, they work for modules as well as ideals. However, we do not 
know whether this is true in general. A test element for ideals is automatically a 
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test element for modules if the ring is excellent and reduced (more generally, if 
its local rings are approximately Gorenstein; see (8.6) and Proposition (8.15)), 
but we do not know the corresponding fact for weak test elements. From §8 on, 
we change terminology and use the term "(weak) test element" to mean (weak) 
test element for modules. If we need to refer to the notion introduced in this 
section, we use the term "(weak) test element for ideals." 

In [HH5] (see also [HH3]), we use a different circle of ideas, connected with 
the notion of strong F-regularity, to construct test elements (for ideals and mod-
ules) in the situation where R has characteristic p, is reduced, and R 1jp is 
module-finite over R. We show there that, under the hypotheses just specified, 
if c E RO and Rc is regular (or, more generally, strongly F-regular, see [HH3]), 
then c has a power that is a completely stable test element. This circle of ideas 
eventually yields a convoluted argument which shows that if R is reduced and 
finitely generated over an excellent local ring of characteristic p, then every 
element c E RO such that Rc is regular (or F-regular Gorenstein) has a power 
which is a completely stable test element. 

The following result establishes both the usefulness and some of the basic 
properties of test elements. 

(6.1) Proposition. Let R be Noetherian of characteristic p and c E R . 
(a) c is a q'-weak test element for R iff c/1 is a q'-weak test element for 

Rm for every maximal ideal m of R. 
(b) If R has a weak test element, then the tight closure of I ~ R is the inter-

section of the tightly closed ideals containing I that are primary to a maximal 
ideal. 

(c) If c E R is a q' -weak test element for the completion R of the local ring 
R, then it is also a q'-weak test element for R. In this case, for all I ~ Rand 
x E R, x E 1* if and only if x E (IR)" , i.e., 1* = (JR)" n R. 

(d) Let N be the ideal of nilpotents in R and suppose that N[q"] = O. Let 
c' be the image of c ERin R red . If c is a q' -weak test element for R, then c' 
is a q'-weak test element in R red . If c' is a q' -weak test element in R red • then 
cq" is a q' q" -weak test element in R. 

Proof. (a) Suppose that c is a q'-weak test element for R. Suppose that 
x/1 E (JRm)" and q ?: q'. We must show that cxq /1 E iq]Rm . If not, 
we can choose a positive integer t such that exq / 1 ~ mf Rm + i q] Rm and then 
exq /1 ~ (mf + I)[q]Rm , which implies that exq ~ (mf + I)[q] and hence that 
x ~ (m f + If , since e is a test element in R. But then Proposition (4.14) 
implies that x/I ~ ((mf + I)Rm)" and so x/I ~ (JRm)* ,a contradiction. 

Conversely, suppose that e/I is a q'-weak test element for Rm for every 
maximal ideal m of R. This implies that e E RO. Suppose that I ~ R, 
x E 1* ,and q ?: q' , but cxq ~ i q]. Then we can localize at a maximal ideal 
m of R so as to preserve the last condition, and we still have x/I E (IRmf , 
which contradicts the condition that e/l be a q'-weak test element for Rm' 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TIGHT CLOSURE, INVARIANT THEORY 49 

(b) One inclusion is obvious. To prove the other, suppose that x E R - I* . 
We must construct an ideal J;2 I primary to a maximal ideal such that x f/: 
J*. Since x f/: I*, we can choose q 2: q' such that cxq f/: i q). We can 
choose a maximal ideal m such that cxq 11 f/: I[q) Rm and then t such that 
cxq II f/: mt Rm + iq)Rm . We then conclude exactly as in the proof of part (a) 
that x f/: (mt +/)*. 

(c) Since R is R-flat, RO £; RO , and so I* £; (IR)* for I£; R. Let c E R 
be a q'-weak test element for R. The results claimed all follow if we can prove 
that for all I £; R and x E R, if x E (l R)* , then cxq E I[q) for all q 2: q' . 
But since c is a q' -weak test element for R, we have cxq E (I R)[q) = i q) R , 
and since R is faithfully flat o~er R, this implies that cxq E i q) , as required. 

(d) We have that c E RO iff c' E (Rredt. Suppose that c is a q'-weak 
test element in R. If I ;2 N is an ideal of R such that u + N E (IIN)* , 
then u E 1* by Proposition (4.1)(j), and so cuq E I[q) for all q 2: q', which 
implies that c' (u + N)q E (l I N)[q] for all q 2: q' . On the other hand, if c' is 
a q'-weak test element in R red and I is any ideal of R, then u E 1* implies 
u+N E (l + NIN) * , which implies in turn that c'(u+N)q E (I +NIN)[q], and 
so cuq E I[q) + N for q 2: q' . Raising to the q" power yields cq" uq E I[q] for 
all q 2: q' q" . • 

(6.2) Corollary. (a) Let c be a locally stable q'-weak test element for R. Then 
ell is a q' -weak test element for every localization U-I R of R. In particular, 
c is a q'-weak test element for R. 

(b) In order that c be a completely stable q' -weak test element for R, it 
suffices that its image be a test element in the completion of each local ring of 
R. 

(c) Let R, N, q", c, and c' be as in Proposition (6.1)(d). If c is a locally 
stable q'-weak test element for R, then c' is a locally stable q' -weak test element 
in Rred . If c' is a locally stable q'-weak test element in R red , then cq" is a 
locally stable q' q"-weak test element in R. 

(d) Let R, N, q", c, and c' be as in Proposition (6.1)(d), and assume, 
moreover, that R has reduced formal fibers. If c is a completely stable q'-weak 
test element for R, then c' is a completely stable q'-weak test element in Rred . 
If c' is a completely stable q'-weak test element in R red , then cq" is a completely 
stable q' q"-weak test element in R. 
Proof. (a), (b), and (c) are immediate from Proposition (6.1) (note in (c) that 
we can use the same q" to kill the nilradical in every localization). For part 
(d), we need only remark that the hypothesis on the formal fibers implies that 
the nilradical of the completion of a local ring of R is generated by the image 
of N, so that again we can use the same q" . • 

The rest of this section is primarily devoted to establishing the existence of 
completely stable q' -weak test elements for certain module-finite extensions of 
regular rings. Because of our results on passage to R red , our focus is on the 
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reduced case. We begin by treating the generically smooth case. In the latter 
parts of this section, we explain how to extend the results for this situation to 
greater generality. 

(6.3) Discussion. Let A be a regular domain of characteristic p, and let R be 
module-finite, torsion-free, and generically smooth over A. The last condition 
means that L ® A R is smooth over the fraction field L of A, which in tum 
means that L® A R is a finite product of fields each of which is a finite, separable 
extension of L. This implies that we can find dE AO such that Rd is smooth 
over Ad' Note that R ~ Rd , which is regular and, hence, reduced. When S is 
smooth and module-finite over the reduced ring B (which implies S is reduced 
as well), we have, quite generally, that Si/q =:: B i/q ®B S , for all q = pe , where 
the map from the second ring to the first is induced by the obvious B-algebra 
maps from B i/q and S into Si/q . (Both sides are module-finite over B i/q , 
and the issue is local on B i /q and so on B . Both sides are B i / q -flat and so free 
in the local case, and by Nakayama's lemma over B i /q , it suffices to see that 
we have an isomorphism after killing the maximal ideal of B i / q • In this way, 
we reduce to the case where the local ring B is replaced by its residue field and 
S is a separable extension of a field.) Letting B = Ad and S = Rd , we see 
that with d as above we have (Rd)i/q =:: (Ad)i/q ® Rd (over Ad) from which 
we deduce 

(6.4) Lemma. Let R be a ring of characteristic p module-finite, torsion-free, 
and generically smooth over a regular ring A. Let d be an element of AO such 
that Rd is A[smooth. Then d has a power b such that bRi/p ~ Ai/P[R] =:: 
A i/p ®A R. Let c = b2 . Then cRi/q ~ Ai/q[R] =:: A i/q ®A R for all q = pe, and 
hence cRoo ~ Aoo[R] =:: A oo ® A R as well. 

Proof. The natural map of Ai/q ®A R into R i/q has image Ai/q[R]. Since 
the map becomes an isomorphism after localizing at the element d and these 
modules are torsion-free over A, we see that Ai/q ®A R =:: Ai/q[R] for all 
q. By a direct limit argument, we see that we may identify Aoo ® A R with 
Aoo[R] ~ Roo as well. Since R i/P ::2 Ai/P[R] are finitely generated over A i/p 
and become identical after localizing at d , it follows that there is a power b of 
d that multiplies R i/P into Ai/P[R], as claimed. Let h = 1 + l/p+"'+ l/pe. 
We claim that bh R i/pq ~ Ai/pq[R] for all q = pe by induction on e. We 
already know the case e = 0 (where h = 1) and taking pth roots repeatedly 
yields bi/q R i/pq ~ Ai/pq[Ri/q] for all q whence, with h' = h - l/q, we have 

bh R i/pq = bh' bi/q R i/pq 

~ bh' A i/pq[Ri/q] 

~ A i/pq[bh' R i/q] 
~ Ai/pq[Ai/q[R]] 
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(since bh'R I / q ~ A1/q[R] by the induction hypothesis) = A 1/pq . Since bh 
divides b2 (in A 1/q) for all h, we have that b2R ,/q ~ A1/q[R] for all q, as 
required, and the result for Roo follows by taking the union. • 

We note that there is a different method for constructing elements c as in 
Lemma (6.4). The two methods have different uses. The second is especially 
important for applications to finitely generated algebras over fields of charac-
teristic O. 

(6.5) Lemma. Let R be module-finite, torsion-free, and generically smooth over 
a normal ring A. Let rl , ... , rd E R be a vector space basis for L' = L ® A R 
over the fraction field L of A, and let c=det(TrL'/L(rir)). Then cEAo and 
cRoo ~ Aoo[R] . 

Proof. That c is nonzero follows from the separability of L' over L. In 
fact, it is equivalent to the separability. It is clear that c E A, since each 
trace is integral over A and A is normal. The fraction field of Aoo may be 
identified with L 00. Since L' is separable and L 00 purely inseparable over 
L, the ri are also a vector space basis for L'oo == L 00 ® L L' over L 00 , and 
c = det(TrL,oo/Loo(rir)) as well. Note also that Aoo is normal. The result now 
follows from the fact that ROO is contained in the integral closure of Aoo in 
L'oo. Each element u E ROO has a unique representation as ~~=1 },fj with 
the A j in L 00 • Multiplying by ri and taking the trace yields a matrix equation 
(Tr(rir))(Ai) = (Tr(uri)) , and mUltiplying by the classical adjoint of (Tr(rir)) 
shows that each CAi is in A oo , since all the traces are in Aoo (cf. the remark 
following the proof of Theorem 7 in Chapter V, §4 of [ZS, Vol. ID. • 

(6.6) Remarks on the norm. Let A be a normal Noetherian domain and R 
an algebra module-finite and torsion-free over A. Let L denote the fraction 
field of A. Then L ® A R = S is a finite-dimensional L-vector space, and so 
we may define N = NS/L : S -> L to be the usual norm (i.e., N(s) = det(s) 
viewed as a linear transformation on S over L). N(R) ~ A and, henceforth, 
in referring to N we always mean its restriction mapping R to A. We may 
write N = N R/A to avoid ambiguity. Note that r is a nonzerodivisor in R iff 
N(r) =1= 0, since tensoring with L does not affect the issue. Also note that r 
always divides N(r) in R, since, by the Cayley-Hamilton theorem, r satisfies 
the characteristic polynomial obtained by viewing multiplication by r as a linear 
transformation on S, and the norm is the constant term of this polynomial. 
Thus, r E R O iff N(r) is a nonzero multiple of r in A iff r has a nonzero 
multiple in A. 

Also note that N is mUltiplicative. If R is reduced of positive characteristic 
p , then N extends uniquely to a multiplicative map ROO -> Aoo via the formula 
N(u) = N(uq)l/q for any q» O. The result is independent of the choice of q. 
On R 1/q , this agrees with the norm from R 1/q to A 1/q . 

(6.7) Remarks on base change and generic smoothness. Suppose that R is 
module-finite, torsion-free, and generically smooth over a regular domain A 
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and that A ~ B , where B is an A-flat regular domain. Then B ® A R is B-
torsion-free, module-finite, and generically smooth over B. Note that B ® A R 
is consequently still reduced. Moreover, an element of B ® A R is in (B ® ARt 
iff it has a nonzero multiple in B, by (6.6). It follows that RO ~ (B ® ARt, 
whence /* ~ (/(B ® A R»* for any ideal/of R. 

We also note that if c E AO is such that cRoo ~ Aoo[R] and S = B ® A 
R ;2 B = B ® 1, then cS= ~ Boo[S], since SOO may be identified with 
(B®AR)OO ~ Boo ® AOO Roo and so is generated over Boo by Roo (i.e., 1 ®ROO ) , 
and cRoo ~ Aoo[R]. Thus, cSoo ~ BOO[R] ~ Boo[S] (of course, since S = 
B ® A R , the last two terms are actually equal). 

(6.8) Remarks on order. Let (A, m) be a regular local ring. If x E A, we 
define ord(x) = ordm(x) to be sup{h EN: x E mh} (which is +00 if x = 
0). If A has characteristic p, we extend this to Aoo by defining ord(u) as 
ord(uq)jq for any q» O. 

The following result permits us to test for tight closure using a fixed ele-
ment c independent of /; moreover, in certain cases it will allow us to pass to 
localizations and completions. 

(6.9) Theorem. Let R be torsion-free, module-finite, and generically smooth 
over a regular domain A ~ R. Let c E AO be such that cRoo ~ Aoo[R]. Then 
the following conditions on an ideal / ~ R and an element x E R are equivalent. 

(a) x E /* . 
(b) For every maximal ideal m of A, x E (/ Rm)* . 
(c) For every maximal ideal m of A, x E (/ Rm)* , where Rm denotes the 

m-adic completion of R and is isomorphic to ~ ® A R, where Am denotes the 
completion of the local ring Am (which is isomorphic to the m-adic completion 
Am of A). 

(co) For every maximal ideal m of R, x E (/R"Y, where Rm denotes the 
completion of R . 

(d) For every "'maximal ideal m of A, there exists a sequence of elements 
{en}n in «Rm)OOt such that ord(N(en» -+ 0 as n -+ 00 and enx E /(Rm)oo. 
(N is the norm from (Rm)oo to (Am)OO described in (6.6); ord is the function 
described in (6.8).) 

(e) cxq E /[q] for all q of the form pe . 

Proof. We shall show that (a) => (b) => (c) => (d) => (e) => (a) and (c) 
¢:} (co). (a) => (b) => (c) is clear from the discussion in (6.7). Since the 
maximal ideals of R are precisely the primes lying over maximal ideals m of 
A and since Am ® A R is the product of the completions of R with respect 
to maximal ideals lying over m, the equivalence of (c) and (co) follows from 
Remark (4.13). 

We next show that (c) => (d). The key point is that if x E (lRm)* , we 
have d E (Rmt such that dxq E (/ Rm)[q] for all q, whence, as noted in 
(3.2), d'jqx E (/Rm)oo for all q. Now ord(N(d'jq» = (ord(N(d»)'jq = 
ord(N(d»jq, which obviously -+ 0 as q -+ 00, and so we may take en = 
d'jq with q = pn. Since (e) => (a) trivially, we see that the only interesting 
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implication is (d) ~ (e), which asserts that one of the weakest conditions that 
might imply that an element is in the tight closure of an ideal is equivalent to 
one of the strongest such conditions. 

Assume (d) but assume that there exists e such that cxq ¢. i q], where 
q = pe . Then c ¢. i q] : A xq , and we can choose a maximal ideal m of A such 
that this is preserved when we tensor with Am' Then, since Am is faithfully 
flat over Am' the condition is preserved when we tensor with Am as well. By 
(6.7), we may replace A, R, I, x, c by their images after tensoring with Am . 
Henceforth, we change notation and assume that A is complete local. Consider 
{en}n E (ROOt such that enx E IRoo for all nand ord(N(en)) -> 0 as n -> 00. 

Let ~ = ~n = N(en ). Then ~ E Aoo , and ~x E IRoo , since ~ is a multiple of 
en . Raising to the qth power and multiplying by c yields ~q (cxq) E l[q]cRoo ~ 
l[q]Aoo[R]. Now Aoo is flat over A, and so Aoo[R] == A oo ® A R is flat over 
R. It follows that ~q E iq]Aoo[R]: cxq (over Aoo[R]) = (/[q] : Rcxq)Aoo[R]. 
But R is a finite product of complete reduced local rings (R j , m j ) each of 
which is module-finite, torsion-free, and generically smooth over A. Since, 
by choice of q, cxq ¢. i q], we can choose i such that iq]R j : cxq ~ m j . 
We then have that for every n there is at least one choice of i depending on 
n such that ~! E mjAoo[R j]. At least one i must occur for infinitely many 
choices of n. Passing to a subsequence of the ~'s if necessary, we may assume 
that ~! E mjAoo[Rj] for a fixed i and all n. Let P denote a minimal prime 
ideal of R j • Then P is disjoint from A, and the local domain RJ P = R' 
with maximal ideal m' is module-finite, torsion-free, and generically smooth 
over A. We have an Aoo -surjection of Aoo[Rj] to Aoo[R'] ~ R'oo, and this 
yields that ~! E m'Aoo[R'] for all n. But by Lemma (6.10) below, this implies 
ord(~n) 2: l/qd!, where d is the torsion-free rank of R' over A, contradicting 
ord(~n) -> 0 as n -> 00 . • 

(6.10) Lemma. Let A be a local normal domain of characteristic p and R an 
extension domain module-finite and generically smooth over A, of torsion-free 
rank d over A. Let m be a proper ideal of R. Let v be a discrete valuation 
of A with values in Z that is positive on the maximal ideal of A. Extend v to 
Aoo in the obvious way. Then for all u E mAoo[R] n A oo , v(u) 2: lid!. If the 
extension of fraction fields is Galois, then v (u) 2: 1 I d . 

Proof. We first consider the case where the fraction field L' of R is Galois over 
the fraction field L of A. Then [L' : L] = d . Let G be the Galois group. Let 
XI' ... , xn be a set of generators for m as an A-module. It follows that u = 
L7=1 ajxj , where the a j are in A oo • Since u and the a j are purely inseparable 
elements over L, we have that for each g E G, u = g(u) = L7=1 ajg(xj) . 
Multiplying these equations together we obtain an equation of the form ud = 
LII a" XII' where v = (vI' ... , vd ) runs through all d-tuples of nonnegative 
integers whose sum is d, a" = TI~=I a~' , and Xv denotes Lf TIgEG g(x f(g))' 
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where f runs through all functions from G to {l, ... ,d} which take on the 
value i precisely /Ii times. It is easy to see that Xv is an element of L integral 
over A and fixed by G. Since A is normal, it is in A, hence in m n A , and so 
in the maximal ideal of A. It follows that vex) ~ 1 for all /I, and then since 
all of u, the aV , and the Xv are in Aoo , we have that dv(u) ~ 1 , as required. 

In the general case, we choose a module-finite extension S of R such that 
the fraction field L" of S is Galois over L and as small as possible. Then 
[L": L] ::; d!. The result now follows from the Galois case. • 

(6.11) Remark. Theorem (6.9) remains valid if we replace ord in part (d) by 
any discrete valuation of the regular ring Am positive on m. The proof goes 
through without change. 

(6.12) Remark. We want to present a different perspective on tight closure. 
Suppose for simplicity that R is reduced. Then X E 1* iff nq(I[q]: Rxq) 
meets RO . When R is module-finite, torsion-free, and generically smooth over 
a regular domain A, this is equivalent to asserting that nq(I[q] : Rxq) meets 
AO. One of the main points of Theorem (6.9) is that it suffices to check an 
enormously weaker (on the face of it) condition, that locally on A there is an 
element t5n E (I[q] : Rxq) n AO of relatively low order as q = pn grows, in the 
sense that ord(t5n )/q --> 0 as n --> 00. 

(6.13) Theorem. Let R be module-finite, torsion-free, and generically smooth 
over a regular domain A of characteristic p. Then every element dE AO such 
that Rd is smooth over Ad has a power c in the ideal of test 'elements which, in 
fact, is a completely stable test element in B ® A R for every A -flat regular domain 
B 2 A. A sufficient condition for c to have this property is that cRoo S;;; Aoo[R]. 
In particular, c is a completely stable test element in every polynomial ring over 
R. 

Proof. Except for the last statement, this is clear from Theorem (6.9). All 
hypotheses are preserved when we pass from A to B. We can assume B = A. 
Given any prime ideal of R, it lies over a prime ideal of A. We may localize 
to reduce to the case where A is local and the prime of R is maximal. Local 
stability then follows from Proposition (6.1). Similarly, we may use Theorem 
(6.9) to pass to the completion of A, and then complete stability follows from 
Proposition (6.1). The statement about polynomial rings follows because R[x] , 
where X may represent several indeterminates, is A[x] ® A R, and so we may 
apply the result on base change. • 

The situation is still quite good if R is reduced, torsion-free, and module-
finite over a regular domain A provided that A is excellent. Difficulties arise 
when A is not excellent, since there are, for example, DVR's A such that A is 
purely inseparable over A (see [N, Appendix AI, (E3.3)]). We make a remark 
and then prove two lemmas that enable us to deduce our main result, Theorem 
(6.17) below, from the generically smooth case. 

(6.14) Remark. If h : R --> S is a homomorphism of reduced rings of charac:: 
teristic p, then h extends uniquely to a map from R 1/ q to Sl/q by h(rl/q) = 
h(r)l/q. More generally, if W is any subset of R, then h extends uniquely 
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to a homomorphism from R[w i /q : w E W] to S', where S ~ S' ~ SI/q, 
provided that S' contains a qth root of every element in h(W). 

(6.15) Lemma. Let R be module-finite, torsion-free, and reduced over a regular 
ring A of characteristic p. 

(a) For all sufficiently large q, R[A 1/q] is module-finite, torsion-free, and 
generically smooth over A I/q . 

(b) Suppose that A is excellent and local as well and that q has been chosen 
so that the conclusion of (a) holds. Let A' = A 1/ q . Then there is a natural 
isomorphism between S = (A')~ ®A' R[A'] and T = (A ®A R)[A I/q], where 
R[A'] is to be interpreted as a subring of R I/q and T is to be interpreted as a 

~ 1/ subring of (A ® A R) q. 

Proof. (a) is obvious. For generic smoothness we need only consider what 
happens after tensoring with the fraction field of A. But then R becomes a 
product of fields and the field case is well known. 

To prove (b), we first note that there is an identification of (A')~ (which is 
(AI/q)~) with (A)I/q. Call this ring B. Both Sand T are module-finite over 
B, generated as B-modules by the image of R (or any set of generators for 
R as an A-module). We shall exhibit B-algebra maps between them in both 
directions, each of which is clearly the identity on the image of R. The result 
is then immediate. 

A crucial point is that both S and A ® A R are reduced. The former holds be-
cause R[A'] is generically smooth over A' and the latter because A is excellent 
and R is reduced (since A -+ A is flat with smooth fibers, so is R -> A ® A R). 
The fact that A ® A R is reduced is needed to view (A ® A R) I/q as an extension 
of A ® A R. Note that T is consequently reduced as well. 

To give the map from S to T, it suffices to given an A' -algebra map from 
each factor in the tensor product. It is clear how to do this for the first factor. 
For the second factor we use Remark (6.14). We have an obvious injection of 
R into A ® A R and hence into T, and the map extends to R[A I/q] because 
each element of A has a qth root in T. 

Similarly, we have an obvious map of A ® A R into S, and the map extends 
to T because the image of each element of A has a qth root in S. • 

(6.16) Lemma. Let R be a reduced Noetherian ring of characteristic p, and 
let S be a Noetherian ring such that R ~ S ~ R 1/q'. Suppose that c E S is 
a q" -weak test element for S. Then cq' is a (q' q")-weak test element for R. 
If c is a locally stable q" -weak test element for S, then cq' is a locally stable 
(q' q")-weak test element for R. 

Proof. If x E 1* in R, we have x E (IS)* , and so cxq E I[qjS ~ iqjR 1/q' for 
all q ;::: q". Raising to q'th powers yields cq' x q' q E I[q' qj for all q ;::: q" , and 
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{q' q: q ~ q"} is the same as {q: q ~ q' q"}. The locally stable case follows 
at once by localization. • 

(6.17) Theorem. Let R be a reduced ring that is module-finite and torsion-free 
over a locally excellent regular domain A of characteristic p. If q' is sufficiently 
large so that R[A I/q'] is generically smooth over A I/q' and c E AO is such that 
c l /q' Roo ~ Aoo[R] (such elements always exist), then c is a completely stable 
q'-weak test element in B ® A R for every locally excellent regular A-flat domain 
B ;;2 A such that B ® A R is reduced (this last condition holds, for example, if 
the generic fiber of A -+ B is geometrically reduced, i.e., for every map of A 
to a finite algebraic extension field L of its fraction field, L ® A B is reduced). 
In particular, c is a completely stable q'-weak test element in every polynomial 
ring over R (taking B = A[xi ' ... , xhD . 

1/ I 1/ I Proof. Note that R[A q]oo = Roo . We apply Theorem (6.13) to construct c q 
in A I/ql . The hypotheses are unaffected by applying B® A ' and so we might as 
well assume B = A. We can localize at any prime of A. Once A is local, with 
A' = A I/ql , we have that Cl / ql is a test element in (A I/q) ~ ® AI R[A'] , which, by 
Lemma (6.15), we may identify with a subring of (A ® A R)I/q' . We may then 
apply Lemma (6.16) to conclude that c is a q' -weak test element for A ® A R , 
which shows that c is completely stable for the original ring R. • 

(6.18) Corollary. Let R be a reduced and locally equidimensional algebra of 
characteristic p that is essentially of finite type over a field K. Then R has a 
q' -weak test element c that is a completely stable q' -weak test element in B ® K R 
for every locally excellent regular domain B;;2 K such that B ® K R is reduced. 

Proof. If Spec R has more than one component we can solve the problem on 
each component separately. Therefore, we may assume that Spec R is con-
nected. We can represent R as a localization of a reduced finitely generated 
K -algebra S at a multiplicative system U, and by localizing S at finitely many 
elements we may also assume that Spec S is connected and that the minimal 
primes of S correspond bijectively with those of R = U- I S. We can also 
assume that B ®K S is reduced (localizing enough to kill the nilpotents). 

We next claim that for any two minimal primes P, p' of S, dimS/P = 
dimS/P'. To see this, note that there is a sequence of primes PR, QIR, 
P2R, ... , QhR, P'R of R, where each Pj , Qj is prime in S, such that 

P = PI ~ QI ;;2 P2 ~ Q2 ;;2 P3 ~ ... ~ Qn ;;2 Ph = p' , 

simply because Spec R is connected. (The P's and Q's alternate, as do the 
directions of the symbols ~, ;;2.) To complete the proof that dimS/ P = 
dim S / p', it suffices to show that if Pj ~ Q ;;2 Pj + I and Q does not meet 
U , then dim R/ Pj = dim R/ Pj+ I' The point is that since U- I R is locally 
equidimensional, we must have ht QR/ PjR = ht QR/ Pj+ I R , which implies that 
ht Q/ Pj = ht Q/ PJ+ 1 in S. Choose a maximal ideal m of S that contains 
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Q. Since S is catenary, ht mj Pj = ht mj Pj + l • Since all maximal ideals of a 
domain finitely generated over a field have the same height, we get dimSjPj = 
ht mj Pj = ht mj Pj +1 = dimSj Pj + l • We may therefore assume that for every 
maximal ideal m of S and every minimal prime P of S contained in m, 
ht m j P = dim S , i.e., that S is biequidimensional. 

It will suffice to prove the result for the biequidimensional ring S, for any 
completion of a local ring of B ® K V-I S = V-I (B ® K S) is evidently a com-
pletion of a local ring of B ® K S . 

By Noether normalization, S is a module-finite extension ring of a polyno-
mial ring A = K[xI ' ... , x n]. The fact that S is biequidimensional implies 
that it is torsion-free as an A-module. Since B is flat over K, the regular 
ring B' = B[x l , ••• ,xn ] is flat over A. We may now apply Theorem (6.17) to 
conclude that there is an element of S that is a completely stable q' -weak test 
element for B' ®A S = B ®K S. • 

Similarly, 

(6.19) Corollary. Let R be a reduced, equidimensional, complete local ring of 
characteristic p. Then R has a completely stable q' -weak test element c. 

We conclude this section with a sequence of results that will enable us to 
deduce the existence of test elements from the existence of weak test elements 
in several important instances. 

We begin with 

(6.20) Proposition. Let R be a reduced ring of characteristic p, and suppose 
that c' is a q' -weak test element for R. Suppose there is an R-linear map 
R I / p -+ R that takes on a value c" E RO . Then c' C,,2 is a test element for R. 

Moreover, if c' is a locally (respectively, completely) stable q' -weak test ele-
ment, then c' C,,2 is a locally (respectively, completely) stable test element. 

1/ ' Proof. By Lemma (6.21) below, we can construct an R-linear map g: R q -+ 

R, whose value on 1 is C,,2 • Now suppose that x E 1* in R. Then c' x qq' E 
, ,'] , ,I I I qq for all q. Hence, (c xq)q E (I[q )[q ] , which shows that c x q E I[q] R /q 

when we take q'th roots. Applying the given R -linear g then yields that c' C,,2 

is a test element. 
The final statement is a cons~quence of the fact that both c' and c" will 

retain their respective properties upon localization (respectively, localization 
and completion) in the locally (respectively, completely) stable case. • 

(6.21) Lemma. Let R be a reduced ring of characteristic p, and suppose there 
is an R-linear map f: R I /p ---> R such that feu) = c E RO for some element 
u E R I / p . Then there is an R-linear map gq: R I / q -+ R such that gq(l) = c2 . 

Proof. We use induction on e, where q = pe. If e = 0, this is obvious, and 
if e = 1, we let gp(v) = cf(uv). To complete the induction, suppose we 
have such a map from R I / q ---> R. Taking pth roots gives an R I /P -linear map 
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from h: R l /pq -+ R l/p such that h(l) = c2jp . Since 21p S l, we may let 
gpq(w) = f(c l -(2/P)h(w)u) for all WE R l /pq . • 

Before giving the next result, we should remark that A lip is not assumed to 
be module-finite over A. This is what makes the issue nontrivial. 

(6.22) Proposition. Let A be a reduced ring of characteristic p and R a re-
duced module-finite extension of A, torsion-free over A. Suppose that there 
exists an A-linear map f: A ljp -+ A taking on a value in AO. Then there 
exists an R-linear map h : R l /p -+ R such that h( l) E AO (~Ro). 

Proof. If feu) = a, we may replace f by the map /, where / (z) = f(uz). 
Thus, we may assume that f( 1) = a E AO . Note that the torsion-free property 
for A ~ R (and the fact that the rings are reduced) implies that AO ~ RO . 
Note also that the total quotient ring A' = (AO)-l A is a finite product of fields, 
and hence that A' ®A HomA(R, A) 2:: A' ®A R, since, locally on A', A' is a 
field and A' ® A R is a finite product of fields. Let Ql' ... ,Qs be the minimal 
primes of R. Let el , ... ,es be the idempotents of R' = A' ® A R such that ej 

is in all the Qt except Qj • For each minimal prime Pi of A , let J; be the sum 
of the ej such that Qj lies over Pi' Let i(j) denote the integer such that Qj 

lies over Pi(J)' Choose a' E AO such that a' ej E R for every j and a' J; E A 
for every i. It is easy to see that there is an A' -linear map g: R' -+ A' whose 
value on ej is J;(j) for every j. This condition insures that g is a generator 
of Hom A' (R' , A'). In fact, it is sufficient (but still not necessary) that for all j, 
gee) is O'.jJ;(j) for some O'.j E A'o for g to be such a generator. Now choose 
a" E AO such that a" g(R) ~ A. Let g' = a"P giR' Then g' : R -+ A . 

Taking pth roots, we obtain a map g'ljp : R ljp -+ A ljp that is A ljp -linear. 
Its value on a' ej is 

(a llP g ((a'ejr)) ljp = (( a"P g (a'p ej ))) ljp 

_ ( lip 'P r) l/p - a a Ji 

= a" a'J;. 

C . . h f . ld '" R ljp A h d' , "r omposmg WIt Yle s a map 'f': -+ t at sen s a ej to aa a Ji 

and is A-linear. Applying HomA( ,A) to the inclusion R ~ R l/p gives an 
R-linear map 8: HomA(R ljP , A) -+ HomA(R, A). We then define A: R ljp -+ 

HomA(R, A) by A(r) = 8(r¢). The map A is R-linear and A(I) = ¢IR is a 
map from R to A whose value on a' ej is aa' a" J;. It follow that A( 1) is a 
generator of A' ®A HomA(R, A) 2:: R' as an R'-module. We can choose an 
R'-linear isomorphism y: A' ®A HomA(R, A) 2:: R' that sends A(l) to 1. If 
we mUltiply by a suitable element b of AO, we have by(HomA(R, A» ~ R. 
But then bYA: R ljp -+ R is R-linear and maps I to b. • 
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(6.23) Proposition. Suppose that R is reduced and is module-finite and torsion-
free over a regular domain A. Suppose that A I/p --; A splits. Then R has a 
completely stable test element. 

Proof. We already know that R has a completely stable weak test element. By 
Proposition (6.22), we may apply Proposition (6.20) to conclude that R has a 
completely stable test element. • 
(6.24) Corollary. Let R be reduced of characteristic p and locally equidimen-
sional. Suppose that either R is essentially of finite type over a field or that R 
is complete local. Then R has a completely stable test element. 

Proof. If R is complete local, it is module.,.finite over A, where A is complete 
regular local. It suffices to observe that A --; A I /p splits. It is pure, since A I / p 

is faithfully flat over A. The equidimensionality implies that it is torsion-free 
over A. 

The following argument, which is due to M. Auslander, shows that a pure 
injection A --; M of a complete local ring A into an arbitrary module M 
splits. Let E be the injective hull of the residue field of A. A ® A E --; M ® A E 
is injective, by the purity. Since E is an injective module, Hom A (M ® E , E) --; 
HomA(A ® E, E) is surjective. By the adjointness of ® and Hom, we may 
identify this map with the map 

HomA(M, HomA(E, E)) --; HomA(A, HomA(E, E)) . 

Since A is complete, A --; Hom(E, E) is an isomorphism, and so 

HomA(M, A) --; HomA(A, A) 

is surjective. Thus, the identity on A lifts to a map from M to A , as required. 
As in the proof of (6.18), when R is locally equidimensional and essentially 

of finite type over a field, we can work with each connected component of 
SpecR separately, and in the connected case we know that R is a localization 
of a biequidimensional reduced ring over K . Thus, the question reduces to the 
case where R is biequidimensional and of finite type over a field K. Then R 
is module-finite over a polynomial ring A = K[x i ' ••• , x n], and it suffices to 
observe that A --; A I /P is a free extension, and so splits: it is the composite 
of the extension A --; KI/P[x i ' ••• , x n ], which is free because K I/p is K-free, 

d K I/p ] K I/P[ I/p I/P] h' h' If. an [XI' .• , ,xn S; XI' ... , xn ' W IC IS a so ree. 
The next observation can be used to simplify the treatment of test elements in 

this section but was only noticed by the authors at a late stage in the preparation 
of the manuscript. Thus, we were not able to incorporate it into the main body 
of this section, and exploit it fully. We note that the result (6.25b) on test 
elements for ideals works equally well, without essential modification in the 
proof, for test elements for modules (working with submodules of free modules 
in place of ideals). See §8. 
(6.25) Proposition. Let R be a Noetherian ring of characteristic p with mini-
mal primes PI ' ... , Ph' Let N = ni Pi be the ideal of all nilpotent elements in 
R. Let q" be such that N[q"l = (0) . 
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(a) An element x E R is in the tight closure I* of an ideal I ~ R if and only 
if the image of x in Rj Pi is in the tight closure of I Rj Pi (over Rj Pi) for each 
i. 

(b) If each of the rings R j Pi has a q'-weak test element, then R has a q' q"-
weak test element. Hence, if R is reduced and each Rj Pi has a test element, 
then R has a test element. 
Proof. First note that if Yi E Rj Pi - {O}, then there exists ci E RO which maps 
to Yi : if d is any lifting, we cannot have d + Pi ~ Uj Pj unless Rd + Pi is 
contained in one of the Pj , by [Kap, Theorem 124, p. 90]. For the "if" part 
of (a) ("only if" is clear), suppose that Yi E Rj Pi - {O} for each i is such that 
Yi~ E {lRjPi)[q] for all q 2: q' , i.e., such that for all q 2: q' , cixq E i qj + Pi' 
where ci is a lifting of Yi to RO . Let Ai E R be in all the Pj except Pi. Then 
AiPi ~ N, so that for each i and all q 2: q' , AiCjXq E I[q] + N. It follows that 
(~iAiCy" x qq" E I[qq"] for all q 2: q' , and it is easy to see that ~iAiCi E RO , and 
hence c = dq" E RO . The proof of (b) is identical except that we pick Yj to be 
a q'-weak test element for Rj Pj (independent of the choice of x and I) and 
then observe that the argument for (a) shows that c = (~jAiCi/' , where cj lifts 
Yj to RO and the Ai are as above, is a q' q"-weak test element for R. • 

(6.26) Corollary. Let R be a ring of characteristic p and suppose that R is 
essentially of finite type over a field or else that R is a complete local ring. Then 
R has a q'-weak test element. If R is reduced, then R has a test element. 

7. CONSTRAINTS ON SYSTEMS OF PARAMETERS 
IN CHARACTERISTIC P 

It has already been noted that when R is a module-finite and torsion-free 
overring of a regular ring A in characteristic p and Xl' ... , Xn are elements 
of A that are parameters in R, then we have 

(Xl' ... , xn_I)R: RXn ~ «Xl' ... ,xn_I)R)*. 

In this section, we prove several generalizations of this result. See particularly 
Theorems (7.9) and (7.15). For example, the result is valid in locally equidi-
mensional homomorphic images of a Cohen-Macaulay ring. It is not necessary 
to assume that R is module-finite over a regular ring. (In [HH4], we show 
that related results on Koszul homology hold with the local equidimensional-
ity condition relaxed, provided that more is assumed about the sequence of 
elements.) There are similar results for ideals generated by monomials in pa-
rameters. There are related but incomparable results in several other contexts. 

We shall also see that there are comparable results for ideals constructed by 
iterated use of the addition, mUltiplication, intersection, and colon operations 
on ideals generated by monomials in parameters and, likewise, on the expan-
sions of arbitrary ideals from a regular ring A under a map h : A -> R under 
certain conditions on A, R, and h. See Remark (7.2) below and the multipart 
monster, Theorem (7.15), which details numerous situations in which results on 
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iterated operations on ideals are valid. One always needs to assume, in effect, 
that the heights of certain ideals of A do not decrease when they are expanded 
to R in order to obtain such results. 

Unless otherwise noted, all rings in this section are assumed to have posi-
tive prime characteristic p. In [HH7], the results proved here are extended to 
characteristic O. 

It is worth pointing out that every result we prove here to the effect that a 
certain colon ideal (or other result of an operation or sequence of operations) 
is in the tight closure of a certain ideal implies that it is in the integral closure. 
However, for sequences of operations, it is hopeless to try to prove a result 
of this type working entirely with integral closures. The integral closure that 
replaces the expected answer gets much too big, and one loses so much infor-
mation that it is hopeless to carry through. For example, our results imply that 
for parameters x, y, under mild conditions on the ring, 

If one approaches this by trying to use the fact that the given intersection is in 
the integral closure of the expected answer, one only obtains that the intersection 
is in ((x3 , y3 , x 2i)R)- . Since this integral closure contains xi , one gets no 
information about the colon. 

(7.1) Remark. It is worth noting that for every set of hypotheses for which we 
can prove results on capturing the colon, we also obtain the result that F-regular 
rings that satisfy those hypotheses are Cohen-Macaulay. 

(7.2) Remark. We want to explain the close relationship between the results 
on ideals generated by monomials in parameters and the results on ideals ex-
panded from regular rings. What one hopes is that if A is regular and A ---+ R 
is such that for all the ideals I of A in a certain family J one has that height 
I R ~ height I (this is true when R is a module-finite overring of A, but also 
when R is flat and in many other situations), then for all I, J E J one has 
that IR: RJR s; ((1: AJ)R)* and that IRnJR s; ((1nJ)R)*. However, we 
can prove such results only after imposing special hypotheses of one sort or an-
other. The situation is better when dealing with ideals generated by monomials 
in parameters. One useful point is that, after localization, completion, and pos-
sibly certain other manipulations, such as enlarging the set of parameters, ideals 
generated by monomials in parameters XI' ••. ,xn can be viewed as arising by 
expansion from a regular ring K[[xI' ... ,xn ]] to a module-finite extension. 
Unfortunately, many technical complications arise in trying to carry through a 
program of deducing the results about monomials from this case, partly because 
subfields of a complete local ring do not always extend to coefficient fields in 
characteristic p, and partly because, in working with tight closure, it is nec-
essary to assume the existence of completely stable test elements of some sort 
in order to be able to reduce to the complete local case. We consequently are 
forced to do a certain amount of proving of parallel results in order to get the 
theorems we want. For example, although we can prove that ideals generated 
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by monomials in parameters behave well in any locally equidimensional quo-
tient of a Cohen-Macaulay ring, we cannot obtain the result in this generality 
by localizing and completing. We need to use a quite different technique. 

The rest of this section is structured as follows. We first develop the material 
we need to obtain our results on the behavior of the colon and intersection 
operations for monomial ideals in locally equidimensional homomorphic images 
of Cohen-Macaulay rings. (The equidimensionality condition is not needed if 
one imposes height conditions modulo every minimal prime. We discuss this in 
[HH4]. The context is somewhat different, however.) Theorem (7.9) is the first 
culmination of this development. We then prove, in a very general form, the key 
lemma we need, Theorem (7.12), to obtain results on iterated operations. We 
can then combine Theorem (7.12) succesively with Theorems (7.9) and (4.8) 
and results of §6 to obtain several situations in which our results on iterated 
operations are valid. See Theorem (7.15). 
(7.3) Discussion. Throughout this discussion and its sequel, we drop the re-
striction to rings of characteristic p, imposing it again when we come to The-
orem (7.9). 

Let XI' ... ,xn be elements of the ring R. By a monomial in the Xi we 
mean an expression of the form XV , where v is an n-tuple of nonnegative inte-
gers (vI' ... , vn) and XV = n7=1 X;i . In the polynomial ring A[XI' ... , Xn] , 
where A is any base ring, the sum, product, intersection, and colon of two 
ideals generated by monomials in the Xi can be computed by formal rules, 
and the result is again an ideal generated by monomials. Suppose that each 
of the ideals I, J has a fixed finite set of monomial generators. Call these 
B, C. Then 1+ J is generated by B u C, IJ by BC = {be: bE Band 
c E C}, and In J by {LCM(b, c) : b E Band c E C}. Note that if b = x)J. 
and c = XV , then LCM( b, c) = xrnax{)J., V} , where the ith entry of m~ {,u, v} 
is max{,ui' vJ. A similar rule may be used for the calculation of monomial 
generators of the intersection of any finite number of ideals. If J is genera~ed 
by a single monomial c = XV , then I: J is generated by the elements x)J.-v , 
where x)J. runs through a set of monomial generators for I and ,u:""v has as 
its ith entry ,ui:""vi = max{,ui - vi' O}. In general, we may compute I: J as nCEC I: (c). Cf. [EHo, Tay]. In fact, the formal rules described above are valid 
not only for indeterminates over A, but also for any permutable possibly im-
proper regular sequence in any commutative ring. (Elements XI' ... , xn E R 
form a possibly improper regular sequence if for every i, 0 ~ i ~ n - 1 , 
(XI' ... , x)R: RXi+IR = (XI' ... , x)R. The ideal (XI"·" xn)R need not 
be proper. Such a sequence is called permutable if Xu(l) , ... ,xu(n) is a possibly 
improper regular sequence for every permutation (J of {I , ." , n} .) 

([EHo] deals only with proper R-sequences. The fact that one may use the 
same formal procedures for computing results of operations on monomial ideals 
in the improper case can be deduced from the proper case. The issues are local, 
and so one can assume that part of the sequence is a proper permutable sequence 
and that the other elements are units. The verification is then quite easy.) 

We note that the rules for computing the sum and product of two ideals are 
valid for arbitrary ideals. Monomial generation is not required. However, the 
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rules given for calculating intersections are rarely valid, and the rule for colons 
is never valid unless one is working with a permutable possibly improper regular 
sequence (the rule for colons implies the condition that (Xl' ... , xJR: RXi+l R 
= (Xl' ... , xi)R, which, in turn, defines such sequences). 

If Xl' ... 'Xn are elements of R and A is any ring which maps to R, e.g., 
the prime ring of R, then we can always map A = A[Xl , ... , Xn] -t R by 
mapping Xi to Xi for every i. Every ideal generated by monomials in the Xi 
in R then has the form I R , where I is generated by monomials in the Xi in 
A. We can then express the result of [EHo], that operations on monomial ideals 
constructed from permutable regular sequences can be calculated as though the 
R-sequence consisted of indeterminates (generalized to allow possibly improper 
regular sequences) as follows: 

(7.4) Proposition. Let # denote any of the four binary operations on ideals 
+, x, : ,and n. Let Xl' ... ,xn be a permutable possibly improper regular 
sequence in R. Let I, J be monomial ideals in A (where A is defined as in 
the paragraph just above). Then I R#J R = (/#J)R . 

In order to prove our main results below, we need two corollaries of this 
result. 

(7.5) Proposition. Wit~ notation as in Proposition (7.4), suppose that R has 
positive prime characteristic p. Then for all q = pe , and for all monomial ideals 
I, J ~ A, (I R)[q]#( J R)[q) = (/#J)[q) R. 

Proof. (/ Riq] , (J R)[q) are the same as Irq) R, J[q) R. The result follows read-
ily from the rules given for calculating with monomial ideals in any permutable 
R-sequence. • 

(7.6) Proposition. Let S be a Noetherian B-algebra, where 

B = A[XI ' ... , Xn , Zl ' ... , Zd] 
is a polynomial over an arbitrary ring A. Let Xi (resp. z) denote the image 
of Xi (resp. Zj) in S. Suppose that for every subset T of {I , ... , n} with t 
elements, the depth of S on the ideal generated by the Zj and the Xi for i E T 
is at least d + t. Let I, J be ideals of B generated by monomials in the X's 
and Z's and containing Zl' ... , Zd' Let # denote either +, x, : ,or n. 
Then IS#JS = (/#J)S. 

Before giving the proof, we note that the ring A is of no importance here. 
Since I, J are monomial ideals in indeterminates, so is I#J, and it is com-
puted in a formal way from these monomials. The choice of A will not affect 
the meaning of (/#J)S. Thus, given the Xi and Z j we may always set up a 
homomorphism as described by taking A to be either the prime ring in S, a 
subfield of S (if there is a subfield), or S itself, and then sending the indeter-
minate Xi to Xi for every i (respectively, Zj to Zj for every j). 

Proof of Proposition (7.6). If # is + or x, there is nothing to prove, and so we 
may assume that # is : or n. The result is local on S , and so we may assume 
that S is local. If the maximal ideal m does not contain all the Z j , then both 
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ideals are the unit ideal, and we are done. Hence, we assume that (Z j) jS S;; m . 
We next observe that it is sufficient to check the result working modulo the 
ideal generated by the Zj. It is therefore sufficient to prove the result in the 
case d = o. But the hypothesis implies that the Xi form a permutable possibly 
improper regular sequence, and the result now follows from Proposition (7.4) . • 
(7.7) Definition. We shall say that the Xl' ••• , Xn E R are permutable param-
eters if every subset of i elements generates an ideal of height at least i (i.e., 
either an ideal of height precisely i or else the unit ideal). This is equivalent 
to saying that every subset is a set of parameters. 
(7.8) Remarks. Permutable parameters retain this property after localization 
but not necessarily after module-finite extension. Represent 

K[[X, Y, Z]J/(XY, XZ) = K[[x, y, z]] 
as a module-finite extension of K[[y, X - z]]. This is possible since y, X - Z 
is a system of parameters. Then y, X - Z are permutable parameters in the 
regular ring K[[y, X - z]] but not in its module-finite extension K[[x, y, z]], 
since y is in a minimal prime. This also illustrates the point that in a local ring 
(R, m) parameters in m are not automatically permutable. If there are mini-
mal primes of different coheights, there are elements that are part of a system of 
parameters that generate ideals of height o. However, in a local ring that is an 
equidimensional image of a Cohen-Macaulay local ring, or, more generally, in a 
local ring whose completion is equidimensional (i.e., that is "quasi-unmixed" in 
the terminology of [N]) parameters in the maximal ideal are automatically per-
mutable. In a C-M ring, Xl' ••• , Xn are permutable parameters iff they form a 
permutable possibly improper regular sequence. However, even in the best rings, 
parameters may fail to be permutable, either because some subset generates the 
unit ideal while other subsets are badly behaved, or for more subtle reasons. 
For example, x, y( 1 - x), z(1 - x) is an R-sequence in K[x, y, z] which is 
not permutable, and these elements are also nonpermutable parameters. 

We also note that Xl' ... ' Xn are permutable parameters iff for 0 SiS 
n - 1, X i+ l is not in any minimal prime of an ideal generated by a subset of 
{Xl' •.. , xJ. 

We are now ready for one of the main results of this section. At this point, 
we impose again the condition that all rings be of characteristic p. 

(7.9) Theorem. Let R be a locally equidimensional Noetherian ring of char-
acteristic p that is a homomorphic image of a Cohen-Macaulay ring. Let 
Xl' ... , xn be permutable parameters in R, and map A = A[XI' ... , Xn] to 
R by sending Xi to Xi' where A = Z/pZ. Let I, J be monomial ideals in 
the Xi in A, and let # be any of the operations +, x, : ,and n. Then 

(/#J) R S;; I R#J R S;; ((l#J) R)* . 
In fact, there is a single element c E RO and an integer q' such that for all 
q 2: q', c(I R#J R)[q) S;; ((I#J)R)[q) . 
Proof. If # is + or x, then (/#J)R = I R#J R for any ideals I, J of A 
for an arbitrary homomorphism A --> R of commutative rings. Henceforth, we 
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assume that # is : or n. The first inclusion is trivial, and we focus on proving 
I R#J R ~ ((I#J)R)* , the interesting part of the theorem. This will follow if 
we establish the final statement. The result for R follows from the result for 
R red • (If c', q' work for Rred = R/ N, q" is such that N[q"] = 0 ,and c is a 
lifting of c' to RO , then for every element u E I R#J R in R, we obtain that 
cuq E ((I R + N)#( J R + N) )[q) + N for all q 2: q' , and raising to q" powers 
yields cq" uqq" E (I R#J R)[qq"] for all q 2: q' , whence cq" uq E (I R#J R)[q] for 
all q 2: q' q".) Henceforth, we assume that R is reduced. If R is a product 
ring, it suffices to prove the result in each factor separately. Hence, we may 
assume that Spec(R) is connected. Write R as S/Q, where S is C-M and Q 
is radical. We claim that the minimal primes Q i of Q in S (which correspond 
to the minimal primes of R) all have the same height. To see this, let height 
QI = d, let Q' be the intersection of those Q i that are of height d, and let 
Q" be the intersection of those that are not. Then Q'R n Q" R = 0, and since 
Spec(R) is connected, we cannot have Q'R + Q" R = R. It follows that some 
maximal ideal m of S contains Q' + Q" , and then m cont~~ins both Q i of 
height d and Qj of height =f:. d . Since Sm is a C-M local ring, it follows that 
Rm is not equidimensional, a contradiction. 

Let W = S-U i Qi' Then W- I S is a semilocal ring in which all the maximal 
ideals have height d. We shall show that there are elements ZI' ... , zd in Q 
and liftings Y 1 , ••. 'Yn of XI' ••• ,xn to S such that the height of the ideal in 
S generated by Z I ' ... , Z d and any subset consisting of t of the Y i' 0 S; t S; n , 
has height at least d + t. This is Lemma (7.10) below. Assuming this, we see 
that the z's form a S.O.p. in the local ring of S at each minimal prime of Q 
(take t = 0). It follows that QW- I S is Rad(zl' ... , zd)W-IS, and hence we 
can pick c' E Wand a fixed power q' of p such that c' Qq' ~ (z I ' ... , Z d)S . 
We shall show that the image c of c' in Rand q' satisfy our requirements. 

Let B = A[ZI ' ... , Zd] , and map B -> S sending Xi to Yi for each i and 
Zj to Z j for each j. The induced map to R agrees with the original map on 
A and sends all the Zj to O. Now suppose that S E S and its image r in 
R is in IR#JR. Let I' = IB + (Z)jB and J' = JB + (Z)jB. It is easy to 

, , , 'S (' 's see that I #J = (I#J)B + (Z)B. We have then that I S#J = I #J) ,by 
Proposition (7.6). It follows that S E (IS + Q)#(JS + Q), and so for all q 2: q' , 
we have (recalling that c' Qq' ~ (z) jS) 

c'sq E (iq]s+ (Zj)jS) # (J[q]s+ (Zj)jS) 

= (iq]#iq] + (Zj) j) S 

= ((I#J)[q] + (Zj)) S. 

Taking images in R yields that crq E (I#J)[q] R = ((I#J)R)[q] for all q 2: q' , 
and the result therefore follows from Lemma (7.10) below. • 
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(7.10) Lemma. Let S be any catenary Noetherian ring, e.g., a Cohen-Macaulay 
ring, and let Q be a proper ideal of S of height d. Let R = S / Q, and let Xi' 
1 ~ i ~ n, be elements of R that are permutable parameters. Then there exist 
elements ZI' ..• , zd E Q and li./iings Yi of the Xi to S such that for any set 
T £:;; {I , ... , n} with t elements, 0 ~ t ~ n, the ideal generated by the Z j and 
those Yi with i E T has height at least d + t. 
Proof. First lift the Xi to elements Yi of S inductively in such a way that 
for every i, 0 ~ i ~ n - 1, Yj+1 is not in any minimal prime of an ideal 
generated by a subset of its predecessors. (Let Y denote any element of S that 
lifts x j+ l • If there were no such lifting, then, by standard prime avoidance 
techniques, for example Theorem 124 on p. 90 of [Kap], Ry + Q is contained 
in a minimal prime P of (y I ' ... , Y m)S , where m ~ i. But then, since height 
Q = d, since the images of the elements YI ' ••• ' Ym ' Y in R = S/Q, are 
XI ' •.• , xm ' X i+1 ' and since S is catenary, we have that P has height at least 
d + m + 1. On the other hand, height P ~ m, a contradiction.) Second, 
choose Z I ' ... , Z d E Q inductively such that for every j, 0 ~ j ~ d - 1 , 
Z j+ I is not in any minimal prime of the ideal generated by (z I ' ... , Z j)S and 
a subset of the Yj • (If this were impossible for a certain t element subset of 
the Yj , say {Y I ' ••• ' y t }, it would follow that there exists a minimal prime 
P of (zl' ... , z)S + (Y I ' ••• ,Yt ) that contains Q. Working in Sp, we have 
that the height of the ideal Q + (Y I ' ••• ,Yt ) is at least d + t, since the ring is 
catenary, height Q = d, and the Yj reduce to the parameters Xj modulo Q. 
On the other hand, the height of P is ~ j + t , which contradicts the assumption 
j ~ d -1 .) It follows by induction on j that the height of the ideal generated by 
(zp ... , z)S and any t element subset of the Y i is at least t+ j, 0 ~ j ~ d. 
In particular, we know this for j = d , which proves the lemma. • 

The next theorem will enable us to prove results for iterated operations. We 
give it in a rather general form that can be applied in a number of different 
contexts. 

Before giving the statement, we need to consider certain special classes of 
ideal-valued functions. 
(7.11) Discussion. Let VI' ... , Vk denote variable ideals. We consider ideal-
valued functions of these variables that can be constructed recursively from the 
functions Vj (technically, this is the ith projection), Vj + Vj , VjVj' Vi n Vj , 
and Vi: Vj by allowing the substitution of functions already constructed for 
any of the variables Vi' Vj in the functions listed above, subject to the restric-
tion that one may substitute only a function for the numerator Vj of Vi: Vj , 
and not for the denominator V j • We call the functions that can be constructed 
in this way permissible. For example, (VI : V2): V3 is permissible as is 

((VIV2 + ((V3: V2) : VI)) n V4 ) n ((Vs + (V6: V3)) : V 2) . 
However, VI: (V2 : V3) and VI: (V2nV3) are not permissible. We note that 
while VI : (V2+V3) is not permissible a priori, it can be rewritten as (VI: V2)n 
(VI: V3), which is permissible. Likewise, VI: (V2 V3) is not permissible a 
priori, but can be rewritten as (VI : V3 ): V3, which is. 
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We shall call an ideal-valued function of ideals almost permissible if it can 
be constructed recursively from the functions Ui , Ui + Uj , Ui n Uj , Ui : Uj 

by substitution of functions already constructed from the variables, subject to 
the restriction that a function substituted for Uj in Ui : Uj must be permissible. 
For example, UI : (U2 : U3) is almost permissible, as is 

(((UI : U5) + (U2 n U3)) : (UI U4 + (U7 n (U2 : U5)))) + (U5 : (UI : U3)) , 

but UI : (U2 : (U3 : U4)) is not almost permissible. 
Given a homomorphism A -+ R and an ideal I of A, where A, Rare 

Noetherian of characteristic p, then we shall say that l' ~ R is trapped over 
I if IR ~ l' ~ (IR)* . 

The following rather lengthy theorem will enable us to deduce results on 
iterated operation in numerous situations. 
(7.12) Theorem (key lemma for iterated operations). Let J be a family of 
ideals of a Noetherian ring A of characteristic p such that if I, J belong to 
J, then so do 1+ J, I J, I: J, In J , and i qj for all q = pe . Let h : A -+ R 
be a ring homomorphism. 

Suppose that the following condition holds. 
(**) For all I, JEJ, (lR)*n(JR)* ~ «(lnJ)R)* and (IR)*: JR 

~ «(I: J)R)*. 
Then for all I, J E J, (IR)* n (J R)* = «(I n J)R)* and (lR)* : J R = 

«(I: J)R)*. What is more, if I, J E J, IR ~ I' ~ (IR)*, and JR ~ 
J' ~ (J R)* (i.e., l' is trapped over I and J' is trapped over J), we have the 
following. 

(a) (I#J)R ~ I'#J' ~ «I#J)R)* if # is +, x, or n. 
(b) (I: AJ)R ~ I': RJ R ~ «I: AJ)R)* (which implies that I': RJ' ~ 

«I: AJ)R)*). 
Itfollows that if.s:1' is a permissible (respectively, an almost permissible) ideal-

valuedfunction of k variable ideals and II ' ... , Ik E J, I = (II' ... , Ik), and 
IR denotes (II R, ... , IkR) , then .s:1' (IR) is trapped over .s:1' (D , i.e., .s:1' (DR ~ 
st' (IR) ~ (st' (DR)* (respectively, .s:1' (IR) ~ (st' (DR)*) . 

If every ideal in J is a sum of principal ideals aA E J such that a is a 
nonzerodivisor on R, then for (**) to hold, it suffices that for all I, J E J, 
(lR)* n (J R)* ~ «I n J)R)* . 

Finally, we note ihat if A is regular, a sufficient condition for the inclusion 
(lR)* n (JR)* ~ «(I n J)R)* (respectively, (IR)*: JR ~ «I: J)R)*) to hold 
for all I, J E J is that there exist c E RO and an integer q' such that 
c(IR n J R)[q'] ~ «(I n J)R)[q'] (respectively, c(l* R: J R)[q'j ~ «I: J)R)[q']) 
for all I, J E J. Thus, if one has c, q' that satisfy the indicated conditions 
for both nand : , then (**) holds and the statements above on behavior of 
permissible and almost permissible functions are valid. 
Proof. The statement that the inclusions in condition (**) imply equality is 
trivial. The opposite inclusions follow from the facts that (I R)* n (J R)* and 
(lR)*: JR are tightly closed; see Proposition (4.1). The fact that (a) and (b) 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



68 MELVIN HOCHSTER AND CRAIG HUNEKE 

hold is then obvious. There is no problem at all when # is + or x. (a) and 
(b) can be paraphrased as follows. If 1', l' are trapped over I, J E J , 
respectively, then 1'#1' is trapped over I#J, subject to the restriction that if 
# is : then l' is equal to J R (and not just trapped over J). The result 
on permissible functions is then immediate from (a), (b) by induction on the 
number of substitutions needed in the recursive construction of the function. 
The result on almost permissible functions is also immediate by the same line 
of argument, but now making use of the remark that when 1', J' are trapped 
over I, J, then I': l' ~ ((I: J)R)* , although 1': l' need no longer contain 
(1: J)R. 

It remains only to establish the sufficiency of the criteria for (**) to hold 
given in the last two paragraphs of the statement of the theorem. First, suppose 
that every ideal of J is a sum of principal ideals of J generated by nonzero-
divisors on R. Suppose I, J E J are given and J = (aI' ... , am)A, where 
each ai is a nonzerodivisor on R and each aiA E J. Then (IR)*: JR = 
ni (1R)*: (aiR). If a = ai and Z E (IR*): (aR) and we have that az E 
(IR)*naR ~ ((1naA)R)* = (a(I: aA)R)*, which implies that z E ((1: aA)R)* 
by Lemma (7.13) below. But then 

(by repeated use of the property for intersections) = ((1: J)R)* , as required. 
The criterion in the last paragraph of the statement of the theorem is perhaps 

the most interesting part. We must show under the hypothesis that c, q' as 
specified exist that if U E (1R)* n (JR)* (respectively, (IR)* : JR), then U E 
((1 n J)Rr (respectively, ((1: J)R)*). We choose c' E RO and q" such that 
for all q :2: q", c' uq E (I R)[q)#( J R)[q) = I[q) R#J[q) R. Since i q), J[q) are again 
in J, it follows that for all q :2: q" we have c(c'uq)q' E ((1[q)#J[q))R)[q'] = 

((I#J)[q)R)[q') (since A is regular) = ((I#J)R)[qq'), which implies that for all 
q :2: q' q", (cc,q' )uq E ((1#J)R)[q) . 

This completes the argument, once we have established Lemma (7.13) 
below. • 

(7.13) Lemma. Let a be a parameter of Rand J any ideal. If az E (aJ)* , 
then Z E J*. 

Proof. We can pass to R red and so assume that a is a nonzerodivisor. We can 
choose c E RO such that for all large q we have c(az)q E (aJ)[q) = aq J[q) . 
Since a is not a zerodivisor, this implies that for all large q we have that 
czq E J[q). • 

(7.14) Remarks. (a) In order to prove that (1R)*n(JR)* = ((1nJ)R)* (re-
spectively, that (IR)*: JR = ((I: J)R)*) from the condition in the last para-
graph of the statement of Theorem (7.12), we did not really need to work with 
such a large family J. What we really needed in the argument is simply the 
existence of a fixed element c' E RO and a fixed integer q' such that for all q, 
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c'«(I[q]R n j[q])R)[q'] ~ «iq] n j[q])R)[q'] (respectively, c'«iq]R: j[q]R)[q']) ~ 
«iq]: j[q])R)[q']). The result is stated in terms of a family so that it can be 
applied to iterated operations. 

(b) The condition that A be regular in the last paragraph of Theorem (7.12) 
is not entirely essential. All we really need is that the Frobenius power opera-
tion (sending I to i q]) commute with : and n, which might be guaranteed 
by other means, e.g., by assuming that various ideals have finite projective di-
mension. 

(c) Suppose that 1* R ~ (IR)* for each IE J , which is automatic if A is 
regular or AO maps into RO. Then the conclusion of Theorem (7.12) remains 
valid if we enlarge the classes of permissible and almost permissible functions 
by allowing the substitution of ut for Ui • The point is that if an ideal is 
trapped over I, its tight closure is trapped over 1* , and even over I, since 
IR ~ I*R ~ (I*R)* = (IR)*. 

(d) We may likewise enlarge both classes of functions by permitting the sub-
stitution UJq] for Ui ' for if an ideal is trapped over I , this is preserved when 
we apply [q] , The key point is that «(IR)*)[q'] ~ (I[q']R)* . (For suppose c E RO 
and cyq E i q] R for q :» 0, i.e., y E (I R)* . Then cq' (yq')q E (iq'] R)[q] for 
q :» 0 , as required.) 

We are now ready to state our main result on iterated operations, which gives 
several contexts in which the result of performing iterated operations is in the 
tight closure of the expected answer. The first of these, Theorem (7.15)(a) is 
the culmination of the work we did earlier on permutable parameters in locally 
equidimensional homomorphic images of C-M rings. 

(7.15) Theorem (main theorem on iterated operations). Let A -- R be a ho-
momorphism oj Noetherian rings oj characteristic p, and let J be a Jamily 
oj ideals oj A. Then in each oj the situations (a), (b), (c), (d), (e), and (f) 
listed below, Jor every permissible (respectively, almost permissible) ideal-valued 
Junction Sif' oj k variable ideals I), ... , Ik E J if I denotes (I), '" , Ik ), 
and IR = (I) R, ... , IkR) , then Sif' (IR) is trapped over Sif' (D, i.e., Sif' (DR ~ 
Sif' (IR) ~ (Sif' (DR)* (respectively, Sif' (IR) ~ (Sif' (DR)*) , 

(a) R is a locally equidimensional homomorphic image oj a Cohen-Macaulay 
ring, x)' ... ,xn are permutable parameters, A = Zj pZ, A = A[X) , ... , Xn ], 
a polynomial ring, mapping to R so that the image oj Xi is Xi' and J is the 
Jamily oj monomial ideals in the Xi in A. 

(b) R is a module-finite extension oj a regular domain A such that R is 
torsion-free as an A-module or, more generally, such that R is locally equidi-
mensional, and J is the Jamily oj all ideals oj A. 

(c) A is a regular ring such that every residue class field is perJect, R is lo-
cally Jormally equidimensional and has a completely stable q'-weak test element, 
h : A -- R is such that every maximal ideal oj R contracts to a maximal ideal 
oj A and such thatJor all maximal ideals m oj A, heightmR ~ heightm, and 
J is the Jamily oj all ideals oj A. 

(d) h: A -- R is a local homomorphism oj complete local rings such that 
(A, P) is regular, R is equidimensional, A has a coefficient field K that can 
be extended to a coefficient field oj R, height P R = dim A (so that regular 
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parameters for A are part of a system of parameters in R), and J is the 
family of all ideals of A. 

(e) A is a regular ring finitely generated over a perfect field K, R is a locally 
equidimensional ring finitely generated as an A-algebra such that for all maximal 
ideals m of A, heightmR ~ heightm, and J is the family of all ideals of A. 

(f) A is a polynomial ring in d variables over a perfect field K, R is N-
graded, locally formally equidimensional and has a completely stable q' -weak test 
element, h: A -+ R is a graded homomorphism such that every maximal ideal 
of R contracts to a maximal ideal of A and such that for the graded maximal 
ideal m of A, height mR ~ d , and J is the family of all homogeneous ideals 
of A. 

Before giving the proof of this result, we make some remarks and then prove 
a result that shows that nilpotents may, in essence, be ignored in this context. 

(7.16) Remarks and examples. The reason that the colon function U: V re-
quires special treatment is that as the denominator V gets larger the value of 
U: V gets smaller. In the case of all the other ideal-valued functions that 
we are considering (as well as for the numerator U of U: V), enlarging the 
value of the variable ideal enlarges the value of the function. For this reason, 
I': J' need not be trapped over /: J when J' is strictly larger than J. This 
is what forces us to make the rather technical definitions of permissible and 
almost permissible function. 

Specifically, let (R, m) be a two-dimensional equidimensionallocal ring of 
characteristic p that is not C-M and let x, y be a S.o.p. (K[[u4 , u3v, vu3 , v 4 ]] 

S;; K[[u, v]] is one completely specific example. We may take .x = u4 , Y = v 4 .) 

Let A = Zp[X, Y]. Since x, y is not a regular sequence, xR: yR is 
strictly larger than xR, and so xR: (xR: yR) S;; m, and is not trapped 
over XA: (XA: Y A) = XA: XA = A, although it is contained in AR = 
R. This is the kind of behavior we expect from an almost permissible func-
tion (i.e., U1 : (U2 : U3)) that is not permissible. Since m is nilpotent mod-
ulo (x, y)R, we can choose t such that (xR: (xR: yR))1 S;; (x, y)R, and 
then (x, y)R: (xR: (xR: yR))1 = R is not even contained in the tight clo-
sure of the expected answer, which is «X, Y)A: (XA: (XA: Y A))/)R = 
«X, Y)A: AI)R = (X, Y)R = (x, y)R (note that tth powers are obtainable as 
iterated products). The function involved, U1 : (U2 : (U3 , U4))/, is not almost 
permissible, since the denominator is not permissible. 

(7.17) Proposition. Let h, A, R, and J be as in the first paragraph of 
Theorem (7.12). Then condition (**) holds iffit holds for h', A, R red , and 
...Y , where h' is the composition of h with the canonical surjection R -+ R red . 

Proof. Let N be the nilradical of R and suppose that N[q"] = o. First assume 
that (**) holds in the original situation, and let I, J E...Y . Let u E R be such 
that u+N E (/ Rred)*n(J R red)* (respectively, (l Rred)* : J Rred ) . Then there is a 
c E RO and q' such that for all q ~ q' , (c+N)(u+N)q E (I[q]R+N)n(J[q] R+N) 
(respectively, (c + N)(u + N)q i q] R S;; i q] R + N). Raising both sides to the 
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q" power, we find that for all q ;::: q' q", cqll uq E I[q] R n J[q] R (respectively, 
cqll uq iq]R <; iq]R) , whence u E (1R)* n (J R)* <; «(1 n J)R)* (respectively, 
u E (1R)* : J R <; «I: AJ)R)*) , and so u + N E «I n J)Rredf (respectively, 
u + N E «I: AJ)Rred)*) , as required. 

Now assume that (**) holds after we pass to Rred , and let u E (1 R) * n (J R)* 
(respectively, (1R)*: JR). Evidently, u+N is in (1Rredfn(JRred)* (respec-
tively, (IRred )*: JRred),andsoin «InJ)Rred )* (respectively, «I: J)Rredf). 
The conclusion we need is now immediate from Proposition (4.1)0). • 

Proof of Theorem 7.16. (a) is immediate from Theorems (7.9) and (7.12). 
(b) If R is locally equidimensional, we begin by passing to Rred . This is 

justified by Proposition (7.17). The condition is equivalent to being torsion-free 
over A once we know that R is reduced. It then suffices to show that there 
exist c E RO and q' such that for all I, J <; A, c(I R n J R)[q'] <; «(1 n J)R)[q'] , 
by virtue of the criteria for (**) given in Theorem (7.12). But, precisely as in 
the proof of Theorem (4.8), we may choose q' = 1 and c to be an element 
of A - {OJ such that cR <; F, where F denotes a free A-submodule of R of 
maximum rank. 

(c) By Theorem (7.12) all we need to check is that if I, J are ideals of 
A, then (IR)*n(JR)* <; «(1nJ)R)* and (IRf: JR <; «(1: J)R)*. Let 
.s;1 = (I n J)R (respectively, (1: J)R), and suppose u denotes an element 
of (IR)* n (J R)* (respectively, (IR)*: J R) that is not in the ideal .s;1* on 
the right in the respective inclusion that we are trying to prove. Let c be a 
completely stable q'-weak test element. Then cuq is not in .s;1[q] for some 
choice of q ;::: q' , and this will be preserved after localizing and completing 
at a certain maximal m of R. Let S be the localized completion of R, and 
let B be the completion of the localization of A at the contraction m' of 
m. Then since (IR)*, (JRf map into (IS)* , (JS)* , respectively, we get a 
new counterexample in which A, R, I, J are replaced by B, S, I B, J B . 
(We are using the fact that the image of c is a q'-weak test element in S.) 
Note that since m' is maximal in A, B is a complete regular local ring with 
a perfect residue field. Note aiso that since dim B = height m' ~ height m' R ~ 
height m'Rm = height m'S, we can conclude that if Xl' ... ,xd is a regular 
system of parameters for B, then it is part of a system of parameters for S. 
The height condition forces the map B -> S to be injective. We have now 
reduced to the situation of part (d), which is proved below. 

(d) Let L be a coefficient field for R extending K, and let Xl"'" Xd 
generate P, so that A = K[[x1 ' ... , xdll. Then we can enlarge Xl' ... , Xd to a 
system of parameters Xl' ... ,xn for S and then A by A' = L[[xl ' ... , Xn]] , 
since A' is faithfully flat over A. Changing notation, we may assume that 
A = A' , and then R is module-finite over the regular local ring A. The result 
now follows from part (b). 

(e) Since R, A are of finite type over K, we know that every maximal 
ideal of R lies over a maximal ideal of A. Since R is excellent, its local rings 
are formally equidimensional, not just equidimensional. Moreover, R has a 
completely stable q' -weak test element. Thus, part (c) applies. 
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(f) We imitate the proof of part (c). The point is that we can choose the 
maximal ideal of R at which we are going to localize to be homogeneous. It 
then lies over a homogeneous maximal ideal of A, which must be HZ-, and the 
rest of the argument is the same. • 

8. TIGHT CLOSURE FOR SUBMODULES IN CHARACTERISTIC P 

In this section, we extend the notion of tight closure for ideals to submodules 
of a finitely generated module over a Noetherian ring R of characteristic p. 
After giving the basic definitions and exploring some fundamental properties, 
we extend the notion of test element for ideals to the module case, and develop 
some results comparing the two notions. We also develop a criterion for one 
submodule to be in the tight closure of another when their quotient has finite 
length in terms of conditions on asymptotic growth of lengths as iterations of 
the Frobenius endomorphism are applied. See Theorem (8.17). In a different 
direction, we consider the extent to which the tight closure of a torsion-free 
module embedded in a projective module is independent of the embedding 
(this is the case for normal rings; see Proposition (8.18)). 

We also consider a variant notion (finitistic tight closure) that is useful in 
situations where modules are not necessarily finitely generated, and a notion of 
absolute tight closure that gives rise to right derived functors. 

Throughout this section, rings are assumed to be of positive prime character-
istic p unless otherwise specified. 

(8.1) Discussion. We begin by briefly recalling some facts about the Peskine-
Szpiro functors Fe, where e EN. Let S denote R viewed as an R-algebra 
via the eth power of the Frobenius endomorphism. Then Fe is simply S® R ' a 
covariant functor from R-modules to S-modules. However, since S = R, this 
is a covariant functor from R-modules to themselves. If we apply Fe to a map 
R n _ Rm with matrix (ri) , we obtain the map between the same two modules 
with matrix (r~), where q = pe . Note that the R-module structure on Fe (M) 
. h I I I I q Issucht at r(r®m)=(rr)®m. On the other hand, r ®(rm)=(rr )®m. 
Also note that Fe (R/ I) = R/I[q] , where q = pe . 

We observe that there is a canonical map M - Fe (M) that sends m to 
1 ® m. If q = pe and x EM, we shall write x q for the image of x in 
Fe(M). Note that (x + y)q = x q + yq and (rx)q = rqxq with this notation. 
Note also that if x = (r), ... ,rn ) E M = Rn , then x q = (ri, ... ,r!) if 
we identify Fe (M) with Rn. In particular, this new notation is consistent 
with our notation for the case M = R. If N ~ M, we shall write N[q] for 
Ker(Fe(M) _ Fe(M/N)). By the right exactness of ®, N[q] may also be 
identified with Im( Fe (N) - Fe (M)) , and this is the same as the R -span in 
Fe (M) of the elements x q for x EN. N[q] depends heavily on what M is (or, 
more precisely, on what N - M is). If we need to indicate this dependence 
on M in the notation, we shall write N~] instead. With these conventions 
M~] = Fe (M) , and we sometimes write M[q] for Fe (M) . 
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Note that if M = Rand N = I S;;; R, then I~] in this new notation is 
identical with what was previously described as i q] . 

(8.2) Definition. Let N S;;; M be modules over a ring R of characteristic p. 
We say that x E M is in the tight closure N* of N if there exist c E RO and 
an integer q' such that for all q 2: q', cxq E N,~] . If N = N* , we say that N 
is tightly closed (in M). 
(8.3) Remark. The notation N* is often used for the dual of a module in 
some sense. Therefore, we shall also use the alternative notation CI(N) for 
the tight closure. Since the tight closure will depend on what M is as well, 
we shall sometimes indicate the larger module in our notation by writing N~, 
CIM(N) , or CI(N, M). The problem will not arise significantly in the present 
manuscript, since we have little or no need to refer to duals. 
(8.4) Remark. It is easy to see that x E M is in the tight closure of N S;;; 
M if and only if x + N is in the tight closure of 0 in MIN. In fact, 
cxq E N~] iff c(x + N)[q] E ol.f)/N = 0 in Fe (MIN) = Fe(M)IN[q] , since 
c(x + N)q is represented by cxq . One may always translate questions about 
whether an element is in the tight closure of a submodule first to the case where 
the submodule N is 0, and then, using the reverse trick, to the case where M 
is free, by mapping a free module G onto MIN and studying the question for 
G and the inverse image of the submodule O. 

We have given this definition without restricting M to being finitely gener-
ated. Our Itlain interest is certainly in the case of finitely generated modules, 
but, in the result just below, we keep track of which basic properties hold in 
general. In the sequel, we make a blanket assumption that given modules are 
finitely generated, unless otherwise specified. We should point out that later 
in the section, we shall define the notion of the "absolute'" tight closure of a 
submodule. It is of some interest to apply this to modules that are not finitely 
generated, for taking the absolute tight closure of the 0 submodule of a module 
is a left exact functor. Hence, it has right derived functors, and we need to 
apply the notion to injective modules. 

The following proposition summarizes many of the basic properties of tight 
closure for submodules. 
(8.5) Proposition. Let R be a Noetherian ring of characteristic p, let M be 
an R-module, let N, N', etc. denote submodules of M, and let I denote an 
ideal of R. 

(a) N~ is a submodule of M containing N. 
(b) If N S;;; N' S;;; M, then N~ S;;; N';. The intersection of an arbitrary family 

of tightly closed submodules of M is tightly closed. 
(c) If Ann R MIN has positive height or if R is reduced, then x E N* iff there 

exists c E RO such that cxq E N~] for all q = pe. More generally, if x E M 
and AnnR(x + N) = N: RRx has positive height, then x E N* iff there exists 
c E RO such that cxq E N[q] for all q. 

(d) If M is finitely generated, then for every submodule N S;;; M, there exist 
c E RO and q' such that c(N~)[q] S;;; N~] for all q 2: q'. If AnnR MIN has 
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positive height or if R is reduced, then c can be chosen so that the inclusion 
holds for all q. 

(e) Assume that M is finitely generated. Then N* = N** for all N ~ M. 
(f) (N n N')* ~ N* n N'* . 
(g) (N + N')* = (N* + N'*)* . 
(h) (I N)* = (1* N*)* . 
(i) If J is the nilradical of R, N* contains J M for every N ~ M. 
U) If J is the nilradical of R, for any N ~ M, if N' denotes the image 

(N + JM)/JM of N in M/JM, then N* is the inverse image in M of 
Cl( N' , M / J M), where the last tight closure may be computed over either R or 
R red · 

(k) If N is tightly closed in M, then N: MI (respectively, N: RN') is tightly 
closed in M (respectively, R) for every ideal I of R (respectively, submodule 
N' of M). 

(1) If x E Cl(N, M), then x q E CI(N[q] , Fe(M)) for all q = pe. 
(m) If Nl ' ... , Nh are submodules of Ml ' ... , Mh , respectively, M = EB Mi 

and N = EB Ni ~ M, then Cl(N, M) = EB CI(Ni' Mi). In particular, CI(O, M) 
= EBCI(O, MJ. 
Proof. (a) and (b) are straightforward. To prove (c), we first prove the final 
statement. The "if' part is clear. Suppose that x E N* , i.e., for some c E RO , 
cxq E N[q] for all q 2:: q'. We know there exists c' E RO such that c' x EN. 
Then c,ql cxq E N[q] for all q. The case where Ann M / N has positive height 
is now obvious. Suppose, finally, that R is reduced. If we localize at the 
multiplicative system RO , R becomes a finite product of fields. After localizing, 
we have that xi E Nfq] for large q, where the subscript indicates images after 
localization. Over a finite product of fields, the Frobenius endomorphism is 
faithfully flat, and so we can conclude that Xl E N l , i.e., that we can choose 
c' E RO with c'x EN. (c) is therefore proved. 

The proofs of (d), (e), (f), (g), and (h) are now essentially the same as their 
counterparts in Proposition (4.1). We can deduce (i) from (h) with I = (0) . 
N* ;2 0* = ((O)M)* ;2 (0)* M ;2 J M . 

To prove U), first choose a fixed integer q" such that J[q"] = O. Note that 
this implies (J M)[q"] = 0 (which may be used to give a different proof of (i)). 
Note that when M, N are modules over R red , then N1i] is ambiguous. It may 
be computed over R or over Rred . We shall write N;:J for the latter. We first 
observe that when N ~ M are modules over Rred , N* is the same whether 
calculated over Rred or over R. The point is that Fe (M) calculated over R 
becomes Fe (M) over Rred upon tensoring with Rred , and so N[q] maps onto 
N;:J. The kernel of the map N[q] -> N;:J is J Fe (M) n N[q]. It is then clear 
that if cxq E N[q] (over R) for all q 2:: q' , then c' x q E N;:J over R red for all 
q 2:: q' , where c' is the image of c in R red • Conversely, if c' x q E N::J for 
all q 2:: q' (calculated over Rred ) , then cxq E N[q] + J Fe (M) for all q 2:: q' . 
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But then cq" x qq" E N[qq"). The rest of the argument uses the same trick and 
is omitted. 

We next establish (k). We need only consider the case where 1= Rx (respec-
tively, N' = Rx), since an intersection of tightly closed submodules is tightly 
closed. Suppose that u is in the tight closure of the colon. Then for some 
c E RO we have that cuq is in (N: Rx)[q) , which is the R-span of elements 
w q with w in N: Rx. It follows that cuq x q (or cxq uq ) is in N[q) for all 
q :» 0, and so ux (or xu) is in N* = N, i.e., u EN: Rx, as required. 

To prove (I), note that if cxq E N[q) for all q ~ q' , then c(xq/' = cxqq" E 
N[qq") = (N[q))[q") for all q" ~ q' . 

We leave (m) as an exercise, except to note that in proving E9 CI(Ni' M i ) ~ 

CI(N, M), one multiplies the individually chosen ci together. • 

Henceforth, in this section, we keep to our usual convention that modules 
are finitely generated unless otherwise specified. 

All of the results proved for ideals and tight closure earlier have counterparts 
for modules, including the results on iterated operations. We shall not pursue 
this here, however. Instead, we focus on applications of tight closure for sub-
modules peculiar to the case of modules, particularly results on vanishing of 
maps of homology (see §9). We must first develop several additional basic facts 
and explain how the theory of test elements developed in §6 extends to handle 
the module case. 

(8.6) Discussion. Recall that a local ring (R, m) is approximately Gorenstein 
if there is a sequence of irreducible m-primary ideals Qt cofinal with the powers 
of m. It is shown in [H05] that if dim R > 0, then R is approximately 
Gorenstein iff its depth is positive and there does not exist a prime Q of R 
such that dimRIQ = I and RIQ(f)RIQ can be embedded in R. In particular, 
any local ring of depth 2 is approximately Gorenstein, and so every normal 
local ring is approximately Gorenstein. Moreover, every excellent reduced local 
ring is approximately Gorenstein, as is every excellent local ring that has no 
embedded prime of dimension one. All in all, the condition that a ring be 
approximately Gorenstein is quite weak. 

(8.7) Proposition. Let R be a ring of characteristic p such that every ideal is 
tightly closed, i.e., R is weakly F-regular. Then every submodule N of a finitely 
generated module M is tightly closed. 

Proof. Let x E M be an element of M not in N. We must show that x is 
not in N* • We may replace N by a submodule of M maximal with respect 
to not containing x, and we may replace M, N, and x by MIN, 0, and 
x + N. From the fact that x is in every nonzero submodule of M, it readily 
follows that x is killed by a maximal ideal m of R and so M is an essential 
extension of K = Rim, which implies that M is killed by a power of m. Since 
R is normal, Rm is approximately Gorenstein, and there exists an irreducible 
m-primary ideal Q ~ Ann M. The Artin ring RI Q is self-injective, and M is 
an essential extension of K as an (RIQ)-module. It follows that M can be 
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embedded in R/Q. It will then suffice to show that 0 is tightly closed in R/Q, 
i.e., that Q is tightly closed in R. • 

The proof of this proposition shows the following. 

(8.8) Proposition. Let Q/ be a sequence of irreducible m-primary ideals in the 
local ring (R, m) of characteristic p cofinal with the powers of m. In order 
that R be weakly P-regular, it is necessary and sUfficient that each of the ideals 
Q/ be tightly closed. 

In a different direction, we note the following. 

(8.9) Proposition. Let R be a ring of characteristic p, and let N ~ M be 
finitely generated modules such that M / N is killed by a power of a maximal 
ideal m of R. Then (Nm)* = (N*)m' 

Proof. As in the proof of Proposition (4.14), it suffices to show ~. Let x be an 
element of N such that x/I E (Nm )* . Exactly as in the proof of Proposition 
(4.14) we can choose c E RO such that (c/1)(x/1)q E Nm[q] s:: N[q]m' Since 
(cxq)/l E N[q]m for all q :» 0, cxq E N[q] , since pe(M)/N[q] is killed by a 
power of m. • 
Remark. Instead of assuming that M / N is killed by a power of m, suppose 
that x is an element of M whose image in M / N is killed by a power of m. 
Suppose also that x is in the tight closure of N m in Mm' Exactly the same 
argument shows that x is in the tight closure of N in M. The only change 
needed is to replace pe(M)/N[q] by (N + Rx)[q]/N[q] in the last line of the 
proof. 

(8.10) Discussion. In §6, we introduced the notion of a q'-weak test element. 
From this point on, we shall refer to these as "q'-weak test elements for ideals," 
for we are about to introduce a new version of the notion for the module case. So 
long as the ring is mildly well behaved (e.g., if its local rings are approximately 
Gorenstein) and q' = 1, we can prove that the two notions coincide. In general, 
a q' -weak test element for modules also is a q' -weak test element for ideals, but 
we have been unable either to prove or disprove the converse. The results in 
the two theories are entirely parallel. In every instance where we can construct 
(weak) test elements for ideals, we can also construct them for modules. 

(8.11) Definition. Let R be Noetherian ring of characteristic p. We say that 
c E RO is a q' -weak test element if for every finitely generated module M and 
submodule N, x E M is in N* iff cxq E N~] for all q 2: q'. We say that 
c is a locally (respectively, completely) stable q'-weak test element if its image 
in (respectively, in the completion of) every local ring of R is a q' -weak test 
element. 

(8.12) Remarks. In the definition, it suffices to consider the case where N = 0; 
it also suffices to consider instead the case where M is free. Moreover, if 
cxq E N[q] for all q 2: q' , then it is automatic that x E N* . It is the "only if' 
part that is significant, for if cxq ~ N[q] for even one value of q 2: q' , we can 
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conclude that x fI. N* . Note that the condition cxq E N[ql for all q :2: q' can 
be rephrased as cxqq' E N[qq'l for all q. 

As indicated earlier, the theory of test elements for ideals generalizes without 
essential change to the module case. We sketch the main points rapidly. We 
first note the following analogue of Proposition (6.1). 

(8.13) Proposition. Let R be Noetherian of characteristic p and c E R. 
(a) c is a q'-weak test element for R iff c/l is a q'-weak test element for 

Rm for every maximal ideal m of R. 
(b) If R has a q'-weak test element, then the tight closure of N ~ M is the 

intersection of the tightly closed sub modules N' :2 N such that M / N' is killed 
by a power of a maximal ideal. 

(c) If c E R is a q' -weak test element for the completion R of the local ring 
R, then it is also a q' -weak test element for R. In this case, for all N ~ M and 
x EM, x E N* if and only if x E (R)* , i.e., N* = (R)* n M. 

(d) Let J be the ideal of nilpotents in R and suppose that J[q"l = O. Let c' 
be the image of c ERin R red • If c is a q' -weak test element for R, then c' 
is a q' -weak test element in R red • If c' is a q' -weak test element in R red , then 
cq" is a q' q" -weak test element in R. 

Proof. (a) Suppose that c is a q' -weak test element for R. Suppose N ~ M, 
x/I E (Nm)* , and q :2: q'. We must show that cxq /1 E N!:l. If not, we 
can choose a positive integer t such that cxq /1 fI. mt M m + N!:l and then 
cxq /1 fI. (mt M + N)[ql Rm ' which implies that cxq fI. (m t M + N)[ql and hence 
that x fI. (mt M + N)* , since c is a q' -weak test element in R. But then 
Proposition (8.9) implies that x/I fI. (mtMm + Nm)* and so x/I fI. Nm * , a 
contradiction. 

Conversely, suppose that c/I is a q'-weak test element for Rm for every 
ideal m of R. This implies c E RO . Suppose N ~ M, x E N* , and q :2: q' 
but cxq fI. N[ql. Then we can localize at a maximal ideal m of R so as to 
preserve the last condition, and we still have x/I E N m * , which contradicts the 
condition that c / I be a q' -weak test element for Rm' 

(b) One inclusion is obvious. To prove the other, suppose that x E M -
N*. We must construct N' :2 N such that M/N' is killed by a power of a 
maximal ideal and x fI. N'* . Since x fI. N* , we can choose q :2: q' such that 
cxq fI. N[ql. We can choose m such that cxq /1 fI. N!:l and then t such that 
cxq /1 fI. mt M m + N!:l , and we then conclude exactly as in the proof of part 
(a) that x fI. (mtM + N)* . 

(c) Since R is R-flat, RO ~ RO , and so N* ~ (NY for N ~ M. Let c E R 
be a q' -weak test element for R. The results claimed all follow if we can prove 
that for all N ~ M and x EM, if x E (R)* , then cxq E N[q] for all q:2: q' . 
But since c is a q'-weak test element for R, we have cxq E R[q] = (N[q])~ 

and since R is faithfully flat over R, this implies that cxq E N[q] , as required. 
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(d) The essential trick in the argument has already been given in the discus-
sion of part U) of Proposition (8.5). • 

We can now observe that the statement and proof of Corollary (6.2) apply 
verbatim to the case of modules. Theorem (6.9) likewise generalizes. Since 
some changes in statements are needed, we give an explicit version. 

(8.14) Theorem. Let R be torsion-free, module-finite, and generically smooth 
over a regular domain A ~ R. Let c E AO be such that cRoo ~ Aoo . Then the 
following conditions on finitely generated R-modules N ~ M and an element 
x E M are equivalent. 

(a) x E N*. 
(b) For every maximal ideal m of A, x E N m * . 
(c) For every maximal ideal m of A, x E Nm* in Mm, where Mm denotes 

the m-adic completion of M and is isomorphic to Am ® AM, where Am denotes 
the completion of the local ring Am (which is isomorphic with Am). 

(co) For every maximalideal m of R, x E Nn: in Mm*' where Mm denotes 
the completion of M . 

(d) Let G be a fi":zitely generated free module mapping onto M, let H be 
the inverse image of N, and let y be an element of G that maps to x. Then 
for every maximal ideal m of A there exists a sequence of elements {en}n 
in «Rm)OOt such that ord(N(en)) -+ 0 as n -+ 00 and eny E H(Rm)oo, the 
(Rm)oo-submoduleofG®R(Rm)OO spanned by H. (N is the norm from (Rm)oo 
to Am described in (6.6); ord is the function described in (6.8).) 

(e) cxq E N[q] for all q of the form pe. 

Proof. There is no loss of generality in assuming that M is free (we can replace 
N, M by H, G as in the statement of part (d)). As in the proof of Theorem 
(6.9), we show (a) :::;. (b) :::;. (c) :::;. (d) :::;. (e) :::;. (a) and (c) <=> (co). The 
argument is nearly the same. We discuss only the most interesting implication, 
(d) :::;. (e), and that only minimally. 

Assume (d) but that there exists e such that cxq ft. N[q], where q = pe . 
Exactly as in the proof of Theorem (6.9), we can reduce to the case where A 
is complete local. The rest of the argument is the same except N replaces I 
throughout. • 

Next, we remark that Theorem (6.13), Lemma (6.16), Theorem (6.17), and 
Corollaries (6.18) and (6.19) extend to the case of modules with no changes 
whatsoever in wording and no significant changes in their proofs. Likewise, 
Proposition (6.20) is valid for modules. The proof is the same for N ~ Rt as 
for I ~ R, and one then obtains Proposition (6.23) and Corollary (6.24) for 
the module case as well. 

The next result establishes our earlier assertion that test elements for ideals 
are automatically test elements for modules in the approximately Gorenstein 
case. 
(8.15) Proposition. Let R be a Noetherian ring of characteristic p whose local 
rings are approximately Gorenstein. Let c E RO be a test element for ideals in 
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R. Then c is a test element (for modules). Moreover, if c is (completely) stable 
as a test element for ideals, it is also (completely) stable as a test element (for 
modules). 

Proof. First note that the final statement is immediate from the earlier one, 
since the hypothesis is retained in passing to the (completed) localization. 

Rephrased slightly, the problem is to show that if x E N* , then for all 
e q N[q] S· N* q N[q]* WIN q = p , cx E . mce x EM' x E F'(M) • e rep ace , 

M, x by N[q] , Fe (M), x q . Thus, it suffices to show that if x E N~ , then 
cx EN. If this fails, we can replace N by a submodule of M containing N 
and maximal with respect to the property that cx ~ N. We can now replace 
M, N by M j Nand 0, and we are then in the situation where N = 0 and M 
is an essential extension of Rj m for a suitable maximal ideal m of R. Since 
Rm is approximately Gorenstein, we can choose an m-primary irreducible ideal 
I such that M embeds into Rj I. It will still be true that x is in the tight 
closure of 0 in Rj I. Let y E R lift x. But then y E 1* in R, and so cy E I 
in Rand cx is 0 in RjI and hence in M. • 

Our next main result, Theorem (8.17), relates when an element is in the tight 
closure of a submodule to the growth of certain lengths as iterations of the 
Frobenius endomorphism are applied. We use I to denote length. 

We need the following lemma first. 

(8.16) Lemma. Let N ~ M be finitely generated modules over a Noetherian 
ring R of characteristic p that has a q' -weak test element c E RO . Let x EM, 
and suppose there exists d E RO such that dxq E N[q]* in Fe (M) (= M[q]) 
for infinitely many values of q. Then x E N~. Hence, if x ~ N~, then 
dxq ~ N[q]* (in Fe(M» for all q»O. 

If R is reduced, M is free, and N[q] Roo denotes the sub module of 
Fe (M) ® R Roo spanned by the image of N[q],. then x ~ N~ =:;. dxq ~ N[q] Roo 
for all q » O. 

'I' [ ] Proof. To establish the first part, we shall show that cq + d q x q E N q for all 
q » O. First note that whenever dxq E N[q]* , we have cdq' x qq' E N[qq'] , since 
c is a q' -weak test element. Now, given any q, we can choose a larger one, say 
qQq' , such that cdq' x qQq' E N[qQq'] , and so (cdxq)Qq' E (N[q])[Qq']. Hence, 
for all Q', l(cdxq)Qq'Q' E (N[q])[Qq'Q'] , which shows that cdxq E N[q]* for all 
q. But then, since c is a q' -weak test element, c( cdxq/ E N[q][q'] for all q, 

I I I J I 

i.e., cq + d q x q q E N[q q] for all q, which shows that x E N* . 
The last statement now follows from the observation that if V is free and 

W ~ V ,then W Roo n V ~ W; applied with W = N[q] and V = Fe (M) , for 
1 ' J I I II , II 

if v E WR /q n V, then v q E W[q] and, as above, lvq q E W[q q ] for all 
" . q . 

(8.17) Theorem (length criterion for tight closure). Let R be a Noetherian 
ring of characteristic p, and let N ~ W ~ M be finitely generated modules 
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such that W / N is killed by a power of a maximal ideal m of R. Let d be the 
height of m. 

(a) If W ~ N~, then for all q, I(W1i)/N~))::; cl- I for some constant C 
independent of q . 

(b) Conversely, if Rm is analytically unramified (i.e., its completion is re-
duced) and formally equidimensional (i.e., its completion is equidimensional) 
and has a completely stable q 1-weak test element c (or a q I - weak test element 
c that is also one for (Rm)~) and if liminfq_(:x,l(W1i)/N~))/l = 0, then 
W ~ N~. Hence, in this case, 

(i) W ~ N~ ¢? (ii) I(W1i)/N~)) ::; cl- I for some C and all q 

¢? (iii) lim I(W[q) /N[q)/l = 0 
q-oo M M 

¢? (iv) liminfl(W[q)/N[q)/qd = o. 
q-oo M M 

Proof. (a) Choose c E RO such that cW[q) ~ N[q) for all q» o. Let J be an 
m-primary ideal such that J W ~ N. Let b bound the number of generators 
of W. Then W[q)/N[q) has at most b generators and is killed by i q) + cR, 
so that 

l( W[q) /N[q)) ::; bl( R/ (J[q) + CR)) 

= bl (Rm/ (cR + i q)) m) . 

Let S = Rm/cRm. Since c E RO, dimS::; d - 1. Now I(W[q)/N[q) ::; 
bl(S/J[q)S). If 1= (YI' ... 'Yd_I)S, where YI' ... 'Yd-I is a s.o.p. for S in 
JS, the latter number is bounded by bl(S/I[q) ::; bl(S/l)l-1 , since S/I[q) 
has a filtration with qd-I factors; each of which is a homomorphic image of 
S//. . 

(b) (i) =;. (ii) follows from (a) and (ii) =;. (iii) =;. (iv) is obvious. Hence, 
it will suffice to show that (iv) =;. (i). Assume (iv) and suppose that there 
is an element x E W such that x ~ N*. It will suffice to show that there 
is a constant y > 0 such that I(W;)/N~)) ~ yl for all q »0. By the 
remark following Proposition (8.9), we may replace R, N, W, M by their 
localizations at m, and x by its image in Wm . The remark guarantees that 
we still have x fI. N~. Note that Frobenius commutes with localization and 
that the lengths we are discussing will not change. Hence, we may assume that 
(R, m) is local. Choose q ~ ql such that cx[q) fI. N[q). This condition will be 
preserved if we complete R, and so the condition x fI. N* is preserved if we 
complete. The length condition is unaffected. Thus, we henceforth assume that 
(R, m) is complete local, reduced, and equidimensional. It is then module-
finite and torsion-free over a complete regular local domain A. Moreover, we 

1/ " 1/ " can choose q" such that S = R[A q ] ~ ROO is separable over A q . By the 
1/ 1/ " results of §6, we can choose d E AO such that dS q ~ S[A qq ] for all q. 

Moreover, ROO = SOO is flat over S[A I / qq"]. 
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Without loss of generality, we can replace M by a finitely generated free 
module mapping onto it and N, W by their inverse images in the free module. 
Thus, we may assume that M is free. Since x E W is not in the tight closure 
of N, by Lemma (8.16) we can choose q' such that dxq tt N1q1ROO for all 
q :2: q'. Let QJ ~ A be the ideal of elements a E A such that axQ E NIQ1. 

We first note that AI QJ injects into WIQ1/N[QI (the map is A-linear). Simply 
send the class of a to the class ofaxQ . Since A and R have the same 
residue class field, it will suffice to show that there is a constant y > 0 such that 
I(AI QJ) :2: yQd for all Q» O. 

A h Q '" d . Q '" Th J Q ssume t at :2: q q ,an wnte = qq q. en a E Q => ax E 

NIQl => a l /qq" x q' E Nlq'IRI/qq" (i.e., the submodule spanned by N1q'J inside the 
free module M[q'10R R I/qq") => dal/qq"xq' E N1q'l(dS I/q) ~ N[q'IS[A I/qq"] ~ 

Nlq'JS0sS[AI/qq"] (since S[A I/qq"] is S-flat). We thus conclude that a l /qq" E 

(Nlq'JS0sS[AI/qq"]): dxq' ~ (N[q'JS: sdxq' )S[A I/qq"] , again using the flatness 
of S[A I/qq"] over S. Now N[q'IS: sdxq' ~ N1q']R I/q" : dxq' since S ~ 
R I/q". By the choice of q', dxq' tt Nlq']RI/qq", and so N[q']S: sdxq' is 

1/ " 1/ " 1/ " contained in the maximal ideal m q of R q . This shows that a qq E 
1/" 1/ " I J IQ/ ' "] m q R qq => a E m q . Thus, if Q :2: qq' q" , then QJ ~ m q q RnA. We 

can choose an integer D, still a power of p, such that mD ~ mAR, where m A 
is the maximal ideal of A, and then 

mIQ/q' q"J RnA c mQ/q' q" RnA c mQ/q' q" DR n A C m(Q/q' q" D)-/ 
- - A - A 

for a certain constant t, by the Artin-Rees lemma, and for large Q this is 
~ m~/B , where B = q' q" Dp. But then I(AI QJ) :2: I(Alm~/B) , and the latter 
is polynomial in QI B of degree d with leading coefficient lid!. We may then 
choose y to be any positive real number less that I/(d!Bd ). • 

We shall see that this length characterization of tight closure combined with 
the phantom acyclicity criterion of the next section yields a powerful tool. We 
pursue this further in [HH4], where we give a new proof of the improved new 
intersection theorem (in fact, of a much stronger result) using these ideas. 

The next proposition is aimed at showing that the tight closure of a sub-
module of a projective module over a normal ring is independent of how it is 
embedded in a projective module. 

(8.18) Proposition. Let R be a reduced Noetherian ring of characteristic p, 
and M, N, F, G be finitely generated modules. 

(a) If MIN is torsion-jree, then N is tightly closed in M. More generally, 
N~ may be identified with a submodule of N' = Ker(M ----> (Ro)-I(MIN)). If 
N is torsion-jree, N' ~ (Ro) - IN. 

(b) If N ~ G ~ F, where G is projective and F is any module, then N; nG = 
N~. Hence, if G is tightly closed in F, then N; = N~. 
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(c) If R is normal, and G ~ F with G projective and F torsion-jree, then 
G is tightly closed. If an arbitrary module N has embeddings in two possibly 
distinct finitely generated projective modules F and G, then N; 2: N~ canoni-
cal/y. 

Proof. (a) For the first statement, we may assume that N = 0, and that M is 
torsion-free, and so embeddable in a free module. But 0 is tightly closed in 
R, and so in any free module, since R is reduced. The second statement is 
immediate from the first, and the third statement from the second. 

(b) Suppose, to the contrary, that x is an element of G in N; but not 
in N~. By localizing at a suitable maximal ideal (one containing N~ : x) we 
may assume that (R, m) is local and that G is free. By killing a maximal 
submodule of F disjoint from G, we may assume that G ~ F is essential. 
This implies that F is torsion-free of the same rank as G, and so F can be 
embedded in a free module so that the extension is essential. Thus, there is no 
loss of generality in assuming that F is free of the same rank as G. Identify 
F and G with Rh , and let the embedding G ~ F be given by a size h matrix 
A = [aij] with det(A) E RO • We can think of the Frobenius endomorphism 
as acting coordinatewise in F and G and identify d q] ~ F[q] = Fe (F) with 
the map Rh ~ Rh given by A[q]. The hypothesis that x E Rh = G is in N; 
translates to the statement that for some c E R O , c(Ax)q E (AN)[q]F for all 
q » 0 or A[q](cxq) E A[q](N:t]). Since det(A[q]) = det(A)q , A[q] is one-to-one, 
and so cxq E N~] for all q» 0, as required. 

The second statement in (b) is then immediate. 
(c) Suppose that x E F is in the tight closure of G but not in G. This 

is preserved when we localize at a minimal prime of G: x. Hence, we may 
assume that (R, m) is local normal and that the image of x in F / G is killed 
by a power of m. Since F is torsion-free, 0 ---+ G ---+ G + Rx ---+ R/ (G: x) ---+ 0 
cannot split if dimR > 0 and so represents an element of Ext~(R/(G: x), G) 
that is nonzero. But the Ext vanishes if dim R ~ 2, since G is free and R is 
normal. It follows that dim R $ 1 . But then, since R is normal, R is regular, 
and G is tightly closed, a contradiction. 

The last part of (c) is then obtained as follows. Given embeddings of N into 
F, G, we can form a pushout F E9 N G, that contains both F and G. The 
torsion in this module meets neither F nor G. Embed the quotient in a free 
module D. It then suffices to compare N; (resp. N~) with N;. Thus, there 
is no loss of generality in assuming that G ~ F. Since G is tightly closed in 
F by the first part of (c), the second part of (b) shows that N~ = N; when 
G ~ F . The uniqueness of the isomorphism follows from the last statement in 
(a). • 

We next want to define the absolute tight closure of a module N in a module 
M. In this definition, we allow modules that are not finitely generated. We 
first introduce a variant of the notion of tight closure that has advantages in 
considering non-Noetherian modules. 
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(8.19) Definition. If R is a Noetherian ring of characteristic p and N ~ M, 
we define N;J g , the finitistic tight closure of N in M, as the union, taken over 
the finitely generated submodules of M' of M, of the modules (M' n N)~I . 

(8.20) Definition. If R is a Noetherian ring of characteristic p and N ~ M, 
we define NZtabS , the absolute tight closure of N in M, to be the set of all 
elements x E M such that for some module Q 2 M, x E N~fg. 

(8.21) Discussion. First note that N*abs is a submodule. This follows from 
the fact that any two extensions Q, Q/ of M are contained in a common 
extension Q EB M Q/ . In fact, if E is any injective module containing M, e.g., 
an injective hull of M, then NZt abs = N;f g n M. For suppose x E M is 
in N~fg for Q 2 M. Then this is also true with Q replaced by Q EBM E. 
Thus, we might as well assume that Q 2 E. But then Q = E Ef) W, and 
any finitely generated submodule of Q is contained in the sum of a finitely 
generated submodule of E and a finitely generated submodule of W. The rest 
of the argument is straightforward. We now connect these ideas with the theory 
of test elements and the ideal they generate. 

(8.22) Definition. Let R be a Noetherian ring of characteristic p. We de-
fine the test ideal r(R) of R, as nM AnnR o~, where M runs through all 
finitely generated R-modules. For each prime ideal P, we define r(R; P) as 
nM AimR o~ , where M runs through all finitely generated R-modules whose 
only associated prime is P. 

(8.23) Proposition. (a) c E r(R) ifand only if whenever N ~ M and x E NZt, 
then cxq E N1i1 for all q. 

(b) R has a test element iff r(R) is not contained in any minimal prime of 
R. In this case, r(R) is the ideal generated by the test elements, and r(R) n RO 
is the set of test elements. 

(c) Let ER(R/P) = E(R/P) denote an injective hull over R of the prime 
cyclic module R/ P. Then r(R; P) = Ann 01t~fP) . 

(d) r(R) = nm r(R; m) = AnnR Oig , where E = ffim E(R/m), and m 
runs through all maximal ideals of R. In particular, if R is local, then r(R) = 
r(R; m). 

(e) If (R, m) is local and R has a q/ -weak test element that is also a q/ -weak 
test element for R, then r(R) = r(R) n R . 

(f) If (R, m) is local and {It} is a sequence of m-primary irreducible ideals 
cofinal with the powers of m, then r(R) = n t AnnR(l; / It) = nJt : It* (where 
I; is the tight closure of It in R). 

(Such a sequence exists iff R is approximately Gorenstein.) 

Proof. (a) Suppose cxq E N1i1 for all q whenever x E NZt for a finitely 
generated M. Applying this when N = 0 and q = 1, we see at once that 
c E r(R). For the converse, suppose that c E r(R) and x E NZt. We must 
show that cxq E N1i1 for all q. Since x E NZt ' x q E N~l~ . But then, applying 
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the definition of r(R) and noting that x q + N[q] is in the tight closure of 0 in 
M[q] I N[q] , we see that cxq E N[q] . 

(b) is then immediate from (a) and the definition of test element. 
(c) The key point is that any finitely generated module whose only associ-

ated prime is P can be embedded in a finite direct sum of such modules each 
of which is an essential extension of RIP, and these can be taken to be the 
same. It follows that r(R; P) is the intersection of Ann(O~) taken over all 
finitely generated modules M such that M is an essential extension of RIP. 
Since E(RIP) contains every other essential extension, this is the same as 
A O*fg nn E(R/P)' 

(d) It is clear that r(R) ~ r(R; P) for every prime P. Now suppose that 
c E r(R; m) for every maximal ideal m but that c ¢. r(R). Then there exist 
a finitely generated module M and an element x E O~ such that cx i O. 
Choose N ~ M maximal with respect to not containing cx, and replace M 
by MIN and x by x + N. The new M is killed by a power of a maximal 
ideal m, and we obtain c ¢. r( R; m) , a contradiction. 

(e) The modules of finite length over R are identical with those over R. 
When M has finite length, Fe (M) is independent of whether it is calculated 
over R or R. The existence of the q' -weak test element that can be used 
for tests both over R and over R implies that the notion of tight closure for 
submodules of modules of finite length over R is the same as over R. The 
result now follows because r(R) = r(R; m) is the intersection of a certain 
family of m-primary ideals in R (the ideals AnnR O~ for finite length M), 
r(R) is the intersection of the extensions to R (or completions) ofthese ideals, 
and every ideal of R is contracted from R. 

(f) If M is an essential extension of Rim of finite length with annihilator 
J 2 It ' then M can be embedded in RI It' and AnnR(O~) 2 AnnR(O~/I)' But 
the tight closure of 0 in RI It is I; I It . • 

The notion of absolute tight closure enables us to define several left exact 
functors on R-modules. The derived functors appear to be quite interesting. 
We first need the following observation. 

(8.24) Proposition. Let R be a Noetherian ring of characteristic p, and let 
h: M ~ N be a homomorphism of arbitrary (not necessarily finitely generated) 
R-modules. Let W be any submodule of M. 

(a) h(W;abS) ~ h(W)~abs. 

(b) If h : M ~ N is an inclusion, W;abs = W;abs n M. 

Proof. The map h extends to a map h' of injective hulls E(M) ~ E(N) by 
virtue of the injectivity of E (N), which is an injection in case (b) (because 
M E(M) ' . I) S· W*abs. W*fg M d h' W*fg 
~ IS essentla. !nce M IS E(M) n ,an maps E(M) 

into h(W)~~) and Minto N, it follows that h(W;abS) ~ h(W)~abs. The 
second part follows from the observation that E(M) is a direct summand of 
E(N). • 
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(8.25) Discussion and definitions. It follows that if L is a left exact functor 
that assigns to each R-module a submodule of itself and acts on maps by restric-
tion (e.g., the zero functor, the functor that, for some fixed ideal I, sends M 
to AnnM I (== HomR(Rj I, M)), or the local cohomology functor HJ (whose 
value on M is Ut AnnM t)), we can define a new functor, Labs, whose value 
on M is the absolute tight closure of L(M) in M. It is immediate from 
Proposition (8.24) that Labs is a left exact functor, and so has right derived 
functors Ri Labs. These are of interest even if L is the zero functor! For in 
that case Labs(M) is O~bS. When L is a zero functor, we shall write ABSi 
for Ri Labs. Note that if R is weakly F-regular, then ABSi (M) = 0 for i ~ 1 . 

(8.26) Definition. We say that a local ring R of characteristic p is r-complete 
if R has a test element and r(R)~ = r(R). 

We conjecture, but cannot prove, that the local rings for which we can prove 
the existence of test elements are r-complete. Of course, any complete local 
ring is r-complete. 
(8.27) Proposition. If (R, m) is r-complete and M has finite length, then 
ABSi(M) == Extk(Rjr(R) , M) as functors of M. 

Proof. The key point is that M has an injective resolution by injectives each of 
which is a direct sum of copies of E(Rjm). It therefore suffices to show that 
O~(M) is the same as AnnE(M) r(M) , and our hypotheses allow us to pass to 
the case where R is complete. In this case, taking annihilators gives bijections, 
in both directions, between submodules of E(Rjm) and ideals of R. Since 
AnnR O~(R/m) = r(R) , AnnE(R/m) r(R) = O~(R/m) , as required. • 

(8.28) Remark. If we do not know that R is r-complete but we do know, 
at least, that R has a test element that is a test element in R, we still have 
ABSi(M) = Extk(Rjr(R) , M) for M of finite length, by the same argument. 

9. PHANTOM HOMOLOGY AND THE PHANTOM ACYCLICITY CRITERION 
IN CHARACTERISTIC P 

In this section, we introduce the notion of phantom (co ) homology for a com-
plex of modules over a Noetherian ring of characteristic p. A complex has 
phantom homology at a given spot if the cycles are in the tight closure of the 
boundaries. See the detailed definitions below. We give criteria for phantom 
acyclicity for free complexes (this means that the positively indexed homol-
ogy is phantom) by proving parallels of the Buchsbaum-Eisenbud criterion for 
acyclicity of free complexes [BE]. However, in order to do this, we must prove 
"acyclicity" lemmas with denominators. We do not assume that complexes are 
actually acyclic, but keep track of an element, or a power of it, that kills ho-
mology. In fact, not only an element acts, but a power of Frobenius as well. 
The role of depth is replaced by (¢, c)-depth, where ¢ is an endomorphism of 
R (the identity when R does not have characteristic p, and the identity or a 
power of the Frobenius endomorphism if R does have characteristic p) . This 
means that the c¢ kills a certain family of Koszul homology modules. When 
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<p is the identity and c = 1 , this notion coincides with ordinary depth, and the 
theory developed here then specializes to the situation of [BE]. 

In §9, all of this worked out under the assumption that R is a locally equidi-
mensional quotient of a Cohen-Macaulay ring. 

In § 1 0, we introduce a family of alternative notions of tight closure that 
includes our original notion. One of these is used to give a new proof of a 
generalization of the syzygy theorem. In § 11, we give improved versions of 
some of the results of this section under the stronger hypothesis that R is a 
homomorphic image of a Gorenstein ring of finite Krull dimension. One of the 
payoffs is that one knows in this situation that if Rc is Cohen-Macaulay, then 
c has a power c' that kills the higher homology of any complex G. of free 
modules that satisfies the phantom acyclicity criterion Theorem (9.8), and all 
of the higher homology images Fe G. under iterations of Frobenius as well. 

In [HH4], we study the notion of the minheight of a module on an ideal, and 
introduce the notion of a weakly Cohen-Macaulay ring or module. This enables 
us to prove analogues of the phantom acyclicity criterion for free complexes 
tensored with an arbitrary module, as well as to obtain results when the module 
or ring is mixed. The point is to work with minheight instead of height, and 
likewise, to work with c such that Rc is weakly Cohen-Macaulay. These results, 
as well as some very general acyclicity criteria with denominators, are developed 
in the early part of [HH4], where we then use our theory of phantom acyclicity 
to prove several extraordinarily powerful vanishing theorems. 

(9.1) Definition. Let G. (respectively, G') be a nonnegative left (respectively, 
right) complex of finitely generated modules over a Noetherian ring R of char-
acteristic p. We say that the ith homology (respectively, cohomology) module 
HJG.) (respectively, Hi(G'» is phantom if every element in the kernel Zi of 
Gi - Gi _ 1 (respectively, Zi of d - d+ l ) is in the tight closure, within 
Gi (respectively, d), of the image Bi of Gi+1 - Gi (respectively, Bi of 
Gi _ 1 - G). If this holds for all i;::: 1, we say that G. (respectively, G') has 
phantom homology (respectively, cohomology), or is phantom acyclic. 

We shall say that an element of a homology module of a complex is phantom 
if it is represented by a cycle that is in the tight closure of boundaries in the 
appropriate module of the complex. In this case, every representative cycle is 
in the tight closure of the boundaries. Thus, a homology module is phantom iff 
every element is phantom. 

(9.2) Remark. Note that H/G.) is phantom if and only if it is in the tight 
closure of 0 in G) B i . 

One of the key points about phantom homology is 

(9.3) Theorem. Let R, S be Noetherian rings of characteristic p. Let G. be 
a complex of finitely generated R-modules. Suppose that R - S maps RO to 
So. If HJ G.) is phantom and S is weakly F-regular, then the induced map 
HJG.) - Hi(G. ®R S) is zero. The same result holds for cohomology. 

The result also holds for any complex G~ of finitely generated S-modules to 
which G. maps. 
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If R has a (weak) test element, the condition that RO map to SO may be 
weakened to the condition that at least one (weak) test element in R map to So. 

This rather easy result will produce a multitude of powerful vanishing the-
orems when coupled with the fact that the Koszul homology of a system of 
parameters is always phantom under extremely mild conditions on the ring. In 
order to prove Theorem (9.3), we establish a more general result. 
(9.4) Theorem. Let R, S be Noetherian rings of characteristic p. Let G. be 
a complex of finitely generated R-modules, and let G: be such a complex of 
S-modules. Suppose that R ---. S maps RO to So, or else suppose that R has 
a weak test element that maps into SO . Suppose also that a map <P. : G. ---. G: 
is given. If x E HJG.) is phantom, then its image in HJG:) is phantom. If 
every submodule of G; is tightly closed, then the image of x is O. In particular, 
if S is weakly P-regular, then the image of x is O. The same result holds for 
cohomology. 

Proof. Let Z E Zi represent x. We know that czq E BJq] for all q ~ 0, 
with c E RO or with c the weak test element specified. The map G. ---. G: 
induces a map peeR) ®R Gi ---. FeeS) ®s G;, i.e., of pe(Gi ) (over R) ---. pe(G;) 
(over S). Since <p(B) ~ B;, it follows that <p(c)<p(z)q E B;[q] for all q ~ O. 
This establishes the first statement. The remaining statements are clear. Over a 
weakly F-regular ring, every submodule of a finitely generated module is tightly 
closed. • 
(9.5) Discussion. Our next objective is to prove an analogue of the Buchsbaum-
Eisenbud criterion for the acyclicity of a complex (which is closely related to 
the Peskine-Szpiro acyclicity lemma; see [BE] and [PSI]). The Buchsbaum-
Eisenbud criterion guarantees the acyclicity of a free complex under certain 
conditions when specific ideals associated with it have sufficiently large depths. 
Our results assert that the complexes have phantom homology Hi for positive 
i when the same ideals have sufficiently large heights. This yields very strong 
vanishing theorems when the complex is mapped to a complex over an F-regular 
ring. 

The criterion we give is stable under application of pe and so implies that 
not only the original complex, but also all of its images under tensoring with 
Frobenius, have phantom homology. (Complexes that have phantom homology 
can, in the general case, lose this property under tensoring with iterations of 
Frobenius. See Example (9.19).) We shall show that, modulo nilpotents, a 
criterion similar to that of [BE] but with height replacing depth is necessary 
and sufficient for a finite nonnegative free complex and all its images under 
tensoring with iterations of Frobenius to have phantom homology in positive 
degree. Some hypothesis on the ring is necessary. As indicated in more detail 
in the introduction to this section, various generalizations of this result are 
developed in §§10, 11, and the early sections of [HH4]. The most striking 
applications are given in [HH4]. 
(9.6) Notation. In this paragraph, we fix some notation to which we refer re-
peatedly below. Let R be a Noetherian ring, not necessarily of characteristic 
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p , and let G. be a complex of finitely generated free modules 

0- Gn - Gn_ 1 _ ••• - Gi _ ... - G1 - Go - O. 

Denote the map from Gi to Gi _ 1 by a i . Let hi denote the rank of Gi , 
with the convention hi = 0 if i > n or i < 0, and let ri = I:~i( -1 )t-i ht ' 
1 ~ i ~ n, while rn+1 = O. The ri are the unique integers such that rn+1 = 0 
and r i+1 + ri = hi' 1 ~ i ~ n . 

By the rank of a map of free modules a: G - G' we mean the largest integer 
r such that the induced map A' a: A' G - A' G' is not zero. It(a) denotes 
the ideal generated by the size t minors of a matrix for a. It is independent of 
the choice of bases for G and G'. By convention, Io(a) = R, even when a is 
the zero map between modules, one or both of which are zero, while It(a) = (0) 
if t exceeds the rank of either the domain or the target of the map a. Thus, 
rank a is the same as the largest integer r such that I,(a) =I O. 

Many times throughout this paper we refer to "a complex as in (9.6)." This 
automatically introduces all the notation, conventions, and conditions of the 
above paragraphs. This will be convenient because both the criterion of [BE] 
for the acyclicity of a free complex and our various phantom acyclicity criteria 
are applied primarily to complexes of the type described. 

We comment on two differences from [BE]. One is that we allow maps to 
be zero, which corresponds to allowing the numbers ranka i to be zero. Our 
convention about Io(a) yields correct results in this case. Second, for simplicity, 
we have tended to restrict our treatment to free complexes. Since the results are 
local, one gets immediate extensions to the case of projective modules which, 
for the most part, we have not bothered to state. However, in [HH4], we go to 
an opposite extreme, and consider complexes in substantially greater generality 
than when the modules are projective. Instead, we place a condition on the 
"codimension" (in an appropriate sense, which may be that of depth, c-depth, 
height, or minheight) of the non-locally-free locus). We have purposely confined 
this level of technicality to one section in [HH4]. The reader can bypass most 
of that material if he is interested only in the case of free complexes over locally 
equidimensional rings. 

(9.7) Discussion and definitions. We say that a complex as in (9.6) satisfies 
the standard condition on rank, if, for 1 ~ i ~ n, ranka i = ri (equivalently, 
hi = rankai+1 + ranka i , 1 ~ i ~ n). We say that a complex as in (9.6) satisfies 
the standard condition for depth (respectively, height) if the depth (respectively, 
the height) of the ideal Ii = I,(aJ is at least i, 1 ~ i ~ n. Note that the depth 
(and height) of the ideal I is '+00 if 1= R while if I is proper its depth is the 
length of any maximal R-sequence contained in I. Thus, the depth or height 
condition is satisfied whenever Ii is the unit ideal. Recall that if r = 0, we 
make the convention that I,(a) is the unit ideal. 

(Later we shall consider functions on ideals taking values in N U { +oo} other 
than depth and height. E.g., we can consider the depth, height, or minheight 
(this is defined in [HH4]) of an ideal on a fixed module. We can then say that 
G. satisfies the standard condition for, say, depth on N, meaning that the depth 
of Ii on N is ;::: i, 1 ~ i ~ n .) 
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With this terminology, the acyclicity criterion of [BE] asserts that a complex 
as in (9.6) is acyclic iff it satisfies the standard conditions for rank and depth. 
(There is also a version for the result of tensoring G. with a module. We return 
to this point in [HH4].) The results we obtain on acyclicity with denominators 
will recover this result. 

We can now state one of the results we are aiming for, although we shall not 
be able to give the proof until several preliminary results have been established. 
(9.8) Theorem (phantom acyclicity criterion). Let R be a Noetherian ring of 
characteristic p. Suppose that R is a homomorphic image of a Cohen-Macaulay 
ring and is locally equidimensional. Let G. be a free complex over R with 
notation as in (9.6). Let a~ed be the result oftensoring with Rred . Suppose that 
ranka~d = ri , 1 ~ i ~ n (equivalently, bi = ranka~:dl + ranka~ed, 1 ~ i ~ n), 
and suppose that the height of the ideal Ii = I'j (a) is at least i, 1 ~ i ~ n. 
Then Hi(Fe G.) is phantom for all e E N and all i ~ 1 . 

Conversely, let R be an arbitrary Noetherian ring of characteristic p > 0, 
and let G. be a free complex over R with notation as in (9.6). If Hi (Fe G.) is 
phantom for all e E N and all i ~ 1, then rank a~ed = ri , 1 ~ i ~ n, and the 
height of Ii = I,/a) is at least i, 1 ~ i ~ n. 

(9.9) Discussion and definitions. The development of the tools needed to prove 
this result and the proof itself will occupy most of the rest of this section. 

Before proceeding further, we introduce the following terminology. Let R 
be any Noetherian ring, not necessarily of characteristic p. Let G. be a free 
complex as in (9.6). We shall say that G. satisfies the phantom acyclicity cri-
terion if G~ed satisfies the standard rank condition, and G. (or, equivalently, 
G~ed) satisfies the standard height condition. 

Notice that if G. satisfies the phantom acyclicity criterion, it continues to 
do so after tensoring with any ring S such that ht J S ~ ht J for all ideals J 
of R. This condition is automatic if S is an integral extension of R (it need 
not be an extension provided that the elements that map to 0 are nilpotent) or 
if S is flat over R, e.g., a localization. If S = R and the map is a power of 
the Frobenius endomorphism, the question of whether the phantom acyclicity 
criterion holds is unaffected. Thus, if we show that satisfying the criterion is 
sufficient for phantom acyclicity for G., it is clear that it will be sufficient for 
phantom acyclicity for Fe G. for all e EN. It is then clear that in order to 
have the converse hold, we must impose the condition that Fe G. have phantom 
homology for i ~ 1 for all e ~ O. It is easy to give examples where G. is 
phantom, but this is not preserved when we apply Frobenius. See Example 
(9.19) below. 

With this new terminology, we can restate Theorem (9.8) as follows. 
Theorem (9.8t. Let G. be afree complex as in (9.6), and suppose R is Noethe-
rian of characteristic p. If Hi (Fe G.) is phantom for all i ~ 1 and for all e ~ 0, 
then G. satisfies the phantom acyclicity criterion. If R is locally equidimen-
sional and a homomorphic image of a C-M ring, then Hi (Fe G.) is phantom for 
all i ~ 1 and all e if and only if G. satisfies the phantom acyclicity criterion. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



90 MELVIN HOCHSTER AND CRAIG HUNEKE 

One of the tools we shall use in the proof is a technical generalization of 
the sufficiency of the Buchsbaum-Eisenbud criterion that is a refinement of the 
following observation. Suppose that the hypothesis of the Buchsbaum-Eisenbud 
criterion is satisfied after localizing at c. Then there is a power of c that kills 
the homology of G.. Note that this statement is a trivial consequence of the 
Buchsbaum-Eisenbud criterion. What we want to do is set up the hypothesis and 
conclusion in such a way that the power of c in the conclusion is bounded in 
a manner independent of the maps in the complex, so that, in characteristic p , 
the same power can be used even after applying the Frobenius endomorphism. 

We can handle this by assuming that c kills the higher Koszul homology 
of sequences of elements of appropriate lengths in the ideals Ii arising in the 
Buchsbaum-Eisenbud criterion, and also the homology of the sequences formed 
by taking their powers. Unfortunately, this result is not strong enough to achieve 
the theorem we want. For technical reasons, we need to consider a situation in 
which c kills the image of the Koszul homology of the type described above 
after tensoring with a certain fixed power of the Frobenius endomorphism. The 
point is that we can construct elements c with this weaker property for a large 
class of rings. For this reason, we need a sort of Buchsbaum-Eisenbud criterion 
with "denominators" (the denominator in question is c) in which a certain fixed 
endomorphism of the ring is also allowed to playa role. In the applications in 
this paper, the endomorphism in question will turn out to be either the identity 
or else some fixed positive power of the Frobenius endomorphism. 

In § 11, by limiting attention to images of finite-dimensional Gorenstein rings, 
we are able to show that it is not necessary to use the fixed power of Frobenius 
referred to above. One can kill off homology as necessary simply by multiplying 
by a suitable element. However, we need the more general set-up to handle 
homomorphic images of C-M rings. In this section, we consider only complexes 
of free modules, and we assume that the ring is locally equidimensional. In 
[HH4], we discuss how the theory can be extended to more general settings. 

(9.10) Discussion and notation. In order to make a precise statement, we need 
to be careful about the sense in which one achieves the required depths upon 
localizing at c. Let R be an arbitrary Noetherian ring, not necessarily of 
characteristic p. Let cp be a fixed endomorphism of R. Let <l>n (R) denote R 
viewed as an (R, R)-bimodule where the left action is given by the identity map 
and the right action by cpn. Given a left R-module M, we write <l>n (M) for 
the left R-module <l>n(R) ®R M. Note that <l>n(R) == Rand <l>n(Coker[aijD == 
Coker[cpn(aij)]. When cp = F, <l>n is precisely the Peskine-Szpiro functor Fn. 
If x = Xl' •.. , Xi is a sequence of elements of R, let Xl = x; , ... , x: ' and let 
Hj(xl ; M) denote the jth Koszul homology module of the R-module M with 
respect to Xl. Note that Hixl; R) maps into Hicpn(x)l; <l>n(R» (the map is 
not R-linear but is cpn -linear). If d E R is such that d kills the image of this 
map, we shall say that "d<l>n kills Hj(xl ; R) ." More generally, for any complex 
G., Hj(G.) maps (cpn-linearly) to Hj(<I>n(G.» , and if d kills the image, we 
shall say that "d<l>n kills Hj(G.)." 
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(9.11) Definition. Let ¢ be an endomorphism of a Noetherian ring R that 
is either the identity map or else a power of the Frobenius endomorphism. We 
shall say that an ideal I ~ R has (¢, c)-depth ~ n on an R-module M if for 
every integer i with 1 ::; i ::; n, there are elements XI' ••. , Xi E I such that for 
every integer j ~ 1 and for every integer t ~ 1, c<l> kills Hj(x: ' ... , x; ; M). 
If ¢ is the identity, we may omit it from the notation and use the term c-depth. 
If M = R , we refer to the" (¢, c)-depth of r instead. 

(9.12) Remarks. If ¢ is the identity and c = 1, this condition is equivalent 
to the condition depth/ M ~ n. In general, when ¢ is the identity, it implies 
that depth/ Me ~ n. However, it is a substantially stronger condition, since it 
bounds a p;iori (with bound equal to one) the exponent on c needed to obtain 
a power of c that kills all the Koszul homology. It is not clear, in general, that 
one can use a power that is independent of t . 

If c = 1 and ¢ is a power of Frobenius, it is not so clear what the condition 
means. For example, the ideal I will have (Fe, I)-depth ~ n for large e 
provided either that the depth of I on R or the depth of I R red on R red is at 
least n. 

We next need to introduce some functions. If n is a nonnegative integer, 
we shall define On recursively by the rules 00 = 1 and o(n + I) = On + 
2:7=0 ot + n + 2. Thus, 01 = 1 + 1 + 2 = 4, 02 = 4 + (4 + 1) + 3 = 12, 
03= 12+(12+4+1)+4=33,etc. (It is routine to show that on=i;n+2-1, 
where In denotes the nth Fibonacci number. fo = 1; = 1 and 1,,+ I = I" +1,,-1 ' 
n ~ I. We shall make no use of this fact.) 

If q is a positive integer and n EN, we shall write q(n} for 2:7:0Il. Thus, 
q(O} = 0, l(n} = n, and, of course, q(n} = (qn - I)/(q - 1) if q> I. 

If ¢ is either the identity homomorphism on R or else the eth iteration of 
the Frobenius endomorphism, and we let q' = 1 in the former case and q' = pe 
in the latter case, then for any element c E R we have, by a trivial induction on 
N, that (c<l»N = Cq'(N)<I>N as maps from a complex G. of R-modules to the 

N N complex <I> G., and hence as maps of homology Hi(G.) -+ Hi(<I> G.). Note 
that in the composition map (c<l>t the jth copy of c<l> counting from the 
right should be interpreted as a map from ~-I G. to ~ G., 1 ::; j ::; N . Thus, 
(c<l>t kills Hi(G.) if and only if Cq'(N)<I>N kills H/G.) , i.e., Cq'(N) kills the 
image of Hi(G.) in H/ct>N(G.)). 

We can now state one of our main technical lemmas. It can be viewed 
as a generalization of the sufficiency of the Buchsbaum-Eisenbud criterion for 
acyclicity. The original situation for the Buchsbaum-Eisenbud criterion is the 
case c = 1 ,with ¢ the identity on R. The proof contains, as a special case, a 
new proof of the sufficiency of the Buchsbaum-Eisenbud criterion. In a certain 
sense, the argument is more "constructive" than previous ones. 

(9.13) Theorem (free acyclicity criterion with denominators). Let R be an 
arbitrary Noetherian ring and ¢ a fixed endomorphism that is either the identity 
or else a power o/the Frobenius endomorphism. Let ¢(c) = cq'. q' may be 1 
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(and must be 1 in characteristic 0). Let G., bi , r i , and (Xi be as in (9.6). 
Suppose for 1 :::; i :::; n that rank (X i = ri , and let Ii = I, ((X i)' Finally, suppose 

that the (¢, c)-depth of Ii is 2: i for 1 :::; i :::; n. The~ (c<l» 01 = cq' (01) <1>01 

kills Hn_I(G.), O:::;t:::;n-l. 

The crucial point here is that the exponents q' {ot} and ot depend only on q' 
and t. In particular, if we apply an iteration of the Frobenius endomorphism, 
we can use the same exponents to kill homology no matter how high a power 
of Frobenius we apply. 

Before giving the proof of this rather technical result, we want to show how it 
implies the sufficiency of the phantom acyclicity criterion, Theorem (9.8). We 
first need 
(9.14) Theorem. (a) If R has characteristic p, is a homomorphic image of a 
Cohen-Macaulay ring, and is locally equidimensional, there is an element c E RO 
and a fixed integer e' such that for every ideal I of R the (Fe' , c)-depth of I 
is at least the height of I . 

(b) If R is an arbitrary Noetherian ring (i.e., not necessarily of characteristic 
p), R is reduced, R = S/Q, where S is Cohen-Macaulay, and S is regular 

? 
for each minimal prime ~ of Q, and R is locally equidimensional, then there 
is an element c E RO such that for every ideal I of R the (idR , c)-depth of I 
is at least the height of I . 
Proof. We first give the proof of (a), and then describe the changes that need to 
be made to prove (b). If R = Rl xR2 and we have such a ci for each component 
Ri' then it is easy to see that the element (c1 ' c2 ) solves the problem for R. It 
follows that there is no loss of generality in assuming that SpecR is connected. 
In this case, when we write R = S/Q with S Cohen-Macaulay, we know, as in 
the proof of Theorem (7.9), that Q is equidimensional and hence that if W is 
the complement of the set of minimal primes of Q , we can choose Z 1 ' ••• , Z d E 

Q whose images in the semilocal ring W- 1 S are a system of parameters and 
such that Zl"'.' zd is an S-sequence. It follows that there is an element 
c1 E Wand an integer q' = pe' such that c1 Q[q'] ~ (Zl' ... , zd)S ~ Q. Let 
c be the image of c1 in R. Then c has the required property. To see this, 
let I be an ideal of height n in R. It is easy to see that the inverse image 
of I in S has height n + d. It follows that Z 1 ' ••• , Z d can be extended to 
a regular sequence zl"." zd' x;, ... , x~ in I. Let Xj be the image of 
x~ in R. Given a Koszul cycle Z in Kj(xl ; R), we can lift it to an element 
z' of Kj(x l ; R'), where 'R' = S/(Zl' ... , zd)' It is now only a cycle modulo 
QK/Xl; R'). However, c1 z'[q'] is a cycle, and, hence, a boundary, since x and, 

hence, Xl , is a regular sequence in R' , and it follows that cz[q'] is a boundary 
if j 2: 1. This is equivalent to the assertion that cFe' annihilates Hj(xl ; R) 
if j 2: l. 

(b) Let the minimal primes of Q be {~J and, as before, let W = S - U i ~ i . 

Then W- I S is regular, and QW- I S, which is an intersection of maximal 
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ideals ofthe same height, say, d, is an ideal-theoretic complete intersection (this 
is clear after completion with respect to the Jacobson radical, which does not 
affect the issue). Moreover, by prime avoidance, it is possible to pick generators 
for Q W- I S in Q that generate an ideal of height d in S. (Suppose we choose 
ZI' .,. , zd E Q that generate QS? for each ~ = ~i' Altering Zt by an element 
in Q2 does not affect this property, since Q2 S = (~S )2 when ~ = ~l" It 

? ? 
suffices then to observe that if ZI' ••• ,Zt have been modified by elements in 
Q2 so that they generate an ideal of height t, t < d, then Zt+1 can also be so 
modified. Otherwise, Zt+1 +Q2 would be contained in the union of the minimal 
primes of (z 1 ' ••• , Z t)S , and then Q2 would be contained in one of them (see 
Theorem 124 on p. 90 of [Kap]), contradicting the fact that height Q2 = d.) 

With Z 1 ' ••• , Z d constructed as above, since 
-I -I QW S = (zp .. , ,zd)W S, 

there is an element c1 E W with c1 Q ~ (ZI ' •.. , zd)S, The rest of the argu-
ment is now precisely the same as in part (a), except that we can use Q where 
we used dq'] , and we make no use of the Frobenius endomorphism. • 

Next we observe 

(9.15) Lemma. Let R be a Noetherian ring of characteristic p, and let G. be 
a free complex with notation as in (9.6). 

(a) If Hi (Fe G.) is phantom for all i ~ 1 and all e ~ e' , then it is phantom 
for all i ~ 1 and all e. More precisely, if a cycle Z in Gi has an image zq' 

that is phantom in Hi(Fe' G.) for some e', then Z itself is phantom. 
(b) Let G~ed = G. ®R R red . If Hi(FeG.) is phantom for all i ~ 1 and all 

e EN, then G~ed, thought of as a complex over Rred, has the same property. 
(c) If G. satisfies the phantom acyclicity criterion, then for all sufficiently large 

e, rank Fe (a) = ri . 

(d) If c E RO kills H/FeG.) for all e (or for all sufficiently large e), then 
Hi(Fe G.) is phantom for all e. If R has a test element c E RO , then Hi (Fe G.) 
is phantom for all e iff Hi (Fe G.) is killed by c for all e. 

Proof. (a) It suffices to show that Hi(G.) is phantom, i ~ 1, since every FeG. 
satisfies the same hypothesis as G., and for this it suffices to prove the second 
statement. Since zq' in Fe' G. is a cycle in the tight closure of the boundaries, 
there is aCE RO such that c(zq')q is a boundary for all sufficiently large q. 
Note that, by the right exactness of tensor, the module of boundaries in Fe' +e G. 
may be identified with B[q'][q] , where B is the module of boundaries in Zi' It 
follows that Z is in the tight closure of B. 

(b) If suffices to show that Hi ( G~ed) is phantom over R red for i ~ 1. Let 
zred be a cycle in G~ed . Let Z be a lifting of it to Gi • While Z does not need 
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to be a cycle, we can choose e' such that zq' is a cycle in pe' G. Since it is 
then in the tight closure of the boundaries, we obtain that for some c E RO we 
have that c( zq')q E B[q' q) for all sufficiently large q, and this continues to hold 
when we tensor with Rred • 

(c) The hypothesis of the phantom acyclicity criterion implies that the size rj 

minors generate an ideal of positive height and that the size rj + 1 minors are 
nilpotent. For large e we then have that the size rj minors generate an ideal 
of positive height (and so are not all zero) while the size rj + 1 minors are zero, 
as required. 

(d) The hypothesis that c kills every Hj(pe G.) implies that if z is a cycle 
in the ith spot in any of these complexes, pe G. , then czq' is a boundary in 
pe+e' G. for all q' (respectively, for all sufficiently large q'), which, by the 
right exactness of tensor, is exactly what we need to see that z is in the tight 
closure of the module of boundaries in its complex. On the other hand, if all 
the Hj(pe G.) are phantom and c is a test element, it is clear that c kills all of 
them, since it kills B~/ 'B for every pair of finitely generated modules B ~ G . • 
Proofofsufficiency in Theorem (9.8). By Lemma (9.1S)(a), it suffices to show 
that Hj(pe G.) is phantom for sufficiently large e, i ~ 1. Replacing G. by 
pe' G., we may assume, by Lemma (9.1S)(c), that rank OJ = r j , 1 :5 i:5 n, and 
that this continues to be true when we apply pe . 

Choose c and e' as in Theorem (9.14). For each integer e, we let q = pe 
and apply Theorem (9.13) to pe(G.) with 4> = pe' . Since applying pe replaces 
I j by IJq) but does not change its height, we conclude from Theorems (9.13) 
and (9.14) that cq'(On)pOn kills Hj(pe(G.)) for all e. Since q'{On} and On 
do not depend on e, it follows that G. has phantom homology for i ~ 1 . • 

The proof of Theorem (9.l3) depends on the following lemma. 

(9.16) Lemma. Let R = Ro -+ Rl -+ ... -+ Rn be a chain of ring homomor-
phisms, and let cj be an element of Rj' 1 :5 i :5 n. Let M. be a nonnegative left 
complex of R-modules such that cj kills Im(Hj(R j _ 1 ®R M.) -+ HJR j ®R M.)) 
for 1 :5 i :5 n - 1. Let OJ denote the map from M. to R j ® M. induced by 
tensoring M. with the map R -+ R j . Let p. be a nonnegative left complex of 
projective R-modules. Note that elements of R j act on Rj-modules if i :5 j, 
since we can map them to R j . 

(a) Suppose that we are given a map f from Ho(P.) to Ho(M.). Then 
cn- 1 cn_2 '" c1 (On-l 0 f) lifts to a map of complexes p. -+ Rn_ 1 ®R M. through 
Pn · 

(b) Suppose that we have two liftings g. and l of f to maps of complexes. 
Let d j be the differential Pj -+ Pj - 1 , and let ej be the differential in M. or 
any complex obtained from it by tensoring. Then there exist maps hj : Pj -+ 

R n_ 1 ®R M j +1 , -1 :5 i :5 n (where P_ 1 = Ho(P.L M_I = Ho(M.)) such that 
h_1 = 0 and such that cncn_ 1 oCI (On 0 (gj - g)) = ej+1 hj +hj_1dj for 0:5 i:5 n. 
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Proof. (a) The argument begins precisely as in the usual case, and we simply 
give the inductive step. We may assume that r = cn_2'" c1 (()n-2 0 f) has been 
lifted to a map g.: p. -> R n _ 2 0 M. out to the (n - l)st stage. Let C = cn_ 1 
and w: Rn_ 2 0M. -> Rn_ 1 0M .. 

Rn_10Mn e 
~ Rn_10Mn_2 e ---+ Rn_1 0 M n_1 ---+ 

A Tew Tew 
: 

~ Rn_20Mn_2 e Rn_20Mn_1 ---+ 

Tg TK 
d d d Pn ---+ Pn- 1 ---+ Pn- 2 ---+ 

We must show that is it possible to fill in the map indicated by the dotted arrow 
in the diagram above so that it commutes. Since dn _ 1 dn is 0, we know that 
gn_2dn_ldn = en-lgn-ldn = 0, and so Imgn_1dn ~ Keren_1 . Since cw kills 
Hn_1 (Rn_2 0 M.), it follows that cwgd(Pn) ~ e(Rn_l 0 Mn), and so cwgd 
can be lifted to a map Pn -> R n_ 1 0 M., as required. This proves (a). 

(b) By taking differences of maps, we may assume that f and g' are O. We 
assume inductively that maps hi: Pi -> Rn_1 0Mi+1 have been constructed out 
through i = n - 1. with the required property. The early part of the argument 
is the same as in the standard construction of homotopies, and we assume that 
n2:2. Let g- denote cn-1",c1()n-l g . Let w denote the map Rn_10M.-
Rn 0 M .. We replace the earlier hi by h; = CnWhi' and it then suffices to 
show that one can fill in the dotted arrow in the diagram below with a map 
h~ = h' such that cnwg'; = cnwhn_1dn + en+1h', i.e., such that en+1h' = 
cnw(g;; - hn_1dn). Now, 

en (g;; - hn_1dn) = eng;; - enhn_1dn 
= g:-ldn - enhn_1dn 

= (g:-l -enhn_1)dn 
= hn_2dn_ldn = 0, 

~ 
d ---

e -.. ... 

d -----+ ... 

Since cnw kills Hn(Rn_1 0M), it follows that Imcnw(gn -hn_1dn) ~ Imen+1 ' 

and this permits us to fill in the needed map. • 
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Remark. In the situation of Lemma (9.16)(b), if we are given some of the h's, 
say h j for j < i , the argument shows that we may construct hi' ... ,hn after 
mUltiplying the difference of the maps of complexes by operators that kill the 
homology at the ith through nth spots. 

Proof 0/ Theorem (9.13). Let cjJ(e) = eq'. When n = 0, there are no values 
for t in the specified range, and the result holds vacuously. We proceed by 
induction on n, assuming n 2:: 1. We indicate the inductive step. Assume the 
result for complexes of length n - 1 and consider a complex of length n. The 
conclusion we want, except at the HI spot, follows simply by considering the 
complex of length n - 1 obtained by omitting Go. Consequently, we consider 
a fixed cycle, represented by Z E GI . We must show that (c<l»D(n-l) z is a 
boundary. If this fails, we can preserve the failure after localizing at a prime. 
Our hypotheses all remain valid. It follows that we may assume that the ring is 
local. 

Let XI' ... ,xn be a sequence in In as in the definition of (cjJ, c)-depth. 
Our hypotheses are stable under localization at Xi. If we localize at Xi' the 
minors of the last matrix in the resolution generate the unit ideal. We claim that 
when the maximal minors of the last matrix in G. generate the unit ideal, then 
Hn(G.) = a while (e<l»Dt kills Hn_l_t(G.) for a ~ t ~ n - 2. The statement 
for Hn is well known. If the statement for a ~ t ~ n - 2 were false for some 
t, this could be preserved while localizing at a maximal ideal. However, once 
the ring is local, the fact that one of the maximal minors of the last matrix 
is a unit implies that, after a change of basis in G n ' we may assume that G n 
is generated by a subset of a free basis for G n-I and that the last map is an 
inclusion. The hypotheses are then valid for the complex 

O~ Gn_I/Gn ~ Gn_2 ~ ... ~ Go' 

and the statement we want follows from the induction hypothesis applied to 
the displayed complex. We therefore conclude that z' = (c<l»D(n-2)[z] is a 
boundary after localization at Xi' which means that its homology class is killed 
by a power of Xi. 

(At this point, we inject a comment about the case n = 1 . Let z E HI (G.) ~ 
GI • Then some power of XI' say x~ , kills z. But this means z E HI (x~; G1), 

a direct sum of copies of HI (x~ ; R) , and so is killed by c<l>. Henceforth, we 
assume that n > 1.) 

Since this is true for every i, we may choose w such that x~ , ... ,x: all 
kill the image z" of z' (= (c<l»D(n-2)[z]) in the module 

M = Coker (<I>D(n-2)G2 ~ <l>D(n-2)G1) • 

We change notation and write Xi instead of x~. Then there is a map from 
R/(x l , ••• ,xn ) to M that sends the class of 1 to z", which is induced by 
the map from Ko(x; R) = R to <l>D(n-2) gl that sends 1 to z'. From Lemma 
(9.16)(a), we obtain a lifting of a certain "multiple" of this map to a map 
from the Koszul complex K.(x; R) to a complex (truncated at the beginning) 
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obtained from el>0(n-2)G. by further tensoring, using the fact that (eel»Ot kills 
the homology of each complex el>sG. at the (n - t)th spot, 0 $ t $ n - 2. (We 
are using the fact that each of the complexes el>s G. satisfies the same hypothesis 
as G., and we are using the induction hypothesis repeatedly.) 

To be precise, let G; = Gj +1 if j 2: 0, Gj = 0 if j < 0, and let the 
differential on G; be the same as on G. (except on Go' which we have replaced 
by 0 in G;). Then Lemma (9.16)(a) yields a map from the Koszul complex 
K. = K.(x; R) to el>S(eI>0(n-2)G;), where S = O(n - 2) + ... + 00, which, in 
degree 0, sends I to (ccI»s z' = (eel>l+O(n-2) z. We depict the situation in the 
diagram below. 

Each number in the row of numbers at the top indicates what power of eel> 
is needed to kill homology in el>s G. at the spot directly beneath it. We have 
used a variable s to remind the reader that s varies in the proof of Lemma 
(9.16)(a). The map we start with sends the generator 1 of Ko to (eel»O(n-2) z; 
each of the numbers in the row of exponents gets added during the course of 
construction of the vertical arrows, and the sum of these numbers is S. 

o 00 0(1-1) 0(n-3) 0(n-2) 
II <rl G; <l>s G; -I <l>s G; _ t - .•• -> <l>s Gr _ <l>s Gt <l>s G; - 0 

To T T T T T T 
Kn - Kn_ 1 - ••• -> Kn_ t - ••• - K2 -> KI - Ko - 0 

The map from Kn is, of course, 0, since G; = G n+1 = o. This map from 
K.(x; R) is ¢s-linear, and we may replace K.(x; R) by its tensor product with 
tIl(R) , i.e., by el>s K.(x; R) = K.(xs ; R) to obtain an R-linear map. 

Now apply HomR ( ,R). This produces a map g. from 

HomR (eI>S+O(n-2)G~, R) -> HomR (K. (xS; R) ,R) . 
Note that the dual of the Koszul complex is a Koszul complex, and that the 
"first" map (to the dual of Kn(xs ; R)) is zero, since Gn+1 = o. If we think of 
the numbering as reversed, we are in the situation of Lemma (9.16)(b). Recall 
that eel> kills the homology of any Koszul complex on powers of the Xi no 
matter what the exponent is! 

We write v to indicate HomR ( , R). The situation is depicted in the diagram 
below. The row of l's is a reminder that the exponent on eel> needed to kill 
homology at the spot directly below in K':' is always I: eel> kills all such 
homology. 

I I I I 
O v v v v K V 

-> Ko -> KI -> ... -> K n_2 -> Kn_1 -> n 
j ~ j ~ j ~ ~ j ~ j ~ jo o -> el>sGt -> el>sG~v -> ... -> el>sG;~2 -> el>sG;~1 -> el>sG;v 

II o 
The exponent s is S + O(n - 2). We have two maps of complexes, g. and 0., 
inducing the same map on augmentations. We now apply Lemma (9.16)(b) to 
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construct diagonal arrows as indicated. We write ht for the map whose domain 
is <l>sG;~t. We obtain such ht after replacing g. by (c<l>tg. Note that the 
powers of the x's in the Koszul complex have changed from S to S + n in the 
course of the argument. We now apply <l>n to the bottom row so that we may 
assume that the vertical and slant arrows are R-linear. We continue to use g. 
and h. for the vertical and slant arrows: g.: <l>s+nG;-v -> K.(xS+n ; R). Let 
h = hn_ 1 • Then go = hdv . Dualizing again we obtain that g: = dhv. But 
g: (1) = (c<l»s+n z is then the image of d, which proves that (c<l>/+n kills the 
typical cycle represented by z. Since we have 

s + n = 0 (n - 2) + S + n 
= 0 (n - 2) + (0 (n - 2) + ... + 00) + n 
=O(n-l), 

we can conclude that (c<l»D(n-l) kills H1(G.) , completing the inductive step . 

• 
We need one more fact before proving the necessity part of Theorem (9.8). 

(9.17) Proposition. Let G. be a possibly infinite complex offinitely generated 
projective modules over a Noetherian ring R of characteristic p. Suppose that 
M = Coker(Gh+1 -> Gh ) is projective and that Hi(G.) is phantom for i ~ h. 
Then the complex 

is split exact. 

Proof. Since the modules are projective, it suffices to prove exactness, and it 
will, in fact, suffice to prove exactness at Gh+1 , for the hypotheses are stable 
and exactness at each successive point will then follow. Since M is projective, 
0-> 1m Gh+1 -> Gh -> M -> 0 is split exact, and so P = 1m Gh+1 is projective. 
Thus, 0 -+ Z -> Gh+1 -> P -> 0 is split exact, where Z = Ker(Gh+1 -> Gh ), 

and we can express Gh+1 = Z E9 P. Since Z is in the tight closure of B = 
Im(Gh+2 -+ Gh+1) in Gh+l =:= Z E9 P, we have that Z is in the tight closure of 
B in Z , by Proposition (8.5)(m). But this implies that Z = B. (Otherwise, 
we can enlarge B to Bf so that Z j Bf = Rj m for a maximal ideal m. If Z 
were in the tight closure of B, it would also be in the tight closure of Bf , and 
this would imply that 1 E R is in the tight closure of m.) • 

Proof of necessity in Theorem (9.8). Now let G. be a fixed free complex, with 
notation as in (9.6), such that Hi(Fe G.) is phantom for i ~ 1 and for all 
e ~ o. First note that each Hi(G.) , since it is phantom, is killed by an element 
of RO . It follows that G. becomes acyclic if we tensor with (RO)-l R red , which 
is isomorphic to the total quotient ring of R red . It is then clear that the rank of 
a~ed is r i , and that Ii has positive height for i ~ 1 . Assume there exist a ring R 
and a complex for which the result fails, and choose d as small as possible such 
that Id fails to have height at least d. By localizing at a minimal prime of Id , 
we obtain an example in which (R, m) is local and dimR < d. The condition 
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that every Hi (Fe G.) is phantom is preserved by the localization. Likewise, we 
may replace R by its completion and so assume that R is complete. By Lemma 
(9.15)(b), we may replace R by Rred and thus assume also that R is reduced. 
If one of the maps G h+ I -+ G h has a free cokernel, then we may use Proposition 
(9.17) to split off the last part of the complex. Hence, using induction on the 
length of the complex, we may assume that all the Ih are contained in m. 
By Corollary (6.26) there is a test element C E RO. In particular, c kills the 
homology Hi(Fe(G.)) for all e and all i ~ 1. 

If dimR = 0, then R is a field, phantom acyclicity implies acyclicity, and 
Ih ~ m = 0 implies that a.h = 0, a contradiction if d ~ 1. If dimR = 1, 
then R is C-M. If d is at least 2, then the last three terms of G. also give a 
counterexample. We might as well assume that d = 2 is the length of G. Since 
ht 12 ~ 1, 12 contains a nonzerodivisor and 0.2 is injective. By splitting off 
a summand of G2 if necessary, we can also assume that a.2(G2) ~ mGI ' and 
hence that (Fe 0.2 )( G2 ) ~ m[q]GI . We can choose e so large that m[q] ~ c2 R, 
since c is a parameter for R. Let b be an element of the free basis for G2 • 
The bq is part of a free basis for Fe G2 and, if P = Fe 0.2 , we can write 
P(bq) = c2w for some WE FeGI . We shall obtain a contradiction by proving 
that W represents an element of HI (Fe G.) not killed by c. Since c is not 
a zerodivisor on the free module FeGo and c2(Fea. l )(w) = (Fea. l )(C2W) = 
(Fea. l )(Fea.2)(b) = 0, we have that (Fea.l)(w) = 0, so that w does, in fact, 
represent an element of HI (Fe G.). To complete the argument, it suffices to 
show that cw is not a boundary. Suppose we had cw = P(g) for g E Fe G2 . 

Then c2w = P(cg) = P(b) , and, as already noted, P is one-to-one, whence 
b = cg , a contradiction, since c E m and b is a minimal generator of Fe G2 . 

Now suppose that dimR ~ 2. We can choose x E m n RO such that the 
ideal (c, x)R has height two. Let R' = R/xR. We shall show that if G: is the 
complex obtained from G. by tensoring with R' and replacing the Go®R' term 
by 0, numbered so that G~ = Gj+1 ® R' , then, working over R', Hj(Fe G:) is 
phantom for j ~ 1 . This will contradict the minimality of d , since dim R' < 
d - 1 and 1 d _I for the complex G: is contained in mR' . By Lemma (9.15) (d), 
it will suffice to show that c2 kills Hj(Fe G:) (with Fe calculated over R') for 
all e, for the fact that (x, c)R has height two implies that the image of c in 
R' is in R'o . But Hj(Fe G:) == Hj+1 (Fe G. ® R') for j ~ 1 , and the short exact 
sequence 0 -+ R ~ R -+ R' -+ 0, tensored with Fe G. , yields a long exact 
sequence for homology that includes 

... -+ H. (Fe G ) -+ H. (Fe G 10. R') -+ H. (Fe G ) -+ ... J+I • J+I • ~ J • 

Since c (a test element) kills the first and last of the three terms shown, c2 kills 
the middle term for j ~ I . • 

We conclude this section with two examples. 
(9.18) Example To see the need for calculating ranks in R red rather than R 
in the statement of the phantom acyclicity criterion, consider the following 
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example. Let K be a field of characteristic p , and let 

R = K[S, T, U, V, X, Y]IJ, 

where J is generated by US+ VT, XS+YT, and (UY - V X)t, where t is an 
integer ~ 2. Let a have matrix [;] and let P have matrix [~~], where the 
lower case letters denote the images of the corresponding capital letters. Then 

o -> R ~ R2 .! R2 -> 0 

satisfies the phantom acyclicity criterion, and so this complex has phantom 
homology for i ~ 1 , but P has the wrong rank (rank 2) if we compute over R 
instead of Rred • 

(9.19) Example. Let (R, m) be a C-M local ring of characteristic p with 
dimR = n. Let XI' •.. , xn be a system of parameters and y E m be such 
that if [ = (XI' ••• ' xn)R, then [: RyR S; [*. We shall show below that 
there exist many examples of this type, even with R a local isolated hypersur-
face singularity. In this situation, the Koszul complex K.(x l , ••• , x n ' y; R) 
has phantom homology for i ~ 1, but this is not preserved when we apply 
Fe . Indeed, it cannot be, since the complex is too long to satisfy the phantom 
acyclicity criterion. The Koszul homology here is 0 for i ~ 2 since the Xi 
form a regular sequence. To see that Hi is phantom, we must show that any 
relation P = ('1' ... , 'n' s) on XI' ..• , xn ' y is in the tight closure of the 
trivial (or Koszul) relations. Since s E [: yR S; [* , we can choose c such that 
csq E i qj for all q » o. It follows that we can subtract a linear combination of 
qth powers of trivial relations from pq so as to make the last entry o. What 
remains is, essentially, a relation on the elements xf, ... , x! ' and is thus a 
linear combination of trivial relations on these. But each such trivial relation 
is a qth power of a trivial relation on XI' ••• , xn . 

Specifically, let S be either K[XI , ••. , X n , Y]m' where m is the homoge-
neous maximal ideal, or K[[X I , ••• , Xn ' Y]], let R be the local hypersurface 
SIHS, where 

H = y2 _ (X~I + ... + x;n) , 
and let Y, Xi be the images of Y, Xi' 1 ~ i ~ N. As above, let [ = 
(XI' •.. , xn)R. For any sufficiently large choices of the d i , y will be in [* 
in R for all but finitely many choices of the characteristic of K. This follows 
from the results of [HHS] on Gorenstein rings (a Gorenstein local ring is F-
regular if and only if the ideal generated by one system of parameters is tightly 
closed) and [HH7] on rational singularities (if R has isolated singularities and 
is F-regular, then the SpecR must have rational singularities). Over a field of 
characteristic 0, the hypersurface will be an isolated but not rational singularity, 
and since it is Gorenstein, it will follow that [ is not tightly closed for almost 
all choices of the characteristic. But y generates the socle modulo [, and 
so must be in [* if [* :j:. [. Note that [: RY = m R = [+ y R, and so 
[ : RY = mR S; [* , since y E [* , and this is what we needed. (The results of §S 
on the Brian~on-Skoda theorem can also be used to show that y E [* if the d i 
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are sufficiently large, independent of the characteristic. E.g., if all the d j 2: 2n , 
then l E [2n => y E (In)- ~ [* by Theorem (5.4).) 

10. THE SYZYGY THEOREM AND VARIANT NOTIONS 
OF TIGHT CLOSURE IN CHARACTERISTIC P 

In this section we introduce, for Noetherian rings of characteristic p , a family 
of notions of tight closure. Our original notion is one of them, the one we feel 
is best "for general purposes." However, the others will clearly be of some 
importance. We shall use one of them, later in this section, to give a direct 
proof of the syzygy theorem in characteristic p. Another of these notions 
is explored in some detail in the next section. It strengthens the conclusions 
one can derive from the phantom acyclicity criterion, and plays a key role in 
the proof that direct summands of regular rings containing a field are Cohen-
Macaulay (a result that is obtained in [HH7] in complete generality for the first 
time). 

( 1 0.1 ) Definition. Let R be a Noetherian ring of characteristic p , and let C?J 
be a nonempty family of ideals of R directed by ;2, i.e., for all e, e' E C?J , 
there is an ideal e" ~ ene' such that e" E C?J. If N ~ Mare R-modules, 
we say that an element x E M is in the tight closure of N in M with respect 
to C?J, denoted '?]N~ or Cl'?](N, M) , if there exists an ideal e E C?J such that 
for all q :» 0, exq E N[q) ~ Fe (M) . 

We shall say that x E M is in the small tight closure of N in M with respect 
to W , denoted '?]N;': , if there exists an ideal e E W such that exq E N[q) for 
all q. 

We shall say that a complex of modules M' ---> M ---> Mil has phantom 
homology with respect to C?J at M (or that the homology at M is C?J -phantom, 
or that the homology at M is phantom in the sense of tight closure with respect 
to W) if the cycles in M are in the tight closure, in M, of the boundaries with 
respect to the family W . 

(10.2) Discussion and examples. We omit the subscripts M and W whenever 
they are clear from context. Note that we could allow arbitrary subsets of R in 
C?J instead of ideals, but that we get the same notion. We may replace each of 
these sets by the ideal it generates. For any given choice of C?J, N*s ~ N* , of 
course. 

Our standard notion of tight closure is the one obtained by letting C?J = 
{cR: c E RO}. Note that when R has a test element c, we get the same notion 
by letting W = {cR} or by letting C?J = {.(R)} (.(R) is the ideal generated by 
all the test elements). When R is reduced or has a test element, the notions of 
tight closure and small tight closure coincide for C?J = {cR: c E RO}. When 
the tight closure and the small tight closure are different, it is often problematic 
to decide which is the "better" notion. 

We shall see in [HH5] that, if R is reduced and R 1/p is module-finite over 
R, we also get the standard notion of tight closure by letting C?J be the set of 
powers of any ideal defining the nonregular locus in Spec(R). The key point is 
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that for such an R, every element c such that Rc is regular has a power that 
is a test element. See also [HH3]. 

The condition that the family ~ be directed is needed to ensure that the 
tight closure is closed under addition. 

If ~ = {R}, the small tight closure of N is N itself, while the tight clo-
sure is the Frobenius closure of the submodule, i.e., the elements that are in 
the contraction of its expansion with respect to some power of the Frobenius 
endomorphism. 

If ~ = {(O)}, the tight closure of N in M is always M. Because this 
notion is completely uninteresting, one tends to feel that one ought to place 
a nondegeneracy condition on c in the "all-purpose" notion of tight closure. 
However, it turns out that even when c is nilpotent (and, perhaps, very badly 
a zerodivisor in other ways), the notion of tight closure with respect to {cR} 
yields information. This point will be illuminated by the proof of the syzygy 
theorem below. It depends on the following. 

(10.3) Lemma. Let N s;; M be finitely generated modules over a local ring 
(R, m), and let ~ be a family of nonzero ideals of R directed by ;;2. Then 
'6'N~ s;; N + mM. Thus, if x represents a minimal generator of M / N, then 
x tI- '6'N~. 

Proof. We may kill N without affecting any relevant issue. It suffices then to 
show that mM is tightly closed in M with respect to ~ , and we may then kill 
mM. In this way, we reduce the problem to showing that a is tightly closed in 
M/mM, which is a finite direct sum of copies of K, and so it suffices to show 
that m is tightly closed in R with respect to rt1. But if not, we would have 
Cl q s;; m[q] for all q» 0 for a fixed nonzero ideal C of R, a contradiction . 

• 
Before using this fact to prove the syzygy theorem, however, we want to 

discuss one more very important example of a variant notion of tight closure. 

(10.4) Definition. Let R be a Noetherian ring of characteristic p, and sup-
pose that Z = {P E Spec(R) : Rp is not C-M} is closed. Let 

J = n {P: P E Z} = {c E R: Rc is C-M} , 

the radical ideal defining the non-Cohen-Macaulay locus in Spec(R). Let ~ 
be the family {f: t is a positive integer}. We refer to '6'N~ (respectively, 
'6'N;f) as the Cohen-Macaulay tight closure or C-M tight closure of M in N 
(respectively, the small C-M tight closure), and denote it N;:m (respectively, 
N;:ms). As usual, the subscript M is omitted whenever possible. 

(10.5) Proposition. (a) With notation as in Definition (10.4), N*cms s;; N*cm s;; 
N* . 

(b) If R is Cohen-Macaulay, N*cms = N while N*cm is the Frobenius closure. 

Proof. (a) The first inclusion is trivial, while the second follows from the fact 
that J (and hence every f) meets RO. J cannot be contained in a minimal 
prime, since a-dimensional rings are C-M. 
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(b) follows at once from the fact that when R is C-M, J is the unit ideal. • 
(10.6) Remarks. There are Cohen-Macaulay rings of characteristic p such that 
every submodule of every module is contracted with respect to the Frobenius 
endomorphism, but which are not weakly F-regular. K[X, YJ/(XY) is an 
example. Thus, in general, N*cm is smaller than N* . However, we shall show 
in the next section that, under mild restrictions on R, when a complex G. 
satisfies the phantom acyclicity criterion, the cycles are in the C-M tight closure 
of the boundaries. It turns out to be important to know this for the following 
reason. Suppose we map R to S, where S is regular, in such a way that for 
some c E R such that Rc is C-M, the image of c is not zero. (This condition is 
enormously weaker than requiring that R -+ S be injective!) Because a power 
of c can be used as a "test element" for C-M tight closure, it follows that the 
map H i ( G.) -+ H i ( G. ® S) is 0, i ~ 1. This is one of our main motivations 
for considering alternative notions of tight closure. The issue is discussed in 
detail in the next section. 

Later we shall introduce the notion of weakly C-M rings and modules. See 
[HH4]. When the ring is not locally equidimensional, one gets corresponding 
results for the family {sf t : t}, where sf is the defining ideal of the nonweakly 
C-M locus in R, at least if R is a homomorphic image of a Gorenstein ring of 
finite Krull dimension. We have not introduced special names for this kind of 
tight closure. 

We now tum to the proof of the syzygy theorem mentioned earlier. First 
recall that if x is an element of M, where M is an R-module, the order ideal, 
°M(X) , of x is defined as {f(x): f E HomR(M, R)}. Although the syzygy 
theorem of Evans and Griffith (see [EvG 1, EvG2]) ostensibly deals with the 
ranks of modules of syzygies, the heart of their result is really the following. 

(10.7) Theorem (Evans-Griffith). Let R be a local ring that contains a field. 
Let M be a finitely generated k th syzygy of finite projective dimension, and let 
x be a minimal generator of M. Then the order ideal 0M(X) has height at 
least k. 

The condition that M be a finitely generated kth syzygy is equivalent to the 
existence of an exact sequence 

(#) 0-+ M -+ G -+ ... -+ G ~ G. -+ ... ---+ G k-I I I-I 0' 

where the Gi are finitely generated free modules. We give an improved version 
of this result in which we show that the depth of R on 0M(X) is at least k. The 
proof, in characteristic p, is extremely simple. The general equicharacteristic 
case then follows by standard techniques of reduction to characteristic p , which 
are discussed in [HH7]. Explicitly, 

(10.8) Theorem. Let (R, m) be a local ring of characteristic p. Let M be 
a .finitely generated kth syzygy of finite projective dimension, and let x be a 
minimal generator of M. Then the depth of R on the order ideal 0M(X) is at 
least k. 
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Proof. We may think of M as Ker¢k_1 in a free resolution of a module N. 
If the result is false, we can choose a maximal regular sequence Y1 ' ••• 'Yd in 
1= 0M(X) with d < k and c E R - J, where J = (Y1 ' ••• , Yd)R, such that 
cI ~ J. Since x is a minimal generator of M, we can choose a minimal 
generator g of G = Gk that maps to x (G maps onto M). Let B = Ker¢, 

, G' where ¢ = ¢k' so that M ~ G/B. Let R = R/J, . = G. ®R R/J, and 
let B' be the image of B in G/JG = G'. We shall show that the image g' 
of g in G' is in the tight closure of B' with respect to {cR'} over R'. The 
point is that, since pdR N is finite, Fe is exact when applied to G .. Now 
Torf(R/ J, Fe N) = 0 (because pdR/ J = d < k), and so Hk(Fe G. ® R') = 0, 
and Fe G. ® R' may be identified with Fe (G~) computed thinking over R'. 
The definition of I implies that every map from M to a free module H maps 
x into IH. Since ¢ factors through M and sends g to x, ¢(g) ~ IGk_ 1 
and Fe¢(gq) ~ I[q]FeGk_ l • Working modulo J, we obtain that 

Fe ¢' (Cg,[q]) = cFe ¢' (g/[q]) 

C cI[q]FeG' 
- k-I 

~ cIFeG~_1 

~ J FeG~_l = 0, 

so that cg,[q] is a cycle, and the vanishing of Torf (R/ J , FeN) implies that 
cg,[q] is a boundary, i.e., is in B,[q] (using, tacitly, the right exactness of tensor). 
This is exactly what we needed. Since g' is in the tight closure of B' in G', 
its image in G' / B' 2:: M / J M is in the tight closure of 0 in M / J M. But the 
image of g' in M / J M is the same as the image of x, and so is a minimal 
generator for M fJ M. But then Lemma (10.3) implies that the image of g' 
cannot be in the tight closure of o. This contradiction establishes the theorem . • 

It is not difficult to present a version of the above argument in which any 
explicit reference to notions of tight closure is suppressed. See [EvG3]. How-
ever, we feel that the above argument gives a certain kind of insight into what 
is happening that is lost any other way. Notice that, except possibly in the case 
I = J , the image of c in R/ J is, in fact, a zerodivisor, since cI ~ J . 

We conclude this section with several corollaries of the above result. We first 
note the following result, which does not appear to be available in exactly this 
form in the literature, although it is quite similar to results in [AuBr] and [BrV] 
and is readily deducible from a result explicit in [BrV]. 

(10.9) Lemma. Let R be an arbitrary Noetherian ring, and let M be a finitely 
generated R-module. Suppose pdR M < 00. Let kEN. Then the following 
two conditions are equivalent. 

(a) M is a kth syzygy ofafinitely generated R-module N. 
(b) For every prime ideal P of R, either Mp is/ree or depthMp 2: k. 
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Proof. First assume (a). If Mp is not free, 

depthMp = depthRp - pdR Mp 
p 

= depthRp - (PdRp Np - k) 
= depthNp + k, 

by the Auslander-Buchsbaum theorem (appli~d twice). 

105 

Since (b) evidently implies the condition (Sk) defined in Proposition (16.29) 
on p. 213 of [BrV], it follows at once from Proposition (16.33) on p. 215 of 
[BrV] that (b) ~ (a). • 

We next observe the following consequence of Theorem (10.8). 

(10.10) Corollary. If XI' ... , XI' where 1 :$ t:$ k, are part of a minimal set 
of generators for a kth syzygy M of fmite projective dimension over a local ring 
R of characteristic p, then F = Rxl + .. ·+Rxl is afree module with XI' ... , XI 
asfree basis, and MjF is a (k - t)th syzygy. Moreover, the ideal J of R such 
that c E J precisely if 0 --. Fe --. Me splits has depth at least k - t + 1. (If 
t = 1, J is the same, up to radicals, as the order ideal of X = X I .) 

Proof. If t = 1, we know that the order ideal of X = XI has depth at least 
k ~ 1. Since X can be mapped to a nonzerodivisor in R, AnnR X = 0, and 
so Rx';:R. We must see that MjxR isa (k-l)thsyzygy. But if we localize 
at a prime P that contains the order ideal of x, then depth R p ~ k, and 
so depthMp ~ k (since Mp is a kth syzygy), and then depth(MjRx)p ~ 
k - 1, while otherwise (MjRx)p is a direct summand of Mp and so is free 
(respectively, has depth ~ k) if Mp satisfies the condition. This shows that 
M/Rx is a (k - l)th syzygy, as claimed. 

Now assume that the result has been established for sequences of minimal 
generators of length less than t. Let Ji be the order ideal of the image of 
Xi in Mi = MjFi' where Fi = 'Ej<iRxj' From the induction hypothesis, 
J I ' ... ,JI_ I have depths at least k, k - 1 , ... , k - t + 2, respectively, and 
J1 has depth at least k - t + 1 because the image y of XI in MI is a minimal 
generator in a (k - t + 1 )th syzygy of finite projective dimension. The fact that 
Ry ';: R shows that F is free, and if we localize at any element in J = n~=1 Jj , 
we see easily that F splits off from M (by splitting off the images of the 
cyclic free modules generated by Rx l , Rx2 , etc., one at a time). Moreover, 
depth J = minI depth JI ~ k - t + 1 . The result now follows from the case t = 1 
applied to the element y in MI' • 

Note that Coroilary (10.10) is a rather strong form of the original syzygy 
theorem. If M has :$ k minimal generators, it will be free, while otherwise it 
will have a free submodule of rank k (generated by any k element subset of a 
set of minimal generators). 

We conclude this section with a matrix interpretation of Corollary (10.10). 
(10.11) Corollary. Let R be a Noetherian local ring of characteristic p, and 
let G. be a finite free resolution over R. Consider a matrix a for the map of 
free modules Gk -+ Gk _ l , let ImGk = M ~ Gk _ l , and consider the matrix p 
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formed from any t columns of a corresponding to elements 1;, ... ,It in the 
free basis for Gk that map to part of a minimal set of generators of M, where 
1 :::; t:::; k. Then It(P) has depth 2:: k - t + 1. 

Proof. If not, we can localize at a prime containing It(P) in such a way that the 
depth of the ring becomes < k - t + 1 . Since depth R :::; k - 1 and Coker a is a 
(k - l)th syzygy, Cokera is free, and so M is a free summand of G = Gk _ 1 • 

By Corollary (10.10), the submodule F generated by the images of 1;, ... ,It 
will be a free summand of M. Thus, F will be a free summand of G, which 
implies that Coker P is free of rank r - t. But a necessary and sufficient 
condition for Coker P to be free of rank r - t is that It(P) be the unit ideal, 
a contradiction. • 

(10.12) Remark. Note that when t = 1, I1(P), the ideal generated by the 
elements of a column corresponding to a minimal generator x of M, is always 
contained in the order ideal of x. More generally, in the situation of Corollary 
(10.11), if N = Coker a , N a gives a presentation of N N, and 1; /\ ... /\ It 
maps to a certain element u in Im(At a) (which is a first module of syzygies 
for At M). The order ideal of u in Im(At a) contains It(P) and so has depth 
at least k - t + 1 . 

11. PHANTOM ACYCLICITY FOR IMAGES OF GORENSTEIN RINGS 

In this section, we are concerned with showing that under mild conditions on 
a Noetherian ring R, there exist fixed elements c E RO that kill all higher Koszul 
homology on parameters. For example, when R is a locally equidimensional 
image of a Gorenstein ring of finite Krull dimension, every element c such that 
Rc is Cohen-Macaulay has a power that has this property. Results of this type 
are not dependent on any assumptions about the characteristic. We then use 
the techniques of §9 to show that each such c has a power that kills the higher 
homology of every complex that satisfies the phantom acyclicity criterion. In 
consequence, we are able to show that in such a complex the cycles are in the 
C-M tight closure of the boundaries (in the sense of § 10). Roughly speaking, 
this gives us a larger clasl> of elements that can be used as test elements. 

The availability of elements of RO that kill all higher Koszul homology of 
parameters noticeably simplifies the arguments of §9. There, in order to obtain 
the results for images of arbitrary C-M rings, it was necessary to apply fixed 
powers of the Frobenius endomorphisms as well as multiplication by a fixed 
element of RO to kill such homology. 

Several of the results of this section are close cousins of Theorem 1 of [Ro 1]. 
Theorem (11.5) can easily be deduced from it. The arguments given here are 
a bit more elementary, in that the use of dualizing complexes and spectral se-
quences is avoided. In the excellent case, similar results can be obtained by 
using the idea that occurs in the proof of Theorem (4.8) of this paper (and in 
the proof of the existence of big C-M modules in [H03]). After reducing to 
the complete case, one can arrange that a power of the constant c multiplies 
the ring being studied into a free module over a regular ring. These results 
are an important ingredient in the proof in [HH9] that the integral closure of 
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a biequidimensional, excellent, semilocal domain of characteristic p in an al-
gebraic closure of its fraction field is a big Cohen-Macaulay module for the 
original domain. 

Until the contrary is specified, after the statement of Theorem (11.8), there 
are no assumptions on the characteristics of the rings in this section. However, 
all given rings are assumed Noetherian. 

Before beginning our systematic study of images of Gorenstein rings, we 
note one other situation in which we know that elements c E RO as mentioned 
above exist. This result is simply a restatement of what was proved in Theorem 
(9. 14)(b), with the language of "c-depth" suppressed. 

( 11.1 ) Proposition. Let R be reduced, locally equidimensional, and a homo-
morphic image of a C-M ring S, say R = S/Q. Suppose also that for each 
minimal prime ~ of J, S is regular. If Spec(R) is connected, then there 

~ 

exists an ideal Jo ~ J generated by a regular sequence and an element c' E S 
not in any minimal prime of J such that c' J ~ Jo' If c is the image of c' 
in R, then c E RO , and for every ideal I of R such that ht I ~ n, there exist 
Xl' ... , Xn E I such that c annihilates Hi(X~ , ... , x~ ; R) for all i, t ~ 1 . 

If Spec(R) is not necessarily connected, an element c E RO can be con-
structed componentwise by carrying through the procedure above for each com-
ponent separately, and it will again have the property that for every ideal I of R 
with htI ~ n, there exist Xl' ... , Xn E I such that c kills Hi(x;, ... , x~; R) 
for all t ~ 1 and all i ~ 1 . 

(11.2) Remarks. The statement above is a bit subtle. The c we construct 
above kills all Hi(X~ , ... , x~ ; R), i ~ 1, t ~ 0, but not for every choice of the 
x; such that ht(x l , ... , xn)R = n. Rather, given I of height n, Proposition 
(11.1) guarantees that we can choose Xl' ... 'Xn E I such that c kills the 
H;(Xl; R) for all i ~ 1, t ~ O. However, Theorem (9.13) guarantees that a 
fixed power of c will kill all H;Cxl , ... , xn; R) for parameters x;, at least 
if there is a bound on n, e.g., if Krull dim R is finite. First, we restate the 
special case of Theorem (9.13) where the endomorphism ¢ of R is the identity 
(still avoiding the "c-depth" terminology of Definition (9.11)). Recall that the 
function Ot is defined following Remarks (9.12). 

(11.3) Theorem. Let R be an arbitrary Noetherian ring. Let G. be a finite 
complex of finitely generated free R-modules, and let b;, r; and a; be as in 
(9.6). Suppose for 1 ::; i ::; n that ranka; = ri , and let Ii = Ir (a). Let c E R, 
and suppose that for every i, 1 ::; i ::; n, for every j, 1 ::; j ::; i, there exist 
Xl' ... , Xj E Ii such that c kills Hv(x;, ... , x~; R) for all v, t ~ 1. Then 
cOt kills Hn_t(G.) , 0::; t ::; n - 1. 

Our primary goal in the remainder of this section is to develop other sit-
uations in which there is a fixed element c E RO that kills all higher Koszul 
homology of parameters. Our main result along these lines is Theorem (11.5) 
below. 
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(11.4) Theorem. Let R be an arbitrary Noetherian ring. 
(a) Suppose that R is locally equidimensional and a homomorphic image of 

a Gorenstein ring of finite Krull dimension. Let c be any element of R such 
that Rc is C-M. Then c has a fixed power that kills H~(RQ) for all i < ht Q 
for all prime ideals Q of R. 

(b) Suppose that R has finite Krull dimension :$; d. Let c be an element of 
R that kills H~(RQ) for all i < ht Q for every prime ideal Q of R. Then for 
every sequence of elements XI' ••• 'Xn of R such that ht(xl , ... , xn)R 2: n, 
C2d - 1 kills Hi(x:, ... , x~; R) for every i 2: 1 and for all tEN. 

Postponing the proof for a moment, we first state the following immediate 
corollary. 

(11.5) Theorem. Let R be an arbitrary Noetherian ring. Suppose that R is a 
homomorphic image of a Gorenstein ring of finite Krull dimension and is lo-
cally equidimensional. Suppose that c E R is an element such that Rc is 
Cohen-Macaulay. Then there is a fixed power c' of c such that for every se-
quence of elements XI' ••• 'Xn of R such that ht(xl' ... , xn)R 2: n, c' kills 
Hi(x: ' ... , x! ; R) for all i, t 2: 1 . 

(11.6) Remark. In both Theorems (11.4)(b) and (11.5), the hypothesis that 
ht(xl' ... , xn)R 2: n is preserved when we replace the x's by their tth pow-
ers. Thus, we could have omitted any reference to t in the statements of these 
theorems without actually weakening their conclusions. We chose to include t 
to make it obvious that the hypothesis of Theorem (11.3) holds in later appli-
cations. 

Proof of Theorem (11.4). (a) We may assume Spec(R) is connected, for we can 
construct the needed power working on each connected component separately, 
if necessary. It then follows that R = Sf J , where S is Gorenstein of finite 
Krull dimension and all minimal primes of J have the same height, as in the 
proof of Theorem (7.9). Let h be the height of J. We claim that there is a 
power of c that kills each of the modules Ext~(R, S), j t= h. To see this, note 
that it suffices to prove that these R-modules, which vanish for j > dimS, and 
which are finitely generated, vanish after localizing at c, and hence to prove 
that they vanish after localizing at any prime ? of S such that c ~ ? and 
?;2 J. Let Q = ?fJ. Then RQ = S?fJS? is Cohen-Macaulay, heightJS? = h 
(since all minimal primes of J have height h), and so Ext~ (RQ , S ) = 0 if 

p ? 
j t= h , as required. 

Let c' be a power of c that kills the modules Ext~(R, S) for j t= h. Then, 
given a prime Q of R, we may think of it as ?f J for a certain prime? of S, 
and localizing at ? we find that c' kills Ext~ (RQ , S ). By local duality over 

p ? 
S (see [GrH]), HQi (RQ) is the dual, into the injective hull of S f?S over ? ? ? 
S ,of Ext~ (RQ , S ), where j = dimS - i. It now follows that c' kills each ? p? ? 
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Hb(RQ) for i < htQ, since i =I htQ if and only if j = dimS? - i =I h. This 
establishes (a). 

(b) As observed in Remark (11.6), it suffices to consider the case t = 1 . Let 
D = D(d) = 2d - 1. Suppose that CD fails to kill Hi (XI , '" , Xn; R), i ~ 1 . 
Then this remains true for some localization of R. Thus, we may assume 
without loss of generality that (R, m, K) is a local ring in the statement of 
the theorem. We may then assume that the Xi are in m, since otherwise the 
Koszul homology vanishes. We use induction on d. 

If d = 0, then the sequence of x's must be empty, and Hi will be 0 for 
i ~ 1. Henceforth, we assume d ~ 1. Let N denote the ideal H:(R) = 
UtAnnR mt. Let R' = R/N. Note thatc kills N, by assumption. It will 
suffice to show that cD(d)-1 kills Hi (XI , ... , Xn; R'), i ~ 1, by virtue of the 
long exact sequence for Koszul homology induced by the short exact sequence 
O-N -R-R' -0, 

... - Hi (x; N) - Hi (x; R) - Hi (x; R') -'" , 

for then c kills the leftmost term and CD(d)-1 kills the rightmost term, which 
implies that cD(d) kills the middle term. We change notation and write R for 
R', assuming that depthR ~ 1. Let C = C2D(d-I). Since D(d)-1 = 2D(d-1) , 
what we must show is that C kills Hi(x; R) when depthR ~ 1. 

Consider a nonzerodivisor y in m. Let T = R/yR. The long exact se-
quence for local cohomology shows that for any prime ideal Q of T, which 
we may write as ~/yR for a certain prime ~ of R, we have 

... _ Hi (R ) _ Hi (T ) _ H i+1 (R ) _ ... 
?? Q Q ?? ' 

and if i < ht Q, then both i and i + 1 are < ht ~. Thus, c2 kills all the 
H~(TQ) for i < ht Q, and dim T :5 d - 1. It follows from the induction 
hypothesis that (C2)D(d-l) = C kills Hj(z; R/yR) for i ~ 1 and any sequence 
Z = ZI ' ••• , Zj in R such that ht(zl' ... , z)(R/yR) ~ j. 

We consider two cases. If n < dim R, by prime avoidance we can extend 
Xl' .• , 'Xn to a sequence Xl' ... , X n ' y such that y is not a zerodivisor in 
Rand ht(xl , ... , xn ' y)R = n + 1. Now suppose that C does not kill a 
certain element W E Hi(x; R). Represent w by a Koszul cycle v E Ki(x; R) . 
Let ~ = R//R. For t» 0, the image of Cv in Ki(x; ~) will represent a 
nonzero element of Hi (x; ~). (Otherwise, if B denotes the module of Koszul 
boundaries in G = KJx; R) , we would have Cv E B + / G for all t, which 
contradicts the fact that G / B is m-adically separated.) But this contradicts the 
discussion of the preceding paragraph, since yt is a nonzerodivisor in R for 
all t and ht(x l , ••• , x n ' y) = n + 1 => ht(x l , ••• , xn)Tt = n. 

The second case is the one where >z = dim R. In this case, we know the 
depth of R on (Xl' .. " Xn) = J is at least 1, and we can pick a minimal 
generator y for J which is a nonzerodivisor in R (this only requires avoiding 
mJ and a finite set of primes). We can extend y to a minimal set of genera-
tors for J. If we use these new generators to calculate the Koszul homology, 
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we get the same result. Therefore, there is no loss of generality in assuming 
that y = xn is a nonzerodivisor. In this situation, Hi(Xl , ... , x n_ l ' y; R) == 
H/Xl' ... , x n_ l ; RjyR). (This is easily seen if one thinks of the Koszul ho-
mology as a Tor as in [S, p. IV-6], and then uses the long exact sequence that is 
the degeneration of the spectral sequence for change of rings for Tor (cf. [S, p. 
V-17, second paragraph from the bottom of the page]). Alternatively, because 
the sequence 0 --+ R 2::. R --+ RjyR --+ 0 is exact, the homology of 

K. (Xl' ... , Xn_ l ; R) ®R (0 --+ R 2::. R --+ 0) = K. (Xl' ... , Xn; R) 

equals that of 

K. (Xl' ... , Xn_ l ; R) ®R RjyR = K. (Xl' ... ,Xn_ l ; RjyR). 

But then our earlier argument shows that C kills the latter module and, hence, 
the former. • 

(11.7) Definition. In discussing complexes satisfying the phantom acyclicity 
criterion in §9, the emphasis was on rings of characteristic p. But the conditions 
used in the criterion, which we review below, make sense and were defined 
over an arbitrary Noetherian ring R. However, we need to be able to refer 
to complexes that satisfy the condition on ranks even if one does not kill the 
nilpotents. We recall the conventions of (9.7). If G. is a finite complex of 
finitely generated free R-modules with notation as in (9.6), we shall say that 
G. satisfies the standard rank and height conditions if the rank of Q i = ri , 
1 :::; i :::; n, and heightli ~ i, 1:::; i :::; n. With this terminology, G. satisfies 
the phantom acyclicity criterion iff G. ® R Rred satisfies the standard rank and 
height conditions over Rred • 

Using this terminology, we can put Theorems (11.5) and (11.3) together to 
get 

(11.8) Theorem. Let R be an arbitrary Noetherian ring, not necessarily of 
characteristic p. Suppose that R is a homomorphic image of a Gorenstein ring 
of finite Krull dimension and is locally equidimensional. Let c be an element 
of R such that Rc is Cohen-Macaulay. Then there is a fixed power c' of c 
such that for every finite complex G. satisfying the standard rank and height 
conditions, c' kills Hi(G.) for all i ~ 1. 

Hence, if.91 is the defining ideal of the non-Cohen-Macaulay locus in R, 
there is a power .91' of .91 such that for every finite complex G. satisfying the 
standard rank and height conditions, .91' kills Hi(GJ for all i ~ 1. 

(11.9) Remark. One can get more specific information by tracing through the 
ideas in the proof of Theorem (11.5). In the connected case, let R = Sj J 
with S Gorenstein of finite Krull dimension. Let d = dim R. Replace c by 
a power c" that kills all the Ext~(R, S) for j =F ht J. Then C,,(2d -1) kills 
the higher Koszul homology of any sequence of parameters, and C,,(2d -l)O(d-l) 

kills the higher homology of any complex G. satisfying the standard rank and 
height conditions. (Note that if the length n of G. is > d = dim R , we must 
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have that Ii is the unit ideal for i > d. After one splits off the part of the 
complex containing the terms for i > d , if there are such terms, the complex 
that remains, which gives rise to all the homology of the original complex, has 
length at most d, and so we can use the exponent O(d - 1) on C,,(2d -l) .) Of 
course, once a power of each element of,N kills all such homology, so does a 
power of ,N . 

For the remainder of this section we assume that given rings have character-
istic p. What we have proved yields the following result at once. 

(11.10) Theorem. Let R be a Noetherian ring of characteristic p that is a 
homomorphic image of a Gorenstein ring of finite Krull dimension and is locally 
equidimensional. Let,N be the defining ideal of the non-Cohen-Macaulay locus 
in R. Then there is a power ,N' of,N (chosen as in Theorem (11.8)) such 
that the following conditions on any finite complex G. of finitely generated free 
R-modules, with notation as in (9.6), are equivalent. 

(a) Por all sufficiently large e, peG. has phantom homology for i ~ 1 . 
(b) Por all e, pe G. has phantom homology for i ~ 1 . 
(c) Por some element c E RO, c kills Hi(peG.) for all sufficiently large e 

and all i ~ 1. 
(d) G. satisfies the phantom acyclicity criterion. 
(e) pe G. satisfies the standard rank and height conditions for all sufficiently 

large e. 
(f) Por some power,NN of,N, ,NN kills Hi(pe G.) for all e »0 and all 

i> 1. 
-(g) ,N' kills Hi(pe G.) for all e »0 and all i ~ 1. 

(h) Por all i ~ 1 and all sufficiently large e, the cycles in pe Gi are in the 
small C-M tight closure of the boundaries. 

(i) Por all i ~ 1 and all e, the cycles in pe Gi are in the C-M tight closure 
of the boundaries. 

Moreover, if these equivalent conditions are satisfied, then ,N' kills 
Hi(FeG.) , i ~ 1, for all e such that peG. satisfies the standard rank and 
height conditions. In all of the statements above that refer to sufficiently large 
e, the statement will hold when e is so large that the standard rank condition 
holds for pe G .. In particular, if the standard rank and height conditions hold for 
G. itself, then each statement referring to "all sufficiently large e'" is equivalent 
to the corresponding statement with "all e" instead. Thus, if R is reduced (so 
that G. satisfies the phantom acyclicity criterion iff it satisfies the standard rank 
and height conditions), then "all sufficiently large e" can be replaced by "all e" 
throughout to obtain a new set of equivalent statements. 

Proof. The equivalence of (a), (b), (c), (d), and (e) follows from Lemma (9.15) 
and the phantom acyclicity criterion of §9. Note that once the standard rank 
and height conditions hold, they continue to hold. Fix e' so that they hold 
for e ~ e' . Theorem (11.8) shows that for e ~ e', ,N' Hi(pe G.) = 0, i ~ 1, 
and so we have that (e) ~ (g) ~ (f) in a strong form that shows that (g), (f) 
hold for e ~ e' when (e) does. But (f) ~ (i) by the definition of C-M tight 
closure and the same idea as in the proof of Lemma (9.15), and (i) ~ (b), 
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which we already know to be equivalent to (e). The argument given justifies the 
two statements that follow the list of equivalent conditions, and the remaining 
statements are straightforward consequences of the first two. • 

( 11.11 ) Discussion. The next two theorems assert that under mild conditions 
on the ring R, the "kind" of phantom homology that "arises" from the phan-
tom acyclicity criterion is killed if one maps to a regular (or sufficiently good 
weakly F-regular) ring S, provided that some element c such that Rc is Cohen-
Macaulay is mapped into SO . This simply means, geometrically, that the image 
of every component of Spec(S) meets the Cohen-Macaulay locus in Spec R. 
Thus, the kind of phantom homology that arises from the phantom acyclicity cri-
terion may be thought of as a consequence of the failure of the Cohen-Mac~ulay 
property in R. It is worth noting that this is not the only kind of phantom ho-
mology. Cohen-Macaulay rings are not, in general, weakly F-regular. We also 
note that, in mapping to S, the height conditions are lost. If they were retained, 
we would get the vanishing we want from the Buchsbaum-Eisenbud criterion, 
and we would not need to impose any F-regularity condition on S. Only the 
Cohen-Macaulay property would be needed. We would then get that the ten-
sor product of the original complex with S is acyclic, not just the more subtle 
result that the induced map of homology is O. Moreover, we would not need 
any restrictions on the characteristic. The Frobenius endomorphism would not 
come into it. 

The power of the theory presented here is that there is no necessity to preserve 
heights under the map to S, only to keep one element c such that Rc is C-M 
from being "too degenerate" in S. 

The vanishing theorems for maps of homology follow. 
(11.12) Theorem. Let G. be a finite free complex of finitely generated free 
modules over a Noetherian ring R of characteristic p, as in (9.6). Moreover, 
suppose that R is a homomorphic image of a Gorenstein ring of finite Krull 
dimension, and is locally equidimensional. Suppose that G. satisfies the phantom 
acyclicity criterion. Let c E R be such that Rc is Cohen-Macaulay, and let S be 
a regular (or weakly F-regular ring). Suppose that h: R -+ S with h(c) E So. 
Then the induced map Hi(G.) -+ Hi(G. ®R S) is 0 for i 2:: 1, and the same is 
true for the map Hi(G.; -+ Hi(G:) for any complex G: of S-modules to which 
G. maps. 

Proof. Consider a cycle z E Gi . We can assume that G: = G. ®R S, since 
the map to G: will factor through G. ®R S. From Theorem (11.10), we know 
that c has a power c' such that c' zq E B[q] for all sufficiently large q, and 
it follows that h(c')h(z)[q] E B,[q] in Fe (G:) for all e » 0, where B' is the 
module of boundaries in G;. Since h(c') E SO , we have that h(z) E B'* = B' , 
as required. • 

We can prove the same vanishing theorem under somewhat different hypothe-
ses on Rand S. 
(11.13) Theorem. Let G. be a finite free complex of finitely generated free 
modules over a Noetherian ring R of characteristic p, as in (9.6). Moreover, 
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suppose that R has C-M formal fibers and is locally formally equidimensional. 
Suppose that G. satisfies the phantom acyclicity criterion. Let c E R be such 
that Rc is Cohen-Macaulay, and let S be a regular ring (or a weakly F-regular 
ring with a completely stable test element). Suppose h: R -+ S with h(c) E SO . 
Then the induced map Hj(G.) -+ Hj(G. ®R S) is 0 for i ~ 1, and the same is 
true for the map Hj(GJ -+ Hj(G~) for any complex G~ of S-modules to which 
G. maps. 

Proof. If we have a counterexample, we can replace S by its localization at a 
suitable maximal ideal, and we still have a counterexample. We can then replace 
S by its completion. We can localize R at the contraction of the maximal ideal 
of S to R without affecting any of our hypotheses and then complete. When 
we tensor G. with the completed, localized R, it still satisfies the phantom 
acyclicity criterion. Our hypotheses guarantee that the complete local ring R' 
is equidimensional. The fact that R has C-M formal fibers implies that R~ is 
C-M. But now R' satisfies the hypotheses of Theorem (11.12), and this gives a 
contradiction. • 
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