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Abstract. There is a natural relationship between lower bounds in the multi-pass
stream model and lower bounds in multi-round communication. However, this
connection is less understood than the connection between single-pass streams
and one-way communication. In this paper, we consider data-stream problems
for which reductions from natural multi-round communication problems do not
yield tight bounds or do not apply. While lower bounds are known for some
of these data-stream problems, many of these only apply to deterministic or
comparison-based algorithms, whereas the lower bounds we present apply to
any (possibly randomized) algorithms. Our results are particularly relevant to
evaluating functions that are dependent on the ordering of the stream, such as the
longest increasing subsequence and a variant of tree pointer jumping in which
pointers are revealed according to a post-order traversal.
Our approach is based on establishing “pass-elimination” type results that are
analogous to the round-elimination results of Milterson et al. [23] and Sen [29].
We demonstrate our approach by proving tight bounds for a range of data-stream
problems including finding the longest increasing sequences (a problem that has
recently become very popular [22, 16, 30, 15, 12] and we resolve an open question
of [30]), constructing convex hulls and fixed-dimensional linear programming
(generalizing results of [8] to randomized algorithms), and the ”greater-than”
problem (improving results of [9]). These results will also clarify one of the main
messages of our work: sometimes it is necessary to prove lower bounds directly
for stream computation rather than proving a lower bound for a communication
problem and then constructing a reduction to a data-stream problem.

1 Introduction

A natural connection between communication complexity and small-space computation
in the data-stream model has been widely exploited since the early papers on the data-
stream model [2, 19]. For example, a stream computation can be conceptualized as a
communication problem between players who know different segments of the input
stream. Consequently, a lower-bound on the total amount of communication necessary
yields a lower-bound on the amount of memory required by the streaming algorithm.
This approach has been very successful and many lower bounds have been proved in this
manner (e.g., [2, 3, 6, 18].) However, interesting issues arise when trying to prove lower
bounds for multi-pass algorithms3 and these have not been explored as thoroughly as in

3 Note, we consider input to be on a read-only tape and the algorithm is allowed supplemental
RAM. The algorithm is not allowed a read-write tape as in, e.g., [4, 11].



the single-pass case. Many of the lower bounds that do exist only apply to deterministic
algorithms, e.g., recent results on approximating the length of the longest increasing
subsequence [15, 12] and solving geometric problems [8], or only apply to restricted
classes of algorithm that may only use memory in a certain way [24, 16, 10]. Given that
randomization is necessary for many classic data-stream problems (e.g., `p norms and
frequency moments [2, 20]) we consider it natural to seek lower-bounds for fully general
randomized algorithms. We are particularly interested in space/pass trade-offs.

The goal of this paper is to construct a framework for proving multi-pass lower
bounds for certain types of data-stream problems. Our approach is based on establishing
pass-elimination results which tailor ideas from the round-elimination technique in
communication complexity [29, 23] specifically to data-stream computation. This allows
us to prove results on tree pointer jumping when the data is revealed by a post-order
traversal rather than level-by-level. This will play a crucial role in proving lower bounds
for order-dependent functions in the data-stream model and will exemplify a distinction
we wish to make between multi-party communication and data-stream computation. With
this technology we prove results for a range of problems including finding the longest
increasing subsequence, determining the larger of two values, constructing convex hulls,
and fixed dimensional linear programming. The longest increasing subsequence (LIS)
problem is to find the increasing sub-stream of maximum length. This problem, and
the related problem of estimating the length of the longest increasing subsequence has
become very popular in recent years [22, 16, 30, 15, 12]. We prove a tight multi-pass
lower bound for LIS, thereby resolving an open question of Sun and Woodruff [30]. We
note that this problem exhibits an interesting doubly-exponential space/pass trade-off.
The greater-than (GT) problem is to determine which of two integers is larger given the
bits of their binary expansion. It is often used as an example of the utility of round-
elimination in the communication setting. A lower bound for a data-stream version
was given by Chang and Kannan [9] by appealing to the communication result. We
show that this lower bound can be substantially improved using the pass-elimination
framework and this will further highlight the round-elimination/pass-elimination and
data-stream/communication distinctions that are important in this paper. Finally, we
prove results on geometric problems including constructing convex hulls and fixed
dimensional linear programming. Bounds were known for deterministic algorithms
previously [8] but we generalize these to randomized lower-bounds.

Previous Approaches and Limitations: There do exist multi-pass lower bounds for
randomized algorithms for some problems in the data-stream model. However, almost
all of these bounds are based on reductions from a relatively small set of communication
problems. Many bounds are based on the multi-round communication of multi-player
set-disjointness (e.g., [28, 3, 13, 22, 16]) and these bounds achieve lower-bounds on
the product of the number of passes and the amount of space. Hence, lower bounds
from set-disjointness only exhibit space bounds that scale with the reciprocal of the
number of passes. An approach that yields more interesting space/pass trade-offs is to
consider pointer jumping problems (e.g., [25, 14, 18]) and related problems such as the
greater-than problem (e.g., [23, 29, 9]). There are two issues with reductions from pointer-
jumping and greater-than: the difficulty in achieving tight results in the data-stream model
(rather than a communication model) and applying these techniques to order-dependent



functions in the data-stream model. To elaborate upon these issues, it is necessary to
review the round-elimination technique that underlies communication lower bounds
[7, 1, 5, 27, 26]. In round-elimination we wish to evaluate a function f(x, y) where x
is known to Alice and y to Bob. A “meta-problem” Pf (x1, . . . , xt, i, y) = f(xi, y) is
defined where x1, . . . , xt is known to Alice and i, y is known to Bob. It was shown that
the existence of a “good” k round protocol for Pf with Alice starting, implied that there
exists a “good” k − 1 round protocol for f where Bob communicates first. The result
holds true even if public coins are allowed and Bob is given x1, . . . , xi−1. Essentially,
the good protocol for Pf , stripped of its “not-so-useful” first round, gives a good protocol
for f . If Pf is a “self-reducible” problem, i.e., Pf and f can be thought of as the same
problem on different size inputs, this gives a beautiful inductive way of bounding the
communication of k-round protocols for f given a lower bound for 1 round protocols.

For example, the approach implies that if Alice and Bob have n-bit binary strings
x and y respectively and are permitted to communicate a total of r messages, then to
determine if x < y requires Ω̃(n1/r) bits of communication. However, if we consider
the same problem in the stream setting we deduce that any p-pass algorithm requires
Ω̃(n1/(2p−1)) space because p passes over the data corresponds to 2p− 1 messages. We
show that this is not tight and that a Ω̃(n1/p) lower-bound exists. Note that if p = 1,
2p− 1 = p and hence tight one-pass lower bounds are sometimes achieved.

The second issue relates to proving lower bounds for evaluating functions, such as
finding the longest increasing subsequence, which are dependent on the ordering of the
stream. Here the round elimination lemma has a fundamental problem: the fact that xi

and y must interact (because f encodes order), implies that xi, xj interacts (through
y). But the round elimination framework requires independence of xi, xj (i 6= j) and
the framework does not apply as is; while we cannot describe all failed attempts, the
inherent difficulty can be seen by trying to prove even a two pass result.

Our Approach and Results: We prove “Pass Elimination” lemmas that allow us to
prove results related to round elimination directly for data streams rather than the
usual two-step process of proving a communication lower bound and then using this
to imply a data-stream lower bound. One intuitive (but technically inaccurate) way of
viewing this result is to consider round-elimination in which Bob has an index i and no
other information. Hence, after the first pass Bob has nothing else to say if he reveals
i. This will solve the problem of doubling the rounds and avoiding the issue of the
interactions. However, in the communication complexity framework, evaluating f(xi) is
trivial once i is known since one player knows xi! However, in the data-stream setting,
f(xi) remains a meaningful data-stream problem. We prove the pass-elimination results
using an information theoretic approach similar to that used by Sen [29]. However, we
emphasize that the main contribution of our work is understanding and quantifying the
exact problem which allows us to a prove a variety of tight lower bounds. While in
most cases the stronger model of communication complexity makes it simpler to prove
lower bounds, our tighter lower bound are achievable by exploiting the weakness of the
data stream model. We believe that these results provide a natural, direct and intuitive
framework for proving multipass lower bounds, which is likely to encourage its use.

We demonstrate the utility of the pass-elimination lemmas by applying them to
variety of problems. We consider the resulting bounds interesting in their own right as



they are either the first known lower bounds for the specific problem, or they significantly
improve previous known bounds (either by establishing better bounds or by being more
general, e.g., applying to all algorithms rather than just deterministic algorithms.)

1. Post-Order Traversal Tree Pointer Jumping: In Section 2, we consider the data-
stream problem of tree pointer jumping in which the pointer values for each node
are revealed according to a post-order traversal of the tree. We prove that any
(randomized) p-pass algorithm for the (p+1)-level, t-ary problem requires Ω(t/2p)
space. Note that this really is a data-stream bound in the sense that the only natural
way to conceptualize the problem as a communication problem is if there is a
player for each of the O(tp) nodes in the tree. Consequently, the usual approach of
getting a lower-bound on maximum message length (or space in the data-stream
setting) by averaging the total communication over each message sent fails. A main
achievement in [15] was circumventing such an argument but this was only achieved
in the deterministic setting.

2. Longest Increasing Subsequence: In Section 3, we prove that any p-pass (random-
ized) algorithm that finds the elements of the longest increasing subsequence requires
Ω̃(k1+1/(2p−1)) space where k is the length of the longest increasing subsequence.
This matches the upper bound of [22] and resolves an open question of [30]. This
doubly-exponential space/pass trade-off is unusual in the data-stream literature but
we expect it may arise for other problem for which the natural way to attack the
problem is by dynamic programming, e.g., for time-series histograms [17].

3. Promise Minimum Missing Element and Greater-Than: The greater-than (GT) prob-
lem is to determine which of two integers, x, y ∈ 2n, is larger given a length 2n
stream whose elements are the bits of the binary expansion of x and y (in some or-
der.) In Section 4, we show that any p-pass (randomized) algorithm for this problem
requires Ω̃(n1/p) space. Our result also applies to the related problem of finding the
minimum missing element (MME) of a stream where all elements smaller than this
element occur with multiplicity 1.4 The best previous bound was Ω̃(n1/(2p−1)) [9].

4. Convex Hulls and Fixed-Dimensional Linear Programming: In Section 5, we
show that any p-pass algorithm for fixed-dimensional linear programming requires
Ω̃(n1/p) space where the stream consists of n constraints and the objective function
is known. We also show bounds for p-pass algorithms for constructing the convex
hull of a stream of n points in R2. If the points are sorted on their x-coordinates we
show that Ω̃(

√
n) space is required for p = O(1). These bounds generalize previous

bounds for a restricted class of deterministic algorithms [8].

Important Note on the Model: It will be convenient to consider a more powerful variant
of the usual space-bounded data-stream model. Specifically, we allow algorithms to
do an unbounded amount of work, using an unbounded amount of space between the
arrival of each data element. We only insist that the amount of space in use when the
next element arrives satisfies the appropriate bound. Of course, lower bounds for this
more powerful model also apply to the usual model. Also, throughout we will assume
that the number of passes is constant although some of the lower bounds generalize.

4 This promise is very important to the complexity of the problem. Without it, the problem is
related to 2-party set disjointness and stronger bounds can be shown.



2 Pass Elimination (When the First Pass is Passé. . . )

In this section we present two new general lower-bounds for multi-pass algorithms in
the data-stream model. These results are established by taking ideas from the round-
elimination results in communication complexity and applying them directly to data
streams. We start by defining the following “meta problems.”

Definition 1. For a problem f defined on a set of streams X , we define:

1. Pt,f,g: Given a stream 〈x1, . . . , xt, i, g(x1, x2, . . . , xi−1)〉 ∈ X t × [t] × X , solve
f(xi) where g is an arbitrary function g : X i−1 → X .

2. Qt,f : Given a stream 〈x1, . . . , xt〉 ∈ X t, output {〈i, f(xi)〉 : i ∈ [t]} in any order.
We do not require the output to be stored in working memory.5

We will prove the following lemma in Section 2.1.

Lemma 1 (Pass Elimination for Pt,f,g). Assume t ≥ 50000s. If there exists a k-pass,
s-space algorithm for Pt,f,g with prob. at least 1− δ, then there exists a (k − 1)-pass,
2s log(δ−1)-space algorithm for f with prob. at least 1− δ.

It is reasonable to ask if it is possible to prove a version of the above lemma whether
the space requirement remains the same while the error probability only increases
additively. This was the case in the communication setting [29]. Unfortunately in the
data-stream setting the state must be encoded in the current memory whereas, in the
communication setting, the state is determined by all messages that have been sent (note
that 2-player communication can be trivially assumed to be in the black-board model.)
The proof of Lemma 2 is similar to that of Lemma 1 and can be found in the appendix.

Lemma 2 (Pass Elimination for Qt,f ). Assume t ≥ 2sδ−1. If there exists a k-pass,
s-space algorithm for Qt,f with prob. at least 1 − δ, then there exists a (k − 1)-pass,
2s-space algorithm for Qt/2,f with prob. at least 1− 10δ.

Note that the algorithm for f whose existence is proven in Lemma 2 does not
succeed with the same probability as Qt,f . Unfortunately this can not be fixed by parallel
repetition because the algorithm for Qt,f may write the solution to a write-only tape.

Post-Order-Traversal: We now define a data-stream problem related to pointer-chasing.
The significant difference in our work is the order in which we encode a pointer-chasing
instance in the data-stream. This will be essential in proving lower-bounds for order-
dependent functions such as finding the elements of the longest increasing subsequence.

Definition 2. Consider a (p + 1)-level, t-ary tree T rooted at vroot and a function
f : V (T ) → [t] where f(v) ∈ {0, 1} if v is a leaf of T . Define g(v) to be the f(v)-th
child of v if v is an internal node and f(v) if v is a leaf. The PO-TRAV problem to eval-
uate PO-TRAV(f) = gp+1(vroot) given the stream 〈f(vσ(1)), f(vσ(2)), . . . , f(vσ(|T |))〉,
where σ is a post-order-traversal of V (T ).

5 Note that Qt,f can be solved in one pass if there is sufficient memory to solve f(x) in one pass
as the f(xi) can be computed sequentially. However, if f(x) can be solved in much less space
given multiple passes, it is not clear if Qt,f can be solved in less space.












J

J
J

JJ

Z
Z

Z
Z

Z
ZJ

J
J

JJ
Z

Z
Z

Z
Z

Z

�
�

�
�

�
�

�
�

�
�

�
�












111 0000

1

2

32

11

(a) 3-level, 3-ary tree traversal.
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(b) LIS construction.

Fig. 1. Diagrams referenced in the text.

The next theorem follows by induction from Lemma 1.

Theorem 1. Any p-pass algorithm that solves the (p+1)-level, t-ary PO-TRAV problem
(w/p. 9/10) requires Ω(t/2p) space.

Strong-Post-Order-Traversal: A strong-post-order-traversal of a tree is a variant of
the post-order-traversal in which a partial pre-order traversal is made between the visit
of each node on the post-order-traversal. While this may seem like a very artificial
construction, it will be very important to some of our other lower bounds. We start with
a formal definition.

Definition 3. Consider a (p + 1)-level, t-ary tree T rooted at vroot and a function f :
V (T ) → [t] where f(v) ∈ {0, 1} if v is a leaf of T . Define g(v) to be the f(v)-th child of
v. The STRONG-PO-TRAV problem is to evaluate STRONG-PO-TRAV(f) = gp+1(vroot)
given the stream 〈S(vσ(1)), S(vσ(2)), . . . , S(vσ(|T |))〉, where σ is a post-order-traversal
of V (T ) and S(v) is defined as follows:

S(v) =
{
〈f(v)〉 if v is a leaf
〈f(v), R(u1), . . . , R(uf(v)−1)〉 if v has children u1, . . . , ut

where R(u) is a pre-order traversal of the nodes in the sub-tree rooted at u.

See Fig. 1(a) for an instance of (p + 1)-level, t-ary tree traversal with t = 3, p = 2,
and g3(vroot) = 0. The PO-TRAV stream is 〈0, 1, 1, 2, 0, 1, 0, 3, 1, 0, 1, 1, 2〉, and the
STRONG-PO-TRAV stream is 〈0, 1, 1, 2, 0, 0, 1, 0, 3, 0, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1〉. The next
theorem follows by induction from Lemma 1.

Theorem 2. Solving the (p + 1)-level t-ary STRONG-PO-TRAV problem (w/p. 9/10) in
p passes requires Ω(t/2p) space.

The next theorem follows from Lemma 2 by induction.

Theorem 3. If solving f(x) in one pass (w/p. 9/10) requires s space then any p-pass
algorithm for Qt,f (w/p. 1− 1/10p) requires Ω(s)-space if t > s(20)(p−1)p/2.



2.1 Proof of Lemma 1

Consider an arbitrary distribution D overX . By assumption and Yao’s lemma there exists
a deterministic k-pass s-space algorithm A that, with probability at least 1− δ, solves
Pt,f,g correctly on the stream 〈X1, . . . , Xt, i, g(X1, . . . , Xi−1)〉 where each Xj ∼ D
are independent and i ∈R [t]. We will show that such an algorithm can be used to
construct a deterministic (k − 1)-pass 2s-space algorithm that solves f on 〈Xi〉 with
probability at least 9/10. Since D was arbitrary, by Yao’s lemma, this shows that there
is a randomized algorithm that solves Pt,f with probability at least 4/5 over an arbitrary
input. Running O(log δ−1) copies in parallel and taking the median value results in an
algorithm that is successful with probability at least 1− δ.

First we introduce some further notation. Let the memory states of A be M =
{m1, . . . ,m2s} where m1 is the initial memory state. Let A(S;mu) denote the memory
state of A after being initialized with memory state mu and reading stream S. If mu =
m1 we omit it. Let C be the set of inputs upon which A is successful. By assumption,
Pr [〈X1, . . . , Xt, i, g(X1, . . . , Xr−1)〉 ∈ C] ≥ 1− δ.

Lemma 3. There exists r ∈ [t] and 〈x1, x2, . . . , xr−1〉 ∈ X r−1 such that,

I(Mr;M t) ≤ 9s

t
and Pr [〈x1, · · ·xr−1, Xr, . . . , Xt, r, g(x1, . . . , xr−1)〉 ∈ C] ≥ 1−9δ

where I(·; ·) is the mutual information, Mr = A(x1, . . . , xr−1, Xr) and M t = A(x1, . . . , xr−1, Xr, . . . , Xt).

See the appendix for the proof of the above lemma and the rest of the lemmas in this
section. Next we consider the distribution of the memory states of the algorithm after
processing various prefixes of the stream. Define the distributions,

pu,v = Pr
[
Mr = mu,M t = mv

]
, pu = Pr [Mr = mu] , qv = Pr

[
M t = mv

]
, and pv

u = pu,v/qv .

Note that pv is the distribution Mr conditioned on the event that {M t = v}. Intuitively,
if the mutual information between Mr and M t is low then pv is similar to p. The next
lemma, an application of the Average Encoding Theorem [21], substantiates this claim.

Lemma 4. If v is chosen with probability qv then the variational distance between the
distribution of Mr and Mr conditioned on {M t = v} is small if I(Mr;M t) is small.

Specifically, Prv∼qv

[∑
u |pu − pv

u| ≤ 2
√

3I(Mr;M t)
]
≥ 2/3.

The next lemma shows that there exists a state mv such that we may choose a
continuation of the stream 〈x1, . . . , xr−1, Xr〉 that a) is only a function of Mr, b) yields
a stream upon which the algorithm is likely to be successful, and c) guarantees that
M t = mv .

Lemma 5. There exists mv ∈M and map Z : M→ X t−r such thatA(Z(mu);mu) =
mv and Pr [〈x1, . . . , xr−1, Xr, Z(Mr), r, g(x1, . . . , xr−1)〉 ∈ C] ≥ 9/10, if δ < 1/1000
and s < 50000t.



Let mw = A(r, g(x1, . . . , xr−1);mv). To establish the pass-elimination lemma we
construct a (k − 1)-pass algorithm A′ by running A on the stream

〈x1, . . . , xr−1, Xr, Z(Mr), r, g(x1, . . . , xr−1)〉

and essentially collapsing the first two passes of A into a single pass. We compute mu =
A(x1, x2, . . . , xr−1, Xr) and mx = A(x1, x2, . . . , xr−1, Xr;mw) in parallel using a
single pass. We store Mr for the rest of the algorithm and use it to construct Z(mu)
when necessary. Note that if Z(·) is not defined on mu, we may output an arbitrary value.
We then compute the first pass ofA′ by computing,A(Z(mu), r, g(x1, . . . , xr−1);mx).
The remaining k − 2 passes of A′ emulate the remaining k − 2 passes of A where we
generate Z(mu) from the stored value of mu when necessary.

3 Longest Increasing Subsequence

An instance of the longest increasing subsequence (LIS) problem is, given a stream
S = 〈x1, . . . , xm〉 ∈ [n]m, find the elements of a sub-stream of increasing values
〈xi1 , . . . , xij

〉 of maximum length. In a promise variant, the PLIS problem, we are
promised |LIS(S)| ≤ k. The best algorithmic result for this problem is due to Liben-
Nowell et al. [22]: there exists a deterministic algorithm for PLIS that uses p passes and
Õ(k1+1/(2p−1)) space. Sun and Woodruff [30] established that Liben-Nowell et al.’s
algorithm was essentially optimal for one-pass algorithms. In particular they showed
that any one-pass algorithm for PLIS (with prob. 9/10) requires Ω(k2) space. It was left
as an open question whether the doubly exponential trade-off between space and passes
in Liben-Nowell et al.’s result was the true trade-off. We show that this is the case and
present a matching lower-bound for PLIS by a reduction to the PO-TRAV problem.

Theorem 4. Solving PLIS (w/p. 9/10) in p passes requires Ω(k1+ 1
2p−1 ) space.

Proof. Let t = m1/p. We show a reduction from the (p + 1)-level t-ary PO-TRAV
problem to computing the elements of a PLIS problem over universe [2pm] where the
LIS is promised to have length k = Θ(t1−1/2p

). Let f be an instance of (p + 1)-level
t-ary PO-TRAV. Let h1 = 1 and then recursively define

rj :=
⌈√

t/hj−1

⌉
, tj := dt/rje , and hj := rjhj−1 + tj .

By induction it can be shown that t1−1/2j

/6 ≤ hj+1 < 6t1−1/2j

.
With each node v we associate a sequence of numbers, I(v). If v is leaf then

I(v) = (f(v)). If v is an internal node we will define I(v) inductively such that if v is
at level j, LIS(I(v)) = hj .

Let children(v) = {u0, . . . , ut−1}. We group the children(v) into tj sets

Si = {u(i−1)rj+` : ` = 0, . . . , rj − 1} .

Note that |S1| = . . . = |Stj−1| = rj but |Stj
| = t (mod rj) may be smaller. The I(v)

we construct will have the following form: I(v) = (A1 : B1 : . . . : Atj
: Btj

: C) where



“:” denotes concatenation. Ai will be constructed from I(v) for v ∈ Si and Bi will be
an increasing sequence. C will be an increasing sequence of length a := df(v)/rje.
Together Ai and Bi and C will have the properties:

1. LIS(Ai : Bi) = rjhj−1 + tj − i and max(Ai : Bi) < min(Ai+1 : Bi+1)
2. LIS(Aa : Ba : C) = hj

3. max(Aa : Ba) < min(C) < max(C) < min(Aa+1 : Ba+1)

Combining these properties, it is clear that the elements of the longest increasing subse-
quence of I(v) include the elements of the longest increasing subsequence of Aa. See
Figure 1(b).

Constructing Ai, Bi and C: We construct Ai and Bi as follows. First, let Rj−1 ≥
max(I(u0), . . . , I(ut−1)). Let I1(uirj+`) be the sequence formed by adding `Rj−1 to
each element of I(uirj+`). This ensures that

∀i : LIS(I1(uirj
) : . . . : I1(uirj+|Si+1|−1)) = |Si+1|hj−1 and max(I1(uirj+`)) ≤ |Si+1|Rj−1 .

Let I2(uirj+`) be the sequence formed by adding (tj − i)(rjRj−1 + tj) to each ele-
ment of I1(uirj+`). We are now in a position to define Ai as Ai = (I2(uirj

) : . . . :
I2(uirj+|Si|−1)). Note that for i ∈ [tj − 1],

min(Ai) ≥ (tj − i)(rjRj−1 + tj) =: αi

max(Ai+1) ≤ rjRj−1 + (tj − 1− i)(rjRj−1 + tj) =: ωi+1 .

and therefore αi − ωi+1 ≥ tj . Hence, letting

Bi = (ωi + 1, ωi + 2, . . . , ωi + (rjhj−1 + tj − i− |Si+1|hj−1))

ensures that LIS(Ai : Bi) = rjhj−1 + tj − i and that max(Ai : Bi) < min(Ai+1 :
Bi+1). Letting C be the sequence C = (αa+1 − a, . . . , αa+1 − 1) ensures all the
necessary properties. The bound on the universe size follows because max I(v) <
rjRj−1 + t2j . Note that this construction can be done as a transduction of the PO-TRAV
stream because the transformation is independent of the values of f .

4 Promise Min. Missing Element and Greater-Than

In this section we consider the related problems of MME and GT. An instance of MME
is a size n set of non-negative integers A and the goal to identify MME(A) = min{i ∈
N0 : i 6∈ A}. There exists an Ω(n/p) space lower-bound for any p-pass algorithm
that solves this problem that can be proved using a reduction from SET-DISJOINTNESS.
We are interested in a promise version of the problem in which we assume that all
elements less than MME(A) occur only once in A. This changes the complexity of the
problem considerably. In the data-stream setting we assume that the stream consists of
the elements of A in some arbitrary order.

An instance of the GT consists of two n-bit strings x = x1 . . . xn and y = y1 . . . yn

and the goal is to determine if x < y, i.e., if there exists i ∈ [n] such that xi < yi and



xj = yj for all j < i. In the data-stream setting we assume that the stream consists of the
elements {(xi, i), (yi, i) : i ∈ [n]} in some arbitrary order. Note that MME and GT are
related. For example, if A = {2(i− 1) + xi, 2(i− 1) + 1− yi : i ∈ [n]} then the parity
of MME(A) is odd iff x < y. Note that a stream of such elements can be transduced
from a stream of elements from {(xi, i), (yi, i) : i ∈ [n]} in constant space. Hence any
lower-bound for MME also yields a lower-bound for GT.

Both problems were considered by Chang and Kannan [9] for the purposes of
proving lower bounds on the “generalized histogram learning problem” (see [9] for
details). Using the round-elimination lemma and results from [23, 29] they proved a
space lower bound of Ω(n1/(2p−1)) for any constant p-pass algorithm that solved either
GT or MME. We improve this by a polynomial factor improvement when p > 1.

Theorem 5. Solving GT or MME (w.p. 9/10) in p passes requires Ω(n1/p) space.

Proof. We reduce STRONG-PO-TRAV to MME. Let the function f be an instance of
STRONG-PO-TRAV and let {u1, . . . , utp} be the leaves of a (p + 1)-ary, t-ary tree. With
each leaf ui we associate c(ui) = 2(i− 1) + f(ui) and d(ui) = 2(i− 1) + 1− f(ui).

The idea behind the reduction is that if gp(vroot) = uj then the smallest 2j − 1
elements of the stream will be {c(ui), d(ui) : i < j} ∪ {c(uj)} and the stream will not
contain d(uj). Consequently d(uj) will be the minimum missing element and hence,
1− (d(uj) mod 2) = gp+1(vroot).

For a leaf u, the reduction replaces f(u) by c(u) the first time the leaf is visited
in the strong post-order traversal. If u is visited a second time then we replace f(u)
by d(u) on this second visit. On all subsequent visits to u, f(u) is ignored. For ex-
ample, the reduction from the instance of STRONG-PO-TRAV in Figure 1(a) would be
〈0, 3, 5, 1, 6, 9, 10, 7, 8, 13, 14, 17, 2, 4〉. Note that the minimum missing element is 11
and f(gp(vroot)) = 1 − (11 mod 2) = 0. The fact that this is generally true follows
from the following claim.

Claim. A leaf u is visited twice in the strong post-order traversal iff there exists internal
nodes v, w such that u is contained in the sub-tree rooted at v and v is the i-th child of w
for some i < f(w).

We need to show that this reduction can be performed in a streaming fashion. In
particular, we need to establish that it is possible to determine if a node in the strong
post-order traversal has already been visited once or at least twice. It is easy to establish
that we can recognize the first time we visit a leaf because the first visit to ui is before
the first visit to uj if i < j. Hence we just need to remember the smallest leaf that has
not been visited.

Leaf u is only revisited during a pre-order traversal of a sub-tree containing u.
Consider a pre-order traversal of the j-level, t-ary sub-tree that contains u. Let vj be the
root of this sub-tree and let vj , vj−1, . . . , v1 be the path from root to leaf v1 = u. Let
vi−1 be the ai-th child of vi. Then u is being revisited for the first time if ai < f(vi)
for all i = 2, . . . , j. Note that the set of relevant values of f can be maintained in O(p)
space because the sub-tree is visited in pre-order.

We note that there exists a matching upper bound based on performing an “n1/p-ary
search” in combination with standard finger-printing ideas. We omit the details.



5 Fixed-Dimensional Linear Programming

In this section, we consider the problem of linear programming in Rd where d is assumed
constant. An instance of this problem consists of an objective function known to the
algorithm and a set of n constraints each of which are specified by an element of the
stream. In a recent paper, Chan and Chen [8] showed that any p-pass deterministic
algorithm “of a certain type” for finding the lowest point in the intersection of n upper
half planes in 2D requires Ω(n1/p) space. The algorithms considered were for the
decision tree model where “the only allowable operations on the input half-planes are
testing the sign of a function evaluated at the coefficients of a subset of half-planes
currently in memory.” While these test functions could be any continuous function, the
algorithm is restricted to storing points of the input only.

We show that the Ω(n1/p) bound holds in 3D for any algorithm, e.g., for algorithms
that may be randomized or may store information other than the points themselves. For
2D, the same bound holds if we allow one non-linear constraint, otherwise the bound
we achieve is Ω(n1/(2p−1)).

Theorem 6. Solving 3DLP (w/p. .9) in p = O(1) passes requires Ω(n1/p) space.

Proof. Let t = n1/p. We first reduce (p + 1)-level t-ary PO-TRAV to (the feasibility of)
2D linear programming with the added non-linear constraint that x2 + y2 = 1. We then
show how to remove this constraint using one extra dimension. The f be an instance of
(p + 1)-level t-ary PO-TRAV. We consider constraints specified by chords on the bottom
half of the unit circle. It will be convenient to use polar representation of points and
represent every half-space by a pair of points. The reduction is as follows:

1. For each node v ∈ V (T ) define two “end-points” sv and tv . If v is the root of T let
sv = (−1, 0) and tv = (1, 0). For any other node v, let v be the i-th child of node w.
Consider partitioning the arc from sw to tw into t equi-length arcs and define sv and
tv to be the end points of the i-th such arc. For each leaf, also define a “mid-point”
mv that is halfway along the arc from sv to tv .

2. For each internal node v ∈ V (T ), define two constraints. Let {ui : i ∈ [t]} be
the children of v. The constraints are the chords through sv and suf(v) and through
tuf(v) and tv .

3. For each leaf v ∈ V (T ), define constraints: If f(v) = 0 then we add the chord
through sv and tv .

4. Lastly, add “dead-zone” constraints. Let {u1, . . . , utp} be the leaves of the tree. For
i ∈ [tp], add the chord between mui and mui+1 where mump+1 = mu1

The constraint at an internal node v ensures that any feasible points lies on the arc
(sv, tv). The constraints at a leaf node v determine if there exists a feasible point on the
arc (sv, tv) given that the dead-zone constraints ensure that any feasible point is a mid-
point. Consequently, there exists a feasible point on the unit circle iff PO-TRAV(f) = 1.
It is immediate that the number of constraints is O(n) and the smallest angle (at the
origin) we construct in this process is Θ(1/n). Thus in a polar format the input is
polynomially bounded.



To remove the constraint x2 + y2 = 1, consider lifting the problem to the cone
z = x2 + y2, and add the constraint z = 1. While the constraint z = x2 + y2 is not
linear we observe that we are only interested in O(n) predetermined points on the cone.
Thus we can approximate the cone by O(n) planes.

For two-dimensional linear programming, we can show a lower bound of Ω(n1/(2p−1))
space using [23, 29] and the ideas above. The main technical difficulty in achieving
the Ω(n1/p) result in the 2D case is best explained by the dual view where we are
given points separated by the y axis and wish to construct the “tangent bridge.” The
problem lies in the “separated by the y-axis” part. This tends to suggest a natural two way
partitioning of the space, which bears the resemblance to a two party problem. Closing
this gap for two-dimensional linear programming remains an open problem.
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A Misc. Proofs

Proof (Proof of Lemma 3). Let Y = A(X1, . . . , Xt). By the chain rule for mutual
information,

s ≥ I(X1, X2, . . . , Xt;Y ) =
∑
r∈[t]

I(Xr;Y |X1, . . . , Xr−1) .

Therefore, for at least 2t/3 values of r, I(Xr;Y |X1, X2, · · ·Xr−1) ≤ 3s/t. Similarly,
for at least 2t/3 values of r such that

Pr [〈X1, . . . Xt, r, g(X1, . . . Xr−1)〉 ∈ C] ≥ 1− 3δ.



Therefore there exists an r for which both are true. Now for 2/3 fraction of X1, . . . , Xr−1

we must have I(Xr;Y |X1 = x1, . . . Xr−1 = xr−1) ≤ 9s/t since I(Xr;Y |X1, . . . Xr−1)
is an expectation. Likewise,

Pr
x1=X1,...,

xr−1=Xr−1

[Pr [〈x1, . . . , xr−1, Xr, . . . , Xt, r, g(x1, . . . xr−1)〉 ∈ C] ≥ 1− 9δ] ≥ 2
3
.

Hence, the required 〈x1, . . . , xr−1〉 exists.

Proof (Proof of Lemma 4). We rewrite the mutual information as

I(Mr;M t) =
∑
u,v

pu,v log(pu,v/puqv) =
∑

v

qvKL(pv, p) .

were KL is the Kullback-Leibler divergence. Therefore, noting that KL is always positive,
by Markov’s inequality,

Pr
v∼qv

[KL(pv, p) ≤ 3I(Mr;M t)] ≥ 2/3 .

However, by Pinsker’s inequality, KL(pv, p) ≥ L2
1(p

v, p)/4.

Proof (Proof of 5). Denote the success probability of the algorithm conditioned on
Mr = mu and M t = mv as

su,v := Pr
[
〈x1, . . . , xr−1, Xr, . . . , Xt, r, g(x1, . . . , xr−1)〉 ∈ C|Mr = mu,M t = mv

]
.

By Lemma 3, we know that
∑

u,v qvpv
usu,v =

∑
u,v pu,vsu,v ≥ 1− 9δ. Therefore, by

Markov’s inequality, Prv∼qv [
∑

u pv
usu,v ≥ 1− 27δ] ≥ 2/3. Hence, by Lemma 4 and

the union bound, with probability at least 1/3,

Pr
v∼qv

[∑
u

pv
usu,v ≥ 1− 27δ and

∑
u

|pu − pv
u| ≤ 2

√
27s/t

]
≥ 1/3 .

Therefore there exists a v such that
∑

u pusu,v ≥ 1 − 27δ − 2
√

27s/t ≥ 9/10. Note
that su,v is defined with respect to a random Xr+1, . . . , Xt subject to the condition
A(Xr+1, . . . , Xt;mu) = mv . Hence there exists a Z(·) with the required properties.

Proof (Proof of Lemma 2). The proof follows along very similar lines to the proof of
Lemma 1. The main difference is that we do not condition the relevant events on specific
values for a prefix of 〈X1, . . . , Xt〉. There is also the issue that with an algorithm that
may write-out to an output tape it can not be argued that the success probability can be
boosted by repeating the algorithm many times and taking the median. We consider a
deterministic algorithm A acting on a stream 〈X1, . . . , Xt〉 where each Xi is distributed
independently according a given distribution D. We let Ĉ denote that set of input upon
which the algorithm is successful, i.e.,

Ĉ := {〈x1, . . . , xt〉 : A correctly solves Qt,f on 〈x1, . . . , xt〉} .

The proofs of arguments below are omitted as they are almost identical to the analogous
results in the proof Lemma 1.



Lemma 6. There exists r ∈ {t/2, . . . , t} such that I(M̂r; M̂ t) ≤ 2s/t where M̂r =
A(X1, . . . , Xr) and M̂ t = A(X1, . . . , Xt).

We define distributions analogous to the distributions in the proof Lemma 1.

p̂u,v := Pr
[
M̂r = mu, M̂ t = mv

]
, p̂u := Pr

[
M̂r = mu

]
,

q̂v := Pr
[
M̂ t = mv

]
, and p̂v

u := p̂u,v/q̂v .

Lemma 7. If v is chosen with probability q̂v then the variational distance between the
distribution of M̂r and M̂r conditioned on {M̂ t = v} is small if I(M̂r; M̂ t) is small.
Specifically,

Pr
v∼q̂v

[∑
u

|p̂u − p̂v
u| ≤ 2

√
3I(M̂r; M̂ t)

]
≥ 2/3 .

Lemma 8. There exists mv ∈M and function Ẑ : M→ X t−r such thatA(Ẑ(mu);mu) =
mv and Pr

[
〈x1, . . . , xr−1, Xr, Ẑ(M̂r)〉 ∈ Ĉ

]
≥ 1− 5δ , if s ≤ δt/2.

We can use the existence Ẑ(·) to construct a (k − 1)-pass algorithm A′ from A that,
with probability at least 1− 5δ, writes-out (i, f(xi)) for all i ∈ [t/2] in some order. This
follows along similar lines to Lemma 1. The one important difference is that since A
writes-out (i, f(xi)) for all i ∈ [t] we need to add an auxiliary algorithm between A and
the output tape. This algorithm ensures that (i, f(xi)) is only written to the output tape
if i ∈ [t/2].

B Convex Hulls

In this section, we consider the problem of constructing the convex hull of n points in
R2. In the streaming setting we assume that we may write out the points that specify the
convex hull as we process the stream rather than having to store these points in working
memory until the entire convex hull has been determined.

We will prove lower-bounds for two variants of this problem. In the first, we are
promised that the stream of these points is sorted by the first coordinate of the points and
may write out the points of the convex hull in any order. Our results here generalize a
result for deterministic algorithms due to Chan and Chen [8]. In the second variant we
make no assumption on the ordering of the stream but insist that our algorithm outputs
the points of the convex hull sorted by the x-coordinate.

B.1 Sorted Input-Order and Arbitrary Output-Order

Chan and Chen [8] showed that any constant pass, deterministic algorithm that reads a
stream of n points sorted by x-coordinate and prints out the vertices of the upper hull (in
any order) requires Ω(

√
n/ log n) space. Their proof is information-theoretic, but “it

is assumed that to print a point to the output stream, the point must currently reside in
memory”, that is, the algorithm rules out compressing a subset of points together and



reconstructing them as the next few bits are read. We reiterate that their lower-bound is
only for deterministic algorithms.

We show that the bound holds for any unrestricted, randomized algorithm. The
reduction we use is similar to the reduction in [8], but differs in important details.

Theorem 7. Consider a set of 2D points with polynomially-bounded precision in a
sorted order of x-coordinate. Any O(1)-pass algorithm that outputs exactly the points
on the convex hull with probability 1− δ requires Ω(

√
n) space for sufficiently small

constant δ.

Proof. Given an arc (sv, tv) on the upper part of the unit circle we first subdivide into
2 halves (sv, bv), (bv, tv). The first half is further subdivided into r (which will be set
later) equal pieces {(sv(i), tv(i))} of length ` each. Given an r bit string σ ∈ {0, 1}r, if
σ[i] = 0 we choose the point pv(i) which is `/3 from sv(i), otherwise if σ[i] = 1 we
chose the point pv(i) to be `/3 from tv(i) (and in both cases pv(i) is inside (sv(i), tv(i))).
Given an index (this will involve a final reduction from indexing) j ∈ [r] we push bv

radially upward to b′v so that the tangent from b′v to the circle is at tv(j). It is easy to
see that the precision needed (in polar coordinates) is polynomial. Note that the pushing
upward limits the other tangent from b′v to touch the circle in the range (bv, tv). This
was the reason why the interval was split in 1/2. The final collection of points are
{sv(i)} ∪ {pv(i)} ∪ {tv(i)} ∪ {b′v}.

Given an indexing problem where Alice has σ and Bob has j we can in a single
pass transform the indexing problem to a convex hull problem, where the position of
the third last point of the hull reveals σ[j]. Thus a single pass algorithm for this gadget
Gv would require Ω(r) space. Now let r =

√
n and consider m =

√
n copies of Gv

(which we know, by construction, do not interact with each other). Suppose we wish to
find all the points on the convex hull (in some arbitrary order), we will determine all the
penultimate points and solve all the Gv. This defines a Qt,f problem where f = Gv.
Now by Theorem 3, if we use less than cm bits for some constant c > 0 and p = O(1)
passes and succeed O(1) probability then we can solve a problem Gv in one pass with
O(1) probability, which implies an Ω(r) bound.

B.2 Arbitrary Input-Order and Sorted Output-Order

In this section we prove a new lower bound for 2D output sensitive convex hull: given
that the upper hull is guaranteed to be of size h, (where h = o(

√
n) because of the

sorted order lower bound result) any O(1) pass randomized algorithm requires Ω(h).
As a consequence the lower bound for 2D convex hull of arbitrarily order points using
p = O(1) passes is Ω(h + n1/p), almost matching the upper bounds of [8] which uses
the product of these two terms and a few more passes.

Theorem 8. Consider a set of 2D points with polynomially bounded precision in arbi-
trary order such that the convex hull is of size h <

√
n. Any O(1)-pass algorithm that

outputs exactly the the points on the convex hull with probability at least 1− δ requires
Ω(h) space for some sufficiently small constant δ.



Proof. The reduction is similar to that used in Theorem 7 except we partition (sv, av), (av, bv), (bv, tv).
The p(i) are chosen in the region (av, bv). Except now, we push av (which breaks sorted
order of input) and bv upwards (with the knowledge of the index j) to a′v, b′v such that
the tangent from a′v touches the circle at sv(j). The tangent from b′v touches at tv(j)
as before. This reduces the convex hull of these set of points to size 5, and does not
interfere with the circle anywhere else. This is an indexing problem of size r, denoted
by G′

v. Now we can define a problem Qh,G′
v

which corresponds to solving h of these
problems in parallel. If the space used for p = O(1) passes is smaller than Ω(h) then
we again have to solve indexing with O(1) probability. Note that this needs r > h and
therefore h ≤

√
n.


