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TIGHT LOWER BOUNDS FOR THE SIZE OF EPSILON-NETS

JÁNOS PACH AND GÁBOR TARDOS

1. Introduction

Let X be a finite set and let R be a system of subsets of an underlying set which
contains X. In computational geometry, the pair (X,R) is usually called a range
space. The elements of X and R are said to be the points and the ranges of the
range space, respectively. Consider a subset A ⊆ X. A is called shattered if for
every subset B ⊆ A, one can find a range RB ∈ R with RB∩A = B. The size of the
largest shattered subset of points, A ⊆ X, is said to be the Vapnik-Chervonenkis
dimension (or VC-dimension) of the range space (X,R).

In their seminal paper [VaC71], Vapnik and Chervonenkis proved that, from
the point of view of random sampling, all range spaces whose VC-dimensions are
bounded by a constant behave very nicely. In particular, for any ε > 0, a randomly
selected “small” subset of X, whose number of elements depends only on the VC-
dimension d and ε, will “hit” every range containing at least ε|X| points of X, with
large probability.

A set of points in X with the property that every range R ∈ R with |R ∩X| ≥
ε|X| contains at least one of its elements is called an ε-net for the range space
(X,R). Note that these sets are often called strong ε-nets in the literature, to
distinguish them from the so-called weak ε-nets, which may also contain points
from

⋃
R \X, but must still hit all ranges that contain at least ε|X| elements of

X. In this paper, we will consider only strong ε-nets, apart from some remarks in
Section 4. The ideas of Vapnik and Chervonenkis have been adapted by Haussler
and Welzl [HaW87], who introduced the above terminology and proved that the
minimum number f = fd(ε) such that every range space of VC-dimension d admits
an ε-net of size at most f satisfies fd(ε) = O

(
d
ε log

d
ε

)
. They asked whether the

logarithmic factor can be removed in this formula. Pach and Woeginger [PaW90]
proved that while f1(ε) = max(2, � 1

ε� − 1), the logarithmic factor is needed for
every d ≥ 2. Moreover, it was shown by Komlós et al. [KoPW92,PaA95] that for
any d ≥ 2,

(d− 2 +
1

d+ 2
+ o(1))

1

ε
ln

1

ε
≤ fd(ε) ≤ (d+ o(1))

1

ε
ln

1

ε
,

as ε tends to 0. (Here ln denotes the natural logarithm.)
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Haussler and Welzl discovered that the above results apply to many geometrically
defined range spaces, i.e., when X is a subset of some Euclidean space Rd. Roughly
speaking, the VC-dimension is bounded by a constant for any set of ranges with
bounded description complexity, for example, if they are semi-algebraic sets given
by a bounded number of bounded degree polynomial inequalities. This observation
has far reaching consequences. The application of small epsilon-nets has become
one of the most powerful general techniques in computational geometry (see [Ch00,
EvRS05]).

In a number of basic geometric scenarios it was possible to improve on the above
bounds. For instance, for any finite set of points in the plane, one can find an ε-net
of size linear in 1/ε, where the ranges are half-planes, translates of a convex polygon,
disks, or certain kinds of pseudo-disks. Similar results hold in three-dimensional
space for half-space ranges [PaW90,MaSW90,Ma92,PyR08]. We state two results
here.

Theorem A (Matoušek, Seidel, Welzl [MaSW90,Ma92]). All range spaces (X,R),
where X is a finite set of points in R

3 and R consists of half-spaces, admit ε-nets
of size O(1/ε).

Theorem B (Aronov, Ezra, Sharir [ArES10]). All range spaces (X,R), where X
is a finite set of points in R

2 (or R
3) and R consists of axis-parallel rectangles

(boxes), admit ε-nets of size O
(
1
ε log log

1
ε

)
.

Aronov et al. have also established a similar result for “fat” triangular ranges
in the place of axis-parallel rectangles. For weak ε-nets, Ezra [Ez10] extended
Theorem B to higher dimensions.

In algorithmic applications, it is often natural to consider the dual range space,
in which the roles of points and ranges are swapped [BrG95,PaA95]. Given a finite
family R of ranges in R

m, the dual range space induced by them is defined as a set
system (hypergraph) on the underlying set R, consisting of the sets Rx := {R |
x ∈ R ∈ R}, for all x ∈ R

m. (Note that Rx and Ry may coincide for x 	= y.) It is
easy to see (cf. [PaA95]) that if the VC-dimension of the range space (X,R) is less
than d for every X ⊂ R

m, then the VC-dimension of the dual range space induced
by any subset of R is less than 2d.

Clarkson and Varadarajan [ClV07] found a simple and beautiful connection in the
plane between the complexity of the boundary of the union of n members of R and
the size of the smallest epsilon-net in the dual range space. If the complexity of the
boundary is o(n log n), then the dual range space admits ε-nets of size o

(
1
ε log

1
ε

)
.

This connection has been further explored and improved in [Va09,ArES10,EzAS11].
In particular, it was shown that dual range spaces of “fat” triangles in the plane
admit ε-nets of size O

(
1
ε log log

∗ 1
ε

)
, where log∗ stands for the iterated logarithm

function.
In most range spaces (X,R), one can find roughly 1/ε pairwise disjoint ranges

R ∈ R such that the sets R∩X are of size at least ε|X|. In these cases, the size of
any ε-net is Ω(1/ε). For the last two decades, “the prevailing conjecture” was that
in “geometric scenarios” this bound is essentially tight: there always exists an ε-net
of size O(1/ε) (see, e.g., [MaSW90, ArES10]). This conjecture had to be revised
after Alon [Al12] discovered some geometric range spaces of small VC-dimension,
in which the ranges are straight lines, rectangles or infinite strips in the plane,
and which do not admit ε-nets of size O(1/ε). Alon’s construction is based on
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the density version of the Hales-Jewett theorem [HaJ63], due to Furstenberg and
Katznelson [FuK89,FuK91], and recently improved by participants of the Polymath
blog project [Po09,Po10]. However, Alon’s lower bound is only barely superlinear:
Ω
(
1
εg(

1
ε )
)
, where g is an extremely slowly growing function, closely related to the

inverse Ackermann function.

1.1. New lower bounds. The main aim of this note is to prove that theO
(
1
ε log

1
ε

)
general upper bound for the size of the smallest ε-nets in range spaces of bounded
VC-dimension is tight even in simple geometric scenarios.

Our first theorem claims that there exist dual range spaces induced by finite fam-
ilies of axis-parallel rectangles in which the size of the smallest ε-nets is Ω

(
1
ε log

1
ε

)
.

More precisely, we have the following.

Theorem 1. For any ε > 0 and for any sufficiently large integer n > n0(ε),
there exists a dual range space Σ∗ of VC-dimension 2, induced by n axis-parallel
rectangles in R

2, in which the size of every ε-net is at least 1
9ε log

1
ε .

Here and in the sequel, log always denotes the binary logarithm.
From Theorem 1 it is not hard to deduce the following results for primal range

spaces.

Theorem 2. For any ε > 0 and for any sufficiently large integer n > n0(ε), there
exists a (primal) range space Σ = (X,R) of VC-dimension 2, where X is a set of
n points in R

4, R consists of axis-parallel boxes with one of their vertices at the
origin (or axis-parallel orthants), and in which the size of every ε-net is at least
1
9ε log

1
ε .

Theorem 3. For any ε > 0 and for any sufficiently large integer n > n0(ε), there
exists a (primal) range space Σ = (X,R) of VC-dimension 2, where X is a set of
n points in R

4, R consists of half-spaces, and in which the size of every ε-net is at
least 1

9ε log
1
ε .

Theorems 2 and 3 show that Theorems B and A cannot be generalized to 4-
dimensional space. It also follows, by a standard duality argument, that there exist
dual range spaces induced by half-spaces in R

4, for which the size of the smallest
ε-net is Ω

(
1
ε log

1
ε

)
.

Our next result shows that Theorem B of Aronov, Ezra, and Sharir is tight.

Theorem 4. For any ε > 0 and for any sufficiently large integer n > n0(ε), there
exists a (primal) range space Σ = (X,R) of VC-dimension 2, where X is a set of
n points in the plane, R consists of axis-parallel rectangles, and in which the size
of every ε-net is at least ( 1

16 − o(1)) 1ε log log
1
ε .

Note that the VC-dimension of the family of all axis-parallel rectangles in the
plane is 4.

The proof of Theorem 1 is based on a construction reminiscent of the one de-
scribed and studied in [PaT10] in connection with a hypergraph coloring problem.
In fact, we could use precisely the same construction, but this would require a
more complicated analysis. For the proof of Theorem 4, we use a randomly, but
not uniformly, selected set of roughly 1

ε log log
1
ε points in the unit square. In the

conference version of the present paper [PaT11], we use uniformly distributed ran-
dom point sets to give an alternative proof of a slightly weaker version of Theorem
4, in which the VC-dimension of the range space Σ is 3 rather than 2. Some related

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



648 JÁNOS PACH AND GÁBOR TARDOS

properties of uniformly distributed point sets have been established in [ChPS09].
See remark 3 in Section 4. Our paper is self-contained: we do not rely on any
material from [PaT10] or [ChPS09].

1.2. Organization. In Section 2, we present the proofs of Theorems 1, 2, and 3.
Section 3 contains the proof of Theorem 4. In the final section, we make some
concluding remarks and mention open problems.

2. Boxes and half-spaces—Proofs of Theorems 1–3

Theorems 2 and 3 are corollaries of Theorem 1, so we start with the proof of
Theorem 1. The proof is based on an explicit construction. In order to describe
this construction, we have to introduce some notation.

Let d be a fixed positive integer. For any integers a, b ≥ 0 and 0 ≤ i ≤ d, let
Ri

a,b denote the half-open axis-parallel rectangle defined as the cross product of two
half-open intervals:

Ri
a,b = [a2i, (a+ 1)2i)× [b2d−i, (b+ 1)2d−i).

Let

R = {Ri
a,b | 0 ≤ i ≤ d, 0 ≤ a < 2d−i, 0 ≤ b < 2i}.

The elements of R are called canonical rectangles. All elements of R have the same
area 2d. For each i, 0 ≤ i ≤ d, there are precisely 2d canonical rectangles Ri

a,b, and

they form a tiling of the square [0, 2d)2. That is, we have |R| = (d + 1)2d. (Note
that in the proof of Theorem 1 it plays no role whatsoever that the rectangles
are half-open: open or closed rectangles would work as well. Defining canonical
rectangles to be half-open will simplify the presentation in Section 3.)

Consider the set of rectangles

R :=
{
Ri

a,b ∈ R | a, b are even
}
.

R2
1,3

2

R
2,0
2 R

3,0
2

R2R
2,1

2

R2 R
1,0
2

R
1,1
2R

0,1

2

R
2,2
2 R

3,2
2

R
3,3
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2,3
2
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0,2
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1,2
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0,3
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R3
0,1

R3
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1,1
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1,3
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0,5
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0,4
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1,4
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1,5
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0,7

R3
0,6

R3
1,6

R3
1,7

Figure 1. The canonical rectangles from R for d = 4, i = 2, 3.
Those belonging to R are shaded.

See Figure 1 for an illustration. For 0 < i < d we have 2d−2 rectangles Ri
a,b ∈ R,

while for i = 0 or d we have twice as many, so all together we have

|R| = (d+ 3)2d−2.
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We claim that the dual range space Σ∗ induced by the elements of R meets the
requirements of Theorem 1 for ε ≈ 2−d. Recall that a subset S ⊂ R is an ε-net in
Σ∗ if and only if every point in the plane that belongs to at least ε|R| elements of
R is covered by at least one element of S.

The heart of the proof is the following statement.

Lemma 2.1. Let d be a positive integer, let R and Σ∗ be defined as above and let
0 < ε < 1. If S ⊆ R is an ε-net in Σ∗, then we have

|S| > (1− 2d−1ε)|R| = (1− 2d−1ε)(d+ 3)2d−2.

Proof. Let S be a fixed ε-net in Σ∗. Assign to S a collection of canonical rectangles
T = T (S) ⊂ R, as follows. Let

T := {Ri
a,b | Ri

2�a/2�,2�b/2� ∈ S and a 	≡ b, or Ri
2�a/2�,2�b/2� 	∈ S and a ≡ b}.

Here “≡” is taken modulo 2. See Figure 2.

Figure 2. The rectangles in S are shaded. For each 0 < i < d, we
divide the canonical rectangles Ri

a,b into 2× 2 boxes. In each box,
we select two of the rectangles to be included in T , shown striped
here. S and T are disjoint.

It follows from the definition that for each i, precisely half of the canonical
rectangles Ri

a,b ∈ R belong to T . It is also clear that S and T are disjoint, moreover,

every element of R \ S belongs to T .
Notice that the elements of T can be decomposed into 2d−1 disjoint “chains” of

the form (R0, R1, ..., Rd), where each Ri is a 2i × 2d−i canonical rectangle, and⋂d
i=0 R

i 	= ∅. Indeed, by our construction, for every 20×2d rectangle R0 ∈ T , there
is precisely one 21 × 2d−1 rectangle R1 ∈ T that intersects it. Analogously, there
is precisely one 22 × 2d−2 rectangle R2 ∈ T that intersects R1, and this rectangle
must also intersect R0 ∩R1. Proceeding like this, starting with a fixed R0 ∈ T , we
obtain a uniquely determined chain of size d + 1 whose elements have a point in
common. There are 2d−1 possible choices for R0, and each element of T belongs to
precisely one of the resulting chains. Note that any point in the plane is contained
in at most d+1 canonical rectangles, so a point in the intersection of the rectangles
forming a chain is not covered by any canonical rectangle outside the chain. See
Figure 3 for a chain.
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R
1,2
2R3

0,5

R0
6,0

R4
0,11

R1
3,1

Figure 3. A chain of length d+1 (d = 4). Equal coordinates are
slightly perturbed for better visibility. All elements of a chain have
a point in common.

Since all elements of R\S belong to T , but T is disjoint from S, it follows from
the above chain decomposition that there is a point x ∈ R

2 contained

(1) in at least |R\S|
2d−1 elements of R, and

(2) in no element of S.
Since S is an ε-net we must have

|R \ S|
2d−1

< ε|R|,

proving the lemma. �

We also need the following simple property. Let Σ
∗
denote the dual range space

induced by all canonical rectangles in R. Let Σ denote the (primal) range space

dual to Σ
∗
. In other words, Σ can be defined as follows. The canonical rectangles,

i.e., the elements of R, divide the plane into finitely many cells. Two points belong
to the same cell if they are contained in the same rectangles. Pick a point in each
cell, and let X denote the set of points we picked. The range space Σ is the pair
(X,R).

Lemma 2.2. All of Σ, Σ∗, and Σ
∗
have VC-dimension 2.

Before turning to the proof of the lemma, we introduce a partial order on the
family of axis-parallel rectangles in the plane. For any two axis-parallel rectangles R
and R′, we write R ≺ R′ if the orthogonal projection of R on the x-axis is contained
in the orthogonal projection of R′ on the x-axis, and the orthogonal projection of
R on the y-axis contains the orthogonal projection of R′ on the y-axis. That is, R
and R′ intersect in a crosslike fashion, as shown on Figure 4. Obviously, this is a
partial order.

Proof of Lemma 2.2. Clearly, we have VC-dim(Σ) ≥ 2, VC-dim(Σ∗) ≥ 2, and VC-

dim(Σ
∗
) ≥ 2.

Observe first that any two intersecting rectangles in R are comparable by ≺.

Assume for contradiction that Σ, Σ∗ or Σ
∗
has VC-dimension 3 or more. The

existence of a shattered 3-element set would imply that there are three distinct
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Figure 4. Illustration for the definition of R ≺ R′.

points p1, p2, and p3 in the plane and three rectangles R1, R2, R3 ∈ R with
{p1, p2, p3} \ Ri = {pi} for i = 1, 2, 3. The rectangles Ri pairwise intersect, and
hence must be linearly ordered by ≺. See Figure 5. Suppose without loss of gener-
ality that R1 ≺ R2 ≺ R3. Then R1 ∩ R3 ⊆ R2, contradicting our assumption that
p2 is contained in the left-hand side but not in the right. �

R1

R2

3

3

R

p

p1

Figure 5. The nonexistence of a shattered 3-element set: There
is no good place for p2.

Proof of Theorem 1. Suppose without loss of generality that ε ≤ 2/3. Let ε =
α/2d−1, where d is a positive integer and 1/3 ≤ α ≤ 2/3. According to Lemmas 2.2
and 2.1, the dual range space Σ∗ defined for this d has VC-dimension 2 and it does

not admit an ε-net of size smaller than α(1−α)
2 (d + 3) 1ε . Here d + 3 > log 1

ε and
α(1−α)

2 ≥ 1
9 , proving that Σ∗ satisfies the statement of the theorem. Note that, if

log 1
ε is an integer, the constant 1

9 can be replaced by 1
8 in the bound.

This example is very special: for every ε, we have defined a single dual range
space Σ∗, induced by Θ

(
1
ε log

1
ε

)
rectangles. However, from one small example we

can easily construct arbitrarily large ones, as required by the theorem. Keep ε
fixed, and choose a large integer t. Replace each rectangle R ∈ R by a chain of
rectangles R1 ≺ R2 ≺ · · · ≺ Rt, where ≺ denotes the ordering relation defined
after Lemma 2.2, and each Ri differs only very little from R. Let Rt denote the
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resulting family of rectangles. It is not difficult to see that this transformation can
be carried out keeping the property that intersecting rectangles are comparable by
≺. Therefore, the VC-dimension of the dual range space Σ∗

t induced by Rt, as well
as the VC-dimension of the corresponding “primal” space, remains 2.

We have |Rt| = t|R|, and the size of the smallest ε-net for Σ∗
t is at least as

large as it was in Σ∗. Suppose to the contrary that there is a smaller set S ′ of
rectangles in Rt that form an ε-net in Σ∗

t . Let S ′′ be the set of rectangles in R that
were replaced by the elements of S ′. Since |S ′′| ≤ |S ′|, the rectangles in S ′′ do not
form an ε-net in Σ∗. Thus, there is a point in the plane contained in at least ε|R|
elements of R, which is not covered by any element of S ′′. We can choose such a
point lying not too close to the boundaries of the rectangles in R, and then it is
contained in at least tε|R| = ε|Rt| elements of Rt, none of which belongs to S ′, a
contradiction. �

Proof of Theorem 2. The statement follows from Theorem 1 by a standard duality
argument (see, e.g., [KaRS08]). We assume without loss of generality that the
rectangles whose existence is guaranteed by Theorem 1 are closed and lie in the
first quadrant of the plane. We assign to each rectangle R = [x1, x2] × [y1, y2] the
point p(R) = (x1, 1/x2, y1, 1/y2) ∈ R

4. Now a point q = (a, b) of the first quadrant
lies in R if and only if x1 ≤ a ≤ x2 and y1 ≤ b ≤ y2, that is, if and only if the point
p(R) is contained in the 4-dimensional box

B(q) = [0, a]× [0, 1/a]× [0, b]× [0, 1/b].

�

Theorem 3 is an immediate corollary of Theorem 2 and the following lemma.

Lemma 2.3. Let P be a finite set of points in the positive orthant of R
d. To

each p ∈ P , we can assign a point p′ in the positive orthant of Rd so that the set
P ′ = {p′ | p ∈ P} satisfies the following condition.

For any axis-parallel box B ⊂ R
d that contains the origin, there is a half-space

H(B) ⊂ R
d which contains the origin and for which

{p′ | p ∈ B ∩ P} = P ′ ∩H(B).

Proof. Let x1, x2, . . . , xd denote the orthogonal coordinates in R
d. Observe that

from the point of view of intersections with axis-parallel boxes, the actual values of
the coordinates do not matter: we need to know only the order of the xi-coordinates
of the points of P for each i. For every i (1 ≤ i ≤ d), let 0 < ξi,1 < ξi,2 < ξi,3 < . . .
denote the sequence of different values of the xi-coordinates of the elements of
P . Every such sequence is of length at most |P |. By rescaling the coordinates if
necessary, we can assume that ξi,j+1/ξi,j > d holds for every i and j.

Consider now an axis-parallel box B, which contains the origin and intersects
P in at least one element. We can shrink B if necessary, without changing its
intersection with P , so that we can suppose without loss of generality that B is of
the form

B = [0, b1]× [0, b2]× . . .× [0, bd],

where each bi is equal to ξiji for a suitable ji.
We claim that B ∩ P is equal to the intersection of P with the half-space H(B)

defined by
x1

b1
+

x2

b2
+ . . .+

xd

bd
≤ d.
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For every point in B, each term of the above sum is at most 1, so that we have
B ⊂ H(B), and hence B ∩P ⊆ H(B)∩P . Suppose now that p is a point of P that
does not belong to B. Then one of its coordinates, xi(p), say, is more than d times
larger than bi. Therefore, the i-th term in the above sum is already larger than d,
which implies that p 	∈ H(B). �

3. Axis-parallel rectangles—Proof of Theorem 4

To make sure that the range spaces constructed in this section have VC-dimension
2, we use the family R of canonical rectangles introduced at the beginning of the
previous section and apply Lemma 2.2.

Proof of Theorem 4. Let d and r be positive integers to be specified later. Select
a random set X of r2d points from the square [0, 2d) × [0, 2d), as follows. Let
X = {pj | j = 0, 1, . . . , r2d−1}, where the x-coordinate of pj is set deterministically
to xj = j/r, while its y-coordinate yj is an integer from [0, 2d), selected by a
randomized process described below.

One possible method to generate the y-coordinates is to select for every j an
integer 0 ≤ yj < 2d such that |R∩X| = r holds for all canonical rectangles R ∈ R,
and to select uniformly among all assignments meeting this requirement. However,
for technical reasons, it will be more convenient to consider the binary expansion
of the integers yj and to generate their digits one by one. This process, described
in detail in the next paragraph, will yield precisely the same distribution on the
point sets X as the first method.

Let us write yj in binary form: yj =
∑d

i=1 y
(i)
j 2d−i. The digits y

(i)
j ∈ {0, 1} of yj

will be selected in stages starting with stage 1. At stage i (1 ≤ i ≤ d), we choose

the digits y
(i)
j for all j. Before making these choices, the sets

Sh
a,b = {0 ≤ j < r2d | pj ∈ Rh

a,b}
have already been determined for every h < i and for every Rh

a,b ∈ R. In particular,

the set S0
a,0 depends only on the x-coordinates of the points pj , so we have S0

a,0 =

{ar, ar+ 1, . . . , ar+ r− 1} for any 0 ≤ a < 2d. At stage i (1 ≤ i ≤ d), consider the
2r-element set Si−1

2a,b ∪ Si−1
2a+1,b, and partition it uniformly and randomly into two

r-element subsets T and T ′. Set

y
(i)
j =

{
0 if j ∈ T,

1 if j ∈ T ′.

Consequently, we have Si
a,2b = T and Si

a,2b+1 = T ′. We do the partitioning inde-

pendently for all 0 ≤ a < 2d−i and 0 ≤ b < 2i−1. Finally, all sets of the form Si
a,b

will be of size r. See Figure 6 for an illustration of this process.
Suppose first that ε = 2−d. Then we have ε|X| = r, therefore every ε-net S of

the range space (X,R) must intersect all canonical rectangles.

Lemma 3.1. Let ε = 2−d. The probability that the range space (X,R) constructed

above has an ε-net of size at most r2d−2 is less than 2r2
d

(1− 2−2r)d2
d−2

.

Proof. Fix a set I ⊂ {0, 1, . . . , r2d − 1} of size at most r2d−2, and estimate the
probability that S = {pi | i ∈ I} is an ε-net. S is not an ε-net if and only if at
some stage i of the process, we partition at least one set T0 = Si−1

2a,b ∪ Si−1
2a+1,b in

an “unlucky” way, so that all of its elements that belong to S end up in the same
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p
0

p
7

p
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Figure 6. At stage i, the point pj can be any point of the vertical
interval of length 2d−i with x-coordinate j/r. Every interval is
divided into two equal halves, one of which is selected for stage
i + 1. The intervals with the same y-projection are divided into
consecutive groups of size 2r. In each group, there are exactly r
intervals for which the upper half is selected.

part. If |T0 ∩ I| ≤ r, then there exists at least one such partition. Therefore, in

this case the probability of selecting an unlucky partition is at least
(
2r
r

)−1
> 2−2r.

At any stage, we independently partition 2d−1 pairwise disjoint sets, so, using that
|I| ≤ r2d−2, at least half of them contain at most r elements of I.

Thus, the probability that there is no unlucky partition at a fixed stage i (1 ≤
i ≤ d), is at most (1− 2−2r)2

d−2

. This is valid at each stage, independently of the
outcome of the earlier stages. Therefore, S is an ε-net with probability at most

(1− 2−2r)d2
d−2

. Since there are fewer than 2r2
d

choices for I, the probability that

(X,R) has an ε-net of size at most r2d−2 is less than 2r2
d

(1− 2−2r)d2
d−2

. �

Using the inequality 1 − 2−2r < exp(−2r), we obtain that the upper bound in
Lemma 3.1 is smaller than

exp
(
ln 2r2d − 2−2rd2d−2

)
.

This expression is less than one whenever d ≥ 4 ln 2r4r. In this case, there exists a
choice of X such that the size of any 2−d-net of (X,R) is at least r2d−2.

Now we show how to choose the parameters d and r for any ε > 0. Let d =
�log 1

ε �. This will guarantee that any ε-net is a 2−d-net. Next, choose r to be the
largest integer such that 4r4r ≤ d. By the last paragraph, there exists a range
space (X,R) of axis-parallel rectangles, for which the size of any ε-net is at least
r2d−2 > r

8ε > ( 1
16 − o(1)) 1ε log log

1
ε . As was pointed out at the beginning of this

section, it follows from Lemma 2.2 that the VC-dimension of this range space is 2.
Once we have one example of a range space Σ = (X,R) that admits no small

ε-net for a given value of ε, we can create arbitrarily large examples with the same
property, by replacing each point p ∈ X with t new points, contained in the same
ranges of R. This procedure does not increase the VC-dimension of the range
space. (The same trick was applied in [Al12] and in the proof of Theorem 1.) This
completes the proof of Theorem 4. �
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4. Concluding remarks

1. It was shown in [PaW90] that any range space (X,R), where X is a finite
point set in the plane and R consists of half-planes, admits ε-nets of size at most
�2/ε� − 1, and that this bound is tight up to an additive constant at most 1. The
corresponding result on the line is almost trivial. Consequently, Theorem A holds
in any dimension d ≤ 3, and our Theorem 3 shows that it is false for d > 3.

The epsilon-net problem for half-spaces (containing the origin) is self-dual. That
is, any dual range space induced by half-spaces in R

d admits an ε-net of size O(1/ε)
if d ≤ 3, and this statement is false whenever d > 3.

2. Recall that a weak ε-net for a range space (X,R) is a set of elements of
⋃

R∈R R
(not necessarily in X) such that every range R ∈ R with |R ∩X| ≥ ε|X| contains
at least one of them. In [Ez10], Ezra proved that if X is any finite set of points
in R

d and R consists of all axis-parallel boxes, then (X,R) admits a weak ε-net of
size O

(
1
ε log log

1
ε

)
. This implies that our Theorem 2 does not hold if one replaces

ε-nets by weak ε-nets.
It is easy to see that the analogue of Theorem 3 is also false for weak ε-nets

instead of strong ones. Indeed, any finite system of half-spaces in R
d can be hit by

d+ 1 points, so that in (primal or dual) half-space range spaces there always exist
weak ε-nets of size O(1).

However, we have been unable to decide whether the analogue of Theorem 4
holds for weak ε-nets in place of strong ones.

3. If we are satisfied with a slightly weaker form of Theorem 4, in which the con-
structed range spaces have dimension 3, we can use uniformly distributed random
point sets in the unit square. In the conference version of the present paper [PaT11],
we proved this weaker version. The crucial element of the proof was the following
lemma of independent interest.

Lemma 4.1 ([PaT11]). Let n > 2, r = �log log n/5� be integers, and let and ε =
r/n. Let X be a set of n randomly and uniformly selected points in the unit square,
and let R denote the family of all axis-parallel rectangles of the form [j/2t, (j +
1)/2t)× [a, b], where j, t are nonnegative integers, and a < b are reals.

Then, with probability tending to 1, the range space (X,R) does not admit an
ε-net of size at most n/2.

A similar property of random point sets with respect to axis-parallel rectangles
was established in Chen et al. [ChPS09] (see Theorem 9). In their setting, r was a
constant, ε = r/n, and it was shown that every ε-net contains all but a very small
fraction of the point set. Here we allow r to slowly tend to infinity.

The VC-dimension of any family of axis-parallel rectangles in the plane is at
most 4. However, the x-components of the rectangles used in Lemma 4.1 are dyadic
intervals, and the VC-dimension of any families of rectangles with this property is
at most 3.

4. Let X ⊆ R
n be a finite or infinite set and let R be a family of “ranges” of a

certain type in R
d (e.g., lines, balls, half-spaces, axis-parallel boxes). We say that

a subfamily S ⊂ R forms a k-fold covering of X if every point of X belongs to at
least k members of S. It is an old problem in discrete geometry to decide whether
every k-fold covering selected from a family R can be decomposed into two or
more coverings [PaTT09]. For example, it was shown by Gibson and Varadarajan
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[GiV09] that every k-fold covering of the plane with translates of a convex polygon
can be decomposed into Ω(k) coverings.

There is an intimate relationship between epsilon-net problems and problems
about decomposition of multiple coverings. If we know that every k-fold covering
S ⊂ R with |S| = n splits into at least ck coverings for some absolute constant
c > 0, then one of these coverings contains at most n/(ck) sets. Setting k = εn,
we find a covering consisting of at most 1/(cε) members of S. This means that the
dual range space Σ∗ induced by the members of S admits an ε-net of size O(1/ε).
Therefore, if the dual range space does not always admit an ε-net of size O(1/ε),
then it cannot be true that every k-fold covering with ranges from R splits into
Ω(k) coverings.

In particular, Alon [Al12] proved that there are n-element point sets X ⊂ R
2

and straight-line ranges that do not admit ε-nets of size O(1/ε). The standard
duality between points and lines preserves incidences. Switching to the dual, we
obtain dual range spaces induced by sets of n lines in the plane that do not admit
ε-nets of size O(1/ε). According to the argument in the previous paragraph, this
implies that it cannot be true that every k-fold covering of a finite set of points
in R

2 with straight lines splits into Ω(k) coverings. This consequence of Alon’s
theorem had been proved earlier, using the Hales-Jewett theorem [PaTT09]. Alon
[Al12] proved that the same example also disproves that all range spaces consisting
of straight-line ranges in the plane admit ε-nets of size O(1/ε).

5. Weaker versions of Theorems 1 through 4 can be obtained by direct applications
of results of earlier papers. In particular, if we replace Lemma 3.1 by a slightly
weaker statement, Theorem 9 in [ChPS09], we obtain a weaker version of Theo-
rem 4, resulting in an Ω

(
1
ε log log

1
ε/ log log log

1
ε

)
bound on the size of the ε-nets.

Similarly, if we replace Lemma 2.1 by a slightly weaker statement, Theorem 3 in
[PaT10], we obtain a weaker version of Theorem 1 (and hence Theorems 2 and 3)
with an Ω

(
1
ε log

1
ε/ log log

1
ε

)
bound on the size of the ε-nets.
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