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Abstract

A stochastic combinatorial semi-bandit is an on-

line learning problem where at each step a learn-

ing agent chooses a subset of ground items sub-

ject to constraints, and then observes stochastic

weights of these items and receives their sum as

a payoff. In this paper, we close the problem of

computationally and sample efficient learning in

stochastic combinatorial semi-bandits. In partic-

ular, we analyze a UCB-like algorithm for solv-

ing the problem, which is known to be computa-

tionally efficient; and prove O(KL(1/∆) log n)
and O(

p
KLn log n) upper bounds on its n-step

regret, where L is the number of ground items,

K is the maximum number of chosen items, and

∆ is the gap between the expected returns of the

optimal and best suboptimal solutions. The gap-

dependent bound is tight up to a constant factor

and the gap-free bound is tight up to a polyloga-

rithmic factor.

1 Introduction

A stochastic combinatorial semi-bandit [11, 10] is an on-

line learning problem where at each step a learning agent

chooses a subset of ground items subject to combinatorial

constraints, and then observes stochastic weights of these

items and receives their sum as a payoff. The problem can

be viewed as a learning variant of combinatorial optimiza-

tion with a linear objective function and binary variables.

Many classical combinatorial optimization problems have

linear objectives [16]. Therefore, stochastic combinatorial
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semi-bandits have found many practical applications, such

as learning spectrum allocations [11], shortest paths [11],

routing networks [12], and recommendations [12, 13].

In our work, we study a variant of stochastic combinatorial

semi-bandits where the learning agent has access to an of-

fline optimization oracle that can find the optimal solution

for any weights of the items. We say that the problem is a

(L,K,∆) instance when L is the cardinality of its ground

set E, K is the maximum number of chosen items, and ∆

is the gap between the expected returns of the optimal and

best suboptimal solutions. We also say that the problem is

a (L,K) instance if it is a (L,K,∆) instance for some ∆.

Based on the existing bandit work [6], it is relatively easy

to propose a UCB-like algorithm for solving our problem

[11], and we call this algorithm CombUCB1. CombUCB1 is a

variant of UCB1 that calls the oracle to find the optimal so-

lution with respect to the upper confidence bounds on the

weights of the items. Chen et al. [10] recently showed that

the n-step regret of CombUCB1 in any (L,K,∆) stochastic

combinatorial semi-bandit is O(K2L(1/∆) log n).

Our main contribution is that we derive two upper bounds

on the n-step regret of CombUCB1, O(KL(1/∆) log n) and

O(
p
KLn log n). Both of these bounds are significant im-

provements over Chen et al. [10]. Moreover, we prove two

novel lower bounds, Ω(KL(1/∆) log n) and Ω(
p
KLn),

which match our upper bounds up to polylogarithmic fac-

tors. The consequence of these results is that CombUCB1 is

sample efficient because it achieves near-optimal regret. It

is well known that CombUCB1 is also computationally effi-

cient [11], it can be implemented efficiently whenever the

offline optimization oracle is computationally efficient. So

we close the problem of computationally and sample effi-

cient learning in stochastic combinatorial semi-bandits, by

showing that CombUCB1 has both properties. This problem

is still open in the adversarial setting (Section 8).

Our analysis is novel. It is based on the idea that the event

that “many” items in a chosen suboptimal solution are not

observed “sufficiently often” does not happen “too often”.

535



Tight Regret Bounds for Stochastic Combinatorial Semi-Bandits

The reason is that this event happens for “many” items si-

multaneously. Therefore, when the event happens, the ob-

servation counters of “many” items increase. Based on this

observation, we divide the regret associated with the event

among “many” items, instead of attributing it separately to

each item as in the prior work [11, 10]. This is the key step

in our analysis that yields tight upper bounds.

Our paper is organized as follows. In Section 2, we intro-

duce our learning problem and the algorithm for solving it.

In Section 3, we summarize our results. In Section 4, we

prove a O(K
4

3L(1/∆) log n) upper bound on the regret of

CombUCB1. In Section 5, we prove a O(KL(1/∆) log n)
upper bound on the regret of CombUCB1. In Section 6, we

prove gap-dependent and gap-free lower bounds. In Sec-

tion 7, we evaluate CombUCB1 on a synthetic problem and

show that its n-step regret grows as suggested by our gap-

dependent upper bound. In Section 8, we compare our re-

sults to prior work. In Section 9, we discuss extensions of

our work. We conclude in Section 10.

2 Setting

Formally, a stochastic combinatorial semi-bandit is a tuple

B = (E,Θ, P ), where E = {1, . . . , L} is a finite set of L
items, Θ ✓ 2E is a non-empty set of feasible subsets of E,

and P is a probability distribution over a unit cube [0, 1]E .

We borrow the terminology of combinatorial optimization

and call E the ground set, Θ the feasible set, and A 2 Θ a

solution. The items in the ground set E are associated with

a vector of stochastic weights w ⇠ P . The e-th entry of w,

w(e), is the weight of item e. The expected weights of the

items are defined as w̄ = Ew∼P [w]. The return for choos-

ing solution A under the realization of the weights w is:

f(A,w) =
X

e∈A

w(e) .

The maximum number of chosen items is defined as K =
maxA∈Θ |A|.

Let (wt)
n
t=1 be an i.i.d. sequence of n weights drawn from

P . At time t, the learning agents chooses solution At 2 Θ

based on its observations of the weights up to time t, gains

f(At, wt), and observes the weights of all chosen items at

time t, {(e, wt(e)) : e 2 At}. The learning agent interacts

with the environment n times and its goal is to maximize

its expected cumulative reward over this time. If the agent

knew P a priori, the optimal action would be to choose the

optimal solution1:

A∗ = argmaxA∈Θ f(A, w̄)

at all steps t. The quality of the agent’s policy is measured

1For simplicity of exposition, we assume that the optimal so-
lution is unique.

Algorithm 1 CombUCB1 for stochastic combinatorial semi-

bandits.

Input: Feasible set Θ

// Initialization

(ŵ1, t0) Init(Θ)
Tt0−1(e) 1 8e 2 E

for all t = t0, . . . , n do

// Compute UCBs

Ut(e) ŵTt−1(e)(e) + ct−1,Tt−1(e) 8e 2 E

// Solve the optimization problem

At  argmaxA∈Θ f(A,Ut)

// Observe the weights of chosen items

Observe {(e, wt(e)) : e 2 At}, where wt ⇠ P

// Update statistics

Tt(e) Tt−1(e) 8e 2 E
Tt(e) Tt(e) + 1 8e 2 At

ŵTt(e)(e) 
Tt−1(e)ŵTt−1(e)(e) + wt(e)

Tt(e)
8e 2 At

by its expected cumulative regret:

R(n) = E

"
nX

t=1

R(At, wt)

#

,

where R(At, wt) = f(A∗, wt)� f(At, wt) is the regret of

the agent at time t.

2.1 Algorithm

Gai et al. [11] proposed a simple algorithm for stochastic

combinatorial semi-bandits. The algorithm is motivated by

UCB1 [6] and therefore we call it CombUCB1. At each time

t, CombUCB1 consists of three steps. First, it computes the

upper confidence bound (UCB) on the expected weight of

each item e:

Ut(e) = ŵTt−1(e)(e) + ct−1,Tt−1(e) , (1)

where ŵs(e) is the average of s observed weights of item

e, Tt(e) is the number of times that item e is observed in t
steps, and:

ct,s =

r

1.5 log t

s
(2)

is the radius of a confidence interval around ŵs(e) at time

t such that w̄(e) 2 [ŵs(e) � ct,s, ŵs(e) + ct,s] holds with

high probability. Second, CombUCB1 calls the optimization

oracle to solve the combinatorial problem on the UCBs:

At = argmaxA∈Θ f(A,Ut) .

Finally, CombUCB1 chooses At, observes the weights of all

chosen items, and updates the estimates of w̄(e) for these

items. The pseudocode of CombUCB1 is in Algorithm 1.
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Algorithm 2 Init: Initialization of CombUCB1.

Input: Feasible set Θ

ŵ(e) 0 8e 2 E
u(e) 1 8e 2 E
t 1
while (9e 2 E : u(e) = 1) do

At  argmaxA∈Θ f(A, u)
Observe {(e, wt(e)) : e 2 At}, where wt ⇠ P
for all e 2 At do

ŵ(e) wt(e)
u(e) 0

t t+ 1

Output:

Weight vector ŵ
First non-initialization step t

2.2 Initialization

CombUCB1 is initialized by calling procedure Init (Algo-

rithm 2), which returns two variables. The first variable is

a weight vector ŵ 2 [0, 1]E , where ŵ(e) is a single obser-

vation from the e-th marginal of P . The second variable is

the number of initialization steps plus one.

The weight vector ŵ is computed as follows. Init repeat-

edly calls the oracle At = argmaxA∈Θ f(A, u) on a vec-

tor of auxiliary weights u 2 {0, 1}
E

, which are initialized

to ones. When item e is observed, we set the weight ŵ(e)
to the observed weight of the item and u(e) to zero. Init

terminates when u(e) = 0 for all items e. Without loss of

generality, let’s assume that each item e is contained in at

least one feasible solution. Then Init is guaranteed to ter-

minate in at most L iterations, because at least one entry of

u changes from one to zero after each call of the optimiza-

tion oracle.

3 Summary of Main Results

We prove three upper bounds on the regret of CombUCB1.

Two bounds depend on the gap ∆ and one is gap-free:

Theorem 3 : O(K
4

3L(1/∆) log n)

Theorem 5 : O(KL(1/∆) log n)

Theorem 6 : O(
p

KLn log n) .

Both gap-dependent bounds are major improvements over

O(K2L(1/∆) log n), the best known upper bound on the

n-step regret of CombUCB1 [10]. The bound in Theorem 5

is asymptotically tighter than the bound in Theorem 3, but

the latter is tighter for K < (534/96)3 < 173.

One of the main contributions of our work is that we iden-

tify an algorithm for stochastic combinatorial semi-bandits

that is both computationally and sample efficient. The fol-

lowing are our definitions of computational and sample ef-

ficiency. We say that the algorithm is computationally effi-

cient if it can be implemented efficiently whenever the of-

fline variant of the problem can be solved computationally

efficiently. The algorithm is sample efficient if it achieves

optimal regret up to polylogarithmic factors. Based on our

definitions, CombUCB1 is both computationally and sample

efficient. We state this result slightly more formally below.

Theorem 1. CombUCB1 is computationally and sample ef-

ficient in any (L,K) stochastic combinatorial semi-bandit

where the offline optimization oracle argmaxA∈Θ f(A,w)
can be implemented efficiently for any w 2 (R+)E .

Proof. In each step t, CombUCB1 calls the oracle once, and

all of its remaining operations are polynomial in L and K.

Therefore, CombUCB1 is guaranteed to be computationally

efficient when the oracle is computationally efficient.

CombUCB1 is sample efficient because it achieves optimal

regret up to polylogarithmic factors. In particular, the gap-

dependent upper bound on the n-step regret of CombUCB1

in Theorem 5 matches the lower bound in Proposition 1 up

to a constant factor. In addition, the gap-free upper bound

in Theorem 6 matches the lower bound in Proposition 2 up

to a factor of
p
log n.

4 O(K
4

3 ) Upper Bounds

In this section, we prove two O(K
4

3L(1/∆) log n) upper

bounds on the n-step regret of CombUCB1. In Theorem 2,

we assume that the gaps of all suboptimal solutions are the

same. In Theorem 3, we relax this assumption.

The gap of solution A is ∆A = f(A∗, w̄) � f(A, w̄). The

results in this section are presented for their didactic value.

Their proofs are simple. Yet they illustrate the main ideas

that lead to the tight regret bounds in Section 5.

Theorem 2. In any (L,K,∆) stochastic combinatorial

semi-bandit where ∆A = ∆ for all suboptimal solutions

A, the regret of CombUCB1 is bounded as:

R(n)  K
4

3L
48

∆
log n+

✓
⇡2

3
+ 1

◆

KL .

The proof of Theorem 2 relies on two lemmas. In the first

lemma, we bound the regret associated with the initializa-

tion of CombUCB1 and the event that w̄(e) is outside of the

high-probability confidence interval around ŵTt−1(e)(e).

Lemma 1. Let:

Ft =

8

<

:
∆At

 2
X

e∈Ãt

cn,Tt−1(e), ∆At
> 0

9

=

;
(3)
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be the event that suboptimal solution At is “hard to distin-

guish” from A∗ at time t, where Ãt = At \ A∗. Then the

regret of CombUCB1 is bounded as:

R(n)  E

h

R̂(n)
i

+

✓
⇡2

3
+ 1

◆

KL , (4)

where:

R̂(n) =

nX

t=t0

∆At
1{Ft} . (5)

Proof. The claim is proved in Appendix A.1.

Now we bound the regret corresponding to the events Ft,

the items in a suboptimal solution are not observed “suffi-

ciently often” up to time t. To bound the regret, we define

two events:

G1,t =

⇢

at least d items in Ãt were observed (6)

at most ↵K2 6

∆2
At

log n times

�

and:

G2,t =

⇢

less than d items in Ãt were observed (7)

at most ↵K2 6

∆2
At

log n times,

at least one item in Ãt was observed

at most
↵d2

(
p
↵� 1)2

6

∆2
At

log n times

�

,

where ↵ � 1 and d > 0 are parameters, which are chosen

later. The event G1,t happens when “many” chosen items,

at least d, are not observed “sufficiently often” up to time

t, at most ↵K2 6
∆2

At

log n times.

Events G1,t and G2,t are obviously mutually exclusive. In

the next lemma, we prove that these events are exhaustive

when event Ft happens. To prove this claim, we introduce

new notation. We denote the set of items in Ãt that are not

observed “sufficiently often” up to time t by:

St =

⇢

e 2 Ãt : Tt−1(e)  ↵K2 6

∆2
At

log n

�

.

Lemma 2. Let ↵ � 1, d > 0, and event Ft happen. Then

either event G1,t or G2,t happens.

Proof. By the definition of St, the following three events:

G1,t = {|St| ≥ d}

G2,t =

(

|St| < d,

"

∃e ∈ Ãt : Tt−1(e) ≤
6αd2 log n

(
√
α− 1)2∆2

At

#)

Ḡt =

(

|St| < d,

"

∀e ∈ Ãt : Tt−1(e) >
6αd2 log n

(
√
α− 1)2∆2

At

#)

are exhaustive and mutually exclusive. Therefore, to prove

that either G1,t or G2,t happens, it suffices to show that Ḡt

does not happen. Suppose that event Ḡt happens. Then by

the assumption that Ft happens and from the definition of

Ḡt, it follows that:

∆At
 2

X

e∈Ãt

s

1.5 log n

Tt−1(e)

= 2
X

e∈Ãt\St

s

1.5 log n

Tt−1(e)
+ 2

X

e∈St

s

1.5 log n

Tt−1(e)

< 2 |Ãt \ St|
| {z }

≤K

v
u
u
t

1.5 log n

↵K2 6
∆2

At

log n
+

2 |St|
|{z}

≤d

v
u
u
t

1.5 log n
αd2

(
√
α−1)2

6
∆2

At

log n

 ∆Atp
↵

+
∆At

(
p
↵� 1)p
↵

= ∆At
.

This is clearly a contradiction. Therefore, event Ḡt cannot

happen; and either G1,t or G2,t happens.

Now we are ready to prove Theorem 2.

Proof. A detailed proof is in Appendix A.2. The key idea

is to bound the number of times that events G1,t and G2,t

happen in n steps. Based on these bounds, the regret asso-

ciated with both events is bounded as:

R̂(n) 
✓
↵

d
K2 +

↵d2

(
p
↵� 1)2

◆

L
6

∆
log n .

Finally, we choose ↵ = 4 and d = K
2

3 , and substitute the

above upper bound into inequality (4).

Theorem 2 can be generalized to the problems with differ-

ent gaps. Let ∆e,min be the minimum gap of any subopti-

mal solution that contains item e 2 Ẽ:

∆e,min = min
A∈Θ:e∈A,∆A>0

∆A (8)

= f(A∗, w̄)� max
A∈Θ:e∈A,∆A>0

f(A, w̄) ,

where Ẽ = E \ A∗ is the set of subptimal items, the items

that do not appear in the optimal solution. Then the regret

of CombUCB1 is bounded as follows.

Theorem 3. In any (L,K) stochastic combinatorial semi-

bandit, the regret of CombUCB1 is bounded as:

R(n) 
X

e∈Ẽ

K
4

3

96

∆e,min
log n+

✓
⇡2

3
+ 1

◆

KL .
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Proof. A detailed proof is in Appendix A.3. The key idea

is to define item-specific variants of events G1,t and G2,t,

Ge,1,t and Ge,2,t; and associate
∆At

d and ∆At
regret with

Ge,1,t and Ge,2,t, respectively. Then, for each item e, we

order the events from the largest gap to the smallest, and

show that the total regret is bounded as:

R̂(n) <
X

e∈Ẽ

✓
↵

d
K2 +

↵d2

(
p
↵� 1)2

◆
12

∆e,min
log n .

Finally, we choose ↵ = 4 and d = K
2

3 , and substitute the

above upper bound into inequality (4).

5 O(K) Upper Bounds

In this section, we improve on the results in Section 4 and

derive O(KL(1/∆) log n) upper bounds on the n-step re-

gret of CombUCB1. In Theorem 4, we assume that the gaps

of all suboptimal solutions are identical. In Theorem 5, we

relax this assumption.

The key step in our analysis is that we define a cascade of

infinitely-many mutually-exclusive events and then bound

the number of times that these events happen when a sub-

optimal solution is chosen. The events are parametrized by

two decreasing sequences of constants:

1 = �0 > �1 > �2 > . . . > �k > . . . (9)

↵1 > ↵2 > . . . > ↵k > . . . (10)

such that limi→∞ ↵i = limi→∞ �i = 0. We define:

mi,t = ↵i
K2

∆2
At

log n

and assume that mi,t = 1 when ∆At
= 0. The events at

time t are defined as:

G1,t = {at least �1K items in Ãt were observed (11)

at most m1,t times} ,

G2,t = {less than �1K items in Ãt were observed

at most m1,t times,

at least �2K items in Ãt were observed

at most m2,t times} ,

...

Gi,t = {less than �1K items in Ãt were observed

at most m1,t times,

. . . ,

less than �i−1K items in Ãt were observed

at most mi−1,t times,

at least �iK items in Ãt were observed

at most mi,t times} ,

...

The following lemma establishes a sufficient condition un-

der which events Gi,t are exhaustive. This is the key step

in the proofs in this section.

Lemma 3. Let (↵i) and (�i) be defined as in (9) and (10),

respectively; and let:

p
6

∞X

i=1

�i−1 � �ip
↵i

 1 . (12)

Let event Ft happen. Then event Gi,t happens for some i.

Proof. We fix t such that ∆At
> 0. Because t is fixed, we

use shorthands Gi = Gi,t and mi = mi,t. Let:

Si =
n

e 2 Ãt : Tt−1(e)  mi

o

be the set of items in Ãt that are not observed “sufficiently

often” under event Gi. Then event Gi can be written as:

Gi =
⇣
Ti−1

j=1 {|Sj | < �jK}
⌘

\ {|Si| � �iK} .

As in Lemma 2, we prove that event Gi happens for some

i by showing that the event that none of our events happen

cannot happen. Note that this event can be written as:

Ḡ =

∞[

i=1

Gi

=

∞\

i=1

" 
i−1[

j=1

{|Sj | � �jK}

!

[ {|Si| < �iK}

#

=

∞\

i=1

{|Si| < �iK} .

Let S̄i = Ãt \ Si and S0 = Ãt. Then by the definitions of

S̄i and Si, S̄i−1 ✓ S̄i for all i > 0. Furthermore, note that

limi→∞ mi = 0. So there must exist an integer j such that

S̄i = Ãt for all i > j, and Ãt =
S∞

i=1(S̄i \ S̄i−1). Finally,

by the definition of S̄i, Tt−1(e) > mi for all e 2 S̄i. Now

suppose that event Ḡ happens. Then:

X

e∈Ãt

1
p

Tt−1(e)
<

∞X

i=1

X

e∈S̄i\S̄i−1

1p
mi

=

∞X

i=1

|S̄i \ S̄i−1|p
mi

<
∞X

i=1

(�i−1 � �i)Kp
mi

,

where the last inequality is due to Lemma 4 (Appendix B).
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In addition, let event Ft happen. Then:

∆At
 2

X

e∈Ãt

s

1.5 log n

Tt−1(e)

<
p

6 log n
∞X

i=1

(�i−1 � �i)Kp
mi

= ∆At

p
6

∞X

i=1

�i−1 � �ip
↵i

 ∆At
,

where the last inequality is due to our assumption in (12).

The above is clearly a contradiction. As a result, Ḡ cannot

happen, and event Gi must happen for some i.

Theorem 4. In any (L,K,∆) stochastic combinatorial

semi-bandit where ∆A = ∆ for all suboptimal solutions

A, the regret of CombUCB1 is bounded as:

R(n)  KL
267

∆
log n+

✓
⇡2

3
+ 1

◆

KL .

Proof. A detailed proof is in Appendix A.4. The key idea

is to bound the number of times that event Gi,t happens in

n steps for any i. Based on this bound, the regret due to all

events Gi,t is bounded as:

R̂(n)  KL
1

∆

" ∞X

i=1

↵i

�i

#

log n ,

where R̂(n) is defined in (5). Finally, we choose (↵i) and

(�i), and apply the above upper bound in inequality (4).

Now we generalize Theorem 4 to arbitrary gaps.

Theorem 5. In any (L,K) stochastic combinatorial semi-

bandit, the regret of CombUCB1 is bounded as:

R(n) 
X

e∈Ẽ

K
534

∆e,min
log n+

✓
⇡2

3
+ 1

◆

KL ,

where ∆e,min is the minimum gap of suboptimal solutions

that contain item e, which is defined in (8).

Proof. A detailed proof is in Appendix A.5. The key idea

is to introduce item-specific variants of events Gi,t, Ge,i,t,

and associate
∆At

βiK
regret with each of these events. Then,

for each item e, we order the events from the largest gap to

the smallest, and show that the total regret is bounded as:

R̂(n) <
X

e∈Ẽ

K
2

∆e,min

" ∞X

i=1

↵i

�i

#

log n ,

where R̂(n) is defined in (5). Finally, we choose (↵i) and

(�i), and apply the above upper bound in inequality (4).

We also prove a gap-free bound.

Theorem 6. In any (L,K) stochastic combinatorial semi-

bandit, the regret of CombUCB1 is bounded as:

R(n)  47
p

KLn log n+

✓
⇡2

3
+ 1

◆

KL .

Proof. The proof is in Appendix A.6. The key idea is to

decompose the regret of CombUCB1 into two parts, where

the gaps are larger than ✏ and at most ✏. We analyze each

part separately and then set ✏ to get the desired result.

6 Lower Bounds

In this section, we derive two lower bounds on the n-step

regret in stochastic combinatorial semi-bandits. One of the

bounds is gap-dependent and the other one is gap-free.

Our bounds are derived on a K-path semi-bandit problem,

which is illustrated in Figure 1a. The items in the ground

set are L path segments E = {1, . . . , L}. The feasible set

Θ are L/K paths, each of which contains K unique items.

Specifically, path j contains items (j � 1)K + 1, . . . , jK.

Without loss of generality, we assume that L/K is an inte-

ger. The probability distribution P over the weights of the

items is defined as follows. The weights of the items in the

same path are equal. The weights of the items in different

paths are distributed independently. The weight of item e
is a Bernoulli random variable with mean:

w̄(e) =

(

0.5 item e belongs to path 1

0.5�∆/K otherwise ,

where 0 < ∆/K < 0.5. Note that our problem is designed

such that ∆e,min = ∆ for any item e in path j > 1.

The key observation is that our problem is equivalent to a

(L/K)-arm Bernoulli bandit whose returns are scaled by

K, when the learning agent knows that the weights of the

items in the same path are equal. Therefore, we can derive

lower bounds for our problem based on the existing lower

bounds for Bernoulli bandits [7, 8, 14].

Our gap-dependent lower bound is derived for the class of

consistent algorithms, which is defined as follows. We say

that the algorithm is consistent if for any stochastic com-

binatorial semi-bandit, any suboptimal A, and any ↵ > 0,

E [Tn(A)] = o(nα), where Tn(A) is the number of times

that solution A is chosen in n steps. The restriction to the

consistent algorithms is without loss of generality. In par-

ticular, an inconsistent algorithm is guaranteed to perform

poorly on some semi-bandit, and therefore cannot achieve

logarithmic regret on all semi-bandits, as CombUCB1.

Proposition 1. For any L and K such that L/K is an inte-

ger, and any 0 < ∆/K < 0.5, the regret of any consistent

algorithm on the K-path semi-bandit problem is bounded

540



Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvári
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Figure 1: a. The K-path semi-bandit problem in Section 6. The red and blue nodes are the starting and end points of the

paths, respectively. The optimal path is marked in red. b. The grid-path problem in Section 7. The red and blue nodes are

the starting and end points of the paths, respectively. The optimal path is marked in red. c. The n-step regret of CombUCB1

on the grid-path problem.

from below as:

lim inf
n→∞

R(n)

log n
� (L�K)K

4∆
.

Proof. The proposition is proved as follows:

lim inf
n→∞

R(n)

log n

(a)

� K

L/K
X

k=2

∆/K

DKL(0.5�∆/K k 0.5)

=

✓
L

K
� 1

◆
∆

DKL(0.5�∆/K k 0.5)
(b)

� (L�K)K

4∆
,

where DKL(p k q) is the Kullback-Leibler (KL) divergence

between two Bernoulli random variables with means p and

q. Inequality (a) follows from the fact that our problem is

equivalent to a (L/K)-arm Bernoulli bandit whose returns

are scaled by K. Therefore, we can bound the regret from

below using an existing lower bound for Bernoulli bandits

[14]. Inequality (b) is due to DKL(p k q)  (p−q)2

q(1−q) , where

p = 0.5�∆/K and q = 0.5.

We also derive a gap-free lower bound.

Proposition 2. For any L and K such that L/K is an in-

teger, and any horizon n > 0, there exists a K-path semi-

bandit problem such that the regret of any algorithm is:

R(n) � 1

20
min(

p
KLn,Kn) .

Proof. The K-path semi-bandit problem is equivalent to a

(L/K)-arm Bernoulli bandit whose payoffs are scaled by

K. Therefore, we can apply Theorem 5.1 of Auer et al. [7]

and bound the regret of any algorithm from below by:

K

20
min(

p

(L/K)n, n) =
1

20
min(

p
KLn,Kn) .

Note that the bound of Auer et al. [7] is for the adversarial

setting. However, the worst-case environment in the proof

is stochastic and therefore it applies to our problem.

7 Experiments

In this section, we evaluate CombUCB1 on a synthetic prob-

lem and demonstrate that its regret grows as suggested by

our O(KL(1/∆) log n) upper bound. We experiment with

a stochastic longest-path problem on a (m+ 1)⇥ (m+ 1)
square grid (Figure 1b). The items in the ground set E are

the edges in the grid, 2m(m + 1) in total. The feasible set

Θ are all paths in the grid from the upper left corner to the

bottom right corner that follow the directions of the edges.

The length of these paths is K = 2m. The weight of edge

e is drawn i.i.d. from a Bernoulli distribution with mean:

w̄(e) =

(

0.5 + �/2 e is a leftmost or bottomost edge

0.5� �/2 otherwise ,

where 0 < � < 1. The optimal solution A∗ is a path along

the leftmost and bottommost edges (Figure 1b).

The sample complexity of our problem is characterized by

|Ẽ| = 2m(m + 1) � 2m gaps ∆e,min ranging from 2� to

2m�. It is easy to show that the number of items e where

∆e,min = i� is at most 2(i� 1). Therefore, we can bound

the (log n)-term in Theorem 5 as:

X

e∈Ẽ

K
534

∆e,min
log n < 1068m

2mX

i=2

2i

i�
log n

<
4272m2 log n

�
. (13)

Now we validate the dependence on m and � empirically.

We vary m and �, and run CombUCB1 for n = 105 steps.

Our experimental results are reported in Figure 1c. We ob-

serve two trends. First, the regret of CombUCB1 is linear in
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the number of items L, which depends quadratically on m
since L = 2m(m+ 1). Second, the regret is linear in 1/�.

The dependence on m and 1/� is the same as in our upper

bound in (13).

8 Related Work

Gai et al. [11] proposed CombUCB1 and analyzed it. Chen

et al. [10] derived a O(K2L(1/∆) log n) upper bound on

the n-step regret of CombUCB1. In this paper, we show that

the regret of CombUCB1 is O(KL(1/∆) log n), a factor of

K improvement over the upper bound of Chen et al. [10].

This upper bound is tight. We also prove a gap-free upper

bound and show that it is nearly tight.

COMBAND [9], online stochastic mirror descent (OSMD)

[4], and follow-the-perturbed-leader (FPL) with geometric

resampling [15] are three recently proposed algorithms for

adversarial combinatorial semi-bandits. In general, OSMD

achieves optimal regret but is not guaranteed to be compu-

tationally efficient, in the same sense as in Section 3. FPL

does not achieve optimal regret but is computationally effi-

cient. It is an open problem whether adversarial combina-

torial semi-bandits can be solved both computationally and

sample efficiently. In this paper, we close this problem in

the stochastic setting.

Matroid and polymatroid bandits [12, 13] are instances of

stochastic combinatorial semi-bandits. The n-step regret of

CombUCB1 in these problems is O(L(1/∆) log n), a factor

of K smaller than is suggested by our O(KL(1/∆) log n)
upper bound. However, we note that the bound of Kveton

et al. [12, 13] is less general, as it applies only to matroids

and polymatroids.

Our problem can be viewed as a linear bandit [5, 1], where

each solution A is associated with an indicator vector x 2
{0, 1}

E
and the learning agent observes the weight of each

non-zero entry of x. This feedback model is clearly more

informative than that in linear bandits, where the learning

agent observes just the sum of the weights. Therefore, our

learning problem has lower sample complexity. In partic-

ular, note that our Ω(
p
KLn) lower bound (Proposition 2)

is
p
K smaller than that of Audibert et al. [4] (Theorem 5)

for combinatorial linear bandits. The bound of Audibert et

al. [4] is proved for the adversarial setting. Nevertheless, it

applies to our setting because the worst-case environment

in the proof is stochastic.

Russo and Van Roy [17], and Wen et al. [19], derived up-

per bounds on the Bayes regret of Thompson sampling in

stochastic combinatorial semi-bandits. These bounds have

a similar form as our gap-free upper bound in Theorem 6.

However, they differ from our work in two aspects. First,

the Bayes regret is a different performance metric from re-

gret. From the frequentist perspective, it is a much weaker

metric. Second, we also derive O(log n) upper bounds.

9 Extensions

The computational efficiency of CombUCB1 depends on the

computational efficiency of the offline optimization oracle.

When the oracle is inefficient, we suggest resorting to ap-

proximations. Let ALG be a computationally-efficient ora-

cle that returns an approximation. Then CombUCB1 can be

straightforwardly modified to call ALG instead of the origi-

nal oracle. Moreover, it is easy to bound the regret of this

algorithm if it is measured with respect to the best approx-

imate solution by ALG in hindsight.

Thompson sampling [18] often performs better in practice

than UCB1 [6]. It is straightforward to propose a variant of

CombUCB1 that uses Thompson sampling, by replacing the

UCBs in Algorithm 1 with sampling from the posterior on

the mean of the weights. The frequentist analysis of regret

in Thompson sampling [2] resembles the analysis of UCB1.

Therefore, we believe that our analysis can be generalized

to Thompson sampling, and we hypothesize that the regret

of the resulting algorithm is O(KL(1/∆) log n).

10 Conclusions

The main contribution of this work is that we derive novel

gap-dependent and gap-free upper bounds on the regret of

CombUCB1, a UCB-like algorithm for stochastic combina-

torial semi-bandits. These bounds are tight up to polyloga-

rithmic factors. In other words, we show that CombUCB1 is

sample efficient because it achieves near-optimal regret. It

is well known that CombUCB1 is also computationally effi-

cient [11], it can be implemented efficiently whenever the

offline variant of the problem can be solved computation-

ally efficiently. Therefore, we indirectly show that stochas-

tic combinatorial semi-bandits can be solved both compu-

tationally and sample efficiently, by CombUCB1.

Theorems 4 and 5 are proved quite generally, for any (↵i)
and (�i) subject to relatively mild constraints. At the end

of the proofs, we choose (↵i) and (�i) to be geometric se-

quences. This is sufficient for our purpose. But the choice

is likely to be suboptimal and may lead to larger constants

in our upper bounds than is necessary. We leave the prob-

lem of choosing better (↵i) and (�i) for future work.

We leave open several questions of interest. For instance,

our Ω(KL(1/∆) log n) lower bound is derived on a prob-

lem where all suboptimal solutions have the same gaps. So

technically speaking, our O(KL(1/∆) log n) upper bound

is tight only on this family of problems. It is an open prob-

lem whether our upper bound is tight in general.

Our O(
p
KLn log n) upper bound matches the Ω(

p
KLn)

lower bound up to a factor of
p
log n. We believe that this

factor can be eliminated by modifying the confidence radii

in CombUCB1 (2) along the lines of Audibert et al. [3]. We

leave this for future work.
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