
 

	
  

1	
  

	
  

  

Tight Junctions: From simple barriers to multifunctional 

molecular gates 

Ceniz Zihni1, Clare Mills1, Karl Matter1# and Maria S Balda1# 

 

 Department of Cell Biology 

UCL Institute of Ophthalmology 

 University College London 

London EC1V 9EL, UK 

 

 

# Address for correspondence 

UCL Institute of Ophthalmology 

University College London 

Bath Street 

 London EC1V 9EL 

United Kingdom 

Tel – 44 20 7608 4014/6861 

Fax – 44 20 7608 4034 

E-mail: k.matter@ucl.ac.uk/m.balda@ucl.ac.uk 

 

 

Main body of text: 5983 words



 

	
  

2	
  

	
  

Epithelia and endothelia separate different tissue compartments and protect multicellular 

organisms form the outside world. This requires the formation of tight junctions, selective 

gates that control paracellular diffusion of ions and solutes. Tight junctions also form the 

border between the apical and basolateral plasma membrane domains and are linked to the 

machinery that controls apicobasal polarization. Additionally, signalling networks that 

guide diverse cell behaviours and functions are connected to tight junctions, transmitting 

information to and from the cytoskeleton, nucleus and different cell adhesion complexes. 

Here, we discuss recent advances in our understanding of the molecular architecture and 

cellular functions of tight junctions.   

 

 Microscopists in the 19th century described the paracellular space between neighbouring cells 

within an epithelial sheet to be sealed by a “terminal bar”, a structure later resolved by electron 

microscopy into a composite of distinct cell-cell junctions that is now called the epithelial junctional 

complex and is formed by tight junctions, adherens junctions and desmosomes1,2.	
  As the former 

two junctions are more tightly associated and often reside at the apical end of the lateral 

membrane, they are often referred to as the apical junctional complex (however, in endothelia, tight 

junctions and adherens junctions can be intercalated) (Fig. 1). Tight junctions are essential for 
barrier formation, and their primary physiological role is to function as paracellular gates that 

restrict diffusion on the basis of size and charge. Selective paracellular diffusion is an essential 
process for the maintenance of homoeostasis in organs and tissues. Tight junctions have long 

been the most enigmatic of all adhesion complexes and eluded a detailed molecular and functional 

analysis due to their complex architecture. Recent years have witnessed the identification of a 
large array of components associated with tight junctions implicating these junctions in an 

unexpected range of different functions, thereby challenging the traditional model, in which tight 
junctions are considered a simple diffusion barrier formed by a rigid molecular complex. In line with 

these various functions, mutations in genes encoding tight junction proteins have been linked to a 

range of inherited human diseases. Additionally, tight junction components are known to be 
targeted by a number of pathogenic bacteria and viruses, which hijack tight junction proteins to 

enter and infect cells, or target junctional signalling mechanisms to cross tissue barriers.  Although 

tight junctions are a vertebrate junction, many of their components and functions are evolutionarily 
conserved (Box 1).  

 The main purpose of this review is to examine the recent advances in the unravelling of the 
molecular architecture of tight junctions and understanding their functions. We will discuss recent 

exciting insights into how tight junctions function as signalling platforms that guide cell behaviour 

and differentiation, as well as their role in cell polarization. We will also survey recent results 
suggesting unexpected crosstalk between tight junctions and other adhesive structures. 

 

Structure and composition 

 Electron microscopy revealed that tight junctions form very close focal contacts between plasma 
membranes of neighbouring cells that, depending on the preservation method used, may appear 

as apparent hemifusions or “kisses”2
	
  (Fig. 1). By freeze fracture electron microscopy, a technique 

that enables the imaging of the hydrophobic interior of a membrane, tight junctions appear as 

meshwork of fibrils, often apparently formed by rows of transmembrane particles, that are thought 

to represent the diffusion barriers3,4
.	
  Tight junctions also contain an electron dense junctional 

plaque that consists of cytosolic proteins that form the interface between the junctional membrane 

and the cytoskeleton. 
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Transmembrane proteins 

 The main protein components of the transmembrane strands observed by freeze fracture 

electron microscopy are tetraspan proteins of the claudin family (encompassing 26 members in 
humans and 27 in mouse, see below) and the three junctional MARVEL domain proteins: occludin, 

tricellulin and MarvelD3. Although not confirmed for all members of the two families, these proteins 
have been localised by immunoelectron microscopy to the strands and shown to induce 

superficially similar strands if expressed in cells that do not form tight junctions in the case of 

claudins or transmembrane particles and short strand fragments in the case of occludin 5-8. 
Similarly, some claudins and occludin are able to mediate Ca-independent cell-cell adhesion, 

further supporting a model in which tight junctions consist of multimeric transmembrane protein 
complexes that mediate cell-cell adhesion8,9. 

 Other transmembrane components of tight junctions include a trispan protein, BVES (blood 

vessel epicardial substance), and a large group of single span transmembrane adhesion proteins 
with two immunoglobulin like domains that comprises junctional adhesion proteins (JAMs), 

Coxsakie adenovirus receptor (CAR), and angulins (or lipolysis-stimulated lipoprotein receptors)10-

15. Angulins, together with tricellulin, are enriched in tricellular corners and are thought to mediate 
functional integrity of the junction in epithelial and endothelial cells. Additionally, Crb3, a protein 

with EGF like domains important for apical polarization, associates with tight junctions16,17. These 
proteins have not been shown to associate with the transmembrane strands but can modulate the 

strength of the junctional barrier if removed or overexpressed, or, like JAM proteins, regulate 

junction assembly (see below). Many of the functions of transmembrane tight junction proteins 
depend on interactions with components of the complex cytosolic plaque that lines the junctional 

membrane. 
 

Junctional plaque components 

 The cytosolic plaque is a complex protein network that interacts with the cytoplasmic domains of 
junctional membrane proteins as well as with the F-actin and tubulin cytoskeleton (Fig. 1B). Its 

main structural components are adaptor proteins that contain multiple protein/protein interaction 

motifs18. A typical example is the first tight junction protein identified, ZO-1 (zonula occludens-1), a 

220kDa peripheral membrane protein, consisting of an N-terminal half with three PDZ (PSD-95, 
DlgA, ZO-1 homology) domains, an SH3 (Src homology 3) domain, and a GUK (yeast guanylate 

kinase homology domain); whereas its C-terminal half interacts with F-actin and contains 

alternatively spliced domains that may confer tissue-specific functions 19-21. The N-terminal motifs 
bind to different transmembrane proteins: claudins via the first PDZ domain, JAMs via the third and 

occludin via the GUK domain. The SH3 domain links ZO-1 to junctional signalling mechanisms by 
binding to ZONAB (see below), a transcriptional and posttranscriptional regulator of gene 

expression, and Apg-2, a heat shock protein	
  20,22-­‐25. ZO-1 also engages in intramolecular 

interactions that lead to a closed conformation in which access to the central GUK/SH3 module is 

limited26,27. A feature that may also underlie the inability of in vitro translated full length ZO-1 to bind 

SH3 domain ligands that bind to shorter domain constructs28. Although the functional relevance of 

such intramolecular interactions is poorly understood, they may serve as regulatory switches for 
ligand binding and, thereby, junction formation and signalling.  

 The tight junction plaque contains a vast number of such adaptor proteins, many interacting 

with each other, forming a protein network. Examples include ZO-2 and ZO-3 two proteins that co-
immunoproecipitate with ZO-129-31. They have the same domain structure as ZO-1 within the N-

terminal half but have unique C-terminal parts. ZO-1 and ZO-2 interact with ZO-1 in a mutually 
exclusive manner via the second PDZ domain. Other examples are the MAGI proteins, which have 

the same type of domains as the ZO proteins but in an inverted arrangement, or the multi-PDZ 

domain proteins MUPP1 and PATJ	
  32-­‐36. Another type of junctional adaptor is represented by 
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cingulin and JACOP/paracingulin, two homologous coiled-coil proteins that bind to a variety of 

different junctional proteins, including F-actin and, in the case of cingulin, microtubules37,38. The 

cytoplasmic plaque may be an ordered structure with proteins like cingulin being farther from the 

membrane than core proteins like ZO-1 (Fig. 1C)	
  39. Although such proteins may have a distinct 

overall distribution within the junction, their distributions overlap and they are able to interact with 

each other and form complexes40. The junction also contains many different signalling proteins that 

are recruited by binding to adaptors or to membrane proteins such as occludin and MarvelD341,42
.	
  

This includes protein kinases, phosphatases, monomeric and trimeric GTP-binding proteins and 
transcriptional and post-transcriptional regulators, which participate in various signalling pathways 

(Table 1)43-45. 
 The number of junctional proteins, many of which belonging to the same protein family or 

having similar protein binding motifs, is intriguing. While the many claudins can be explained by 

their different functional properties, it is more difficult to understand why so many adaptor proteins 
are required. Knockouts and knockdowns in cells in culture or whole organisms yielded often only 

minimal functional consequences (e.g., cingulin, ZO-3)46,47. Hence, many junctional proteins are 

considered to have redundant functions. However, this is surely not the case for ZO-1 and ZO-2, 

as individual knockouts of both adaptors are embryonic lethal48,49. Even in vitro, the lack of a clear 
phenotype in loss of function experiments studying ZO-1 in MDCK cells was later attributed to 

incomplete depletion in some RNA interference studies as reexpression of ZO-1 at low levels in 

knockout cells could rescue the phenotype50. Nevertheless, adaptive processes in the junctional 

protein network in response to removal of individual components do occur. For example, deletion 

of ZO-3 in mice leads to increased junctional recruitment of ZO-246. Such adaptive processes 

render junctions biologically more robust, but they make experimental analysis more difficult as, for 

example, constitutive depletion methods in cell lines may lead to adaptive processes during cell 
line selection. The apparent redundancy under standard experimental conditions may also mean 

that a protein is only important under certain conditions or in specific cell types and/or model 
systems, as exemplified by the importance of ZO-3 for osmoregulation in zebrafish or occludin for 

barrier maintenance in ethanol-stressed mice51,52. Hence, understanding the functional role of 

specific tight junction proteins and how they cooperate to form functional junctional complexes will 
require a more detailed analysis of specific tissues and processes in different experimental models, 

conditional gene inactivation approaches, overexpression experiments, and analysis of how 
junctional complexes adapt to removal of specific components.  

 

Models of tight junction structure  

 The ultrastructural appearance of tight junctions has stimulated the discussion about their 
molecular architecture for decades. Two models have emerged: a protein model and a protein/lipid 

hybrid model; the latter is often referred to as the lipid model, although the need for proteins had 

always been accepted (Fig. 2A). The protein model posits that the paracellular diffusion barrier is 
formed by transmembrane proteins that form an intercellular protein complex between the two 

neighbouring plasma membranes that have a standard bilayer lipid configuration. This model has 
recently gained more support due to the identification of the claudin crystal structure and 

subsequent modelling approaches that enabled the construction of a model that provides a good fit 

to the junctional ultrastructure. The 2.4Å resolution structure of claudin-15 revealed a characteristic 
β-sheet fold formed by the two extracellular domains, which are anchored to a transmembrane 

four-helix bundle (Fig. 3)53. Claudin-15 forms a linear polymer mediated by specific interactions 
between adjacent extracellular domains that are required for reconstituting tight junction-like 

intramembrane strands. Cysteine crosslinking then led to a model in which two such anti-parallel 

strands associate with each other to form an intramembrane tight junction-strand54. Consequently, 
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each membrane-membrane contact site consists of four claudin polymers, two per cell, that 

interact via their extracellular domains, forming the junctional barrier and permeation pathway. As 

different claudins may either polymerize within the same strand or adjacent strands in a heterotypic 
or homotypic fashion, tight junction strands form a mosaic consisting of various claudin 

molecules55-57. While this model provides a possible structural explanation for how claudins may 
form linear strands, it is more difficult to see how other junctional membrane proteins that associate 

with strands (e.g., occludin) and have different dynamic properties fit into this model58. Similarly, 

native junctional intramembrane strands are not linear but anastomose, leading to the formation of 

networks (Fig. 1E). Hence, a molecular model for strand formation requires a mechanism for 

branching.  
 The hybrid model offers possible answers to some of these questions. It proposes that the close 

membrane-membrane contact sites are actual membrane hemifusions and that the intramembrane 
strands are cylinders of inverted lipid micelles. In this case, the lamellar structure of the membrane 

lipid bi-layer forms a hexagonal transitory arrangement whereby lipid chains are oriented outwards 

(Fig. 2A)59,60
.	
  This model is based on the demonstration that protein-free liposomes can form tight 

junction-like strands61. A hemifusion state is energetically unfavourable; hence, transmembrane 

proteins were proposed to stabilise the inverted micellar structure59. This model is supported by the 
observation that native tight junction strands seem to contain protein and phospholipids62,63. 

According to this model, lipids are filling the gaps between different types of membrane proteins, 
eliminating the need of proteins forming continuous polymers58,64. Consequently, this model 

enables to explain why different protein components that have different dynamic properties can be 

a part of the same strands. 
 Different experiments have been performed to differentiate between the two models, but a 

consensus was not reached. Cell-to-cell lipid diffusion experiments should provide an answer as 
lipids can only diffuse from one cell to another if the exoplasmic leaflet of two neighbouring cells is 

continuous as in the hybrid model. However, lipids with large polar heads did not diffuse whereas 

fluorescently labelled lipids with modified acyl chains did65,66. It is thus possible that alternative 
barriers prevent diffusion of lipids with large head domains (e.g., the negative membrane 

curvature) or that the modified lipid exchanges between closely apposed membranes. Regardless 

of the model, lipids are important for tight junctions. For example, some tight junction proteins are 
associated with cholesterol-rich, detergent-resistant membrane microdomains and modification of 

cholesterol modifies epithelial barrier properties67-69. However, freeze-fracture analysis of tight 
junctions of cholesterol depleted cells yielded contradictory results, and cholesterol may affect a 

membrane by influencing the lipid structure or the functional properties of transmembrane proteins 

by altering their lipid environment 70,71. Finally, one could also imagine that the strands are not as 
homogenous as generally assumed and might be composed of sections containing different lipid 

structures and protein composition.  
 The true structure of tight junctions thus remains to be established. As intramembrane strands 

can thus far only be seen in fixed specimen, new methods will have to be developed that enable 

visualization of strand dynamics. Hopefully, improvements of live imaging approaches combined 
with enhanced resolution of light microscopy may provide the key to answer these questions. 

Nevertheless, the current models and structural data allow us to gain a better understanding of 
how tight junctions function as permeability barriers.  

 

Barrier functions 

 Tight junctions form two types of barriers: a paracellular one that regulates selective paracellular 
permeability and an intramembrane one that restricts exchange of membrane components 

between the apical and basolateral cell surface domains (Fig. 2B). The two barriers have the same 

physical location at intramembrane strands and are likely to be structurally related.    
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Regulation of paracellular permeability  

 The physiological properties of the junctional gate are that of a semipermeable diffusion barrier 
that discriminates solutes on the basis of size and charge72. Solutes can cross the junctional 

paracellular pathway along two routes. A charge-selective permeation pathway that is thought to 
consist of pores across serially arranged barriers allowing diffusion of ions and small uncharged 

molecules (Fig. 2C). These pores have a diameter of ~4-8Å depending tissue and molecule 

analysed73-75.  A second diffusion pathway allows the diffusion of larger solutes, macromolecules 
up to a size limit of ~30-60Å72,75. Charge-selective ion permeation and size-selective 

macromolecular diffusion occur by different mechanisms and can be regulated in opposing 

manners76. Ion permeation is typically measured by assessing electrical resistance or conductivity, 

an instantaneous measurement that requires a continuous conductive pathway for a current to 
flow. Macromolecular diffusion is slow, requires tracer diffusion measurements over longer periods 

of time (i.e., hours), and, hence, may occur in a stepwise manner (Fig. 2D). To explain charge-

selective permeation, a model of the junction evolved that considers the intramembrane strands to 
contain regulated ion-selective channels that can open and close. To account for macromolecular 

permeation a dynamic strand model has been introduced, in which the intramembrane strands 
remodel, allowing slow, diffusion (Fig. 2D). Such serial diffusion barriers might be formed by 

protein polymers according to the protein model or, alternatively, inverted lipid cylinders whose 

stability is regulated by associated proteins76. In this model, the size-selectivity would be 
determined by the distance between the outer leaflets of the two adhering plasma membranes. In 

an alternative model, tight junctions were proposed to be formed by two differently sized inverted 

micelles and macromolecular diffusion to occur inside the larger ones that dynamically form and 

dissolve75. However, current freeze fracture data does not suggest that junctions contain two 

different sizes of intramembrane strands. 

 While significant progress has been made in the elucidation of the molecular mechanisms that 

enable junctional ion permeability, macromolecular diffusion is still not well understood and 
currently available insights have been summarized in other reviews75,76. Hence, we will focus here 

on recent exciting findings deciphering the molecular mechanisms underlying junctional ion 

permeation. 
 

 Upon their discovery, claudins quickly emerged as candidates for mediating ion-selective 
paracellular diffusion, as one of them, claudin-16 (paracellin-1) was identified as a gene mutated in 

renal magnesium wasting, an inherited disease affecting renal paracellular magnesium 

reabsorption (Box 2)77. Claudins' tissue-specific expression pattern further fuelled the hypothesis 
that the claudin composition of a tight junction determines the permeability properties. Claudins are 

now grouped according to their channel- and barrier-forming properties into those that support 
cation-selectivity (e.g. claudin-2, 10b, 15), anion-selectivity (e.g. claudin-10a, 17), or preferentially 

sealing claudins (e.g., claudin-1)73,78-85. The latter group are claudins that have not (yet) been 

associated with promoting permeability of a specific type of ion or molecule, and are hence thought 
to enhance the barrier function. However, it is also possible that they form pores for yet to be 

identified molecules.  
 Expression studies combined with measuring permeability of epithelial cell monolayers 

demonstrated that claudins are important determinants of the paracellular barrier properties. First 

evidence for channel formation came from structural and functional studies demonstrating that 
modification of the first extracellular loop of claudins affects the conductive properties of claudin-

transfected cells85,86. For example, the cation-selective claudin-2 contains a critical residue in its 
first extracellular loop that, if replaced with a cysteine followed by modification with the thiol-

reactive bulky reagent methanethiosulfonate was found to block the ion-conductive pathway87,88. 
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More direct evidence came from a recent patch clamp approach demonstrating that claudin-2 

indeed forms a gated cation-selective paracellular pore89.  

 The recent x-ray crystal structure of claudin-15, a cation-selective claudin, provides a possible 
structural basis to explain the formation of ion-selective channels 53,54,90,91. According to the model 

proposed, a characteristic anti-parallel β-sheet fold formed by the first extracellular loop and the C-
terminal end of the second extracellular loop is anchored to a conserved transmembrane four-helix 

bundle (Fig. 3A). Apart from segment 3, the length of the transmembrane domains is consistent 

with the lipid bilayer thickness and they contain residues with small side chains that are important 
for tight helical packing. Mutations leading to changes in such residues are associated with human 

disease, suggesting that they are indeed important77,92. Similarly, mutation of the two conserved 
cysteine residues in extracellular loop 1 abolishes the barrier forming ability of claudin-5, 

suggesting that the disulfite bond is important to stabilise the β-sheet structure93. Head-to-head 

association of two antiparallel claudin strands from one cell with two strands from the neighbouring 
cell is thought to lead to the formation of a β-barrel that defines the paracellular pore (Fig. 3B,C)54. 

Other authors have expressed reservations about the packing density generated by such a 

structure94. However, the β-barrel model is compatible with structure-function studies performed 
previously. For example, the negatively charged residues Glu55 and Asp64 of claudin-15 extend 

away from the β-sheet surface, leading to a negatively charged β-barrel, which would be 
compatible with a cation-selective pore. Previous work indeed demonstrated that substituting these 

two residues by positively charged ones alters ion-selectivity of this claudin86. Similarly, homology 

models indicate that cation-selective and anion-selective claudins-2 and -10a form negatively and 
positively charged barrel surfaces, respectively53. Altogether, this β-barrel model provides an 

excellent base for future work to elucidate the structural basis for junctional ion permeation.  
 Patch clamp experiments indicate that the junctional pores are gated, but the structural basis for 

opening and closing has not been analysed89. Gating might be regulated by mechanisms that are 

yet to be identified. An interesting paradigm is provided by WNK1 and WNK4, two kinases linked to 
Pseudohypoaldosteronism type II, an autosomal dominant disorder that leads to hypertension. 

WNK4 localises to tight junctions and expression of disease-causing alleles of the two kinases 
stimulates phosphorylation of multiple claudins and leads to increased chloride permeability95-99. 

While these studies indicate that claudin-mediated ion conductance is regulated, the structural 

changes that lead form phosphorylation of claudins to opening claudin-based pores remain to be 
determined. 

 
Intramembrane diffusion barrier: the fence function 

 The junctional fence has been defined by diffusion experiments with fluorescent lipid probes 

and lipids that demonstrated that a diffusion barrier restricts intermixing of apical and basolateral 
lipids in the exoplasmic plasma membrane leaflets (Fig. 2B)100,101. Although not directly 

demonstrated, based on these properties one would assume tight junctions also act as a fence for 

transmembrane proteins. The fence function is assumed to be linked to the intramembrane strands 
as experimental manipulations that do or do not affect their integrity often have analogous effects 

on integrity of the junctional fence. For example, transient ATP depletion in MDCK cells has no 
effect on the fence function and the suprastructure of tight junctions but, for unknown reasons, 

leads to disruption of the paracellular diffusion barrier102. In contrast, treatment of epithelial cells 

with a rotavirus derived peptide leads to a partial disruption of the continuous intramembrane 
strand network and increased lipid diffusion between apical and basolateral plasma membrane 

domains103. In the protein model, the transmembrane proteins forming the strands serve to restrict 
intramembrane diffusion; whereas in the hybrid model, apical and basolateral membrane leaflets 

are discontinuous, inherently generating an exoplasmic fence. However, also here one would 

expect transmembrane proteins to play a role, as the unconventional lipid structures of the hybrid 
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model require stabilisation (Fig. 2A). Expression of an occludin mutant with inactivated cytosolic 

domains that is unable to interact with the cytoplasmic plaque indeed disrupts the lipid diffusion 

barrier104. It does so without disrupting the network of intramembrane strands, arguing against a 
model in which the strands act as the diffusion fence. As this mutant form of occludin also results in 

increased macromolecular paracellular diffusion, it is possible that the fence function and the 
mechanism enabling macromolecular diffusion are related. According to the dynamic strand model, 

intramembrane strands remodel to allow macromolecular diffusion (Fig. 2D). If the strands were 

responsible for the fence function as well, increased strand dynamics would indeed lead to 
increased intramembrane and macromolecular diffusion. Testing such a model will require the 

development of approaches to visualise both lipid diffusion and intramembrane strand dynamics in 
live cells.  

 The overall importance of the fence for maintaining epithelial polarity is often overestimated as 

cells that have a defective junctional fence due to expression of mutant form of occludin still 
polarize104. Even cells that lack tight junctions due to combined removal of ZO-1 and ZO-2 still 

polarize and maintain at least some polarized lipid distribution105,106. It remains thus to be 

established to what extent the fence function is physiologically required for functional epithelia. 
 

Assembly and links to apical polarity 

 Establishment of tight junctions is a multistep process that involves an array of distinct signalling 
mechanisms that guide and control this process, and ultimately leads to cell surface polarization 

and the differentiation of often organ-specific apical domains, such as the intestinal brush border 

membrane.  
 

Tight junction assembly  

 Tight junction assembly is commonly studied in Ca-switch models in which cells are plated on a 
filter, enabling transepithelial measurements for barrier formation, in a medium with a low calcium 

concentration that does not allow junction formation, which is then induced by adding additional 

calcium107,108
. Such experiments demonstrated that tight and adherens junctions are not 

morphologically well-defined during early junction assembly but resemble the primordial junctional 
complexes observed in primitive nematodes and lie within the same plane as the basal, focal 

adhesion complex (Fig. 4A). The close relationship between tight and adherens junctions is 

reflected in biochemical interactions between core components of these junctions. For instance, 

ZO-1 and α-catenin, a protein that links adherens junctions to the actin cytoskeleton, form a 

complex in cells grown in low calcium; upon initiation of junction formation, this ZO-1-α-catenin 
complex is recruited to forming junctions, coupling assembly of tight and adherens junctions (Fig. 

4A)109,110. A central coordinating role is also played by nectins, adherens junction adhesion proteins 

that participate in the recruitment of JAM-A111. JAM-A localizes first to nectin-based cell-cell 

contacts, which is dependent afadin forming a bridge between nectin and ZO-1, a JAM-A-binding 
protein. Formation of mature tight and adherens junctions then requires activation of multiple 

signalling mechanisms that include different PKCs, PKA, AMPK, protein phosphatases, and small 

and heterotrimeric GTPases (Table 1)43-­‐45,108,112.  

 Many tight junction proteins interact with the actin cytoskeleton. Although the importance of 

individual interactions is still poorly understood, regulation of cytoskeletal dynamics is essential for 
junction formation and function. For example, myosin light chain kinase, a regulator of actomyosin 

activity, stimulates increased intestinal paracellular permeability during inflammation, a process 
involving junctional remodelling and occludin internalization113. RhoGTPases are major regulators 

of the actin cytoskeleton and, consequently, play fundamental roles in the regulation of junction 

assembly and function.  The mechanisms that control RhoGTPase signalling have been intensively 
investigated during the last years, leading to the discovery of regulators that control specific 
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processes by guiding the activity of RhoA, Cdc42, and Rac43,45. This includes guanine nucleotide 

exchange factors (GEFs) for RhoA, p114RhoGEF/ ARHGEF18 and ARHGEF11, that are recruited 

to forming junctions by cingulin, JACOP, and ZO-1, respectively, to promote ROCK driven myosin 
activation and junction formation (Fig. 4A)114-116. Similarly, the Cdc42 GEF TUBA is recruited to 

tight junctions by ZO-1 and tricellulin and regulates the junctional actomyosin cytoskeleton117,118. 
How these different mechanisms are coordinated with each other and are integrated into the 

cellular signalling networks that guide cell behaviour is still poorly understood and remains to be 

investigated in more detail.  
 

Establishment of apical polarity 

 Establishment of tight junctions is intimately linked with the signalling mechanisms that drive 

epithelial polarization112,119. During the initial assembly of junctions, the adhesion protein JAM-A 

recruits the PAR3-PAR6-aPKC complex120,121; thereby establishing the forming border between the 
apical and lateral domains (Fig. 4A, Table 1). The PAR3-PAR6-aPKC complex is an evolutionarily 

conserved signalling module that drives apical polarization in response to Cdc42 activation. It is 

thought that early steps of junction formation are supported by the Cdc42 GEF ECT2 that 
associates with PAR3 and PAR6, and requires interplay with the GTPase activating proteins Rich1 

and SH3BP1 that complete the GTPase cycle122-­‐124
.	
  Once cells start to polarize, activation of Cdc42 

at the apical pole and the apical margin close to tight junctions is catalysed by the GEF Dbl3, which 

is recruited by another pro-apical signalling determinant, ezrin125. Apical Cdc42 activation then 
promotes aPKC activation, leading to phosphorylation and dissociation of PAR3 from the PAR6-

aPKC complex. The latter translocates to the differentiating apical membrane in a still poorly 

understood process, whereas PAR3 remains at tight junctions and marks the border between 
apical and lateral domains. This process is essential for the development of specialised apical 

membrane domains, such as the intestinal brush border membrane, and drives the accumulation 
of apical signalling proteins (e.g., Crb3) as well as proteins required for apical functions (e.g., brush 

border enzymes)125. This mechanism is evolutionarily conserved and linked to the subapical zone 

and adherens junctions in Drosophila (Box 1)126,127.	
  
 A second pro-apical signalling complex also associates with tight junctions, the Crb3/Pals-

1/PATJ complex, which links to tight junctions via PATJ interacting with ZO-3, claudin-1 and JAM-
A128-130. Crb3 is a transmembrane protein that during apical differentiation is phosphorylated by 

aPKC, which involves an interaction with the PAR6131. Activation of pro-apical signalling does not 

only promote apical differentiation, it also leads to a suppression of pro-basolateral 
determinants119,132. Consequently, the extent of apical Cdc42 activation also determines the 

relative size of the two cell surface domains and, thereby, the positioning of the tight junction, the 
apical-lateral border125.  

 

Signalling from tight junctions  

 It has become apparent that tight junctions, apart from serving as permeability barriers, are also 
important signalling platforms. As discussed above, assembly of these junctions is inherently linked 

to the establishment of epithelial apicobasal polarity. Additionally, tight junctions transmit signals to 

the cell interior to regulate the cytoskeleton, gene expression, cell proliferation and differentiation 
during various cellular processes (Table1). These mechanisms have recently been reviewed and 

we will only summarize some of the central principles and recent developments43,44,112. 

 To start, tight junctions signal to guide cell proliferation and differentiation. Their formation 

accompanies the establishment of epithelial sheets with the increasing cell density inhibiting 
proliferation. This process includes well-known signalling mechanisms such as the Hippo pathway 

that regulates the transcriptional coactivators YAP and TAZ. Tight junction associated mechanisms 

that affect activity of these transcription factors includes both junctional recruitment of Hippo 
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pathway kinases that phosphorylate and inhibit them, the merlin tumour suppressor mechanism 

that links the Crb signalling complex to inhibition of proliferation, as well as interactions with 

junctional adaptor proteins such as angiomotin, ZO-2 and PAR3133-­‐138. Other proliferation-regulating 

transcription factors have been shown to localise to tight junctions as well as nuclei, such as 

ZONAB, a protein inhibited by ZO-1 binding that promotes proliferation and interacts with other 

proteins at cell junctions such as symplekin, RalA, GEF-H1 and CDK423,24,139-­‐142. As ZONAB binds 

multiple proteins at tight junctions, removal of ZO-1 alone may not be sufficient to lose junctional 

localisation as has recently been suggested28. The latter paper also concluded that ZO-1 does not 

bind ZONAB28. However, others who employed the same extraction conditions as originally 

described for the isolation of ZO-1/ZONAB complexes co-immunoprecipitated the two proteins 

successfully, and suggested a molecular and functional link with claudin-2143-­‐145. The ZO-1/ZONAB 

pathway is thought to regulate expression of ErbB2, cyclin D1 and PCNA23,146. This has recently 

been questioned as no effect on the expression of these genes was detected in MDCK cells 

constitutively depleted of ZO-1, ZO-2 and ZO-3 individually or together28. However, these assays 

were performed in low density, proliferating cells in which ZONAB is fully active and not inhibited 

by ZO-1 (even overexpression of ZONAB does not stimulate proliferation in such cells)139. Recent 

studies linked the ZO-1/ZONAB pathway to distinct regulatory mechanisms. CFTR, the 

transmembrane protein linked to cystic fibrosis, binds and stabilises ZO-1, leading to reduced ZO-1 
expression in its absence and, thereby, promoting nuclear translocation of ZONAB, induction of 

cyclin D1 and repression of ErbB2147. Manipulation of other junctional transmembrane proteins, 

such as BVES, regulates ZONAB activation via a GEF-H1/RhoA-stimulated mechanism140,148. In 

endothelial cells of the blood-tumour-barrier, bradykinin-induced activation of nitric oxide synthesis 

induces increased permeability and ZONAB activation, leading to repression of claudin-5 and 

occludin promoters149. The group of dual localization proteins associated with tight junctions also 
includes junctional adaptors such as ZO-2, which travels to the nucleus at low cell density and 

interacts with several transcription factors including c-Myc, AP-1 and YAP, regulators of cell 

proliferation44. Depletion of ZO-2 in MDCK cells induces cell size increases and enhanced cyclin 

D1 expression due to modulation of the YAP and Akt/mTOR pathways150
.	
   

 Tight junctions can also signal to the cell interior via classical signalling cascades, such as the 

JNK1/2 mitogen activated protein kinase pathway that is regulated via an interaction between the 
membrane protein MarvelD3 and MEKK1 (MAP3K1)41. This pathway regulates epithelial cell 

proliferation and migration with MarvelD3 functioning as a dynamic attenuator that recycles 

between tight junctions and endosomes. Occludin, a close relative of MarvelD3, also interacts with 
a mitogen activated protein (MAP) kinase pathway, but suppresses dissociation of cell junctions by 

Raf-1 activated Erk signalling via unknown mechanisms151. Occludin interacts with multiple 

signalling proteins that may play a role and has also been linked to TGFβ-induced junction 

dissociation (Table 1)42,152,153.  

 Signalling at tight junctions seems to play an important role in the cellular stress response, and 

ZO proteins have been linked to junctional integrity in response to stress in zebrafish and C. 

elegans, possibly due to regulating F-actin remodelling51,154. Junctional processes also affect 

general cell behaviour during stress, such as the above-described MarvelD3-MEKK1-JNK1/2 
pathway, which is important for cell survival during hyperosmotic stress. Similarly, stress-induced 

Erk activation stimulates the GEF-H1/ZONAB pathway to regulate gene expression 

posttranscriptionally as part of a Ras effector pathway that regulates cell survival142,155. In response 
to heat shock, ZONAB is activated by Apg-2, a heat shock protein that competes for ZONAB 

binding to ZO-124. Hence, tight junctions appear to function as sensors for cell stress and are 
components of MAP kinase signalling networks that can regulate MAP kinase activation as well as 

transmit MAP kinase signals. 
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Crosstalk with other adhesion complexes  

  While different adhesion complexes that mediate interactions with neighbouring cells and the 

cell matrix are often considered in isolation, they influence each other strongly. As we discussed 
above for junction assembly, such crosstalk can involve formation of complexes containing 

components of different adhesion complexes. However, it can also involve regulation of signalling 

pathways (Fig. 4B). For example, JAM-A-mediated cell-cell adhesion signals via two related small 
GTPases of the Ras-related protein family: Rap1 and Rap2. JAM-A stimulated Rap2 activation 

promotes stabilisation of adherens junctions;	
  and activation of Rap1 affects adhesion to 

extracellular matrix and cell migration by regulating integrin β1 expression and recycling156-­‐159. In 

endothelial cells, ZO-1 regulates overall cell-cell tension as well as tensile forces acting on 

adherens junctions by regulating recruitment of a complex formed by p114RhoGEF and JACOP, 

which stimulates junctional RhoA/ROCKII/myosin activation116. Loss of ZO-1 also promotes 

formation of stress fibres and focal adhesions indicating that signalling at tight junctions has cell-

wide consequences on the cytoskeleton and adhesion. Orchestration of cell-cell tension and focal 
adhesion formation by ZO-1 is functionally important for the regulation of cell migration and 

angiogenesis. Stress fibre formation and focal adhesion formation also depends on GEF-H1, which 
stimulates RhoA along the basal membrane and drives focal adhesion formation in various cell 

types. GEF-H1 is recruited to tight junctions by cingulin, which then leads to inhibition of the GEF, 

similar to the inhibition of this GEF by binding to microtubules (Table 1)160-165. While a role for ZO-1 
in suppressing focal adhesion formation has so far only been demonstrated in endothelial cells, 

disruption of tight junction formation and stress fibre formation by depletion of p114RhoGEF, a 

GEF that supports junction formation, occurs in endothelial and epithelial cells114.  

 Similar to crosstalk with adherens junctions, crosstalk between focal adhesions and tight 
junctions is not limited to signalling but may also involves complex formation between focal 

adhesion and tight junction proteins. For example, some claudins and JAM-A have been shown to 

associate with integrin complexes and/or to regulate cell migration166-­‐170
, however, it is not known 

whether such observations reflect independent roles or is yet another example of a regulatory link 

between tight junctions and focal adhesions. 
  

Conclusions and perspectives  

 Despite significant recent progress in structural and functional analysis of tight junctions, many 

open questions still remain. First of all, the topology of the adhering plasma membranes remains to 
be determined, and a structural model needs to be developed that explains how different junctional 

transmembrane proteins that have different dynamic properties can mix in the same branched 
intramembrane strand network and at the same time form intercellular protein complexes serving 

as paracellular ion-selective pores and a lipid diffusion fence. Another longstanding problem is the 

molecular mechanism that enables size-selective macromolecular paracellular diffusion. While the 
current data regarding different junctional components and their reaction to physiological stimuli 

would be compatible with a model based on a dynamic, remodelling strand network, the methods 
to visualize strand dynamics still need to be developed to validate this model. Furthermore, despite 

the fact that a wealth of exciting data has been generated linking particular junctional proteins to 

specific junctional barrier or junctional functions, it is still poorly understood how different proteins 
cooperate to regulate such functions, how the junctional protein network adapts to removal of 

specific components, and how such modified junctions respond to different physiological and 
pathological stimuli. Tight junction-associated signalling mechanisms have now been firmly linked 

to the regulation of cell proliferation, polarization and differentiation, and many of these 

mechanisms are evolutionarily conserved even if they might be associated with a different type of 
junction in different phyla. Nevertheless, we still need to establish how exactly signalling initiated at 
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junctions integrates into complex signalling pathways driving diverse cellular processes. Finally, 

the analysis of the mechanisms by which different adhesion complexes that mediate cell-cell and 

cell-matrix interactions communicate and cooperate with each other will likely lead to exciting new 
insights into the processes that mediate epithelial and endothelial tissue development and function. 
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Online summary 

 

- Tight junctions are intercellular adhesion complex in epithelia and endothelia that control 
paracellular permeability. This paracellular diffusion barrier is semipermeable as it is size- and 

charge-selective. 

 
- Paracellular ion permeability is largely determined by the claudin composition of tight junctions, a 

family of transmembrane proteins that are thought to form gated ion-selective paracellular pores 
through the paracellular diffusion barrier. 

 

- Tight junctions form the border between the apical and basolateral cell surface domains in 
polarized epithelia, and support the maintenance of cell surface polarity by restricting intermixing of 

apical and basolateral transmembrane components. 
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- Tight junctions are an integral component of the evolutionarily conserved signalling mechanisms 

that control epithelial cell polarization and the formation of morphologically and functionally distinct 

apical domains. 
 

- Tight junctions form bidirectional signalling platforms that receive signals from the cell interior 
regulate their assembly and function, and that transduce signals to the cell interior to control cell 

proliferation, migration, differentiation and survival. 

 
- Tight junctions are part of an interconnected network of adhesion complexes that includes 

adherens junctions and focal adhesions. These adhesion complexes crosstalk via direct protein-
protein interactions as well as by transmitting signals to each other that influence their assembly 

and function. 

 

Glossary 

Actomyosin - cytoskeletal fibres formed by F-actin and myosin II. 

Desmosomes - an adhesive structure, also known as maculae adherents, formed from dense 
protein plaques of two adjacent cells, with associated intermediate filaments and transmembrane 

proteins known as cadherins. 

Immunoglobulin-like domain - a protein domain consisting of a double layer sandwich of 7-9 

antiparallel β-stands arranged in two β-sheets. 

Osmoregulation - a process utilized by cells and simple organisms to maintain fluid and 

electrolyte balance with their immediate environment. 

Lipid Micelles - lipid molecules arranged in a spherical form in aqueaous solutions in response to 

the amphipathic nature of fatty acids, i.e. containing both a hydrophilic, polar head group and a 
long hydrophilic chain.  

Patch clamp approach - an electrophysiology technique that allows the study of single and 

multiple ion channels in membranes. 

Homology Model - a comparative modelling of a protein through construction of an atomic 

resolution model of the ‘test’ protein from its amino acid sequence and a resolved three-

dimensional structure of a related homologous protein ‘used’ as a template. 

Guanine nucleotide exchange factor (GEF) - proteins that activate monomeric GTPases by 
stimulating the dissociation of guanosine diphosphate (GDP), thereby permitting binding of 

guanosine triphosphate (GTP). 

Small GTPase - small monomeric proteins homologous to Ras that exist in an inactive GDP-bound 

form and an active GTP-bound form in which they activate other signalling proteins. 

Heterotrimeric GTPase - also called G-proteins and consist of three subunits: the GTP-binding α 

subunit and the smaller β and γ subunits that have regulatory and signalling functions. 

Hyperosmotic stress - a phenomenon experienced by cells and tissues when extracellular fluid 

osmolarity exceeds that of the intracellular fluid. 

Focal Adhesions - large dynamic protein complexes that link the cytoskeleton of a cell to the 

extracellular matrix (ECM). 
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Stress fibres - contractile actin bundles in non-muscle cells comprising of actin microfilaments, 

myosin II and crosslinkers such as α-actinin.  

MARVEL Domain - a four transmembrane helix module that has been identified in proteins of 

various families, many of which associated with cholesterol-rich membrane microdomains. 
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Figure Legends 

Figure 1. The junctional complex and tight junctions.  

(A) The junctional complex in epithelial and endothelial cells. Tight junctions (orange) are apically 

located in polarised epithelial cells and often intermixed with adherens junctions (green) in 
endothelial cells. (B) Brief overview of the types of tight junction proteins: transmembrane and 

cytoplasmic plaque proteins. Indicted are only representatives of the main groups of tight junction 

proteins: transmembrane proteins (Crb3; Marvel domain proteins like occludin, tricellulin, and 
MarvelD3; claudins; JAMs; BVES), adaptor proteins and cytoskeletal linkers (zonula occludens ZO 

proteins, cingulin, Pals-1, PATJ, MAGI, PAR3 and PAR6), and signalling components (aPKC; the 
small RhoGTPases Cdc42, Rac and RhoA; and guanine nucleotide exchange factors for Rho 

GTPases). Indicated are also the adherens junction complexes based on E-cadherin and nectin 

and their main cytosolic interaction partners (E-cadherin: p120catenin, α- and β-catenin; nectins: 
AF-6) that are mentioned in this review. (C) Super-resolution immunofluorescence image of the 

tight junction cytoplasmic plaque proteins ZO-1 and cingulin illustrating the apparently ordered, 
regular structure of the junctional plaque (shown is an image of renal epithelial cells obtained with 

a gated stimulated emission depletion microscope. (D) Scheme of areas of apparent hemifusions 

of neighbouring cells where tight junction strands are located. (E) A freeze fracture electron 
microscopy image of the tight junction strand network along the apical membrane domain of 

intestinal epithelial cells (Image, Peter Munro).  
 

Figure 2. Tight Junctions structure and function working models.  

(A) Models of tight junction. The protein model relies on intercellular protein-protein interactions for 
the formation of a paracellular diffusion barrier between two plasma membranes formed by 

standard lipid bilayers. In the lipid-protein hybrid model, the continuity of the lipid bilayer is 

interrupted by cylinder-shaped inverted micelles that allow areas of hemifusions of the two 
neighbouring plasma membranes that are stabilised by transmembrane proteins. In such a model, 

the exoplasmic leaflets of neighbouring cells are continuous. (B) The fence and gate functions. 
Integral transmembrane protein components are shown to act as a fence for diffusion of lipids 

along the exoplasmic leaflet; in a hybrid model, the contact site would also contain inverted 

micelles. Indicated is also the gate function, which refers to a regulated semipermeable diffusion 
barrier that controls diffusion along the paracellular space. (C, D) Specificity of the paracellular 

gate and mechanisms of diffusion. The paracellular diffusion barrier is semipermeable and 
differentiates solutes on the basis of size and charge. Size-selective macromolecular diffusion of 

tracers (green particles, hydrophilic molecules that can diffuse across the junction; red particles, 

molecules too large to cross tight junctions) and ion conductance are though to be mediated by two 
distinct mechanisms. Ion conductance is mediated by gated channels that can be open or closed 

and are ion-selective. These channels are formed by intercellular claudin complexes forming a 
pore-like structure (see figure 4). Size-selective macromolecular tracer diffusion is less well 

understood but may involve dynamic properties of the intramembrane strands such as remodelling 

of the branches or even dissociation/reformation of strand sections, leading to transient openings 
to allow the stepwise diffusion across the junction (depicted in panel D, which represents a 

schematic en face view of a section through tight junctions along the contacts between two 
neighbouring cells). The indicated serial diffusion barriers are thought to be represented by the 

intramembrane strands seen in freeze fracture replicas. 

 

Figure 3. Structure of claudins and intercellular pore formation.  

(A) Scheme of claudin structure and motifs. The crystal structure of claudin-15 has revealed a 

characteristic β-sheet fold of the two extracellular domains that is anchored to a transmembrane 
four-helix bundle (TM 1-4). The two extracellular domains or ‘loops’ (ECL1 and ECL2) are 
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important for ion-selectivity of the paracellular pathway due to specific correspondingly charged 

residues (e.g., claudin-15 has negatively charged residues and forms a cation-selective pore). (B, 

C) Claudins are thought to dimerise face-to-face through interactions between the edges of the 
extracellular β-sheets as well as to interact with neighbouring claudin molecules within the same 

plasma membrane (here annotated as protein 1 (P1) and protein 2 (P2)). Three of the 
transmembrane domains (TM1, 2 and 4; orange) have the exact length required to span a lipid 

bilayer; the third transmembrane domain is longer (blue) and it is thought that the extended 

hydrophobic domain is important for the interaction with the adjacent protomer. The two indicated 
cysteins in the extracellular loop 1 (ECL1) form a disulphide bond that is structurally essential. V1 

and V2 refer to variable, flexible regions that may be important for the specificity of interactions 
between claudins of neighbouring cells (cell-cell interaction). (B, C) The interactions between 

claudin molecules in cis (i.e., within the same membrane) and in trans (i.e., with molecules in the 

neighbouring membrane) is thought to result in the formation of two anti-parallel claudin polymers 
in each membrane and are proposed to represent the intramembrane strands seen in freeze 

facture replicas. The two sets of anti-parallel strands form intercellular adhesions by face-to-face 

interactions of claudin molecules, protomers, resulting in the formation of paracellular pores. These 
paracellular pores are gated (i.e., they can be either opened or closed); however, the structural 

changes underlying gating are not known.   
 

Figure 4. Junction assembly and crosstalk between adhesion complexes. 

(A) Epithelial cells form cell-cell junctions by assembling a primordial junction initiated by E-
cadherin and nectin, leading to the recruitment of tight junction components due to interactions 

between bona fide tight and adherens junction components such as ZO-1 and α-catenin. 
Subsequent increases in recruitment of tight junction proteins and signalling proteins such guanine 

nucleotide exchange factors that activate signalling by RhoA and Cdc42 induces junctional 

maturation, which involves the formation of distinct tight and adherens junctions, and a junctional 
enrichment of the actomyosin cytoskeleton. Myosin activation promotes the development of regular 

epithelial cell shapes (e.g., columnar epithelia such as those in the intestinal tract. Finally, 
polarisation is then induced by polar activation of Cdc42 along the apical domain and at the 

marginal zone close to tight junctions. Active Cdc42 binds to the PAR3-PAR6-aPKC complex, 

leading to activation of the kinase, and induces development of a polarized cell surface with a well-
differentiated apical cell membrane (e.g., a brush border membrane in intestinal and many other 

epithelial cells). (B) Complexes involved in cell adhesion are signal hubs that send and receive 
signals that guide cell behaviour, function and morphogenesis; extensive crosstalk exists between 

different adhesion complexes. For example, JAMs are recruited by forming adherens junction via 

interactions mediated by the tight junction protein ZO-1 and the nectin binding protein AF-6. This 
then leads to the increased recruitment of other junctional proteins and activation of two small 

GTPases, Rap1 and Rap2, that regulate the functions of integrin-based focal adhesions and of 

adherens junctions. Forming tight junctions also recruit activators of Rho GTPases, guanine 
nucleotide exchange factors like GEF-H1, which is inactive at junctions, and p114RhoGEF 

(p114RG), which drives junctional RhoA activation, due to interactions with junctional adaptor 
complexes formed by cingulin and JACOP, which are recruited by ZO-1. Tight junction dissociation 

triggers the release of GEF-H1 leading to RhoA activation along the base of the cells. This 

stimulates the induction of stress fibres and increased focal adhesion formation including the 
recruitment of proteins that regulate focal adhesions such as focal adhesion kinase (FAK). In 

endothelial cells, ZO-1 coordinates junctional actomyosin activity leading to increased cell-cell 
tension and pulling on cadherin-based adherens junctions via a molecular bridge between the 

actomyosin cytoskeleton and the cadherin formed by α- and β-catenin, as well as vinculin. Vinculin 

can be recruited to both adherens junction, by interaction with α-catenin, and focal adhesions, by 
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interaction with talin and α-actinin, which is regulated by cytoskeletal tension pulling on an 

adhesion complex. Claudin-7 and -11 have been reported to form complexes with integrins and 

regulate migration; however, it is not yet clear whether this indeed represents crosstalk between 
tight junctions and focal adhesions, or occurs independently of tight junctions. 
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Table 1 – Signalling to and from tight junctions 

 

Signalling to tight junctions: Regulation of junction assembly and function 

 -  JAMA – PAR3/PAR6/aPKC; initiation of junction assembly  

- Crb3 – Pals1, PATJ, ZO-3 – aPKC; junction assembly and initiation of polarisation 

- Tricellulin, ZO-1 – TUBA; stimulation of Cdc42/N-WASP regulated F-actin organisation 
- JAMA, ZO-1, JACOP (Paracingulin)  – p114RhoGEF; regulation of RhoA/ROCKII/myosinII and        

endothelial cell-cell tension 
- ZO-1  –  ARHGEF11; stimulation of RhoA and myosinII activation 
- Cingulin, PATJ  –  p114RhoGEF; stimulation of RhoA/ROCKII/myosinII, regulated by Lulu2 
- PAR3, PAR6  –  ECT2; activation of Cdc42/aPKC signalling 

- JACOP (Paracingulin)  –  SH3BP1; negative regulation of Cdc42, regulation of actin remodelling 
- Angiomotin  –  RICH1; negative regulation of Cdc42 

- ZO-1  –  heterotrimeric G proteins (e.g., Gαi2); regulation of junction assembly 

-  aPKC, PP2A; regulation of TJ protein phosphorylation 

-  WNK1/4  –  Claudins; regulation of paracellular ion conductance 
-  AMP-activated Kinase (stimulated by LKB1 and Calmodulin activated Kinase II); stimulation of 

junction assembly, phosphorylation of claudins and cingulin 
-  classical and novel PKCs and PKA; stimulation of junctional cytoskeleton, assembly and 

function 
 
 
Signalling from tight junctions: Cell behaviour, survival and differentiation 

- Crb3, Pals1, PAR6, PAR3 – aPKC; apical differentiation 

- MARVELD3  –  MEKK1; regulation of JNK signalling, gene expression and stress response 

- Occludin  –  c-yes, Raf-1 kinase, PI3 Kinase, TGFβR1, c-src, E3 ubiquitin-protein   
     ligase Itch; regulation of cell transformation and junction dissociation 
-   JAM-A, tetraspanin (CD9)/integrin complexes; angiogenic signalling and migration 

-   Ezrin  –  Dbl3 and Cdc42; apical differentiation 

-   Cingulin, Jacob (paracingulin)  –  GEF-H1; downregulation of cytoplasmic RhoA signalling and  
 stress fibres 

-   ZO-1 –  ZONAB/symplekin/CDK4, GEF-H1, Apg-2; transcriptional and posttranscriptional  
    regulation of gene expression, proliferation, stress response and survival 

-   ZO-2  –  c-Myc, SAFB, AP-1; regulation of gene expression and proliferation 

-   Merlin, Angiomotin, PAR3, Mst, LATS, ZO-1/2  –  YAP and TAZ; regulation of gene expression   
    and proliferation 

-   Angiomotin  –  RICH1; regulation of Rac-activated MAP kinase signalling 

-   PATJ  –  Tsc2; regulation of mTORC1 activity 
-   MAGI1/2/3  –  PTEN; regulation of Akt and cell survival signalling 

 
 

Tight junctions are connected to the main cellular signalling networks that guide cell shape and 

junction assembly, transcriptional and posttranscriptional gene expression, and cell proliferation 
and differentiation. These signalling mechanisms transmit information in two directions: Form the 

cell interior to the junction to guide junction assembly and function, and from the junction to the cell 
to guide gene expression, proliferation, and differentiation. Summarised are the main signalling 

mechanisms linked to TJ and their main components. Adaptor proteins are blue, transmembrane 

proteins brown, and signalling proteins red. The hyphen refers to regulatory links that are generally 
mediated by direct protein/protein interactions.  
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Box 1 - Evolutionary conservation of tight junction functions 

  

 Occluding junctions show a higher degree of variation in metazoans than cadherin-based 
junctions. In vertebrates, tight junctions are located apical to adherens junctions, whereas in 

invertebrates the most apical junctional structures are commonly adherens junctions. Although 
tight junction structures exist in some lower invertebrates and chordates, the equivalent structure in 

many invertebrate epithelia is located basal to the adherens junction, and is known as septate 

junction (e.g., insects), or the diffusion barrier may be part of adherens junctions (e.g., C. elegans) 
171,172.  The septate junction in Drosophila contains claudin-like molecules that are important for 

barrier function173-177. C. elegans also expresses claudin-like molecules, and at least two of them 
are important for barrier formation; however, they are associated with adherens junctions178. Thus, 

the importance of claudins for barrier formation is conserved, the junction they associate with is 

not. 
 Another striking example of evolutionary conservation is the machinery associated with apical 

polarization. Tight junctions form the apical/lateral border in vertebrates whereas this border is 
associated with adherens junctions in invertebrates. Just apical to the apical/lateral border is a 

specialized signalling zone, the subapical region (SAR; also known as apical marginal zone) that 

was first identified in Drosophila. The signalling mechanisms that regulate apical polarization 
include two protein complexes formed by apical determinants: the PAR-3/PAR-6/aPKC/Cdc-42 and 

the Crb3/Pals1/PATJ complexes. Both complexes have been reported to associate with tight 

junctions in vertebrates and have homologs in C. elegans and Drosophila, where they associate 
with the SAR179. The evolutionary conservation may even extend further as a SAR-like signalling 

zone enriched in aPKC, Crb3, ezrin and the Cdc42 activator Dbl3 is also associated with the apical 
end of tight junctions in vertebrates125.  

 Different junctional functions are thus associated with different types of junctions in different 

phyla, suggesting that intercellular junctions have become reconfigured during evolution but that 
individual processes are conserved. This is also reflected in the molecular remodelling that occurs 
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during junction assembly: an initial primordial adhesive complex contains components of tight 

junctions and adherens junctions, and then matures into distinct junctional complexes180.  



 

	
  

30	
  

	
  

Box 2 - Tight junctions and molecular links to human disease 

 

Linked to inherited genetic diseases and single nucleotide polymorphisms  

Transmembrane proteins 

Claudin-1  –  Neonatal ichtyosis and sclerosing cholangitis 

Claudin-5 (TMVCF) –  Velo-cardial-facial syndrome 

Claudin-14 –  Non-syndromic deafness 
Clauidn-16 (paracellin-1) –  Familial hypomagnesemia, hypercalciuria, nephrocalcinosis 

Clauidn-19 –  Familial hypomagnesemia, hypercalciuria, nephrocalcinosis, visual 
impairment 

Tricellulin –  Non-syndromic deafness  

Adaptor protein 

ZO-2 –  Familial hypocholamenia 

Signalling proteins 

p114RhoGEF –  Systemic Capillary Leak Syndrome (Clarkson disease) 

ZONAB –  Activated in cystic fibrosis due to downregulation of ZO-1, a binding 

partner of CFTR (cystic fibrosis transmembrane conductance 
regulator) 

WNK4 - Pseudohypoaldosteronism type II, a kinase that phosphorylates 
claudins 

 

Tight junction components targeted by pathogenic viruses and bacteria 

Transmembrane proteins 

Claudin-1/6/9; occludin – Hepatitis C virus, infection 

JAM-A – Reovirus, infection 
CAR – Coxsackie virus, infection 

Claudin-3/4 – Clostridium, junction dissociation 

Occludin – V. cholera, junction dissociation 

Adaptor proteins 

ZO-1, ZO-2 – Tick-borne encephalitis and Dengue viruses  

ZO-2, MUPP1, PATJ, – Adenovirus 

MAGI1 
MAGI1-3, PATJ, – Papillomaviruses, papilloma formation 

MUPP1, PAR3 
MAGI1-3 – Influenza A virus, junction dissociation 

Pals1 – Severe acute respiratory syndrome virus, retarded junction formation  

Signalling proteins 

GEF-H1 – H. pylori via PAR1, junction dissociation, leads to displacement of 
 structural junctional proteins like ZO-1 and occludin 

 
TJs have been linked to diseases that affect many tissues and organs. Some of these diseases are 

inherited and involve mutations or polymorphisms in TJ-associated proteins themselves or lead to 

activation of TJ-associated signalling mechanisms as in the case of cystic fibrosis. Similarly, 
multiple pathogenic viruses and bacteria are known to target TJ. Usually, this involves direct 

interactions with junctional proteins but, as in the case of H. pylori, may involve activation of a 

cellular signalling protein that is not associated with TJ, PAR1, that then stimulates a junctional 
signalling pathway. Many other diseases such as chronic inflammatory conditions and cancer have 
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been linked to TJ but it is generally not known whether TJ deregulation is a cause or consequence 

of disease. For more details, see 43,85. 

 
 


