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Despite enormous progress both in theoretical and experimental quantum cryptography,
the security of most current implementations of quantum key distribution is still not estab-
lished rigorously. One of the main problems is that the security of the final key is highly
dependent on the number, M , of signals exchanged between the legitimate parties. While,
in any practical implementation, M is limited by the available resources, existing security
proofs are often only valid asymptotically for unrealistically large values of M . Here, we
demonstrate that this gap between theory and practice can be overcome using a recently de-
veloped proof technique based on the uncertainty relation for smooth entropies. Specifically,
we consider a family of Bennett-Brassard 1984 quantum key distribution protocols and show
that security against general attacks can be guaranteed already for moderate values of M .

I. INTRODUCTION

Quantum Key Distribution (QKD), invented by Bennett and Brassard [1] and by Ekert [2], can
be considered the first application of quantum information science, and commercial products1 have
already become available. Accordingly, QKD has been an object of intensive study over the past
few years. On the theory side, the security of various variants of QKD protocols against general
attacks has been proved [3–8]. At the same time, experimental techniques have reached a state of
development that enables key distribution at MHz rates over distances of 100 km [9–11].

Despite these developments, there is still a large gap between theory and practice, in the sense
that the security claims are based on assumptions that are not (or cannot be) met by experi-
mental implementations. For example, the proofs often rely on theoretical models of the devices
(such as photon sources and detectors) that do not take into account (experimentally unavoidable)
imperfections (see [12] for a discussion).

In this work, we focus on the asymptotic resource assumption, i.e., the assumption that an
arbitrarily large numberM of signals can be exchanged between the legitimate parties and used for
the computation of the final key. This assumption is quite common in the literature, and security
proofs are usually only valid asymptotically as M tends to infinity. However, the asymptotic
resource assumption cannot be met by practical realizations—in fact, the key is often computed
from a relatively small number of signals (M ≪ 106). This problem has recently received increased
attention and explicit bounds on the number of signals required to guarantee security have been
derived [13–19].

In this work, we apply a novel proof technique [20] to derive almost tight bounds on the mini-
mum value M required to achieve a given level of security. The technique is based on an entropic
formulation of the uncertainty relation [21] or, more precisely, its generalization to smooth en-
tropies [20]. Compared to preexisting methods, our technique is rather direct. It therefore avoids
various estimates that have previously led to too pessimistic bounds. Roughly speaking, our result
is a lower bound on the achievable key rate which deviates from the asymptotic result (where M
is infinitely large) only by terms that are caused by (probably unavoidable) statistical fluctuations
in the parameter estimation step. An important additional feature of our technique is that the
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resulting security claims are robust against imperfections of the devices used to handle quantum
states.

Our paper is organized as follows. In Section II, we state composable definitions for correctness
and secrecy of QKD schemes. In Section III, we introduce the family of BB84-type protocols to
which our analysis applies. Our main technical contribution, a finite-size security analysis against
the most general attacks, is given in Section IV. The achievable secret key rates are then discussed
and compared to previous results in Section V.

II. SECURITY OF QKD PROTOCOLS

We follow the discussion of composable security outlined in [22] and first take an abstract view
on QKD protocols. A QKD protocol describes the interaction between two players, Alice and Bob.
Both players have access to an insecure quantum channel as well as an authenticated (but otherwise
insecure) classical channel.2 Moreover, Alice and Bob can each generate fresh randomness.

The QKD protocol outputs a key, S, on Alice’s side and an estimate of that key, Ŝ, on Bob’s
side. This key is usually an ℓ-bit string, where ℓ, depends on the noise level of the channel, as
well as the security and correctness requirements on the protocol. The protocol may also abort, in
which case we set S = Ŝ =⊥.

In the following, we define what it means for a QKD protocol to be secure. Roughly speaking,
the protocol has to (approximately) satisfy two criteria, called correctness and secrecy. These
criteria are conditions on the probability distribution of the protocol output, S and Ŝ, as well as
the information leaked to an adversary, E. These depend, in general, on the attack strategy of the
adversary, who is assumed to have full control over the quantum channel connecting Alice and
Bob, and has access to all messages sent over the authenticated classical channel.

Definition 1. A QKD protocol is called correct if, for any strategy of the adversary, Ŝ = S. It is
called ǫcor-correct if it is ǫcor-indistinguishable from a correct protocol. In particular, a protocol is
ǫcor-correct if Pr[Ŝ 6= S] ≤ ǫcor.

In order to define the secrecy of a key, we consider the quantum state ρSE that describes the
correlation between Alice’s classical key S and the eavesdropper, E (for any given attack strategy).
A key is called ∆-secret from E if it is ∆-close to a uniformly distributed key that is uncorrelated
with the eavesdropper, i.e. if

min
σE

1

2
||ρSE − ωS ⊗ σE||1 ≤ ∆ ,

where ωS denotes the fully mixed state on S. For a motivation and discussion of this particular
secrecy criterion (in particular the choice of the norm) we refer to [23].

Definition 2. A QKD protocol is called secret if, for any attack strategy, ∆ = 0 whenever the
protocol outputs a key. It is called ǫsec-secret if it is ǫsec-indistinguishable from a secret protocol.
In particular, a protocol is ǫsec-secret if it outputs ∆-secure keys with (1 − pabort)∆ ≤ ǫsec, where
pabort is the probability that the protocol aborts.3

In some applications it is reasonable to consider correctness and secrecy of protocols separately,
since there may be different requirements on the correctness of the key (i.e., that Bob’s key agrees

2 Using an authentication protocol, any insecure channel can be turned into an authentic channel. The authentication
protocol will however use some key material, as discussed in [22].

3 To see that this suffices to ensure ǫsec-indistinguishability, note that the secrecy condition is trivially fulfilled if the
protocol aborts.
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with Alice’s, implying that messages encrypted by Alice are correctly decrypted by Bob) and
secrecy. In fact, in many realistic applications, an incorrect decoding of the transmitted data
would be detected so that the data can be resent. For such applications, ǫcor may be chosen larger
than ǫsec.

However, secrecy of the protocol alone as defined above does not ensure that Bob’s key is secret
from the eavesdropper as well. One is thus often only interested in the overall security of the
protocol (which automatically implies secrecy of Bob’s key).

Definition 3. A QKD protocol is called secure if it is correct and secret. It is called ǫ-secure if it
is ǫ-indistinguishable from a secure protocol. In particular, a protocol is ǫ-secure if it is ǫcor-correct
and ǫsec-secret with ǫcor + ǫsec ≤ ǫ.

Finally, the robustness, ǫrob, is the probability that the protocol aborts even though the eaves-
dropper is inactive.4 Note that a trivial protocol that always aborts is secure according to the
above definitions, and a robustness requirement is therefore necessary. In this work, we include
the robustness ǫrob in our estimate for the expected key rate (when the eavesdropper is inactive)
and then optimize over the protocol parameters to maximize this rate (see Section V).

III. THE PROTOCOLS

For the purpose of the following discussions, we consider the well known BB84 protocol [1].
However, the considerations are rather general and can be extended to similar prepare-and-measure

protocols.
Recall that Alice and Bob are connected by an insecure quantum channel. On one side of

this channel, Alice controls a device allowing her to prepare certain states of a two-level quantum
system (a qubit).5 Let X be an orthonormal basis of the two-dimensional Hilbert space describing
Alice’s system and let Z be the corresponding diagonal basis. We characterize the quality of
Alice’s device by the maximum fidelity it allows between states prepared in the X basis and states
prepared in the Z basis. Namely, we define the preparation quality, q = − logmax |〈ψx|ψz〉|2, where
the maximization is over all states ψx and ψz prepared in the X and Z basis, respectively. In
particular, if state preparation is fully reliable, Alice’s device achieves q = 1.

On the other side of the channel, Bob controls a device allowing him to measure quantum
systems in two bases corresponding to X and Z. We will derive security bounds that are valid
independently of the actual implementation of this device as long as the following condition is
satisfied: we require that the probability that a signal is detected in Bob’s device is independent
of the basis choices (X or Z) by Alice and Bob. Note that this assumption is necessary. In fact, if
it is not satisfied (which is the case for some implementations) a loophole arises that can be used
to eavesdrop on the key without being detected [25].6

We now define a family of protocols, Φ[n, k, ℓ,Qtol, ǫcor, leakEC], which is parametrized by the
block size, n, the number of bits used for parameter estimation, k, the secret key length, ℓ, the
channel error tolerance, Qtol, the required correctness, ǫcor, and the error correction leakage, leakEC.
The protocol may be asymmetric, so that the number of bits measured in the two bases (n bits in
the X basis and k bits in the Z basis) are not necessarily equal [26]. A protocol in this family outputs
a key of length ℓ and is ǫcor-correct as shown in Theorem 1. Its secrecy, ǫsec(Φ, q), is established

4 More precisely, one assumes a certain channel model which corresponds to the characteristics of the channel in the
absence of an adversary. For protocols based on qubits, the standard channel model used in the literature is the
depolarizing channel. We also chose this channel model for our analysis in Section V, thus enabling a comparison
to the existing results.

5 In typical optical schemes, the qubits are realized by single photons. An ideal implementation therefore requires
a single-photon source on Alice’s side. In order to take into account sources with a Poissonian distribution of the
photon number, our analysis would need to be extended, e.g., along the lines of [24].

6 Remarkably, this assumption can be enforced device-independently: Bob simply substitutes a random bit whenever
his device fails to detect Alice’s signal. If this is done, however, the expected error rate may increase significantly.
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in Theorem 2 and depends on the protocol parameters as well as the preparation quality, q. The
protocol is specified in the following.

State Preparation: The first four steps of the protocol are repeated for i = 1, 2, . . . ,M until the
condition in the Sifting step is met.

Alice chooses a basis ai ∈ {X, Z}, where X is chosen with probability px :=
(

1 +
√

k/n
)−1

and Z with probability pz := 1− px. Next, Alice chooses a uniformly random bit yi ∈ {0, 1}
and prepares the qubit in the basis state of ai given by yi.

Distribution: Alice sends the qubit over the quantum channel to Bob. (Recall that Eve is allowed
to arbitrarily interact with the system and we do not make any assumptions about what
Bob receives.)

Measurement: Bob also chooses a basis, bi ∈ {X, Z}, with probabilities px and pz, respectively.
He measures the system received from Alice in the chosen basis and stores the outcome in
y′i ∈ {0, 1, ∅}, where ‘∅’ is the symbol produced when no signal is detected.

Sifting: Alice and Bob broadcast their basis choices over the classical channel. We define the sets
X := {i : ai = bi = X ∧ y′i 6= ∅} and Z := {i : ai = bi = Z ∧ y′i 6= ∅}. The protocol repeats
the first steps as long as either |X | < n or |Z| < k.

Parameter Estimation: Alice and Bob choose a random subset of size n of X and store the
respective bits, yi and y

′
i, into raw key strings X and X′, respectively.

Next, they compute the average error λ := 1
|Z|

∑

yi ⊕ y′i, where the sum is over all i ∈ Z.
The protocol aborts if λ > Qtol.

Error Correction: An information reconciliation scheme that broadcasts at most leakEC bits of
classical error correction data is applied. This allows Bob to compute an estimate, X̂, of X.

Then, Alice computes a bit string (a hash) of length ⌈log(1/ǫcor)⌉ by applying a random
universal2 hash function [27] to X. She sends the choice of function and the hash to Bob. If
the hash of X̂ disagrees with the hash of X, the protocol aborts.

Privacy Amplification: Alice extracts ℓ bits of secret key S from X using a random universal2
hash function [28, 29].7 The choice of function is communicated to Bob, who uses it to
calculate Ŝ.

IV. FINITE KEY SECURITY ANALYSIS

In this section, we analyze the security (i.e. the correctness and secrecy) of the protocols de-
scribed above. The correctness is checked in the error correction step of the protocol.

Theorem 1. The protocol Φ[n, k, ℓ,Qtol, ǫcor, leakEC] is ǫcor-correct.

Proof. The defining property of universal2 hash functions [27] is that the probability that F (X)
and F (X̂) coincide— if X and X̂ are different and the hash function, F , is chosen at random—is
at most 2−⌈log(1/ǫcor)⌉ ≤ ǫcor. Since the protocol aborts if the hash values calculated from X and X̂

after error correction do not agree, it is thus ensured that Pr[S 6= Ŝ] ≤ Pr[X 6= X̂] ≤ ǫcor.

7 Instead of choosing a universal2 hash function, which requires at least n bits of random seed, one could instead
employ almost two-universal2 hash functions [20] or constructions based on Trevisan’s extractor [30]. These
techniques allow for a reduction in the random seed length while the security claims remain almost unchanged.



5

The secrecy of BB84 protocols follows from the observation that, if Alice has a choice of encoding
a string of n uniform bits in either the X or Z basis, then only one of the following two things can
be true: either Bob is able to estimate Alice’s string accurately if she prepared in the Z basis or
Eve is able to guess Alice’s string accurately if she prepared in the X basis. This can be formally
expressed in terms of an uncertainty relation for smooth entropies [20],8

Hε′

min(X|E) +Hε′

max(Z|B) ≥ nq , (1)

where ε′ ≥ 0 is a smoothing parameter and q is the preparation quality defined previously. The
smooth min-entropy, Hε

min(X|E), introduced in [7], characterizes the average probability that Eve
guessesX correctly using her optimal strategy with access to the correlations stored in her quantum
memory [31]. The smooth max-entropy, Hε

max(Z|B), is a measure of the correlations between Z
and Bob’s data. For precise mathematical definitions of the smooth min- and max-entropy, we
refer to [32].

Apart from the uncertainty relation (1), our analysis employs the Quantum Leftover Hash
Lemma [33], which gives a direct operational meaning to the smooth min-entropy. It asserts that,
using a random universal2 hash function, it is possible to extract a ∆-secret key of length ℓ from
X, where

∆ = min
ε′

1

2

√

2ℓ−Hε′

min(X|E′) + ε′ . (2)

Here E′ summarizes all information Eve learned about X during the protocol— including the
classical communication sent by Alice and Bob over the authenticated channel. Furthermore, the
extracted secret key is independent of the randomness that is used to choose the hash function.

The following theorem gives a sufficient condition for which a protocol Φ using a source with
preparation quality q is ǫsec-secret. The minimum value ǫsec for which it is ǫsec-secret is called the
secrecy of the protocol and is denoted by ǫsec(Φ, q).

Theorem 2. The protocol Φ[n, k, ℓ,Qtol, ǫcor, leakEC] using a source with preparation quality q is

ǫsec-secret for some ǫsec > 0 if ℓ satisfies9

ℓ ≤ max
ε,ε̄

⌊

n
(

q − h
(

Qtol + µ(ε)
)

)

− 2 log
1

2 ε̄
− leakEC − log

2

ǫcor

⌋

, (3)

where we optimize over ε > 0 and ε̄ > 0 s.t. ε+ ε̄ ≤ ǫsec and

µ(ε) :=

√

n+ k

nk

k + 1

k
ln

1

ε
.

Proof. In order to apply the uncertainty relation (1), we consider a gedankenexperiment in which
Alice and Bob, after choosing a basis according to probabilities px and pz as before, prepare and
measure everything in the Z basis. We denote the bit strings of length n that replace the raw keys
X and X′ in this hypothetical protocol as Z and Z′, respectively.

The observed average error, Λ = λ, is understood to be a random variable. Note that, in this
picture, Λ is calculated from at least k measurements sampled at random from n+k measurements
in the Z basis. Hence, if Λ is small, we deduce that, with high probability, Z and Z′ are highly
correlated and Hmax(Z|Z′) is small. This is elaborated in Appendix A, Lemma 3, where it is shown

8 To compare this with the formalism employed in [20], note that encoding a uniform bit in a basis state of X or Z
can be simulated by measuring one part of a two-qubit singlet state in either the X or Z basis.

9 Here, h is a truncated binary entropy function, i.e. h : x 7→ −x log x− (1−x) log(1−x) if x ≤ 1/2 and 1 otherwise.
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that, conditioned on the event that the correlation test passed (Λ ≤ Qtol), the following bound on
the smooth max-entropy holds,

Hε′

max(Z|Z′) ≤ nh
(

Qtol + µ(ε)
)

,

where ε′ = ε/
√
ppass and ppass ≥ 1− pabort is the probability that the correlation test passes.

We now use the uncertainty relation, Hε′
min(X|E) ≥ nq − Hε′

max(Z|Z′), to find a lower bound
on the min-entropy that Eve has about Alice’s bits prepared in the X basis. Since a maximum of
leakEC+

⌈

log(1/ǫcor)
⌉

≤ leakEC+log(2/ǫcor) bits of information about X are revealed during error
correction, we find10

Hε′

min(X|E′) ≥ Hε′

min(X|E) − leakEC − log
2

ǫcor

≥ nq −Hε′

max(Z|Z′) − leakEC − log
2

ǫcor

≥ n
(

q − h
(

Qtol + µ(ε)
)

)

− leakEC − log
2

ǫcor
.

Thus, combining this with (2) and using the proposed key length (3), we find, for all ε and ε̄,

∆ ≤ ε′ +
1

2

√

2ℓ−Hε′

min(X|E′) ≤ ε′ + ε̄ . (4)

The security of the protocol now follows since (1− pabort)∆ ≤ ε+ ε̄ ≤ ǫsec.

V. ANALYSIS AND NUMERICAL RESULTS

For the following discussions, we assume that the quantum channel in the absence of an eaves-
dropper can be described as a binary symmetric channel with quantum bit error rate Q. The
numerical results are computed for a perfect source, i.e. q = 1. Furthermore, finite detection ef-
ficiencies and channel losses are not factored into the key rates, i.e. the expected secret key rate
calculated here can be understood as the expected key length per detected signal.

The efficiency of a protocol Φ can be characterized in terms of its expected secret key rate,

r(Φ, Q) :=
(

1− ǫrob(Q,Qtol)
) ℓ

M(n, k)
, (5)

where M is the expected number of qubits that need to be exchanged until n raw key bits and
k bits for parameter estimation are gathered so that ℓ key bits can be generated (see protocol
description).

Before presenting numerical results for the optimal expected key rates for finite n, let us quickly
discuss its asymptotic behavior for arbitrarily large n. It is easy to verify that the key rate
asymptotically reaches rmax(Q) = 1− 2h(Q) for arbitrary security bounds ǫ > 0. To see this, note
that error correction can be achieved with a leakage rate of h(Q) (see, e.g. [34]). Furthermore, if
we choose k proportional to

√
n, the statistical deviation in (3), µ, vanishes and the ratio between

the raw key length, n, and the expected number of exchanged qubits,M(n, k), approaches one as n
tends to infinity, i.e., n/M(n, k) → 1. This asymptotic rate is optimal [35]. Finally, the deviations
of the key length in (3) from its asymptotic limit can be explained as fluctuations that are due to

10 Formally, this requires use of the chain ruleHε

min(X|EC) ≥ Hε

min(X|E)−log |C|, where C is any classical information
about X.
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n Q (%) r (%) rrel (%) pz (%) Qtol (%) εrob (%)

104
1.0 11.7 14.0 38.2 2.48 2.3

2.5 6.8 10.4 43.0 3.78 3.0

105
1.0 30.4 36.4 22.0 2.14 0.8

2.5 21.5 32.6 23.3 3.58 1.0

106
1.0 47.8 57.1 12.5 1.73 0.6

2.5 35.7 53.9 13.7 3.21 0.7

TABLE I. Optimized parameters for a given security rate ǫ/ℓ = 10−14. The column labeled rrel shows the
deviation of the expected secret key rate from the corresponding asymptotic value, i.e., rrel := r/(1−2h(Q)).

the finiteness of the statistical samples we consider. As such, these terms are necessary and the
result is essentially tight.

To obtain our results for finite block sizes n, we fix a security bound ǫ and define an optimized
ǫ-secure protocol, Φ∗[n, ǫ], that results from a maximization of the expected secret key rate over
all ǫ-secure protocols with block size n. For the purpose of this optimization, we assume an error
correction leakage of leakEC = ξ n h(Qtol) with ξ = 1.1. Moreover, we bound the robustness ǫrob by
the probability that the measured security parameter exceeds Qtol, which (for binary symmetric
channels) decays exponentially in Qtol −Q (see Eq. (A5) in Appendix A).

10
3

10
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6

10
7

10
-3

10
-2

10
-1

10
0

FIG. 1. Plot of expected key rate r as a function of the block size n for channel bit error rates Q ∈
{1%, 2.5%, 5%} (from left to right). The security rate is fixed to ǫ/ℓ = 10−14.

In Figure 1, we present the expected key rates r = r(Φ, Q) of the optimal protocols Φ∗[n, ǫ]
as a function of the block size n. These rates are given for a fixed value of the security rate ε/ℓ,
i.e., the amount by which the security bound ε increases per generated key bit. (In other words,
ε/ℓ can be seen as the probability of key leakage per key bit.) The plot shows that significant key
rates can be obtained already for n = 104.

In Table I, we provide selected numerical results for the optimal protocol parameters that
correspond to block sizes n = {104, 105, 106} and quantum bit error rates Q ∈ {1%, 2.5%}. These
block sizes exemplify current hardware limitations in practical QKD systems.
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In Figure 2, we compare our optimal key rates with the maximal key rates that can be shown
secure using the finite key analysis of Scarani and Renner [16].11 We show a major improvement in
the minimum block size required to produce a provably secret key. The improvements are mainly
due to a more direct evaluation of the smooth min-entropy via the entropic uncertainty relation
and the use of statistics optimized specifically to the problem at hand (c.f. Appendix A).
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7

0
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0.5

0.6

0.7

0.8

0.9

1

 

 

Asymptotic limit, Q=1.0%

Asymptotic limit, Q=5.0%

Asymptotic limit, Q=2.5%

FIG. 2. The plots show the rate ℓ/n as a function of the sifted key size N = n + k for various channel bit
error rates Q (as in Fig. 1) and a security bound of ǫ = 10−10. The dashed lines show the rates that can be
proven secure using [16].
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Appendix A: Hamming Weight Statistics

This appendix specifically covers the statistical analysis of the classical data collected during
the run of the BB84-type protocols described in this work. A more general framework for such an
analysis can be found in [17].

We use the notation of the previous sections and define N := n + k. The fraction of bits that
are used for parameter estimation is denoted as ν, i.e. k = νN and n = (1− ν)N .

The statistical analysis is based on a gedankenexperiment, where Alice and Bob measure all
N states with i ∈ X ∪ Z in the control basis, Z, resulting in strings Ztot and Z′

tot for Alice and

11 For comparison with previous work, we plot the rate ℓ/n, i.e. the ratio between key length and block size, instead
of the expected secret key rate as defined by Eq. (5).
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Bob, respectively. The following random variables are of interest to us. The relative Hamming
distance between Alice’s and Bob’s bit-string is defined as Λtot =

1
N |Ztot ⊕ Z′

tot|, where | · | denotes
the Hamming weight. Similarly, Λ = Λpe denotes the relative Hamming distances between the
random subsets Zpe of Ztot and Z′

pe of Z′
tot used for parameter estimation. Finally, Λkey is the

relative Hamming distance between the remainders of the strings, denoted Z = Zkey and Z′ = Z′
key.

Clearly,

Λtot = νΛ + (1− ν)Λkey .

The k bits used for parameter estimation are chosen at random from N bits. Hence, if we
fix Λtot = λtot for the moment, the random variables Λ and Λkey can be seen as emanating from
sampling without replacement. We apply the bound [36]

Pr
[

Λkey ≥ λtot + δ |Λtot = λtot
]

≤ e−2 nN

k+1
δ2 . (A1)

We now derive a bound on the probability that Λkey exceeds Λ by more than a constant µ condi-
tioned on the event that we passed the correlation test. (Note that, while Λ is accessible during
the protocol, Λkey is the quantity we are actually interested in.) We find, using Bayes’ theorem,

Pr
[

Λkey ≥ Λ + µ |“pass”
]

≤ 1

ppass
Pr

[

Λkey ≥ Λ + µ
]

,

where we keep ppass = Pr[“pass”] = Pr[Λ ≤ Qtol] as a parameter and further bound

Pr
[

Λkey ≥ Λ + µ
]

= Pr
[

Λkey ≥ Λtot + νµ
]

=
∑

λtot

Pr
[

Λtot = λtot
]

Pr
[

Λkey ≥ λtot + νµ |Λtot = λtot
]

≤ e−2 kn

N

k

k+1
µ2

.

We used (A1) to bound each summand individually. Finally, defining ε := e−
kn

N

k

k+1
µ2

, we write

Pr
[

Λkey ≥ Λ + µ |“pass”
]

≤ ε2

ppass
. (A2)

The above result can be used to bound the uncertainty Bob has about Alice’s measurement
outcomes in the Z-basis, as expressed using the smooth max-entropy of Z given Z′ and Λ. The
entropy is evaluated for the probability distribution conditioned on the event that the correlation
test passed, which we denote PZZ

′Λ(z, z
′, λ) = Pr

[

Z = z ∧ Z′ = z′ ∧ Λ = λ |“pass”
]

.

Lemma 3. Let ε > 0. Then

Hε′

max(Z|Z′)P ≤ nh
(

Qtol + µ
)

, where ε′ :=
ε

√
ppass

and µ :=

√

N

nk

k + 1

k
ln

1

ε
.

Proof. According to (A2), the probability that Λkey exceeds Λ by more than µ is bounded. In fact,
we can find a probability distribution,

QZZ
′Λ(z, z

′, λ) :=

{

P
ZZ′Λ(z,z

′,λ)
Pr[Λkey<Λ+µ |“pass”] if λkey(z, z

′) < λ+ µ

0 else
,

which is ε′-close to PZZ
′Λ in terms of the purified distance. To see this, note that the fidelity

between the two distributions satisfies

F (P,Q) :=
∑

z,z′,λ

√

PZZ
′Λ(z, z

′, λ)QZZ
′Λ(z, z

′, λ) =
√

Pr[Λkey < Λ + µ |“pass”] ,



10

which can be bounded using (A2). The purified distance between the distributions is then given by
P (P,Q) :=

√

1− F 2(P,Q) = ε′. Hence, under the distribution Q, we have Λkey < Λ+µ ≤ Qtol+µ
with certainty. In particular, the total number of errors on n bits, W := nΛkey, satisfies

W ≤
⌊

n(Qtol + µ)
⌋

. (A3)

The max-entropy, Hmax(Z|Z′), is upper bounded by the minimum number of bits of additional
information about Z needed to perfectly reconstruct Z from Z′ [37]. This value can in turn be
upper bounded by the logarithm of the maximum support of Z conditioned on any value Z′ = z′.
Since the total number of errors under Q satisfies (A3), we may write

Hε
max(Z|Z′)P ≤ Hmax(Z|Z′)Q ≤ log

⌊n(Qtol+µ)⌋
∑

w=0

(

n

w

)

≤ nh
(

Qtol + µ
)

. (A4)

The last inequality is shown in [38], Section 1.4. This concludes the proof of Lemma 3.

Finally, we calculate a bound which is used to quantify the robustness of the protocol. According
to [39], the probability that Λ exceeds Q+ η cannot exceed12

Pr
[

Λ ≥ Q+ η
]

≤ e−kη2ϕ(Q) , (A5)

where ϕ(Q) = 1
1−2Q ln(1−Q

Q ) for Q < 1
2 .
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