
Tight Integration of Combinational Verification Methods

Jerry R. Burch Vigyan Singhal

Cadence Berkeley Labs
2001 Addison St, 3rd Floor

Berkeley, CA 94704

Abstract

Combinational verification is an important piece of most equiva-
lence checking tools. In the recent past, many combinational veri-
fication algorithms have appeared in the literature. Previous results
show that these algorithms are able to exploit circuit similarity to
successfully verify large designs. However, none of these strate-
gies seems to work when the two input designs are not equivalent.
We present our combinational verification algorithm, with evidence,
that is designed to be robust for both the positive and the negative
problem instances. We also show that a tight integration of different
verification techniques, as opposed to a coarse integration of differ-
ent algorithm, is more effective at solving hard instances.

1 Introduction

In this paper we study the problem of combinational verification.
Given two combinational netlists, which have the same set of in-
puts and outputs, the problem of combinational verification is to de-
termine if for every possible input combination, each pair of out-
puts (in the two netlists) evaluates the same boolean value. It is
well-known that this problem is coNP-hard. Nevertheless, in prac-
tice, the situation is not so hopeless. For most real world equiva-
lence checking problems, the design methodology which is respon-
sible for the derivation of one design from the other virtually assures
that, besides the output pairs, many internal net pairs also should be
equivalent. Indeed, this was the idea that revolutionized the scope
of combinational verification. Berman and Trevillyan [1] presented
the basic approach which uses internal equivalent points, which we
will refer to ascutpointsafter [6]. The classic problem in a cutpoint
based approach is that of false negatives. Indeed, most of the sub-
sequent work in cutpoint-based methods [2, 9, 6, 14] has been to ef-
fectively deal with this problem.

The early papers on practical combinational equivalence check-
ing [2, 7, 9] were all based on single methods and did not have mul-
tiple strategies to deal with different classes of circuits. Brand’s
method used ATPG methods with cutpoints, Kunzet al.used recur-
sive learning and Matsunaga used BDDs. Of course, random sim-
ulation has been used for verification for a long time. The obser-
vations that different methods were strong on different classes of
circuits prompted approaches using filters [6, 10]. Here the authors
propose a set of combinational verification engines as filters through
which the problem instances pass. This approach works well on a
large class of circuits; however, if an unsuitable method is applied
before the “right” method for the problem, it can be very expen-
sive. The next advancement was to dovetail between these meth-
ods so that the problem instance passes through the methods [10]
with increasing thresholds. The motivation is that the dovetailing
avoids committing to using a method on an instance for which the
method is not suited. However, this approach still has limitations
which can be understood by comparing the performance of this ap-
proach with an imaginary tool which uses an oracle; when presented
with an equivalence check problem, this oracle magically picks the
best method to solve this problem. One significant contribution of

SAT

Structural
Manager

Simulation

candidates for
equivalent nets

BDD compose

equivalences
found

new BDD
variables for
cutpoints

implicit conjunction
of BDDs

likely
inequivalent
nets

reduced BDDscounterexamples

counterexamples

Figure 1: Tight integration between various methods

our approach is that we invoke multiple methods in the inner loop of
the algorithm and the information discovered by one method is used
by another method. This gives our algorithm the ability to beat the
oracle-based algorithm.

We have (1) a BDD-based composition engine (as in [9, 6, 14]),
(2) a SAT-based search engine (which could be similar in perfor-
mance to the ATPG search engine of [2], although we have found
it more efficient to solve SAT directly on an implicit conjunction
of BDDs), and (3) a simulation engine which simulates interesting
vectors when we find them (similar to that in [14]). The key new
contribution is a tight integration of these methods so that informa-
tion found by one method is used by the other methods in showing
equivalences using cutpoints (see Figure 1), and in this sense our
work is different from that in [10], where the algorithm in its inner-
loop just dovetails between different methods, and its performance
is bounded by the oracle described above. Previous work has used
parts of the tight integration we have, but no one used a tight integra-
tion between SAT-based methods, BDD-based composition meth-
ods and random simulation. And it is this tight integration which
allows our algorithm to be robust. Some examples of our tight in-
tegration are: when we decide to switch from BDDs to the SAT al-
gorithm, the SAT algorithm works directly on the BDDs; if the SAT
algorithm finds that two internal nets can be equal only if some other
nets are constants, this reduces the BDDs that the BDD composition
algorithm uses; the counterexamples generated from both the SAT
algorithm and the BDD composition algorithm are used for simu-
lation to reduce future candidates for equivalent nets. The struc-
tural manager is responsible for creating cutpoints and managing the
overall verification problem by making calls to the various methods.
We defer more details for later sections of this paper. Through our
experiments, we show data to illustrate the importance of a robust
checker in the inner loop.

An added advantage of a robust checker is that we have the abil-
ity to find “hard” design bugs: we call those bugs “hard” which are
unlikely be found by using either random simulation or ATPG di-
rectly on the outputs. For example, Kuehlmann and Krohm [6] sug-
gest that since their BDD-based approach does not work well for fal-
sification; it is most effective in conjunction with an engine that is

specifically designed for falsification, namely random simulation. If
the equivalence checker fails to solve the problem, random simula-
tion is used, or vice-versa. However, it should be no surprise that
random simulation is inadequate to expose those bugs which can be
exposed by only looking at tiny fractions of input space. An ATPG-
based verification algorithm such as [2] will also have a difficult
time with hard bugs because the expected internal net equivalences
will mostly disappear in the region of the circuit which lies between
the bug location and the output; since Brand relies on finding inter-
nal net equivalences, the task can become arbitrarily hard depending
on the complexity of the logic in the fanout of the bug.

We have encountered many falsification instances which were
not possible to resolve using random simulation. In addition, it can
be argued that as combinational equivalence checkers become more
mainstream and a standard part of design methodology, designers
will use these tools early on in the design process, and this will give
rise to an increasingly larger fraction of negative instances. This in-
creases the importance of having a tool which is robust on both pos-
itive and negative instances.

Next we present a detailed discussion of previous work and how
our approach advances the state-of-the art. This is followed by a dis-
cussion of our verification methods in Section 3. Finally, we present
experimental data in Section 4.

2 Previous work and new ideas

The central idea behind decomposing the problem into smaller prob-
lems by using cutpoints is that iff1(x) = g1(x) for all values of the
input vectorx, and iff2(y; z) = g2(y; z) for all values ofy andz,
thenf2(f1(x); z) = g2(g1(x); z) for all values ofx andz. How-
ever, the converse is not true, namely, iff2(y; z) 6= g2(y; z), we
cannot say whetherf2(f1(x); z) equalsg2(g1(x); z) or not. This is
termed as thefalse negative problem, first introduced in [1]. There
can be two possible resolutions of this problem: eitherf2 andg2 are
not equivalent (i.e., we have a real negative), orf2 andg2 are equiv-
alent (i.e., we have a false negative). In this paper, we will call this
resolution step ascutpoint resolution.

In a BDD-based approach, cutpoints are introduced, and inter-
mediate functions are represented asf(X; Y) whereX is the set
of variables denoting primary inputs andY is the set of variables
denoting the cutpoints. Eachyi 2 Y is associated with a BDD rep-
resenting its characteristic functionhi(X; fy1; � � � ; yi�1g) (notice
that theyi’s are ordered from primary inputs towards the outputs;yj

cannot depend onyk if k � j). If two BDDsf(X;Y) andg(X;Y)
are not equal, we have a cutpoint resolution problem. The resolution
can be obtained by starting the BDD for[f(X; Y) 6= g(X;Y)] and
then iteratively composing the cutpoints until the resulting BDD is
independent ofyi’s. A composition is achieved by a standard BDD
operation,bdd-compose [3]; composingyi into s(X;Y) repre-
sents obtaining9yi : s(X;Y) ^ (yi � hi(X; fy1; � � � ; yi�1g)). If
after all compositions, the final BDD represents0, we have a false
negative, else we have an assignment of values to inputs that denotes
a real negative. Many heuristics become important in such a compo-
sitions based method. The selection of cutpoints is important: van
Eijk [14] presents heuristics to select cutpoints so that the cutpoint
resolution problem does not occur often or is not too difficult; the
intuition is that a node is a good cutpoint if its number of fanouts
is large or if it is evenly spaced between other cutpoints. Another
important heuristic is to determine which cutpoint to compose next;
Matsunaga [9] gives heuristics which determine the order of com-
position.

The process of successive composition does not work well if the
two candidate nets were actually unequal (the real negative case);
this is so because it will not be possible to determine this until suffi-
ciently many cut-points have been composed in so that the primary
input variables start appearing in the current BDD. One can always

threshold such a composition scheme by a maximum BDD size, but
besides being prone to missing a real cut point, such a threshold-
ing may add up to a lot of wastage of time if many cutpoint reso-
lutions turn out to be real negatives. Fortunately, such a situation
happened rarely for Matsunaga’s experiments; this can be explained
by the fact that for all his examples, the designs were equivalent
and his data-set was the set of MCNC circuits which are relatively
small. In our experience, many resolutions yield real negatives, es-
pecially when the designs are not equivalent, and it is important for
the equivalence checker to be equally robust for the real negative
case.

Kuehlmann’s method [6] presents a very graceful tradeoff be-
tween memory used and the ability to do cutpoint resolutions, by
working on many cutpoint resolutions at the same time, and jump-
ing between these sub-problems depending on the BDD size. How-
ever, again, if the circuits are not equal, this algorithm cannot finish
unless is it possible to build the BDDs of the outputs in terms of the
inputs, which is not possible for many large circuits.

Another approach using cut-points is that by Brand [2]. This al-
gorithm is based on ATPG techniques. To decide the equality of
two functions, it is determined if there exists a test pattern that can
test the presence of a stuck-at-0 fault at the XOR of the two func-
tions1. This is applied at intermediate nets of the two circuits, and
if a cut-point is found, the function from one circuit is substituted
at the place of the cut-point in the other circuit. In general, solv-
ing combinational equivalence for the entire circuits using ATPG
(or general SAT solutions) for the XOR-gates only at the primary
outputs is a bad idea because the only sharing of information be-
tween the circuits is at the primary inputs. However, the substitution
of nets in Brand’s method brings this sharing of information closer
to the primary outputs. In spite of all this, in our experience, using
ATPG-based methods is not as effective as using BDD-based meth-
ods, when the answer is that there is no test. This seems to be simi-
lar to the experience of [6] where they suggest that they use Brand’s
ATPG-based algorithm only when their standard BDD-based algo-
rithm fails. Because Brand’s algorithm is not as robust, it has to
threshold the ATPG check with a time bound. In addition, if inter-
nal pairs of nets are found to be inequivalent, this information is not
used.

In our experience, a general statement that can be made is that,
for the cut-point resolution of a candidate pair of nets, if the pair of
nets is actually equivalent, BDD-based composition methods (such
as Matsunaga’s) are effective. The intuition is that if the two points
are equivalent, after all the composition, the BDD for the XOR of
the two pair of nets will turn to be equal to 0, so there is a hope that if
the composition order is intelligently chosen, then none of the inter-
mediate BDDs will blow up. On the other hand, if the pair of nets is
not equivalent, search-based methods (such as Brand’s ATPG solu-
tion) are more effective because they are good at searching for one
solution, when we know that at least one exists. BDD-based solu-
tions represent all solutions even though we are interested in only
one.

Of course, to begin with, there is no way to know in advance
whether or not the candidate pair of nets will turn out to be equiv-
alent or not. However, we can often make good guesses, and use
these to selectively balance each cutpoint resolution step inside the
algorithm between these two different kind of methods: composi-
tion and search. Achieving a tight integration between the various
approaches by passing information learned in one method to another
is extremely useful.

One key idea in our algorithm is the dual of the original idea of
Berman and Trevillyan. Let the two functions bef2(f1(x); z) and
g2(g1(x); y), as before. As in [2] and [9], our original candidate

1In fact, Brand actually tests if this stuck-at-fault can be observed at the
primary output, but we ignore this generalization, since that is not the focus
of this paper.

pairs for cutpoints come from simulations: if two nets have the same
signature, they are a candidate pair, and we can partition all nets
into equivalence classes based on their signature. One can say that
these candidate pairs from simulation represent false positives for
the combinational verification problem; if two nets are in different
classes they must not be equivalent, but not vice-versa. For bugs
that cannot be easily identified with simulation, the output pair lies
in the same equivalence class. Suppose there is hard bug in circuit,
so thatf2 andg2 have the same signature, andf1 andg1 have the
same signature, even though due to the bug,f1 andg1 are function-
ally not equivalent. We first have to resolve the cutpoint candidate
pair corresponding tof1 andg1. Once we do this, at a later point we
still have to resolve the false positive comprising of the pairf2 and
g2. Notice that this next resolution might be a much tougher prob-
lem because the total input cones off2 andg2 might be much larger
than the input cones off1 andg1. Our approach is that once we
show that a candidate pair if not equivalent, we use the test pattern
obtained to show this inequivalence to resimulate many test vec-
tors which refine many other equivalence classes. In fact, many in-
stances of inequivalence are detected immediately after the resolu-
tion of an intermediate net pair which is much closer to the primary
inputs than the outputs themselves. This iterative simulation, in ef-
fect, helps magnify those sub-spaces in the large input space which
are represent meaningful functions for the two circuits. This proves
to be much more effective than the initial random simulation. van
Eijk [14] has also proposed using such directed simulation. How-
ever, his cutpoint resolution only uses BDD composition, and as we
will show later, BDD composition is not often well-suited for deter-
mining negatives. Many of our real negatives come from a novel
SAT-based search which operates directly on the BDDs.

Our cutpoint resolution step is robust. We do not spend any less
resources on resolving a cutpoint than resolving the output pair. We
will show that, if we instead had an algorithm, which aborts cutpoint
resolution of internal nets due to thresholds (e.g., [2, 9, 14]), that
may be alittle faster on some instances but can bemuchslower or
may not even be able to solve some other instances designs.

There is another class of combinational verification algorithms,
which we have not talked about. These are learning-based algo-
rithms, as in [5] and [7] and resynthesis-based algorithm [11]. How-
ever, all available data, from these papers and from [9, 14] and our
own experiments, shown later in this paper, suggest that these tech-
niques by themselves do not yield as effective solutions as cut-point
based methods. It is possible that they could also be tightly inte-
grated into our equivalence checker, and give us additional benefit.

3 Our Combinational Verification Engine

Our implementation is based on using a fine-grained combination of
BDD compose algorithm, search algorithms and test pattern simu-
lation to provide the balance between positive and negative verifi-
cation. By providing the balance between the positive and negative
verification methods at a fine granularity, we can effectively identify
hard bugs too.

In this section we present the details of the algorithms in the com-
binational verification core engine. First we discuss out cutpoint
resolution algorithm since that is the key to our checker. We explain
the multiple methods used in this cutpoint resolution. Then we out-
line the global algorithm.

3.1 Robust cutpoint resolution

The key component of our equivalence checking engine is a robust
and efficient cutpoint resolution engine. The main difference in our
cutpoint resolution from previous algorithms is that we invest all our
resources to successfully solve each such sub-problem; each such
resolution sub-problem is no less important than the resolution for

the primary output pair. This is in contrast with all previous work
which invest a limited amount of resources for these sub-problems
and abort these resolutions if the limit is exceeded, saving the re-
sources for the possible false resolution of the primary outputs. This
would be the only possible strategy if the cutpoint resolution engine
is not robust for both positive and negative cases. As we had argued
earlier in Section 2, BDD-based composition methods, as in [9, 14],
are powerful if the resolution yields a false negative; however, if we
have a real negative, all cutpoints have to be composed which can
be expensive. On the other hand, ATPG or SAT-based methods and
random simulation, as in [2], are good for showing real negatives,
but are not as effective as BDD composition methods when we have
a false negative.

Fortunately, we have access to both kinds of methods. We have a
BDD composition algorithm, and we balance it with a randomized
local search algorithm which is efficient in finding real negatives.
This balance allows us to be robust, thus avoiding placing a time
bound for false resolutions of intermediate nets to minimize wasted
work. Also, we can now claim to have an overall robust algorithm,
because before showing the output pair equivalence, we have solved
all possible cutpoint resolution problems. This would be more ro-
bust than an algorithm which may be efficient for most positive ver-
ification instances, but may not be able to solve an inequivalent pair
of designs because it gave up on the resolution of intermediate nets.
Also, it is easy to see that giving up on intermediate net resolutions
can be costly even for positive verification instances if the aborted
resolution was going to yield a false negative.

The initial set of candidates cutpoint resolution comes from ran-
dom simulation on the two input designs. Any two nets which have
the same signature become candidates. However, in future, if a cut-
point resolution results in a real negative, we use the witness for this
negative to do further simulation. This ensures that all nets get inter-
esting test vectors: for example, eventually, unless a net is function-
ally equivalent to a constant 0 or 1, it will have a signature different
from all 0’s or all 1’s. As we discussed earlier, this iterative simu-
lation is very valuable in preventing future cutpoint resolutions due
to real negatives, as well as in finding hard bugs at the outputs.

In the next two subsections we describe the two cutpoint resolu-
tion schemes, one based on BDD composition and the other, a new
randomized local search algorithm.

3.1.1 BDD composition algorithm

As discussed earlier in Section 2, the BDD composition procedure
starts with a root BDD, which represents[f(X; Y) 6= g(X;Y)].
Then we start composing BDD variables which represent the cut-
points. If we obtain the BDD which represents0, we know that we
have a false negative, i.e.,f is equivalent tog; otherwise, if we have
a BDD which is a function of only input variables and does not de-
pend on any cutpoint variables, any minterm of this BDD represents
a witness which shows whyf is not equivalent tog. This is the
standard termination criterion, as described in [9, 6, 10]. One new
and very useful improvement that we have found is to stop if there
is a path containing only input variables from the root node of the
BDD to the BDD-leaf representing 1. This is an inexpensive check.
If this happens, we know that even when we compose all the cut-
point variables that the BDD depends on, the resulting BDD will not
represent 0. For example, consider the BDD in Figure 2. The path
fx7 = 1; x1 = 1g to the 1-vertex does not depend to the cutpoint
variabley3, and hence, this function will evaluate to 1 for this as-
signment even when we compose the BDD for the cutpoint variable
y3. We have found this little heuristic to be extremely valuable.

When composing in cutpoint variables, the order of the variables
to compose in is very important. Some researchers have found that
composing variables in the order of their distance from the poten-
tial new cutpoint is best because it guarantees that we do not com-
pose any particular variable more than once [6]. Another heuristic

0 1

x1

x7

0 1

y3

0
1

0

1

Figure 2: BDD with input variablesfx1; x7g and cutpoint variable
fy3g.

is to compose asetof variables so that there is a large sharing of
the newly introduced cutpoint variables in the structural support of
the set of selected variables [9]. Our heuristic is different from these
two; it is driven by a cost function on the BDD size. This may mean
that we often compose a cutpoint variable more than once, but em-
pirically we have found that our heuristic performs better than if we
were to compose variables in the order of their distance to the poten-
tial cutpoint. In contrast to Matsunaga, we only compose one vari-
able at a time.

The BDD composition algorithm has a BDD size limit and we
stop working on BDD composition if this limit is exceeded.

3.1.2 Randomized local search on BDDs

As we discussed earlier, the BDD-based method may not be well
suited for the case when the cutpoint resolution will yield a real neg-
ative. Instead, we balance the BDD-based composition approach
with a new randomized local search algorithm. This algorithm takes
a root BDD in terms of variables representing primary inputs and
other variables representing cutpoints, and BDDs for each one of the
cutpoints and returns a satisfying assignment so that all the BDDs
are satisfied. The root BDD representss(X;Y) and eachyi 2

Y is associated with a BDD representinghi(X; fy1; : : : ; yi�1g).
A satisfying assignment associates a boolean value for each vari-
able inX [Y such thats(X;Y) evaluates to 1, and so does the
characteristic function BDD for each of them cutpoints: [yi �

hi(X; fy1; : : : ; yi�1g)]. In order to do a cutpoint resolution be-
tweenf(X;Y) andg(X;Y), we invoke the search algorithm with
s(X;Y) set to[f(X; Y) 6= g(X;Y)]. For example, Figure 3 shows
the root BDDs(X;Y) and 4 BDDs for the characteristic functions;
the edges between the BDDs represent the dependency of a BDD on
a cutpoint, e.g., the BDD for cutpointy3 depends on the cutpoints
y1 andy2, in addition to the primary input variablesX.

The randomized search algorithm is inspired by the WALK-
SAT algorithm for the satisfiability problem described by Sel-
manet al. [12]. Given a SAT problem as a conjunction of clauses,
this algorithm finds a satisfying assignment which satisfies each one
of a set of input clauses.

We begin with some pre-processing on the(m+ 1) BDDs. The
preprocessing consists of finding constants in the BDDs and simpli-
fying the BDDs with respect to the constants. For a variablez 2

X [Y , a constantfz = 0g (or fz = 1g) can be learned if, for any
one of the(m + 1) BDDs, all paths from the root to the BDD-leaf
representing 1 pass through thefz = 0g (or fz = 1g) branch. This
can be by with a linear time traversal over the BDD. It is easily seen
that when we discover a constantfz = 0g, every satisfying assign-
ment to our SAT problem must havefz = 0g. When we find a con-
stant we simplify all BDDs with respect to this. Finding constants
through one BDD frequently leads to constants in other BDDs. In

y3y4

y2 y1

s(X;Y)

h4(X;Y) h3(X;Y)

h1(X;Y)h2(X;Y)

Figure 3: A set of BDDs for the search algorithms

addition, if a variablez occurs only in one BDDt(X;Y), we can
replace the BDD by9z : t(X;Y); this is because we can choose
any value for this variablez without affecting the truth of the other
BDDs. Sometimes, this preprocessing turns one of the BDDs into a
constant 0 BDD. In that case, we know that the problem is unsatis-
fiable, and we have solved the cutpoint resolution. More often, the
preprocessing just simplifies the BDDs, effectively simplifying the
problem.

We start with a random assignment to the variables inX [Y .
Each assignment of variables naturally identifies a path from the
root of each BDD to a leaf-vertex; if the leaf-vertex is BDD-leaf 0,
we say that the BDD is not satisfied, otherwise the BDD is satisfied.
Then at each iteration, with probabilityp, we take a greedy step to-
wards satisfying the(p+1)BDDs; with probability(1�p), we take
a random step which helps us escape local minimas which a purely
greedy algorithm might get stuck in. The greedy step flips the as-
signment of one variable so that the cost function is minimized. The
naive cost function is the summation over all BDDs of the distance
of the current assignment path to a path to the BDD-leaf represent-
ing 1, i.e., a satisfying path. This distance is measured by the mini-
mum numbers of variables that need to be flipped in order to satisfy
the BDD, and represents how close the current assignment is to an
assignment which solves the problem. The random step picks one of
the BDDs which is not being satisfied and makes the fewest changes
in the current assignment so that this BDD is satisfied.

The trickiest part of this algorithm was discovering the cost func-
tion. Our original cost function was the number of the BDDs that are
not satisfied by the current assignment. We found this cost function
to be too coarse and it would get stuck in plateaus too often (getting
trapped in a search space of a plateau is a well-known phenomenon
in the SAT community [4]). Then we refined this cost function to the
one based on distances to satisfying paths in the BDDs, described
above. Unfortunately, this does not work either. The reason is that
any input assignment can satisfy all BDDs but one, but can be ar-
bitrarily far from a solution. It is always possible to satisfy each of
them BDDs that come from cutpoints by choosingany input as-
signments, and picking appropriate values foryi’s starting from the
inputs to the outputs. This arbitrary assignment rarely satisfies the
SAT problem because the root BDDs(X;Y) rarely evaluates to 1
for anarbitrary assignment. We then modified the cost function so
that a BDD contributes a maximum value to the cost if some BDD
in its transitive fanout is not satisfied; the maximum value a BDD
can contribute is the number of variables in its support. In addition,
we also modified the cost function so that if a cutpoint variable does
not appear on the current assignment path of any BDD, and if all the

BDDs in its transitive fanout are satisfied, this BDD contributes 0 to
the cost. For example, in Figure 3, if variabley1 does not appear on
the current assignment path in(y3 � h3(X;Y)), and both BDDs
(y3 � h3(X;Y)) ands(X;Y) are satisfied, we do not need to sat-
isfy the BDD(y1 � h1(X;Y)); this is simply because the value of
the variabley1 does not affect the truth of the problem.

The search algorithm terminates after making a pre-determined
number of moves, or when the cost becomes 0, whichever happens
first. We bound the number of moves spent in this procedure by a
number proportional to the sum of the sizes and the number of input
BDDs.

It is possible that any ATPG-based algorithm could be substi-
tuted in place of our SAT algorithm. However, the biggest advan-
tage of our algorithm that it directly operates on BDDs (as opposed
to clauses or the netlist), and thus can closely couple with the BDD
composition algorithm, by passing back and forth successively sim-
pler problems (the implicit conjunctions of BDDs). We have found
our implementation to be very efficient for most instances when
there is a satisfying assignment. Of course the search algorithm is
most often successful only when the answer is that there is a satisfy-
ing assignment; so we invoke this search algorithmfirst (as opposed
to the BDD compose algorithm) when we strongly suspect that the
cutpoint resolution will result in a real negative. A heuristic indi-
cation of this is when the simulation signature is all-0 or all-1, and
when the two nets to be compared have different input supports.

If the SAT algorithm terminates without finding a solution, the
simplified BDDs are passed back to the BDD composition algo-
rithm.

3.2 Interleaved simulation with cutpoint resolu-
tion

Whenever a cutpoint resolution returns a real negative, we run di-
rected simulation on a primary input vector which shows the real
negative. The effect of this step is to refine the future candidates
for cutpoints by simulating more interesting test vectors on the cir-
cuits. When the real negative comes from the BDD composition al-
gorithm, we use different branches of the BDD which represents all
input minterms that shows the real negative; if the negative comes
from the SAT algorithm, the input cube which shows the false nega-
tive is used. The idea of interleaving simulation with cutpoint reso-
lution has also been discovered by van Eijk [14]; however, since he
does not have access to a method which is good at finding negatives,
he has to abort his cutpoint resolution using a threshold, and will in
general miss real negatives which are easy to detect using SAT or
ATPG. We show in Section 4 why integrating a SAT engine gives
us more robustness.

3.3 Overall algorithm

The overall algorithm is very straightforward:

GenerateInitialCutpointCandidates
foreach class of candidates,

sorted from inputs to the output pair {
ResolveCutpoints
if (TrueNegative) {

RefineCutpointClasses
if outputs in different classes

return(Unequal, test pattern)
} else {

Create new cutpoint
if outputs in this class

return(Equal)
}

}

The GenerateInitialCutpointCandidates call runs
initial random simulation and generates classes of cutpoint candi-
dates. Two nets belong to the same class if they have the same sig-
nature.

The procedureResolveCutpoints is the key procedure im-
plemented by the integration between BDD composition and the
SAT algorithm. Initially BDDs are built for each net in the class;
these BDDs are in terms of variables representing previously dis-
covered cutpoints. If structural analysis suggests that the nets are
unlikely to be equivalent (e.g., if the signature of this class is all-0
or all-1, or if the structural support of two nets in terms of the cir-
cuit inputs is different), the SAT algorithm is invoked, else the BDD
composition algorithm is invoked. If the algorithm that is invoked
first does not successfully resolve the cutpoint, the other algorithm
is invoked. We iterate between the two algorithms. The important
point is that, as we discussed in Section 3.1.1 and 3.1.2, informa-
tion discovered in each of these methods is passed back to the other
method. In practice, this gives a robust algorithm for cutpoint reso-
lution. As we discussed earlier in Section 2, previous papers do not
multiple methods in the inner loop, nor do they pass information be-
tween various methods. Thus, they must exclusively rely on putting
a time constraint on the cutpoint resolution.

If ResolveCutpoints returns a true negative, then
RefineCutpointClasses is invoked. Here, the witness
for the true negative (i.e., an input test pattern that shows the
difference) is used to run simulation again and to refine the classes
of cutpoint candidates. Often, if the circuits are not equivalent, this
is shown during this simulation step from a cutpoint resolution of
an internal net pair. This should be a cheaper test than actually
showing that the output pair itself is inequivalent.

4 Experimental Results

For the experiments reported here, we used the public domain BDD
package by David Long [8]. We ran our experiments on an Ultra-
Sparc-1 with 256 MBytes of memory.

First we report results on verifying MCNC circuits. We verified
the original circuit against their optimized version; the latter is ob-
tained by usingscript.rugged from SIS [13] followed by a
technology mapping step to the MCNC library of gates. The MCNC
circuits are the only designs we can use to compare against pub-
lished literature. The results appear in Table 1. The gate count is
a count of simple gates (AND, OR and NOT gates) in the repre-
sentation obtained after parsing the circuits. This table is not in-
tended to be an accurate and fair comparison with previous work for
at least two reasons: firstly, we do not calibrate our measurements to
the hardware environment used by others, and second, we verify a
generic logic optimization script whereas others verify redundancy
removal. The only objective of Table 1 is to show that even with us-
ing the tight integration that is necessary for the hard instances, our
algorithm performs similarly as the others for these simple MCNC
problem instances. In addition to being small instances, these are all
cases instances of positive verification. The tight integration meth-
ods described in our paper are really not needed for any of these toy
examples.

Table 2 illustrates some of the arguments discussed in our paper.
We show that integrating SAT tightly with BDD-based composition
methods is able to solve instances that are not possible to solve oth-
erwise. More importantly, we show the advantage of having a ro-
bust cutpoint resolution algorithm. The instances are obtained from
three different sources:ckt1 , ckt2 andckt3 are instances of ver-
ification of Verilog RTL designs versus their corresponding gate-
level versions;pips ands38417 are instances of verification of
gate-level unoptimized vs gate-level optimized using a commercial
synthesis tool;fxdfloc andsmo are instances of verification of
VHDL RTL design versus their corresponding gate-level versions.

Ckt. orig opt ours [14] [10] [11] [9] [7]
C2670 1735 2076 3.5 0.8 3.4 58 3.9 159.3
C3540 2643 2802 25.7 3.0 12.6 307 17.4 67.6
C5315 3632 2525 5.3 2.7 8.3 97 14.0 372.8
C6288 6672 7331 12.1 4.3 7.2 69 9.1 21.5
C7552 5690 4467 12.7 34.6 20.8 307 20.6 5583.3

Table 1: Results on MCNC circuits (note that we verify synthesis, while others verify redundancy removal).

Not all of the output pairs are functionally equivalent; in fact, some
of the bugs are “hard” in the sense that they could not be found even
after more than 10 hours of random simulation time. Notice that
even one bug in a design can cause multiple outputs to fail.

Table 2 describes three runs per circuit. The first run, marked as
‘basic’ is running our implementation unmodified. The second run,
marked as ‘no SAT’ corresponds to running our implementation if
we replace our SAT implementation by a null operation. This run
compared with the first one indicates the usefulness of integrating
the SAT algorithms in our tool. The third run, marked by ‘aborts’
is used to show how a non-robust cutpoint resolution would affect
overall performance. Recall, that many previous papers [2, 9, 14]
advocate using a threshold to bound the amount of time spent in cut-
point resolution. Given a circuit, it is hard to guess up front what
should be a reasonable threshold; to give the best possible bias to
the third run, we pick the 90-th percentile point of the set of cutpoint
resolution times taken in the first run (for example, forckt1 , there
were 496 cutpoint resolutions in the first run, and the time taken by
446-th shortest resolution was 0.61s, so we pick this as the threshold
for abort a cutpoint resolution; notice that there is a long tail in the
distribution, since the longest time in the first run forckt1 is 3.97s).
One run (pips) was timed out after 3 hours. To limit memory us-
age, our BDD composition algorithm terminates when BDDs reach
a threshold size, 20000 BDD nodes for these experiments. This is
the reason why three of the other runs failed to finish: the ‘no SAT’
run for fxdfloc , the ‘no SAT’ and ‘aborts’ runs forckt2 . This
BDD size limit is low and is just meant to illustrate the bounds of
a finite memory; for these example, increasing the limit to 100000
nodes did not change the answer of any of the test cases, but in-
creased the run-times significantly.

The table shows the total times for the runs and times for cutpoint
resolutions. The remaining time is spent in parsing the circuits, in
building BDDs before doing cutpoint resolution and in simulation
which is performed if a resolution results in a real negative.

In the above table, the circuits are ordered in the order of diffi-
culty, which is measured by the ratio of the total run time (of the
‘basic’ run) to the number of outputs. For the two easiest instances,
all three runs are close enough that it seems that neither the SAT al-
gorithm nor the robustness of the cutpoint resolution is important; in
fact, the time for cutpoint resolution is only a small fraction of the
total time, i.e., the time to build BDDs and run simulations domi-
nates.

Without the SAT algorithm, we would have been unable to do
two of the five harder instances,ckt2 and fxdfloc . Also, not
only is the ‘no SAT’ run forckt3 slower than for the ‘basic’ run,
it is also the case that 4 of the cutpoint resolutions aborted due to
BDD size limits; this means that had one of these 4 pairs been an
output pair, we would be aborting on an output pair So this circuit
is an example of a case where a cutpoint resolution was harder than
all output resolutions, something that we conjecture does not hap-
pen very often. Surprisingly, onpips , the ‘no SAT’ run was about
16% faster than the ‘basic’ run. Upon investigation, we found that
for this instance, the difference in time was completely explained
by the fact that somehow the BDD composition gave “better” real
negatives than SAT; the negatives were better because simulation on
these negatives refined many more equivalence classes than the neg-

atives from SAT. This resulted in fewer future cutpoint resolutions
(that would have ended with real negatives) and caused fewer future
simulations. Overall, we can conclude that using the SAT algorithm
incurred a minor penalty sometimes, but on the other hand, it en-
abled the verification of some instances which would not have been
possible otherwise.

The effects of using a robust cutpoint resolution are clear from
looking at the ‘aborts’ runs for the five harder instances. To begin
with, we chose a nice threshold, using an imaginary oracle and pick-
ing the 90-th percentile of the times from the ‘basic’ runs (notice
that we use this threshold for the cutpoint resolutions of only inter-
nal nets, and not for the output pairs). Picking the 90-th percentile
times cuts out the long cutpoint resolution times, e.g., forckt3 , the
maximum time for a cutpoint resolution was reduced from 13.83s
to 0.76s. However, these five instances show that having a non-
robust but fast cutpoint resolution does not really help. Invariably,
we needed to perform more resolutions. For two instances,pips
andckt2 , we were not able to verify the instances. For another
circuit ckt3 , the run was about 25% slower because of the time
wasted in aborts as well as the extra resolutions that were needed.
For the other two circuits, we were faster, but by not a lot. Over-
all, we learn that a non-robust resolution which uses a threshold is
unlikely to avoid losing most of the gains obtained by aborting at a
threshold; in fact, sometimes thresholding on internal nets may pre-
vent us from verifying the outputs.

We do not have experimental data to show that our interleaved
simulation with cutpoint resolution is very effective in reducing can-
didates for future cutpoint resolutions as well as in finding the bugs.
This result should not be that surprising. Also, all the bugs found in
Table 2, except for some found in the ‘aborts’ runs, were found by
simulating a witness which showed the inequivalence of a potential
internal (non-output) cutpoint.

5 Conclusions

We have presented an implementation of a combinational equiva-
lence checker that has tight integration of various verification meth-
ods, some of which are good at showing equivalences and some of
which are good at showing inequivalences. The tight integration is
achieved by carefully interleaving the various methods as well as
passing information learned from one method to another. We have
presented a novel SAT algorithm which runs directly on BDDs so
as to achieve a tight coupling. Tight integration helps us achieve a
cutpoint resolution mechanism which is robust and does not need to
abort. Having a robust cutpoint resolution step directly affects the
robustness of the entire algorithm.

References

[1] C. L. Berman and L. H. Trevillyan. Functional Comparison
of Logic Designs for VLSI Circuits. InProc. Intl. Conf. on
Computer-Aided Design, pages 456–459, 1989.

[2] D. Brand. Verification of Large Synthesized Designs. InProc.
Intl. Conf. on Computer-Aided Design, pages 534–537, 1993.

outputs Cutpoint resolutions Total
Ckt. size total equal Run all abort time finished?

(gates) # time max # time
11068 basic 97 9.0 0.86 0 0.0 122.8 Yes

smo vs 1474 1317 no SAT 92 10.2 0.79 0 0.0 130.7 Yes
8816 aborts 105 7.3 0.30 9 2.7 124.7 Yes

21872 basic 112 12.7 2.02 0 0.0 160.9 Yes
s38417 vs 1742 1742 no SAT 110 10.7 1.32 0 0.0 158.4 Yes

26956 aborts 142 7.7 0.16 33 5.2 168.6 Yes
19501 basic 589 214.6 8.49 0 0.0 592.7 Yes

pips vs 2537 2537 no SAT 516 169.4 8.54 0 0.0 496.3 Yes
10147 aborts 691 354.0 1.09 160 174.4 > 3hr NO
26380 basic 729 197.6 47.00 0 0.0 598.8 Yes

ckt2 vs 1059 1020 no SAT 730 223.5 51.28 2 88.6 614.5 NO
32451 aborts 776 254.1 0.28 65 178.98 665.5 NO
31611 basic 496 105.7 3.97 0 0.0 404.2 Yes

ckt1 vs 519 505 no SAT 486 111.7 4.08 0 0.0 389.6 Yes
23745 aborts 494 103.9 0.61 6 3.7 390.4 Yes
59129 basic 709 383.5 13.83 0 0.0 992.6 Yes

ckt3 vs 409 409 no SAT 704 598.4 56.85 4 171.7 1195.3 Yes
21683 aborts 778 497.4 0.76 94 71.3 1236.8 Yes
2996 basic 25 9.4 5.62 0 0.0 123.1 Yes

fxdfloc vs 1 0 no SAT 20 65.0 32.82 1 32.8 150.5 NO
1161 aborts 25 4.8 0.80 3 2.4 106.5 Yes

Table 2: Data on larger circuits; please refer to Section 4 for a detailed analysis.

[3] R. E. Bryant. Graph-based Algorithms for Boolean Function
Manipulation. IEEE Transactions on Computers, C-35:677–
691, August 1986.

[4] J. Gu, P. W. Purdom, J. V. Franco, and B. W. Wah. Algo-
rithms for the Satisfiability (SAT) Problem: A Survey. In
D. Du, J. Gu, and P. M. Pardalos, editors,Satisfiability Prob-
lems: Theory and Applications. American Mathematical So-
ciety, 1997.

[5] J. Jain, R. Mukherjee, and M. Fujita. Advanced Verification
Techniques Based on Learning. InProc. Design Automation
Conf., pages 420–426, 1995.

[6] A. Kuehlmann and F. Krohm. Equivalence Checking using
Cuts and Heaps. InProc. Design Automation Conf., pages
263–268, 1997.

[7] W. Kunz, D. K. Pradhan, and S. Reddy. A Novel Frame-
work for Logic Verification in a Synthesis Environment.IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits, 15(1):20–36, January 1996.

[8] David E. Long. BDD Manipulation Library. Public soft-
ware. Carnegie Mellon University, Pittsburgh, PA, June 1993.
ftp://emc.cs.cmu.edu/pub/bdd/bddlib.tar.Z .

[9] Y. Matsunaga. An Efficient Equivalence Checker for Combi-
national Circuits. InProc. Design Automation Conf., pages
629–634, 1996.

[10] R. Mukherjee, J. Jain, K. Takayama, M. Fujita, J. A. Abra-
ham, and D. S. Fussell. FLOVER: Flitering Oriented Com-
binational Verification Approach. InWorkshop Notes of Inter-
national Workshop on Logic Synthesis, Tahoe City, CA, 1997.

[11] D. K. Pradhan, D. Paul, and M. Chatterjee. VERILAT: Veri-
fication Using Logic Augmentation and Transformations. In
Proc. Intl. Conf. on Computer-Aided Design, pages 88–95,
1996.

[12] B. Selman, H. Leveque, and D. Mitchell. A New Method for
Solving Hard Satisfiability Problems. InProc. of AAAI, pages
440–446, 1992.

[13] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Bray-
ton, and A. L. Sangiovanni-Vincentelli. Sequential Circuit De-
sign Using Synthesis and Optimization. InProc. Intl. Conf. on
Computer Design, pages 328–333, Cambridge, MA, October
1992.

[14] C. A. J. van Eijk.Formal Methods for the Verification of Dig-
ital Circuits. PhD thesis, Eindhoven University of Technol-
ogy, Dept. of Electrical Engineering, Eindhoven, Netherlands,
1997.

