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ABSTRACT
Speaker diarization has been investigated extensively as an important
central task for meeting analysis. Recent trend shows that integra-
tion of end-to-end neural (EEND)- and clustering-based diarization
is a promising approach to handle realistic conversational data con-
taining overlapped speech with an arbitrarily large number of speak-
ers, and achieved state-of-the-art results on various tasks. How-
ever, the approaches proposed so far have not realized tight inte-
gration yet, because the clustering employed therein was not opti-
mal in any sense for clustering the speaker embeddings estimated by
the EEND module. To address this problem, this paper introduces
a trainable clustering algorithm into the integration framework, by
deep-unfolding a non-parametric Bayesian model called the infinite
Gaussian mixture model (iGMM). Specifically, the speaker embed-
dings are optimized during training such that it better fits iGMM
clustering, based on a novel clustering loss based on Adjusted Rand
Index (ARI). Experimental results based on CALLHOME data show
that the proposed approach outperforms the conventional approach
in terms of diarization error rate (DER), especially by substantially
reducing speaker confusion errors, that indeed reflects the effective-
ness of the proposed iGMM integration.

Index Terms— Diarization, deep learning, infinite GMM

1. INTRODUCTION
Automatic meeting/conversation analysis is one of the essential tech-
nologies required for realizing futuristic speech applications such as
communication agents that can follow, respond to, and facilitate our
conversations. As an important central task for the meeting analysis,
speaker diarization has been extensively studied [1–3].

Current competitive diarization approaches can be categorized
into three types; speaker embedding clustering-based approaches
[1, 4–6], neural end-to-end diarization (EEND) approaches [7–9],
and combination/integration of the former two approaches [10–13].
The speaker embedding clustering-based approaches first segment a
recording into short homogeneous chunks and compute speaker em-
beddings such as x-vectors [4] for each chunk assuming that only one
speaker is active in each chunk. Then, the speaker embeddings are
clustered to regroup segments belonging to the same speakers and
obtain the diarization results. While these methods can cope with
very challenging scenarios [5, 6] and work with an arbitrarily large
number of speakers, there is a clear disadvantage that they cannot
handle overlapped speech.

The second category of diarization approaches, EEND, was re-
cently developed [7–9] to specifically address the overlapped speech
problem. Similarly to the neural source separation [14, 15], a Neu-
ral Network (NN) receives frame-level spectral features and directly
outputs a frame-level speaker activity for each speaker, no matter
whether the input signal contains overlapped speech or not. While
the system is simple and has started outperforming the conventional
clustering-based algorithms [8, 9], it still has difficulty in generaliz-
ing to recordings containing a large number of speakers [9].

To this end, the third category of diarization approaches, inte-
gration of the EEND- and clustering-based approaches [10–13], re-
ferred to as EEND-vector clustering (EEND-VC) hereafter, has been
recently proposed to cope with realistic recordings containing over-
lapped speech with an arbitrarily large number of speakers. It first
splits the input recording into fixed-length chunks. Then, it applies a
modified version of EEND to each chunk to obtain diarization results
for speakers speaking in each chunk as well as speaker embeddings
for them. Finally, to estimate which of the diarization results esti-
mated in local chunks belongs to the same speaker, speaker cluster-
ing is performed across the chunks based on the speaker embeddings
by using a constrained clustering algorithm. While this integrated
approach is shown to achieve state-of-the-art results for real conver-
sational data such as CALLHOME data [10,12], we argue that there
is a large room for improvement because the integration is not tight
enough; Although the estimation of diarization results and speaker
embeddings is based on a single NN and thus are tightly coupled, the
clustering stage is formulated as an independent process that is not
guaranteed to be optimal in clustering the speaker embeddings, and
thus the overall system could not be optimal.

To address this problem and tightly integrate EEND- and
clustering-based diarization, this paper introduces a trainable cluster-
ing framework, unfolded infinite Gaussian mixture model (iGMM)
[16], into the EEND-VC framework. Desired properties of a clus-
tering algorithm for EEND-VC are (1) it should deal with arbitrary
unbounded number of speakers, (2) it should estimate the number
of speakers in an optimal sense, (3) it should handle non-sequential
data (unlike [17]) because a set of the speaker embeddings in the
EEND-VC framework has no specific order. As a typical clustering
algorithm that fulfills these conditions, we propose to employ a non-
parametric Bayesian model called iGMM, which is a GMM but with
a theoretically infinite number of mixture components. The number
of mixture components, corresponding to the number of speakers
in diarization, can be optimized in a maximum marginal likelihood
sense, given an observation. To jointly optimize this novel cluster-
ing step with speaker embedding estimation and diarization results
estimation, we opt to unfold the parameter estimation process of
iGMM and optimize directly the clustering results through a novel
adjusted Rand index (ARI)-based loss [16]. Experiments based on
CALLHOME data show the proposed approach can outperform the
conventional EEND-VC in terms of diarization error rate (DER) es-
pecially by reducing speaker confusion errors, which indeed reflects
the effectiveness of the proposed iGMM integration.

2. PROPOSED DIARIZATION FRAMEWORK

2.1. Overall framework
Figure 1 shows a schematic diagram of the proposed framework,
EEND-vector clustering with iGMM (EEND-VC-iGMM), for an ex-
emplary 2 chunks out of continuous 3-speaker meeting data.

It first passes a several-minute long input recording to NN (“En-
coder NN” in Fig. 1), and obtain a set of D-dimensional frame fea-
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Fig. 1: Schematic diagram of the proposed diarization framework.
The input contains 3 speakers in total (red, green, and blue speakers
shown in the waveform at the bottom), but only at most 2 speakers
are actively speaking in each chunk.

tures. Then, these features are segmented into chunks to form chunk-
level features, as Xi = (xt,i ∈ RD | t = 1, · · · , T ) where i, t and
T are the chunk index, the frame index in the chunk and the chunk
size. In the following explanation, we assume that we can reason-
ably fix the maximum number of active speakers in a chunk, SLocal,
to 2, for the sake of simplicity 1.

With the assumption/hyper-parameter SLocal = 2 and Xi, the
system estimates, based on an NN, diarization results and speaker
embeddings associated with the 2 speakers in each chunk. If a
speaker is absent (i.e., there is only one active speaker in that
chunk), the network simply estimates the diarization results of all
zeros for that silent speaker. Since it is not always guaranteed that
the diarization results of a certain speaker are estimated at the same
output node, we may have the inter-chunk label permutation prob-
lem in the diarization outputs [10,18]. We can solve this permutation
problem and estimate the correct association of the diarization re-
sults among chunks, by clustering the speaker embeddings given
the total number of speakers in the input recording, SGlobal, (3 in the
example shown in Fig. 1), or given an estimate of SGlobal.

In the previous studies [11, 12], the speaker embedding extrac-
tion process is optimized such that vectors of the same speaker stay
close to each other, while those from different speakers lie far away
from each other, based on a categorical cross-entropy loss [11] or a
contrastive loss [12]. Then, the obtained embeddings are clustered
into each speaker, utilizing constrained clustering algorithms such as
constrained Agglomerative Hierarchical Clustering (AHC). In other
words, the embeddings were not optimized for clustering.

In this paper, we propose to train speaker embeddings such
that they can be well modeled by a non-parametric Bayesian model
called iGMM. By having this clustering process not only in the in-
ference but also in the training, we can tightly integrate the speaker
embedding estimation and the subsequent clustering processes.

1In our experiments, the chunk size T and SLocal are set at 5 s and 3,
respectively.

Fig. 2: Proposed neural network architecture and loss functions for
neural network optimization

In the next subsections, we will detail essential components of
EEND-VC-iGMM by using Fig. 2, which summarizes an NN pro-
cessing flow and loss functions used in the proposed framework.

2.2. Chunk-wise diarization and speaker embedding estimation
The lower part of Fig. 2 corresponds to the chunk-wise estima-
tion of diarization results and speaker embeddings. First let us
denote the ground-truth diarization labels at each i-th chunk as
Yi = {yt,i | t = 1, · · · , T} ∈ RSLocal×T that corresponds to
Xi, and C-dimensional speaker embeddings estimated at the i-th
chunk for the s-th speaker as êi,s ∈ RC . Here, the diarization label
yt,i = [yt,i,s ∈ {0, 1} | s = 1, · · · , SLocal] represents a joint activ-
ity for SLocal speakers. For example, yt,i,s = yt,i,s′ = 1(s 6= s′)
indicates both speakers s and s′ spoke at the time frame t in the
chunk i. Then, after obtaining {Xi}Ii=1 for all I chunks by process-
ing input speech with a Transformer encoder, we can jointly estimate
diarization results and speaker embeddings at the i-th chunk as:

Ŷi = σ(Linear(Xi)), êi,1, . . . , êi,SLocal = AvgŶi
(Linear(Xi)).

σ(·), Linear(·) and AvgA(·) are the sigmoid activation function,
linear layers, and a time-averaging function with a time-varying
weight A, respectively.

2.3. Infinite Gaussian mixture model and its deep unfolding
After estimating a set of speaker embeddings {{êi,s}SLocal

s=1 }Ii=1, we
cluster them with an iGMM, which is a special case of Dirichlet pro-
cess (DP) mixture models. The upper right part of Fig. 2 corresponds
to the speaker embedding clustering process by iGMM. iGMM theo-
retically has an infinite number of Gaussian components, and uses a
part of them to appropriately model observation data. The clustering
and the number of cluster estimation are jointly done in a maximum
marginal likelihood sense by means of variational Bayesian (VB)
inference of the model parameters given observed data.

Specifically, the proposed iGMM takes a set of speaker em-
beddings as an input, and outputs soft speaker-cluster assignments
R = {{ri,s}SLocal

s=1 }Ii=1, where ri,s = {ri,s,k}K
′

k=1. ri,s,k is the
probability that the speaker embedding êi,s is assigned to the k-th
cluster, and K′ is the maximum number of clusters, which is set at a
large value in practice.



2.3.1. Generative process of the speaker embeddings
First, let us explain the generative process assumed in the proposed
iGMM. For the sake of convenience, let us introduce a variable N
that corresponds to the total number of input speaker embeddings,
i.e., N = I × SLocal, and an index for the embeddings, n, such as
en

2. Then, in this paper, we employ a spherical iGMM with the
following generative process for the speaker embeddings, where the
mixture weights are constructed by a DP prior with concentration
parameter α by a stick-breaking process [19], as:

1. For each speaker cluster k = 1, · · · ,∞
(a) Draw stick proportion ηk ∼ Beta(1, α)
(b) Set mixture weight πk = ηk

∏k−1
k′=1(1− ηk′)

(c) Draw cluster mean µk ∼ N (0, I)
(d) Draw cluster precision βk ∼ Gamma(1, 1)

2. For each speaker embedding n = 1, · · · , N
(a) Draw cluster assignment

vn ∼ Categorical(π)
(b) Draw instance representation

en = N (µvn , β
−1
vn I)

Beta is the beta distribution, N (µ,Σ) is the Gaussian distribution
with mean µ and covariance Σ, Gamma is the gamma distribution,
Categorical is the categorical distribution, and π = {πk}∞k=1. The
DP prior by a stick-breaking process (steps 1-(a) and 1-(b)) is a key
to allow us to use the infinite number of mixture components.

2.3.2. Parameter estimation for iGMM
Following the above generative process, we can derive the fol-
lowing parameter estimation steps based on the VB expectation-
maximization (EM) algorithm. Because of the space limitation, the
derivation of the following equations is omitted, but it follows a
straight-forward procedure of maximizing an evidence lower bound
derived from the iGMM likelihood as shown in [16]. The iGMM
parameter estimation in the variational posterior distributions is
achieved by alternately calculating the following VB M-step:

γk1 = 1 +

N∑
n=1

rn,k, γk2 = α+

N∑
n=1

K′∑
k′=k+1

rn,k′ ,

θk =

bk
ak

∑N
n=1 rn,ken

1 + bk
ak

∑N
n=1 rn,k

,

ak = 1 +
C

2

N∑
n=1

rn,k, bk = 1 +
1

2

N∑
n=1

rn,k(‖ en − θk ‖2 +C),

and the following VB E-step to obtain a cluster assignment rn,k:

log rn,k ∝ Ψ(γk1)−Ψ(γk1 + γk2)− C

2
(Ψ(ak)− log(bk))

− ak
2bk

(‖ en − θk ‖2 +C) +
K′∑

k′=k+1

(Ψ(γk2)−Ψ(γk1 + γk2)),

where Ψ is the digamma function. For the computational efficiency,
we truncate the number of clusters at K′ as in [20]. Note that the
truncated DP is shown to closely approximate a true DP for large
enough K′ relative to the number of samples [21].

Since [16] shows that, to help the VB EM steps converge faster
to a better solution, it is beneficial to estimate an initial value of the
posterior probability R with another small NN, we also employ such
a small network, which corresponds to a block denoted as “Initial
posterior prediction” in Fig. 2. Its details are summarized in [16].

2This index conversion is possible because the obtained speaker embed-
dings are non-sequential data.

2.3.3. Deep unfolding of iGMM parameter estimation process
The above VB EM steps are all clearly differentiable. Thus, by fol-
lowing an idea of general deep unfolding framework, e.g., [22], we
unfold the EM iterations into a sequential processing as in the upper
right part of Fig. 2 to incorporate iGMM-based clustering into the
overall NN optimization framework.

2.4. Loss functions
Now, let us explain how we optimize the network. As it is shown in
Fig. 2, the system can be optimized by the following multi-task loss;

L = (1− λ1 − λ2)LDiar + λ1LCluster + λ2LSpk, (1)

where LDiar, LCluster, LSpk correspond to losses that control chunk-
wise diarization accuracy, clustering accuracy, and a speaker em-
bedding space to have small intra-speaker and large inter-speaker
variability, respectively. W = {λ1, λ2} includes weights for the
multi-task loss. In the following, we will detail LDiar and LCluster,
while we ask readers to refer to [10] for details of LSpk. LSpk in this
paper is based on absolute speaker identity labels.

2.4.1. Chunk-level diarization loss
As in [7], the diariation loss LDiar in each chunk is formulated as:

LDiar,i =
1

TSLocal
min

φ∈perm(SLocal)

T∑
t=1

BCE
(
lφt,i, ŷt,i

)
, (2)

where perm(SLocal) is the set of all the possible permutations of
(1, . . . , SLocal), ŷt,i = [ŷt,i,1, . . . , ŷt,i,SLocal ] ∈ RSLocal , lφt,i is the φ-
th permutation of the reference speaker labels, and BCE(·, ·) is the
binary cross-entropy function between the labels and the estimated
diarization outputs.

2.4.2. Clustering loss: Adjusted Rand index loss
A common practice to evaluate clustering accuracy is to use the
ARI [23–25], that directly measures similarity between a ground-
truth clustering result and an estimated one, even when the estimated
and true number of clusters does not agree. We here propose to use
the (negative) ARI as a loss to directly improve the accuracy of the
iGMM-based speaker embedding clustering, i.e., the accuracy of the
posterior probability R obtained in 2.3.2.

Specifically, we use the following continuous approximation of
ARI [16] (hereafter, cARI) that can handle soft cluster assignments,
as opposed to the original non-differentiable ARI. Let us first define
N1 as the approximated number of pairs of instances (i.e., speaker
embeddings) that are in different clusters in both the true and esti-
mated assignments,N2 as the approximated number of pairs that are
in different clusters in the true assignments but not in the estimated
assignments, N3 as the approximated number of pairs that are in the
same cluster in the true assignments but not in the estimated assign-
ments, and N4 as the approximated number of pairs that are in the
same cluster in both the true and estimated assignments. Then, cARI
is formulated as:

cARI =
2(N1N4 −N2N3)

(N1 +N2)(N3 +N4) + (N1 +N3)(N2 +N4)
, (3)

where Ni(i = 1, . . . , 4) is mathematically defined as:

N1 =
N∑
n=1

N∑
n′=n+1

I(hn 6= hn′)dn,n′ , (4)

N2 =

N∑
n=1

N∑
n′=n+1

I(hn 6= hn′)(1− dn,n′), (5)



Table 1: DERs (%) of EEND-VC and the proposed EEND-VC-iGMM for the different number of speakers in the CALLHOME evaluation
set. The numbers in parentheses indicate the missed detection (MI), false alarm (FA) and speaker confusion (CF) errors, i.e., (MI/FA/CF).

Model LSpk
Number of speakers in a recording

2 3 4 5 6 Avg.

EEND-VC X 7.0 (4.0/2.4/0.5) 14.2 (4.9/3.5/5.8) 16.7 (6.0/2.7/8.0) 31.6 (8.0/2.4/21.2) 29.9 (10.9/3.5/15.5) 13.8 (5.6/2.7/5.5)

EEND-VC-iGMM - 8.1 (4.6/2.7/1.1) 12.3 (5.2/3.6/3.5) 18.0 (6.4/4.4/7.1) 28.4 (6.3/4.7/17.3) 33.8 (11.1/4.8/17.9) 13.7 (6.5/2.7/4.5)
EEND-VC-iGMM X 8.6 (4.8/2.3/1.4) 12.6 (6.6/2.3/3.6) 16.1 (6.4/3.7/6.1) 27.5 (5.3/4.9/17.3) 26.9 (11.9/3.2/11.4) 13.3 (5.2/3.6/4.5)

N3 =

N∑
n=1

N∑
n′=n+1

I(hn = hn′)dn,n′ , (6)

N4 =

N∑
n=1

N∑
n′=n+1

I(hn = hn′)(1− dn,n′), (7)

where hn is the true cluster assignment label for the n-th speaker
embedding en, I(·) is the indicator function, i.e., I(A)=1 if A is
true and 0 otherwise, and dn,n′ is the total variation distance [26]
between rn and rn′ defined as:

dn,n′ =
1

2

K′∑
k=1

|rn,k − rn′,k|. (8)

As a loss function LCluster, we minimize LCluster = −cARI.

3. EXPERIMENTS
Here, we evaluate the effectiveness of the proposed EEND-VC-
iGMM on the widely used CALLHOME (CH) dataset [1, 27].

3.1. Data
We trained the diarization systems on simulated mixtures using
speech from Switchboard-2, Switchboard Cellular, and the NIST
Speaker Recognition Evaluations, and noise from the MUSAN
corpus [28], and simulated room impulse responses from [29].

We generated 2 sets of training data. The first set (6.9k hours)
consists of 1-to-3-speaker meeting-like data generated based on the
algorithm proposed in [7] with β = 10. This is the same training
dataset as the one we used in [11]. We used it to train a seed model
that was common for our baseline and proposed systems. The second
training data (5.5k hours) consists of mixtures of up to 7 speakers,
which simulates meetings with a larger number of speakers.

We evaluated the diarization systems on the CH dataset [27] that
contains 500 telephone-conversation sessions including 2 to 6 speak-
ers. Because there is a mismatch between the training and testing
conditions, we used a part of the CH data for adaptation. We use the
adaptation/evaluation data split proposed in [9].

3.2. Experimental settings
We evaluate the proposed EEND-VC-iGMM in comparison with the
original EEND-VC with constrained AHC [11]. Both systems use
the same configuration for the input feature, the Transformer en-
coder network, and the same silent speaker detection, all of which
follow [11]. The only difference comes from the clustering mod-
ules, i.e., constrained AHC versus trainable iGMM. We assume a
maximum number of speakers per chunk to be 3, i.e., Slocal = 3.
NN of the EEND-VC was trained with the multi-task weight of
W = {0.0, 0.03}. We prepared two variants of EEND-VC-iGMM,
one with the speaker embedding loss LSpk based on absolute speaker
identify labels, and one without it, by settingW = {0.05, 0.03} and
W = {0.05, 0.0}, respectively.

The training procedure is as follows. We first created the seed
model using the 1-to-3-speaker training data and 30 seconds chunks
for 100 epochs. We then re-trained the baseline EEND-VC and pro-
posed EEND-VC-iGMM on the 2-to-7-speaker training data with 5-
second chunks, i.e., T = 5 s. These chunks are taken from 100 s and
300 s consecutive recordings for EEND-VC and EEND-VC-iGMM,
respectively. Finally, we performed adaption using the CALLHOME
adaptation data. For adaptation, we cut the recordings to 100 s for the
baseline and 600 s for the proposed method, which corresponds to
the optimal setting for each. This setting allows EEND-VC-iGMM
to have sufficient number of embedding samples for the iGMM clus-
tering during training. For the iGMM, we set the number of EM it-
erations at 10, α at 1, K′ at 10, in both training and inference stages.

The performance was evaluated including overlapped speech
frames in terms of DER with a collar tolerance of 0.25 s as in [1, 9].

3.3. Results
Table 1 shows the DERs for the conventional EEND-VC, and
EEND-VC-iGMM with and without the speaker embedding loss
LSpk. We can see that EEND-VC-iGMM outperforms EEND-VC
in all but the 2-speaker condition. By looking at the breakdown of
DERs, we observe that EEND-VC-iGMM greatly reduces speaker
confusion errors in most cases. This clearly confirms the effec-
tiveness of incorporating the trainable iGMM-based clustering and
tightly coupling the embedding estimation and the clustering stages.

Looking at Avg. conditions, we can see that EEND-VC-iGMM
with the speaker embedding loss LSpk performed the best. Another
variant of EEND-VC-iGMM that does not use LSpk, which is based
on absolute speaker identity labels, achieves overall performance
comparable to the baseline but with lower speaker confusion errors.
Unlike the baseline, this proposed variant does not require absolute
speaker identity labels and relies only on diarization labels. Con-
sidering that (1) the performance of EEND-VC is fairly good on this
data in general and (2) there are many cases that the absolute speaker
identify labels are not available, this is an encouraging result.

The numbers reported in Table 1 are slightly worse than those
reported in [11], because of the different chunk size (i.e., we use
here a chunk size T of 5 s, while the best performance in [11] was
achieved with a chunk size of 30 s). Although the chunk size of 5 s
may not be optimal for the CH data, it is arguably a much more prac-
tical setting in general as it allows us to cope with conversations with
rapid speaker changes such as a meeting or casual conversations. In
future work, we plan to investigate the proposed EEND-VC-iGMM
in such challenging conditions.

4. CONCLUSION
This paper introduced a trainable clustering, i.e., deep unfolded
iGMM, into the EEND-VC framework, that allows tighter integra-
tion of EEND-based and clustering-based diarization approaches.
We confirmed experimentally that the proposed method could out-
perform the conventional EEND-VC with constrained AHC, by
significantly reducing the speaker confusion errors.
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