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Abstract This paper provides the convex hull description for the basic operation
of slow- and quick-start units in power-based unit commitment (UC) problems. The
basic operating constraints that are modeled for both types of units are (1) generation
limits and (2) minimum up and down times. Apart from this, the startup and shutdown
processes are also modeled, using (3) startup and shutdown power trajectories for
slow-start units, and (4) startup and shutdown capabilities for quick-start units. In
the conventional UC problem, power schedules are used to represent the staircase
energy schedule; however, this simplification leads to infeasible energy delivery, as
stated in the literature. To overcome this drawback, this paper provides a power-based
UC formulation drawing a clear distinction between power and energy. The proposed
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constraints can be used as the core of any power-based UC formulation, thus tightening
the final mixed-integer programming UC problem. We provide evidence that dramatic
improvements in computational time are obtained by solving different case studies,
for self-UC and network-constrained UC problems.

Keywords Convex hull · Unit commitment (UC) · Mixed-integer programming
(MIP) · Tight formulation · Slow-start units · Quick-start units

1 Introduction

The short-term unit commitment (UC) problem is one of the critical tasks that is daily
performed by different actors in the electricity sector. Depending on the purpose, the
UC is solved under centralized or competitive environments, from self-scheduling to
centralized auction-based market clearing, over a time horizon ranging from one day
to one week.

In general, the UC main objective is to meet demand at minimum cost while oper-
ating the system and units within secure technical limits [4,11,22]. The UC problem
can then be defined as:

min
x, p

b�x + c� p

s.t. Fx ≤ f, x is binary (1)

H p ≤ h (2)

Ax + B p ≤ g, (3)

where x and p are decision variables. The binary variable x is a vector of commitment-
related decisions (e.g., on/off and startup/shutdown) of each generation unit for each
time interval over the planning horizon. The continuous variable p is a vector of each
unit dispatch decision for each time interval.

The objective function is to minimize the sum of the commitment cost b�x (includ-
ing non-load, startup and shutdown costs) and dispatch cost c� p over the planning
horizon. Constraint (1) involves only commitment-related variables, e.g., minimum
up and down times, startup and shutdown constraints, and variable startup costs. Con-
straint (2) contains dispatch-related constraints, e.g., energy balance (equality can
always be written as two opposite inequalities), reserve requirements, transmission
limits and ramping constraints. Constraint (3) couples the commitment and dispatch
decisions. e.g., minimum and maximum generation capacity constraints. The reader
is referred to [11,14,16,18,19,21–23,26] and references therein for further details.

Conventional UC formulations, based on energy scheduling [11,19,21,22,26], do
not represent the unit operation adequately, because they fail to guarantee that the
resulting energy schedules can be delivered [10,15]. To illustrate this problem, consider
the following scheduling example for one generating unit. This example assumes that
the minimum and maximum generation outputs of the unit are 100 and 300 MW,
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(a) Traditional Energy Schedule (b) Actual Deployment

Fig. 1 Scheduling versus deployment

respectively, and that the unit can ramp up from the minimum to the maximum output
in 1 h, i.e., 200 MW/h of ramp rate. As shown in Fig. 1a, if the unit has been producing
100 MW during the first hour, then the unit can produce at its maximum output
(300 MW) for the next hour. This would be a natural energy schedule resulting from
the traditional UC formulations, which are based on the energy scheduling approach.
However, the unit is just physically capable of reaching its maximum output before the
end of the second hour due to its limited ramp rate, as shown in Fig. 1b. Consequently,
the solution obtained in Fig. 1a is not feasible. In fact, the unit requires an infinite
ramping capability to be able to reproduce the energy schedule presented in Fig. 1a.
More examples about this energy infeasibility problem can be found in [10,14,15]
and references therein.

Another drawback of conventional UC formulations is that generating units are
assumed to start/end their production at their minimum output. That is, their intrinsic
startup and shutdown power trajectories are ignored. As a consequence, there is a high
amount of energy that is not allocated by UC, but it is inherently present in real time,
thus causing a negative economic impact [17] and also demanding a larger quantity of
operating reserves to the system [14]. Although some recent works are aware of the
importance of including the startup and shutdown processes in UC problems, these
power trajectories continue being ignored because the resulting model is considered
to largely increase the complexity of the UC problem and hence its computational
intensity [3,8,13]. For further details of the drawbacks of conventional UC scheduling
approaches, the reader is referred to [15,18] and references therein.

Developing more accurate models would be pointless if they cannot be solved
fast enough. Under the mixed integer programming (MIP) approach, it is important
to develop tight formulations to reduce the UC computational burden. This allows
the implementation of more advanced and computationally demanding problems. A
different set of constraints has been proposed to tighten the UC problem [2,9,12,16,
17,20] . The work in [12,20] formulates the convex hull of the minimum up and down
times. Cuts to tighten ramping limits are presented in [2]. A tighter approximation
for quadratic generation costs is proposed [7]. Simultaneously tight and compact MIP
formulations for thermal units operation are devised in [9,16,17].
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932 G. Morales-España et al.

To overcome the drawbacks of conventional UC formulations, the model proposed
in this paper draws a clear difference between power and energy, and it also takes
into account the normally neglected power trajectories that occur during the startup
and shutdown processes. Thus, this model adequately represents the operation of
generating units to efficiently exploit their flexibility and to avoid infeasible energy
delivery. This paper further improves the work in [17] by including the operation
of quick-start units and providing the convex hull description for the following set
of constraints: generation limits, minimum up and down times, startup and shutdown
power trajectories for slow-start units, and startup and shutdown capabilities for quick-
start units. Although these convex hulls do not consider some crucial constraints such
as ramping, the proposed constraints can be used as the core of any power-based UC
formulation, thus tightening the final UC model. In addition, two sets of case studies
are carried out: (1) different case studies for a self-UC problem where we only take into
account the constraints proposed in this paper, and hence the proposed convex hulls
allow solving these self-UC (MIP) instances as linear programs (LP); (2) different case
studies for a network-constrained UC problem, where other common constraints are
taken into account, such as demand balance, reserves, ramping and transmission limits.
These numerical experiments show that the proposed power-based UC formulations
solve the MIP problems significantly faster when compared with two other (energy-
based) UC formulations commonly known in the literature.

The remainder of this paper is organized as follows. Section 2 introduces the main
nomenclature used in this paper. Section 3 details the operating constraints of a single
slow- and quick-start unit. In Sect. 4, we provide a convex hull proof for the power-
based UC including the constraints mentioned above. Section 5 provides and discusses
results from several case studies, where a computational performance comparison with
two other traditional UC formulations is made. Finally, some relevant conclusions are
drawn in Sect. 6.

2 Nomenclature

Here, we introduce the main notation used in this paper. Lowercase letters are used to
denote variables and indexes. Uppercase letters denote parameters.

2.1 Definitions

In this paper, we use the terminology introduced in [17] to refer to the different unit
operation states; see Fig. 2.

online the unit is synchronized with the system.
offline the unit is not synchronized with the system.
up the unit is producing above its minimum output. During the up state, the

unit output is controllable.
down the unit is producing below its minimum output: when offline, starting up

or shutting down.
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Fig. 2 Operating states including startup and shutdown power trajectories for slow-start units

2.2 Indexes

t Time periods, running from 1 to T hours.

2.3 Unit’s technical parameters

CLV Linear variable cost [$/MWh].
CNL No-load cost [$/h].
CSD Shutdown cost [$].
CSU Startup cost [$].
P Maximum power output [MW].
P Minimum power output [MW].
PSD
i Power output at the beginning of the i th interval of the shutdown ramp

process [MW]; see Fig. 2.
PSU
i Power output at the beginning of the i th interval of the startup ramp

process [MW]; see Fig. 2.
SD Shutdown capability [MW]; see Fig. 3.
SU Startup capability [MW]; see Fig. 3.
SDD Duration of the shutdown process [h]; see Fig. 2.
SUD Duration of the startup process [h]; see Fig. 2.
TD Minimum down time [h].
TU Minimum up time [h].

2.4 Continuous decision variables

et Total energy production during period t [MWh].
pt Power output at the end of period t , and production above the minimum

output P [MW].
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934 G. Morales-España et al.

Fig. 3 Startup and shutdown capabilities for quick-start units

p̂t Total power output at the end of period t , including startup and shutdown
power trajectories [MW].

2.5 Binary decision variables

ut Commitment status of the unit for period t , which is equal to 1 if the unit
is up, and 0 if it is down; see Fig. 2.

vt Startup status of the unit, which takes the value of 1 if the unit starts up
in period t and 0 otherwise; see Fig. 2.

wt Shutdown status of the unit, which takes the value of 1 if the unit shuts
down in period t and 0 otherwise; see Fig. 2.

3 Modeling the unit’s operation

The constraints presented here are a further extension of our previous work in [17].
Here, we generalize the formulation by considering quick-start units.

The quick-start units are defined as those that can ramp up from 0 to any value
between P and SU within one period, typically 1 h, as shown in Fig. 3. Similarly, they
can also ramp down from any value between SD and P to 0 within one period. On the
other hand, the slow-start units are defined as those units that require more than one
period to ramp up (down) from 0 (P) to P (0); see Fig. 2.

The up and down states are distinguished from the online and offline states. Figure
2 shows the different operation states of a thermal unit, as defined in Sect. 2. During
the up period (ut = 1), the unit has the flexibility to follow any power trajectory being
bounded between the maximum and minimum output. On the other hand, for slow-start
units, the power output follows a predefined power trajectory when the unit is starting
up or shutting down. The startup and shutdown power trajectories for quick-start units
are defined by the startup and shutdown capabilities; see Fig. 3.

This section first presents the basic operating constraints that applies for both slow-
and quick-start units. However, the total unit’s production output is different for each
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of them. Sections 3.2 and 3.3 show how to obtain the total production, power and
energy for slow- and quick-start generating units, respectively.

3.1 Basic operating constraints

The unit’s generation limits taking into account startup SU and shutdown SD capabil-
ities, which are SU, SD ≥ P by definition, are set as follows; see Fig. 3:

pt ≤ (

P − P
)

ut − (

P − SD
)

wt+1 + (

SU − P
)

vt+1 t ∈ [1, T − 1] (4)

pT ≤ (

P − P
)

uT (5)

pt ≥0 ∀t (6)

and the logical relationship between the decision variables ut , vt and wt ; and the
minimum uptime TU and downtime TD limits are ensured with

ut − ut−1 = vt − wt ∀t ∈ [2, T ] (7)
t

∑

i=t−TU+1

vi ≤ ut ∀t ∈ [TU + 1, T ] (8)

t
∑

i=t−T D+1

wi ≤ 1 − ut ∀t ∈ [T D + 1, T ] (9)

0 ≤ ut ≤ 1 ∀t (10)

0 ≤ vt ≤ 1, 0 ≤ wt ≤ 1 ∀t ∈ [2, T ] , (11)

where (7)–(9) describe the convex hull formulation of the minimum up and down time
constraints proposed in [20].

3.2 Slow-start units

The slow-start units are assumed to produce P at the beginning and at the end of
the up state; see Fig. 2. At those points, the startup and shutdown power trajectories
are as shown in Fig. 2. Consequently, constraints (4)–(11) describe the operation of
slow-start units during the up state when SU, SD = P .

The minimum down time TD is a function of the minimum offline time, i.e., TD is
equal to the startup and shutdown duration processes (SUD +SDD) plus the minimum
offline time of the unit. This then avoids the possible overlapping between the startup
and shutdown trajectories. That is, constraint (9) ensures that the unit is down (ut = 0)
for enough time to fit the unit’s startup and shutdown power trajectories.
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As presented in [17], the total power output including the startup and shutdown
power trajectories for slow-start units is obtained with

p̂t = P (ut + vt+1) + pt
︸ ︷︷ ︸

(i) Output when being up

+
SUD
∑

i=1

PSU
i vt−i+SUD+2

︸ ︷︷ ︸

(iii) SU trajectory

+
SDD+1
∑

i=2

PSD
i wt−i+2

︸ ︷︷ ︸

(ii) SD trajectory

∀t.

(12)

For a better understanding of (12), we can analyze how the power trajectory example
in Fig. 2 is obtained from the three different parts in (12):

(i) Output when the unit is up: Although the unit is up for five consecutive hours,
there are six total power values that are greater than or equal to P , from p̂4 to p̂9
(see the squares in Fig. 2). When t = 4, the term vt+1 in (i) becomes v5 ensuring
(the first) P at the beginning of the up period, and the term ut adds (the remaining
five) P for t = 5 . . . 9. In addition, pt adds the power production above P .

(ii) Shutdown power trajectory: This process lasts for 2 h, SDD = 2; then, the sum-
mation term (ii) becomes PSD

2 wt + PSD
3 wt−1, which is equal to PSD

2 for t = 10
and PSD

3 for t = 11, being zero otherwise. This provides the shutdown power
trajectory (see the circles in Fig. 2).

(iii) Startup power trajectory: The startup power trajectory can be obtained using a
procedure similar to that used in (ii) (see the triangles in Fig. 2).

Similarly to (12), the total energy production for slow-start units is given by

et = P · ut+ pt+ pt−1

2
+

SDD
∑

i=1

PSD
i+1+PSD

i

2
wt−i+1 +

SUD
∑

i=1

PSU
i+1+PSU

i

2
vt−i+SUD+1 ∀t

(13)

3.3 Quick-start units

The total power for a quick-start unit is given by

p̂t = P (ut + vt+1) + pt ∀t (14)

and the total energy production is

et = P (2ut + vt+1 + wt ) + pt−1 + pt
2

∀t. (15)

It is interesting to note that even though SU, SD ≥ P (by definition), the resulting
energy from (15) may take values below P during the startup and shutdown processes;
see Fig. 3.

The energy for slow- and quick-start units can also be obtained as a function of the
total power output p̂t , et = p̂t+ p̂t−1

2 for all t . However sometimes only the total power,
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(12) and (14), or the total energy, (13) and (15), production is needed as a function of
p, u, v, w.

Notice that (12)–(15) are defined for all t and use variables that are outside the
scheduling horizon [1, T ]. Those variables are considered to be equal to zero when
their subindex is t < 1 or t > T .

In summary, constraints (4)–(11), when SU, SD= P , together with (12) and (13)
describe the technical operation of slow-start units. Constraints (4)–(11) together with
(14) and (15) describe the technical operation of quick-start units.

3.4 Total unit operation cost

The objective function of any UC problem involves the total unit operation costs of
each generating unit ct , which is defined as follows:

ct = CNLut + CLVet + CSU′
vt + CSD′

wt . (16)

Note that the no-load cost (CNL) considered in (16) ignores the startup and shutdown
periods. This is because the CNL only multiplies the commitment during the up state
ut . To consider the no-load cost during the startup and shutdown periods, CSU′

and
CSD′

are introduced in (16) and defined as:

CSU′ = CSU + CNLSUD (16a)

CSD′ = CSD + CNLSDD, (16b)

where SUD, SDD = 1 for quick-start units; see Fig. 3.

4 Convex hull proof

In this section, we first prove that inequalities (4)–(6) are facet defining and then that
inequalities (4)–(11) define an integral polytope. Finally, we also prove that inequalities
describing the operation of slow-start units, (4)–(11) together with equalities (12)–
(13), define an integral polytope. Similarly, inequalities describing the operation of
quick-start units, (4)–(11) together with equalities (14)–(15), also define an integral
polytope.

Note that the variables wt are completely determined in terms of ut and vt using
(7). Therefore, in the following we eliminate variables wt and assume that constraints
(4), (9), and (11) are reformulated accordingly.

Definition 1 Let DT
(

TU, TD, P, P, SU, SD
) = {(u, v, p) ∈ R

3T−1+ | (u, v, p)
satisfy (4)–(11)}. Let CT

(

TU, TD, P, P, SU, SD
)

be the convex hull of the points in
DT

(

TU, TD, P, P, SU, SD
)

such that u ∈ {0, 1}T , v ∈ {0, 1}T−1.

For short, we denote CT
(

TU, TD, P, P, SU, SD
)

by CT and DT
(

TU, TD, P, P, SU, SD
)

by DT .
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938 G. Morales-España et al.

Fig. 4 3T Affinely independent points for gt , gT = 0, gyt = P and gzt = U , where U = SU − P ,
D = SD − P and P = P − P

To facilitate the proofs, we introduce the points xi , yi , zi ∈ CT , as shown in Fig. 4.
We also introduce the parameters U, D and P which are equivalent to U = SU − P ,
D = SD − P and P = P − P , respectively.

Proposition 1 CT is full dimensional in terms of u, v and p.

Proof From Fig. 4, it can be easily shown that the 3T points xi , yi and zi for i ∈ [1, T ]
are affinely independent when gt , gT = 0, gyt = P and gzt = U . Note that in case
D = 0, the point y(1) must be removed and the point y(T+1) added, thus keeping the
3T affinely independent points. This applies for all the following proofs; but for the
sake of brevity, we assume from now on that D �= 0. 	

Theorem 1 The inequalities in (4) describe facets of the polytope CT .

Proof We show that (4) describe facets of CT by the direct method [25]. We do so by
presenting 3T − 1 affinely independent points in CT that are tight (satisfying as an
equality) for the given inequality. Note in Fig. 4 that the point zT (the origin) satisfies
(4)–(6) as equality. Therefore, to get 3T −1 affinely independent points, we need only
3T − 2 other linearly independent points.

The following 3T−2 points are linearly independent and tight for (4) when gT = 0,
gt , g

y
t = P and gzt = U : T − 1 points xi for i ∈ [1, t − 1] ∪ [t + 1, T ], T points yi

for i ∈ [1, T ], and T − 1 points zi for i ∈ [1, T − 1]. 	

Theorem 2 The inequality (5) describes a facet of the polytope CT .

Proof As mentioned before, it suffices to show 3T − 2 linearly independent points
that are tight for (5). The following 3T − 2 points are linearly independent and tight
for (5) when gt = 0, gT , gyt = P and gzt = U : T points xi for i ∈ [1, T ], T − 1
points yi for i ∈ [1, T − 1], and T − 1 points zi for i ∈ [1, T − 1]. 	
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Theorem 3 The inequalities in (6) describe facets of the polytope CT .

Proof The following 3T − 2 points are linearly independent and tight for (6) when
gt , g

y
t , gzt , g

T = 0: T points xi for i ∈ [1, T ], T − 1 points yi for i ∈ [1, t − 1] ∪
[t + 1, T ], and T − 1 points zi for i ∈ [1, T − 1]. 	


We may conclude that (4)–(6) describe facets of CT .
Now, we prove that the inequalities (4)–(11) are sufficient to describe the convex

hull of the feasible solutions.
We need a preliminary lemma.

Lemma 1 Let P = {x ∈ R
n|Ax ≤ b} be an integral polyhedron, i.e, P = conv(P ∩

Z
n). Define Q = {(x, y) ∈ R

n × R
m |x ∈ P, 0 ≤ yi ≤ ci x, i = 1, . . . , k, yi =

di x, i = k + 1, . . . ,m}, where 1 ≤ k ≤ m, ci , di ∈ R
n, and ci x ≥ 0, di x ≥ 0 for

i = 1, . . . ,m and for each x ∈ P. Then every vertex (x̃, ỹ) of Q has the property that
x̃ is integral.

Proof Suppose by contradiction that there exists a vertex (x̃, ỹ) of Q, such that x̃ is
not integral. Then, x̃ is not a vertex of P and therefore there exist x̄1, x̄2 ∈ P, such
that x̃ = 1

2 x̄
1 + 1

2 x̄
2. Moreover, ỹi = ci x̃ for i = 1, . . . , k; indeed, if there exists r ,

1 ≤ r ≤ k, such that 0 ≤ ỹr < cr x̃ , then (x̃, ỹ) is a convex combination of the point
(x̃, ŷ) and the point (x̃, y̌), where ŷr = cr x̃ , y̌r = 0, and ŷi = y̌i = ỹi for 1 ≤ i ≤ m,
i �= r .

For j = 1, 2, let ȳ j
i = ci x̄ j for i = 1, . . . , k and ȳ j

i = di x̄ j for i = k + 1, . . . ,m.
Then (x̃, ỹ) = 1

2 (x̄1, ȳ1) + 1
2 (x̄2, ȳ2), i.e., (x̃, ỹ) is a convex combination of (x̄1, ȳ1)

and (x̄2, ȳ2). Contradiction. 	

Theorem 4 The polytopes CT and DT are equal.

Proof The thesis can be proved by showing that DT defines an integral polytope. This
easily follows by applying Lemma 1, considering P as the integer polytope defined
by inequalities (8)–(11) (see [20]), pt as the additional variables and (4)–(6) as the
new inequalities.

Finally, we prove that inequalities describing the operation of slow- and quick-start
units to define integral polytopes. 	

Definition 2 Let the polytope that describes the operation of slow-start units be
ST (TU, TD, P, P, SUD, SDD, PSU

i , PSD
i ) = {(u, v, p, p̂, e) ∈ R

5T−1+ |(u, v, p)
satisfying inequalities (4)–(13) for SU, SD = P}, for short denoted as ST . Let the poly-
tope that describes the operation of quick-start units be QT (TU, TD, P, P, SU, SD, )

= {(u, v, p, p̂, e) ∈ R
5T−1+ |(u, v, p) satisfying inequalities (4)–(11)} and (14)–(15)},

for short denoted as QT .

Theorem 5 The polytopes ST and QT define integer polytopes on variables u, v.

Proof This easily follows by applying Lemma 1. For the polytope describing the
operation of slow-start units ST , P is the integer polytope DT (see Theorem 4),
p̂t , et are the additional variables, and (12)–(13) the new equalities. Similarly, for the
polytope describing the operation of quick-start units QT , P is the integer polytope
DT , p̂t , et are the additional variables, and (14)–(15) the new equalities. 	


123



940 G. Morales-España et al.

Concluding, the constraints describing the technical operation of both slow- and
quick-start units are convex hulls. These constraints are (4)–(11), when SU, SD = P ,
together with (12) and (13) for slow-start units; and (4)–(11) together with (14) and
(15) for quick-start units.

In short, the entire formulation (4)–(15) defines an integral polytope.

5 Numerical results

To illustrate the computational performance of the formulation proposed in this paper,
two sets of case studies are carried out: one for a self-UC problem and another for a
network-constrained UC problem. This section compares the computational perfor-
mance of the proposed power-based formulation with two energy-based formulations,
[1] and [4], which have been recognized as computationally efficient in the literature
[14,18,23].

The following three formulations are then implemented:

– Pw: This is the complete formulation proposed in this paper. For the network-
constrained UC, we include other common constraints such as demand balance,
reserves, ramping and transmission limits. The complete network-constrained
power-based UC is presented in Appendix .

– 1bin: This formulation is presented in [1] and requires a single set of binary
variables (per unit and per period), i.e., the startup and shutdown decisions are
expressed as a function of the commitment decision variables.

– 3bin: The convex hull of the minimum up/down time constraints proposed in [20]
[see (8) and (9)] are implemented with the three-binary equivalent formulation of
1bin. This formulation is presented in [4].

Notice that a different set of constraints is used for the self-UC and for the network-
constrained UC problems. For the self-UC problems, 1bin and 3bin are modeled only
considering (1) generation limits, (2) minimum up and down times, and (3) startup and
shutdown capabilities: the same set of constraints presented in Sect. 3. For the network-
constrained UC problems, 1bin and 3bin are modeled taking into account the full set
of constraints presented in [1] and its 3-bin equivalent [4], respectively; in addition,
these formulations are further extended by introducing downward reserve (which is
modeled in the same fashion as the upward reserve; see [1,14,16]), transmission limits
[see (22) in Appendix ] and wind generation [which is taken into account in the demand
balance (19) and transmission-limit constraints (22)].

It is important to highlight that the energy-based UC formulations 1bin and 3bin
represent the same mixed-integer optimization problem. The difference between them
is how the constraints are formulated. In other words, for a given case study, 1bin
and 3bin obtain the same optimal results, e.g., commitments, generating outputs and
operation costs. On the other hand, the power-based formulation obtains different
optimal results, since the constraints are based on power-production variables rather
than energy-output variables. The reader is referred to [14,18] for further and detailed
discussions about the differences between the optimal power-based and energy-based
scheduling.
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Table 1 Generator data for quick-start units

Gen Technical information Cost coefficients†

P P TU and TD SU SD p0* Ste
0 CNL CLV CSU CSD

(MW) (MW) (h) (MW) (MW) (MW) (h) ($/h) ($/MWh) ($) ($)

1 455 150 8 252 303 150 8 1000 16.19 9000 0

2 455 150 8 252 303 150 8 970 17.26 10,000 0

3 130 20 5 57 75 20 5 700 16.60 1100 0

4 130 20 5 57 75 20 5 680 16.50 1120 0

5 162 25 6 71 94 25 6 450 19.70 1800 0

6 80 20 3 40 50 20 3 370 22.26 340 0

7 85 25 3 45 55 25 3 480 27.74 520 0

8 55 10 1 25 33 10 1 660 25.92 60 0

9 55 10 1 25 33 10 1 665 27.74 60 0

10 55 10 1 25 33 10 1 670 27.79 60 0

∗ p0 is the unit’s initial production prior to the first period of the time span
 Ste0: hours that the unit has been online prior to the first period of the time span

All tests were carried out using CPLEX 12.5 on an Intel-i7 3.4-GHz personal
computer with 8 GB of RAM memory. The problems are solved until they hit the time
limit of 10,000 s or until they reach optimality (more precisely to 10−6 of relative
optimality gap).

5.1 Self-UC

Here, a self-UC problem for a price-taker producer is solved for different time spans.
The goal is then to optimally schedule the generating units to maximize profits (dif-
ference between the revenue and the total operating cost [5,17]) during the planning
horizon:

max
N

∑

t=1

G
∑

g=1

[

πt egt − cgt
(

ugt , vgt , wgt , egt
)]

(17)

where subindex g stands for generating units and G is the total quantity of units; πt

refers to the energy prices, which for these case studies are shown in Table 2; and cgt is
the total operating cost per unit g at period t , which is defined in (16) for the proposed
power-based UC formulation. The self-UC problem also arises when solving UC with
decomposition methods such as Lagrangian relaxation [6].

Two different ten-unit system data are considered, one containing only quick-start
units and another containing both quick- and slow-start units. The ten-unit system
data for quick-start units are presented in Table 1. The power system data are based
on information presented in [1,16]. For this system of ten quick-start units, we also
include a power-based formulation that only models quick-start units (see Sect. 3),
labeled as PwQ.
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Table 2 Energy price ($/MWh)

t = 1 . . . 12 → 13.0 7.2 4.6 3.3 3.9 5.9 9.8 15.0 22.1 31.3 33.2 24.8

t = 13 . . . 24 → 19.5 16.3 14.3 13.7 15.0 17.6 20.2 29.3 49.5 53.4 30.0 20.2

Table 3 Generator data for slow-start units

Gen Technical information

P P TU and TD SU SD SUD SDD p0 Ste0
(MW) (MW) (h) (MW) (MW) (h) (h) (MW) (h)

1 455 150 8 150 150 3 2 150 8

2 455 150 8 150 150 3 2 150 8

3 130 20 5 20 20 2 2 20 5

4 130 20 5 20 20 2 2 20 5

5 162 25 6 25 25 2 2 25 6

6 80 20 3 20 20 1 1 20 3

7 85 25 3 25 25 1 1 25 3

Another 10-unit system data set including slow-start units is created to observe the
computational performance of the formulation for slow-start units. We create this new
case study by replacing the first seven quick-start units from Table 1 by slow-start units.
The data for these seven slow-start units are provided in Table 3. For these slow-start
units, the power outputs for the startup (shutdown) power trajectories are obtained
as an hourly linear change from 0 (P) to P (0) for a duration of SUD (SDD ) hours.
1bin and 3bin are modeled only for quick-start units because: (1) those traditional UC
formulations ignore the units’ startup and shutdown power trajectories and including
these trajectories will considerably increase the models’ computing complexity [17];
and (2) the main purpose of these case studies is to compare the computational per-
formance of the proposed formulations with the traditional UC formulations (which
ignore the startup and shutdown trajectories).

In short, two different case studies are carried out for the self-UC problem, the
first case study models ten quick-start units (see Table 1) for formulations 3bin, 1bin
and PwQ. The second case study also models ten units, seven slow-start (see Table 3)
and three quick-start units (units 8 to 10 in Table 1). This case study is solved using
the proposed power-based formulation for both slow- and quick-start units, which is
labeled as Pw.

Table 4 shows the computational performance of the self-UC problem (17) sub-
ject to the different UC formulations for different time spans (up to 512 days to
consider large case studies). The tightness of each formulation is measured with the
integrality gap (IntGap) and the integrality gap in the root node (RootIGap). The
IntGap is defined as the relative distance between the MIP and LP optima [16,24],
where the MIP optimum corresponds to the best integer solution that could be found,
and the LP optimum corresponds to the LP relaxation of the MIP formulation. The
RootIGap is obtained as the relative difference between the upper and lower bounds
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Table 4 Computational performance of the UC formulations for different time spans (in days)

Days IntGap (%) RootIGap (%) LP time (s) MIP time (s)* B&B nodes

Pw 3bin 1bin Pw 3bin 1bin PwQ† Pw† 3bin 1bin 3bin 1bin Pw 3bin 1bin

64 0 0.88 2.57 0 0.027 0.063 0.42 0.47 0.80 0.95 12.01 13.79 0 496 487

128 0 0.87 2.57 0 0.026 0.050 1.03 1.22 2.06 2.60 45.54 (0.033) 0 528 603915

256 0 0.87 2.57 0 0.026 0.058 2.62 3.15 5.38 6.88 199.18 (0.052) 0 533 229035

512 0 0.87 2.57 0 0.026 0.056 6.96 8.55 14.29 18.83 734.03 (0.054) 0 488 136128

∗ (·) shows the final optimality gap in % if the time limit is reached
 PwQ is equal to Pw for these cases
† For these formulations, the LP and MIP times are equal

Table 5 Problem size comparison of the UC formulations for different time spans (in days)

Days # constraints # nonzero elements # real var # binary var

Pw* 3bin 1bin PwQ Pw 3bin 1bin Pw* 3bin 1bin Pw* 3bin 1bin

64 76749 107459 138225 432673 440339 417313 469719 30720 15360 46080 46080 46080 15360

128 153549 214979 276465 865825 881171 835105 939735 61440 30720 92160 92160 92160 30720

256 307149 430019 552945 1732129 1762835 1670689 1879767 122880 61440 184320 184320 184320 61440

512 614349 860099 1105905 3464737 3526163 3341857 3759831 245760 122880 368640 368640 368640 122880

a PwQ is equal to Pw for these cases

before the branching process (after the solver applies initial cuts and heuristics at
the root node). Beware that the IntGap of two formulations which are not model-
ing exactly the same problem should not be directly compared. Therefore, IntGap
together with RootIGap provide a better indication of the strength of each formula-
tion.

Note that the MIP optima of PwQ and Pw were achieved by just solving the LP
problem, IntGap = 0 (thus RootIGap = 0), hence solving the MIP problems in LP
time. On the other hand, as usual, the branch-and-cut method was needed to solve the
MIP for 3bin and 1bin. Table 4 also shows the MIP time and the branch-and-bound
nodes (B&B nodes) that were explored for the different formulations.

Table 5 shows the dimensions for all formulations for the different time spans. Note
that PwQ and Pw are more compact, in terms of quantity of constraints, than 3bin and
1bin. The formulations PwQ and Pw present the same quantity of binary variables
of 3bin, but twice continuous variables. This is because PwQ and Pw model power
and energy as two different variables. The formulation 1bin presents a third of binary
variables in comparison with the other formulations, but it is the formulation presenting
the largest quantity of continuous variables, constraints and nonzero elements in the
constraint matrix. This is the result of reformulating the MIP model to avoid the startup
and shutdown binary variables. The work in [1] claims that this would reduce the node
enumeration in the branch-and-bound process. Note however that this reformulation
is the least tight, see IntGap and RootIGap in Table 4, and it is also the largest, hence
presenting the worst computational performance; similar results are obtained in [16].
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Table 6 IEEE 118-bus system results: computational performance of the UC formulations for different
time spans (in hours)

Hours IntGap (%) RootIGap (%) LP time (s) MIP time (s)* B&B Nodes

Pw 3bin 1bin Pw 3bin 1bin Pw 3bin 1bin Pw 3bin 1bin Pw 3bin 1bin

24 0.89 1.13 1.75 0.089 0.375 1.052 0.44 2.48 2.9 27.61 585.22 (0.094) 1581 93285 889610

36 1.46 0.98 1.87 0.031 0.393 1.050 1.12 10.28 13.56 34.54 (0.103) (0.179) 1189 534480 137325

48 1.06 0.7 1.37 0.027 0.504 0.943 1.7 17.87 19.19 69.58 (0.095) (0.269) 1673 260545 40115

60 1.37 0.71 1.54 0.034 0.484 0.828 3.53 37.89 40.86 267.23 (0.148) (0.326) 1982 146818 26718

∗ (·) shows the final optimality gap in % if the time limit is reached

5.2 Network-constrained UC

Here, the modified IEEE 118-bus test system is used for different time spans, from
24 to 60 h. All system data can be found in [14]. The IEEE-118 bus system has 118
buses; 186 transmission lines; 54 thermal units (both quick- and slow-start units); 91
loads, with average and maximum levels of 3991 MW and 5592 MW, respectively; and
three wind units, with aggregated average and maximum production of 867 MW and
1333 MW, respectively, for the nominal wind case. Finally, the upward and downward
reserve requirement are set as the 5% of the total nominal wind production for each
hour. The network-constrained UC problem is considerably more complex than the
self-UC problem described in Sect. 5.1, due to the new complicating constraints that are
now included (into all the formulations), such as demand balance, reserves, ramping
and transmission limits (see Appendix).

Table 6 shows the computational performance of the network-constrained UC prob-
lem for all formulations and different time spans (up to 60 h). On the one hand, the
IntGap of Pw is always lower than that of 1bin, but higher than that of 3bin. However,
as mentioned above, the IntGap of Pw and 3Bin (or 1bin) cannot be compared directly
because they do not represent the same problem (3bin and 1bin which are equivalent,
thus providing the same optimal results). Hence, based on the IntGap, 3bin seems
the tightest formulation. On the other hand, based on the RootIGap, Pw seems the
tightest, up to 18x and 35x tighter than 3bin a 1bin, respectively. Notice that Pw was
the only formulation that solved all the cases within the time limit (10,000 s), 3bin
could only solve the smallest case and 1bin none of them. For the cases where 3bin
and 1bin could not be solved (time spans equal and above 36 h), Pw could achieve
a lower initial optimality gap (RootIGap) than the final optimality gap achieved by
3bin and 1bin (in 10,000 s). Furthermore, Pw could achieve this initial optimality gap
in a few seconds: 3.82, 10.14, 16.80, 27.87 s for the cases with time spans of 24, 36,
48 and 60 h, respectively. These times are similar to (and even lower than) the times
required by 1bin and 3bin to solve their LP relaxation. We can then conclude that Pw
is the tightest formulation due to its superiority in solving the MIP problems.

Table 5 shows the problem size for all formulations for different time spans. Sim-
ilarly to the self-UC case study (Sect. 5.1), Pw is more compact than the others, in
terms of quantity of constraints and nonzeros, but Pw has more continuous variables.
Also, although 1bin has a third of binary variables in comparison with the others, it has
the largest quantity of constraints and it is the least tight (see IntGap and RootIGap
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Table 7 IEEE 118-bus system results: problem size comparison of the UC formulations for different time
spans (in hours)

Hours # constraints # nonzero elements # real var # binary var

Pw* 3bin 1bin Pw 3bin 1bin Pw* 3bin 1bin Pw* 3bin 1bin

64 18093 37803 38141 315424 473791 472969 13518 9720 11016 3888 3888 1296

128 27489 56919 57257 476404 734431 732457 20322 14580 16524 5832 5832 1944

256 36885 76035 76373 637384 995071 991945 27126 19440 22032 7776 7776 2592

512 46281 95151 95489 798364 1255711 1251433 33930 24300 27540 9720 9720 3240

∗ PwQ is equal to Pw for these cases

in Table 4), consequently presenting the worst computational performance, as also
discussed in Sect. 5.1.

In conclusion, from both self-UC and network-constrained UC case studies, the pro-
posed formulation presented a dramatic improvement in computation in comparison
with 3bin and 1bin due to its tightness (speedups above 85x and 8200x, respec-
tively) and it also presents a lower LP burden due to its compactness (see Table 5 and
Table 7).

6 Conclusion

This paper presented the convex hull description of the basic constraints of slow- and
quick-start generating units for power-based unit commitment (UC) problems. These
constraints are: generation limits, and minimum up and down times, startup and shut-
down power trajectories for slow-start units, and startup and shutdown capabilities
for quick-start units. Although the model does not include some crucial constraints,
such as ramping, it can be used as the core of any UC formulation and thus help to
tighten the final UC model. Finally, two different sets of case studies were carried out,
for a self-UC and for a network-constrained UC, where the proposed formulation was
simultaneously tighter and more compact when compared with two other UC formu-
lations commonly known in the literature, consequently, solving both UC problems
significantly faster.
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Appendix: Network-constrained power-based UC formulation

Here, we present the network-constrained power-based UC formulation, the core of
which is based on the constraints presented in Sect. 3. Although some nomenclature
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and constraints were introduced before, for the sake of clarity and completeness, this
section provides the complete nomenclature and set of constraints.

Nomenclature

Indexes and sets

g ∈ G Generating units, running from 1 to G.
GQ Set of quick-start generating units in G.
GS Set of slow-start generating units in G.
b ∈ B Buses, running from 1 to B.
l ∈ L Transmission lines, running from 1 to L .
t ∈ T Hourly periods, running from 1 to T hours.

System parameters

Dbt Power demand on bus b at the end of hour t [MW].
D−
t System requirements for downward reserve for hour t [MW].

D+
t System requirements for upward reserve for hour t [MW].

Fl Power flow limit on transmission line l [MW].
�lb Shift factor for line l associated with bus b [p.u.].
�G
lg Shift factor for line l associated with unit g [p.u.].

PW
bt Nominal forecasted wind power at the end of hour t [MW].

Unit’s parameters

CLV
g Linear variable production cost [$/MWh].

CNL
g No-load cost [$/h].

CSD
g Shutdown cost [$].

CSU
g Startup cost [$].

Pg Maximum power output [MW].
Pg Minimum power output [MW].
PSD
gi Power output at the beginning of the i th interval of the shutdown ramp

process [MW].
PSU
gi Power output at the beginning of the i th interval of the startup ramp

process [MW].
RDg Ramp-down capability [MW/h].
RUg Ramp-up capability [MW/h].
SDg Shutdown capability [MW].
SUg Startup capability [MW].
SDD

g Duration of the shutdown process [h].
SUD

g Duration of the startup process [h].
TDg Minimum down time [h].
TUg Minimum up time [h].
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Decision variables

pW
bt Wind power output at the end of hour t [MW].

egt Total energy output during hour t [MWh].
pgt Power output above minimum output at the end of hour t [MW].
p̂gt Total power output at the end of hour t , including startup and shutdown

power trajectories [MW].
r−
gt Downward capacity reserve [MW].
r+
gt Upward capacity reserve [MW].
ugt Binary variable which is equal to 1 if the unit is producing above minimum

output and 0 otherwise.
vgt Binary variable which takes the value of 1 if the unit starts up and 0

otherwise.
wgt Binary variable which takes the value of 1 if the unit shuts down and 0

otherwise.

Objective function

The UC seeks to minimize all production costs (Sect. 1):

min
∑

g∈G

∑

t∈T

[

CLV
g egt + CNL

g ugt + CSU′
g vgt + CSD′

g wgt

]

(18)

where CSU′
and CSD′

are defined as (see Sect. 3.4):

CSU′
g = CSU

g + CNL
g SUD

g ∀g (18a)

CSD′
g = CSD

g + CNL
g SDD

g ∀g. (18b)

The proposed formulation also takes into account variable startup costs, which
depend on how long the unit has been offline. The reader is referred to [17] for further
details.

System-wide constraints

Power demand balance and reserve requirements are guaranteed as follows:

∑

g∈G
p̂gt =

∑

b∈B

(

Dbt − pW
bt

)

∀t (19)

∑

g∈G
r+
gt ≥ D+

t ∀t (20)

∑

g∈G
r−
gt ≥ D−

t ∀t, (21)
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where (19) is a power balance at the end of hour t . The energy balance for the whole
hour is automatically achieved by satisfying the power demand at the beginning and
end of each hour, and by considering a piecewise linear power profile for demand and
generation [14,18].

Power-flow transmission limits are ensured with [21]:

−Fl ≤
∑

g∈G
�G
lg p̂gt +

∑

b∈B
�lb

(

pW
bt − Dbt

)

≤ Fl ∀l, t. (22)

Individual unit constraints

The commitment, startup/shutdown logic and the minimum up/down times are guar-
anteed with:

ugt − ug,t−1 = vgt − wgt ∀g, t (23)
t

∑

i=t−TUg+1

vgi ≤ ugt ∀g, t ∈ [

TUg, T
]

(24)

t
∑

i=t−TDg+1

wgi ≤ 1 − ugt ∀g, t ∈ [

TDg, T
]

. (25)

The power production and reserves must be within the power capacity limits:

pgt + r+
gt ≤

(

Pg − Pg

)

ugt − (

Pg − SDg
)

wg,t+1 +
(

SUg − Pg

)

vg,t+1 ∀g, t
pgt − r−

gt ≥ 0 ∀g, t. (26)

Ramping capability limits are ensured with:

(

pgt + r+
gt

)

− pg,t−1 ≤ RUg ∀g, t (27)

−
(

pgt − r−
gt

)

+ pg,t−1 ≤ RDg ∀g, t. (28)

By modeling the generation output pgt above Pg , the proposed formulation avoids
introducing binary variables into the ramping constraints (27) and (28). In other words,
when the generation output variable is defined between 0 and Pg , then the ramping
constraints should consider the case when a generator’s output level should not be
limited by the ramp rate, when it is starting up or shutting down; such complicating
situations are usually tackled by introducing big-M parameters together with binary
variables into the ramping constraints, e.g., [1,4].
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The total power and energy production for thermal units are obtained as follows:

p̂gt = Pg

(

ugt + vg,t+1
) + pgt ∀g ∈ GQ, t (29)

p̂gt = Pg

(

ugt + vg,t+1
) + pgt +

SUD
g

∑

i=1

PSU
gi vg,t−i+SUD

g +2

+
SDD

g +1
∑

i=2

PSD
gi wg,t−i+2 ∀g ∈ GS, t (30)

egt = p̂g,t−1 + p̂gt
2

∀g, t. (31)

Wind production limits are represented by:

pW
bt ≤ PW

bt ∀b, t. (32)

Finally, non-negative constraints for all decision variables are:

pgt , r
+
gt , r

−
gt ≥ 0 ∀g, t (33)

pW
bt ≥ 0 ∀b, t. (34)

References

1. Carrion M, Arroyo J (2006) A computationally efficient mixed-integer linear formulation for the
thermal unit commitment problem. IEEE Trans Power Syst 21(3):1371–1378. doi:10.1109/TPWRS.
2006.876672

2. Damci-Kurt P, Kucukyavuz S, Rajan D, Atamturk A (2013) A polyhedral study of ramping in unit com-
mittment. Research report BCOL.13.02 IEOR, University of California-Berkeley.http://ieor.berkeley.
edu/~atamturk/pubs/ramping.pdf

3. ERCOT (2011) White Paper functional description of core market management system (MMS)
applications for look-ahead SCED, version 0.1.2. Tech. rep., Electric Reliability Council of Texas
(ERCOT), Texas-USA. http://www.ercot.com/content/meetings/metf/keydocs/2012/0228/04_white_
paper_funct_desc_core_mms_applications_for_la_sced.doc

4. FERC (2012) RTO Unit Commitment Test System Tech. rep., Federal Energy and Regulatory Com-
mission, Washington DC, USA

5. Frangioni A, Gentile C (2006) Solving nonlinear single-unit commitment problems with ramping
constraints. Operat Res 54(4):767–775. doi:10.1287/opre.1060.0309

6. Frangioni A, Gentile C, Lacalandra F (2008) Solving unit commitment problems with general ramp
constraints. Int J Electric Power Energy Syst 30(5):316–326. doi:10.1016/j.ijepes.2007.10.003

7. Frangioni A, Gentile C, Lacalandra F (2009) Tighter approximated MILP formulations for unit com-
mitment problems. IEEE Trans Power Syst 24(1):105–113. doi:10.1109/TPWRS.2008.2004744

8. Garcia-Gonzalez J, San Roque A, Campos F, Villar J (2007) Connecting the intraday energy and
reserve markets by an optimal redispatch. IEEE Trans Power Syst 22(4):2220–2231. doi:10.1109/
TPWRS.2007.907584

9. Gentile C, Morales-Espana G, Ramos A (2014) A tight MIP formulation of the unit commitment
problem with start-up and shut-down constraints. Technical report IIT-14-040A, Institute for Research
in Technology (IIT). www.optimization-online.org/DB_FILE/2014/07/4433.pdf

10. Guan X, Gao F, Svoboda A (2000) Energy delivery capacity and generation scheduling in the deregu-
lated electric power market. IEEE Trans Power Syst 15(4):1275–1280. doi:10.1109/59.898101

123

http://dx.doi.org/10.1109/TPWRS.2006.876672
http://dx.doi.org/10.1109/TPWRS.2006.876672
http://ieor.berkeley.edu/~atamturk/pubs/ramping.pdf
http://ieor.berkeley.edu/~atamturk/pubs/ramping.pdf
http://www.ercot.com/content/meetings/metf/keydocs/2012/0228/04_white_paper_funct_desc_core_mms_applications_for_la_sced.doc
http://www.ercot.com/content/meetings/metf/keydocs/2012/0228/04_white_paper_funct_desc_core_mms_applications_for_la_sced.doc
http://dx.doi.org/10.1287/opre.1060.0309
http://dx.doi.org/10.1016/j.ijepes.2007.10.003
http://dx.doi.org/10.1109/TPWRS.2008.2004744
http://dx.doi.org/10.1109/TPWRS.2007.907584
http://dx.doi.org/10.1109/TPWRS.2007.907584
www.optimization-online.org/DB_FILE/2014/07/4433.pdf
http://dx.doi.org/10.1109/59.898101


950 G. Morales-España et al.

11. Hobbs BF, Rothkopf MH, O’Neill RP, Chao HP (2001) The next generation of electric power unit
commitment models, 1st edn. Springer, Berlin

12. Lee J, Leung J, Margot F (2004) Min-up/min-down polytopes. Discret Optim 1(1):77–85. doi:10.1016/
j.disopt.2003.12.001

13. Meibom P, Barth R, Hasche B, Brand H, Weber C, O’Malley M (2011) Stochastic optimization model to
study the operational impacts of high wind penetrations in Ireland. IEEE Trans Power Syst 26(3):1367–
1379. doi:10.1109/TPWRS.2010.2070848

14. Morales-España G (2014) Unit commitment: computational performance, system representation and
wind uncertainty management. Ph.D. thesis, Pontifical Comillas University, KTH Royal Institute of
Technology, and Delft University of Technology, Spain

15. Morales-Espana G, Garcia-Gonzalez J, Ramos A (2012) Impact on reserves and energy delivery of
current UC-based Market-Clearing formulations. In: European energy market (EEM), 2012 9th inter-
national conference on the, pp. 1–7. Florence, Italy. doi:10.1109/EEM.2012.6254749

16. Morales-Espana G, Latorre JM, Ramos A (2013) Tight and compact MILP formulation for the ther-
mal unit commitment problem. IEEE Trans Power Syst 28(4):4897–4908. doi:10.1109/TPWRS.2013.
2251373

17. Morales-Espana G, Latorre JM, Ramos A (2013) Tight and compact MILP formulation of start-up
and shut-down ramping in unit commitment. IEEE Trans Power Syst 28(2):1288–1296. doi:10.1109/
TPWRS.2012.2222938

18. Morales-Espana G, Ramos A, Garcia-Gonzalez J (2014) An MIP formulation for joint market-clearing
of energy and reserves based on ramp scheduling. IEEE Trans Power Syst 29(1):476–488. doi:10.1109/
TPWRS.2013.2259601

19. Padhy N (2004) Unit commitment-a bibliographical survey. IEEE Trans Power Syst 19(2):1196–1205.
doi:10.1109/TPWRS.2003.821611

20. Rajan D, Takriti S (2005) Minimum up/down polytopes of the unit commitment problem with
start-up costs. Research report RC23628, IBM. http://domino.research.ibm.com/library/cyberdig.nsf/
1e4115aea78b6e7c85256b360066f0d4/cdcb02a7c809d89e8525702300502ac0?OpenDocument

21. Shahidehpour M, Yamin H, Li Z (2002) Market operations in electric power systems: forecasting,
scheduling, and risk management, 1st edn. Wiley-IEEE Press, New York

22. Stoft S (2002) Power system economics: designing markets for electricity, 1st edn. Wiley-IEEE Press,
New York

23. Tahanan M, Ackooij WV, Frangioni A, Lacalandra F (2015) Large-scale unit commitment under
uncertainty. 4OR pp. 1–57 (2015). doi:10.1007/s10288-014-0279-y

24. Williams HP (2013) Model Building in mathematical programming, 5th edition edn. Wiley, New York
25. Wolsey, L.: Integer Programming. Wiley-Interscience (1998)
26. Yamin HY (2004) Review on methods of generation scheduling in electric power systems. Electric

Power Syst Res 69(2–3):227–248. doi:10.1016/j.epsr.2003.10.002

123

http://dx.doi.org/10.1016/j.disopt.2003.12.001
http://dx.doi.org/10.1016/j.disopt.2003.12.001
http://dx.doi.org/10.1109/TPWRS.2010.2070848
http://dx.doi.org/10.1109/EEM.2012.6254749
http://dx.doi.org/10.1109/TPWRS.2013.2251373
http://dx.doi.org/10.1109/TPWRS.2013.2251373
http://dx.doi.org/10.1109/TPWRS.2012.2222938
http://dx.doi.org/10.1109/TPWRS.2012.2222938
http://dx.doi.org/10.1109/TPWRS.2013.2259601
http://dx.doi.org/10.1109/TPWRS.2013.2259601
http://dx.doi.org/10.1109/TPWRS.2003.821611
http://domino.research.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/cdcb02a7c809d89e8525702300502ac0?OpenDocument
http://domino.research.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/cdcb02a7c809d89e8525702300502ac0?OpenDocument
http://dx.doi.org/10.1007/s10288-014-0279-y
http://dx.doi.org/10.1016/j.epsr.2003.10.002

	Tight MIP formulations of the power-based unit commitment problem
	Abstract
	1 Introduction
	2 Nomenclature
	2.1 Definitions
	2.2 Indexes
	2.3 Unit's technical parameters
	2.4 Continuous decision variables
	2.5 Binary decision variables

	3 Modeling the unit's operation
	3.1 Basic operating constraints
	3.2 Slow-start units
	3.3 Quick-start units
	3.4 Total unit operation cost

	4 Convex hull proof
	5 Numerical results
	5.1 Self-UC
	5.2 Network-constrained UC

	6 Conclusion
	Acknowledgments
	Appendix: Network-constrained power-based UC formulation
	Nomenclature
	Indexes and sets
	System parameters
	Unit's parameters
	Decision variables

	Objective function
	System-wide constraints
	Individual unit constraints

	References


