Tight estimates for eigenvalues of regular graphs

A. Nilli
Department of Mathematics, Sackler Faculty of Exact Sciences
Tel Aviv University, Tel Aviv, 69978, Israel
nilli@tau.ac.il

Submitted: Apr 4, 2004; Accepted: May 3, 2004; Published: May 24, 2004
MR Subject Classification: 05C50

Abstract

It is shown that if a d-regular graph contains s vertices so that the distance between any pair is at least $4 k$, then its adjacency matrix has at least s eigenvalues which are at least $2 \sqrt{d-1} \cos \left(\frac{\pi}{2 k}\right)$. A similar result has been proved by Friedman using more sophisticated tools.

1 The main result

Let $G=(V, E)$ be a simple d-regular graph on n vertices. let A be its adjacency matrix, and let $\lambda_{1}(G)=d \geq \lambda_{2}(G) \geq \ldots \geq \lambda_{n}(G)$ be its eigenvalues. Alon and Boppana ([1], see also [9], [11]) proved that for any fixed d and for any infinite family of of d-regular graphs G_{i}, liminf $\lambda_{2}\left(G_{i}\right) \geq 2 \sqrt{d-1}$. This bound is sharp (at least when $d-1$ is a prime congruent to 1 modulo 4), as shown by the construction of Lubotzky, Phillips and Sarnak [9], obtained, independently, by Margulis [10]. In fact, in [1] it is conjectured that almost all d-regular graphs G on n vertices satisfy $\lambda_{2}(G) \leq 2 \sqrt{d-1}+o(1)$ (as n tends to infinity). This has recently been proved by Friedman [6].

More generally, Serre has shown (see [3], [4]) that for any fixed r and for any infinite family of d-regular graphs $G_{i}, \lim \inf \lambda_{r}\left(G_{i}\right) \geq 2 \sqrt{d-1}$. The same result has been proved by Friedman already in [5].

In this note we give an elementary, simple proof of this result, following the method of [11]. Our estimate is a bit better than that of [11] even for the case $r=2$ (also studied by Kahale in [7]), and matches in the first two terms the estimate of Friedman in [5], but the proof is completely elementary.

Theorem 1 Let G be a d-regular graph containing s vertices so that the distance between any pair of them is at least $4 k$. Then $\lambda_{s}(G) \geq 2 \sqrt{d-1} \cos \left(\frac{\pi}{2 k}\right)$.

2 The proof

Let $G=(V, E)$ be a d-regular graph, where $d \geq 3$. Let $v \in V$ be a vertex, define $V_{0}=\{v\}$, and let V_{i} be the set of all vertices of distance i from v. Put $\alpha=\frac{\pi}{2 k}, n_{i}=\left|V_{i}\right|$, and define

$$
y_{i}=\frac{\cos ((i-k) \alpha)}{(d-1)^{i / 2}}
$$

Therefore, $y_{0}=y_{2 k}=0$ and $y_{i} \geq 0$ for all $0 \leq i \leq 2 k$. It is not difficult to check that the sequence y_{i} is unimodal, that is, there exists a unique i_{0} such that

$$
y_{0}<y_{1}<\ldots<y_{i_{0}}<y_{i_{0}+1} \geq \ldots \geq y_{2 k}
$$

For $d \geq 5, i_{0}=0$, whereas for $d=4$ or 3 it may be 1 or 2 .
To see that this is indeed the case note that the ratio y_{i+1} / y_{i} is precisely

$$
\frac{\cos \alpha-\tan ((i-k) \alpha) \sin \alpha}{\sqrt{d-1}}
$$

which is a decreasing function of i for all admissible values of i, and hence we simply let $i_{0}+1$ be the smallest i for which this ratio is at most 1 . (Such an i exists, as for $i=k$ the ratio is $\cos \alpha / \sqrt{d-1} \leq 1$.) If $d \geq 5$, then the above ratio is at most 1 already for $i=1$, since in this case the ratio $y_{2} / y_{1}=2 \cos \alpha / \sqrt{d-1} \leq 1$. Thus, in this case, $i_{0}+1=1$. For $d=3,4$ note that the ratio y_{i+1} / y_{i} is also equal to $\frac{\sin ((i+1) \alpha)}{\sqrt{d-1} \sin (i \alpha)}$. The function $f_{i}(\alpha)=\frac{\sin ((i+1) \alpha)}{\sin (i \alpha)}$ is at most $(i+1) / i$ for all admissible values of α, since $g(\alpha)=i \sin (i \alpha) f_{i}(\alpha)-(i+1) \sin (i \alpha)$ satisfies $g(0)=0$ and $g^{\prime}(\alpha)=i(i+1) \cos ((i+1) \alpha)-$ $i(i+1) \cos (i \alpha) \leq 0$ whenever $0 \leq i \alpha \leq(i+1) \alpha \leq \pi$. Therefore, $\frac{y_{i+1}}{y_{i}} \leq \frac{i+1}{i \sqrt{d-1}}$ which is at most 1 for $i=2$ and $d=4$, and at most 1 for $i=3$ and $d=3$. It follows that for all $d \geq 3, i_{0}+1 \leq 3$, whereas for $d \geq 5, i_{0}+1=1$.

Put $x_{i}=y_{i+i_{0}}$ for all $i, 0 \leq i \leq 2 k-i_{0}$. Therefore, x_{i} is monotone non-increasing for $i \geq 1$, and $x_{2 k-i_{0}}=0$. Let A be the adjacency matrix of G, whose rows and columns are indexed by the vertices of G, and define a vector $x(v)_{v \in V}$, by putting $x(v)=x_{i}$ for all $v \in V_{i}$ and $x(v)=0$ otherwise. The main part of the proof is the following lemma.

Lemma 1 The following inequality holds

$$
x^{t} A x \geq[2 \sqrt{d-1} \cos \alpha] \cdot x^{t} x
$$

Proof : For any two subsets X, Y of V, let $e(X, Y)=\{(x, y): x \in X, y \in Y, x y \in E\}$ denote the number of edges between X and Y (note that if $X=Y$ then each edge with both ends in X is counted twice).

First note that

$$
\begin{equation*}
x^{t} x=\sum_{i=0}^{2 k-i_{0}} n_{i} x_{i}^{2} \tag{1}
\end{equation*}
$$

Also:

$$
\begin{equation*}
x^{t} A x=d x_{0} x_{1}+\sum_{i=1}^{2 k-i_{0}-1}\left[e\left(V_{i-1}, V_{i}\right) x_{i-1}+e\left(V_{i}, V_{i}\right) x_{i}+e\left(V_{i}, V_{i+1}\right) x_{i+1}\right] x_{i} . \tag{2}
\end{equation*}
$$

Since $0 \leq x_{0}<x_{1}$

$$
\begin{equation*}
d x_{0} x_{1} \geq d x_{0}^{2} \geq[2 \sqrt{d-1} \cos \alpha] x_{0}^{2} \tag{3}
\end{equation*}
$$

Consider the term

$$
\begin{equation*}
e\left(V_{i-1}, V_{i}\right) x_{i-1}+e\left(V_{i}, V_{i}\right) x_{i}+e\left(V_{i}, V_{i+1}\right) x_{i+1} . \tag{4}
\end{equation*}
$$

Note that $e\left(V_{i-1}, V_{i}\right) \geq n_{i}$, and that $e\left(V_{i-1}, V_{i}\right)+e\left(V_{i}, V_{i}\right)+e\left(V_{i}, V_{i+1}\right)=d n_{i}$. Also note that if $i>1$, then, by our definition of the values $x_{i}=y_{i+i_{0}}, x_{i-1} \geq x_{i} \geq x_{i+1}$, and therefore the minimum possible value of the term (4) is obtained when $e\left(V_{i-1}, V_{i}\right)=n_{i}$, $e\left(V_{i}, V_{i}\right)=0$ and $e\left(V_{i}, V_{i+1}\right)=(d-1) n_{i}$. For $i=1, V_{0}$ consists of a single vertex and hence certainly $e\left(V_{0}, V_{1}\right)=n_{1}=d$, and since $x_{1} \geq x_{2}$ the minimum of the term (4) is again obtained when $e\left(V_{1}, V_{1}\right)=0$ and $e\left(V_{1}, V_{2}\right)=(d-1) n_{1}$. It follows that in any case the term (4) satisfies

$$
\begin{aligned}
& e\left(V_{i-1}, V_{i}\right) x_{i-1}+e\left(V_{i}, V_{i}\right) x_{i}+e\left(V_{i}, V_{i+1}\right) x_{i+1} \geq n_{i} x_{i-1}+(d-1) n_{i} x_{i+1} \\
& \quad=n_{i} \frac{\sqrt{d-1}}{(d-1)^{\left(i+i_{0}\right) / 2}}\left(\cos \left[\left(i+i_{0}-k-1\right) \alpha\right]+\cos \left[\left(i+i_{0}-k+1\right) \alpha\right]\right) \\
& \quad=n_{i} \frac{2 \sqrt{d-1}}{(d-1)^{\left(i+i_{0}\right) / 2}} \cos \alpha \cos \left[\left(i+i_{0}-k\right) \alpha\right]=[2 \sqrt{d-1} \cos \alpha] n_{i} x_{i} .
\end{aligned}
$$

Substituting this and (3) in (2) we conclude that $x^{t} A x \geq[2 \sqrt{d-1} \cos \alpha] \sum_{i=0}^{2 k-i_{0}-1} n_{i} x_{i}^{2}$. This, together with (1) and the fact that $x_{2 k-i_{0}}=0$ implies the assertion of the lemma.

To complete the proof of the theorem note that by the variational definition of the eigenvalue $\lambda_{s}(G)$ it is equal to the maximum, over all subspaces W of dimension s, of the minimum value of $z^{t} A z$ as z ranges over all unit vectors in W. Given s vertices v_{i} as in the theorem, we can construct for each of them a vector $x^{(i)}$ as in the lemma, and observe that as the distance between the supports of any two of these vectors exceeds 1 , for every vector z in their span

$$
z^{t} A z \geq[2 \sqrt{d-1} \cos \alpha] z^{t} z
$$

This completes the proof of the theorem.

3 Concluding remarks

- For large $k, \cos \left(\frac{\pi}{2 k}\right)$ is $1-\frac{\pi^{2}}{8 k^{2}}+O\left(\frac{1}{k^{4}}\right)$. In particular, for any d-regular graph G with diameter $r, \lambda_{2}(G) \geq 2 \sqrt{d-1}\left[1-\frac{2 \pi^{2}}{r^{2}}+O\left(\frac{1}{r^{4}}\right)\right]$, matching the estimate in [5].
- Similar arguments can be used to show that if a d-regular graph G contains s vertices so that the distance between any pair is at least $4 k$ and so that there is no odd cycle that lies within distance $2 k$ of any of the vertices, then G has at least s eigenvalues which are smaller than $-2 \sqrt{d-1} \cos \left(\frac{\pi}{2 k}\right)$. The proof is analogous to that of Theorem 1, one simply defines the numbers x_{i} with the same absolute values as in this proof, but with alternating signs. This has also been proved by Friedman in [5], see also [8] and [2] for related results.

Acknowledgment

I would like to thank N . Alon for fruitful discussions and for his help in writing this manuscript.

References

[1] N. Alon, Eigenvalues and Expanders, Combinatorica 6(1986), 83-96.
[2] S. M. Cioabǎ, On the extreme eigenvalues of regular graphs, to appear.
[3] G. Davidoff, P. Sarnak and A. Vallete, Elementary Number Theory, Group Theory and Ramanujan Graphs, Cambridge University Press, 2003.
[4] K. Feng and W.-C. Winnie Li, Spectra of hypergraphs and applications, J. Number Theory 60 (1996), 1-22.
[5] J. Friedman, Some Geometric Aspects of Graphs and their Eigenfunctions, Duke Math. J. 69 (1993), 487-525.
[6] J. Friedman, A Proof of Alon's Second Eigenvalue Conjecture, to appear.
[7] N. Kahale, On the second eigenvalue and linear expansion of regular graphs, Proc. $33^{r d}$ IEEE FOCS, Pittsburgh, IEEE (1992), 296-303.
[8] W.-C. Winnie Li, On negative eigenvalues of regular graphs, Comptes Rendus de l'Académie des Sciences 333 (2001), 907-912.
[9] A. Lubotzky, R. Phillips and P. Sarnak, Explicit expanders and the Ramanujan conjectures, Proc. $18^{\text {th }}$ ACM STOC (1986), 240-246. Also: A. Lubotzky, R. Phillips and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), 261-277.
[10] G. A. Margulis, Explicit group-theoretical constructions of combinatorial schemes and their application to the design of expanders and superconcentrators, Problemy Peredachi Informatsii 24(1988), 51-60 (in Russian). English translation in Problems of Information Transmission 24(1988), 39-46.
[11] A. Nilli, On the second eigenvalue of a graph, Discrete Mathematics 91 (1991), 207210.

