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Abstract. We show that the discrepancy of any n-point set P in the Euclidean 
d-space with respect to half-spaces is bounded by Can 1/2-1/2a, that is, a mapping 
X: P ~  {-1,1} exists such that, for any half-space y, I~p~en~ X(P)[ < 
Can1~2 - 1/2~. In fact, the result holds for arbitrary set systems as long as the primal 
shatter function is O(ma). This matches known lower bounds, improving previous 
upper bounds by a ~ factor. 

I. Introduction 

We review a few notions and results from discrepancy theory related to geometri- 
cally defined set systems. Let (X, o~') be a set system and let X: X ---, { - 1, + 1} be a 
mapping; we call such a mapping a coloring of X. For a set Y ~ X, let x ( Y )  
= ~ x  ~ Y X(x). We define the discrepancy of X on ~ by 

disc(~' ,  X) = max Ix(R)[ ,  
R~.~a~ 

and the discrepancy of ~ by 

disc(,~) = man{disc(,9/', X); X: X ~ { - 1 ,  +1}}. 

Discrepancy theory is a well-developed area by now, and various bounds and 
results are known for the discrepancy of set systems, see, e.g., the book [AS] or the 
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survey paper [BS]. One important question is the following: What is the maximum 
possible discrepancy of a set system with m sets on n points? Here we are interested 
in the case when m >_ n. A simple probabilistic reasoning shows an upper bound of 
O(~/n log m ). Spencer [Sp] improved this to O(~/n log(1 + m / n )  ), thus, in particu- 
lar, he proved that the discrepancy of n sets on n points is O(V~-), without any 
logarithmic factor. Spencer's proof extends a method originally due to Beck [Be]; the 
book of  Alon and Spencer [AS] gives an elegant exposition of the proof. This 
Spencer's bound is already tight in general, so, for instance for m = n 2, anything 
better than ~/~ log n in the worst case cannot be obtained. 

We now consider geometrically defined set systems. Let P be a finite point set in 
•d (the d-dimensional Euclidean space), and let F be a set of subsets of R d defined 
by some simple geometric shapes; as our main example, we consider the case with F 
being the set of all half-spaces. Such a F defines a set system (P,  ~ ) ,  where 

= {P n 7; ~' E F}. The main question we consider is, What is the maximum 
possible discrepancy of this set system for an n-point P c ~d and a particular class 
of shapes F? 

Lower bounds in problems of this type have a rich history, which is described in 
the book by Beck and Chen [BC]. For the discrepancy for half-spaces in ~d, 
Alexander [Al] proved a lower bound of ~-~(n 1/2- 1/2d) (for any "dense" point set P, 
i.e., a set where the ratio of the maximum and minimum interpoint distances is 
O(nl/d)). Previous, somewhat weaker, lower bounds were given by Schmidt and by 
Beck, see [BC]. A somewhat different proof of  the lower bound using Alexander's 
ideas was given by Chazelle [Ch]. 

Upper bounds were first obtained by Beck in a more special setting, where the 
Lebesgue measure on a class of geometric shapes is approximated by a discrete 
point set, see [BC]. An almost tight bound of O ( n  1/2-  1 / 2 d l ~  n ) for the above 
defined set-theoretic discrepancy of half-spaces for an arbitrary point set 1 was given 
by Matou~ek et al. [MWW]. Here we give a tight upper bound: 

Theorem 1.1. Let d be a constant. For any n-point set P in ~a, the discrepancy of the 
set system defined on P by half-spaces is O(n 1/2-1/za). 

The property of the underlying set system used for the upper bound proof can be 
captured using the so-called (primal) shatter function. 

Let (X, .9~') be a set system on a set X. The primal shatter function ~ of (X, .9/') 
is defined by 

Try(m) = max ]{R N A ;  R ~9~}1 
A c_X, ]AI<m 

(note that although there may be several sets R ~ J~' giving the same intersection 
R n A, this intersection is only counted once). 

l Upper bounds on the set-theoretic discrepancy yield upper bounds for approximating arbitrary 
measures including the Lebesgue measure, see [MWW]. Therefore, for upper bounds, this kind of 
discrepancy can be considered the strongest one in geometric discrepancy problems. 
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For instance, the primal shatter function for the set system (P,  .9/') defined by 
half-spaces on a point set P is of the order m a, while the primal shatter function for 
the analogous set system defined by balls has the order m d§ ~. 

We prove the following: 

Theorem 1.2. Let d > 1, C be constants, let (X ,  ~ )  be a set system with primal 
shatter function satisfying 7r~(m) < Cm a for all m < n = ISl. Then 

disc(,9~) = O(n 1/2- 1/2d), 

where the constant of  proportionality depends on C, d. 

A previous bound from [MWW] was O(n 1/2 1/2d(1og n ) l + l / 2 a ) .  The theorem 
implies, for instance, that the discrepancy of a set system defined by unit balls is also 
0(n l /2  - 1/2,~). 

Theorem 1.2 is proved in the same way as Theorem 1.1. The only difference is 
that in the geometric setting, we use an elementary lemma due to Chazelle and 
Welzl [CW] concerning the volume of an r-ball in an arrangement of hyperplanes, 
while in the abstract setting this is replaced by a more difficult packing lemma due to 
Haussler [Ha]. 

The concept of a primal shatter function is related to the so-called 
Vapnik-Chervonenkis dimension and some other concepts, which became important 
in statistics, computational geometry, and learning theory. Here we recall a few of 
these notions, referring to the literature for more information (pioneering works in 
this direction are [VC] and [HW], newer works are, e.g., [AHW], [CW], [BCM], and 
[ABCH]; the book [AS] also includes a chapter with this subject). 

We say that a subset A G X is shattered (by ~q') if every possible subset of A is 
induced by ~q~, i.e. if {R f3 A; R ~ ~/'} = 2 A. We define the Vapnik-Chervonenkis 
dimension, VC-dimension for short, of the set system (X, ~qP) as the maximum size of 
a shattered subset of X (if there are shattered subsets of any size, then we say that 
the VC-dimension is infinite). 

It is well known that the primal shatter function 7r~e(m) of a set system of VC- 
dimension d is bounded by 

(o) +(:) + 
and the bound is tight in the worst case. However, in geometric examples, the primal 
shatter function often grows more slowly than implied by the VC-dimension and its 
asymptotic growth is usually easier to determine than the exact VC-dimension. Thus, 
the primal shatter function appears to be a more suitable parameter for applications. 

Another important parameter of a set system (X, ~ ' )  is its dual shatter function, 
denoted by 7r~,. The value zr~,(m) is the maximum number of equivalence classes 
into which the points of  X can be partitioned by a collection ~ '  of m sets in .9~'. 
Here x, y ~ X are equivalent relative to ~r if {R ~ ar x ~ R} = {R ~ ~r y ~ R}). 
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For  instance, the dual shatter  functions for the set systems defined by half-spaces 
and by balls in R d both have order  m d. 

The paper  [MWW] gives another  upper  bound for the discrepancy, expressed in 
terms of the dual  shatter  function: z If Try(m) <_ Cm d, then disc( ,~)  = 
O(n 1/2- 1/2d l ~  n ). 

Recently, the author proved that this "dual"  bound cannot be improved in 
general, but it might still be possible to improve it in some particular geometric 
setting, such as for balls in ~a. We leave this as an interesting open problem. 
Another  long-standing open problem is to find an efficient (algorithmic) version of 
Beck's proof  technique. 

2. The Proof 

A Packing Lemma.  Let (X,  ~ )  be a set system. We define a metric on ~ '  (the 
Hamming metric) by letting the distance of two sets R 1 , R 2 ~ ~ be IR 1 zx R2I, the 
cardinality of their symmetric difference. A set ~ c_ ~ is called r-separated if any 
two sets in ~ have distance greater  than r. The following result due to Haussler  is 
crucial in our proof: 

Lemma 2.1 [Ha]. Let (X, ~a~,) be a set system whose primal shatter function satisfies 
Try(m) < Cm a, for some constants C, d > 1 and for any m < n = ISl. Then there is a 
constant C~ such that for any r > 1 and any r-separated subsystem ~ c ,~  we have 
[.~[ < C l ( n / r )  d. 

We remark  that  Haussler proved the bound on the size of an r-separated 
subsystem under  the assumption that the VC-dimension of  (X,  ~a~) is at most d, thus 
the above claim is formally stronger. However, his proof  goes through without 
change in which we only assume the bound on the primal shatter function; 3 this was 
verified in detail  by Wernisch [We]. 

This lemma has a nice geometric  interpretat ion (and an elementary proof) in the 
case when X is a point  set in ~ a  and ,~' is the system of all subsets of X defined by 
half-spaces. Namely, we consider the arrangement  sr of the hyperplanes dual to the 
points of X (see, e.g., [Ed] for the notion of duality and hyperplane arrangements).  
Then each set R ~ a~ corresponds to a cell in ~r (R is the set of points whose dual 
hyperplanes lie above the corresponding cell, resp. below it). The distance of two 
sets R 1 , R 2 E ~ '  then corresponds to the minimum number of hyperplanes we have 
to cross to get from the cell corresponding to R 1 to that of R z. As  Chazelle and 
Welzl [CW] showed, the number  of cells in an r-ball around any cell in this metric is 
l~(ra), and from this the packing lemma follows immediately.  

2 The conference version of the paper has a somewhat worse bound; the better bound follows 
using the result of Haussler [Ha], the same one as applied in the present paper. 

3 In fact, this lemma as well as the discrepancy result could be stated and proved with an 
arbitrary function bounding the primal shatter function (instead of Crag); since there are no 
immediate applications and the statements and calculations would be more complicated formally, we 
prefer the present setting. 
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Auxiliary Set Systems. Let (X,  2~2) be as in Theorem 1.2. We use the packing lemma 
as follows. We let k = [log2(n + 1)], r i = n / 2  i for i = 0, 1 . . . . .  k, and for each i we 
choose an inclusion-maximal r~-separated subsystem _@~ c_ ~q~; in particular, we set 
2 0 = {Q}. Also, we have .~k = 5q. From Lemma 2.1, we obtain I-~1 -< C12 ai. Since 
_~ is maximal, for every set R ~ ~2 some set D ~ -~i exists such that IR zx DI < r~. 

We construct set systems ~/ ,  ~ ' i ,  i = 1, 2 . . . . .  k, as follows: For every set D ~ ~ i ,  
we fix one set D '  ~ . ~ i  1 with I D z x D ' l < r  i l , a n d w e l e t  A ( D ) = D \ D ' ,  B ( D )  
= D '  \ D. Then ~ / =  {A(D); D ~ -~i} and ~',  = {B(D); D ~ -@i}. Note that, by our 
conventions, ~r = 21  and ~'1 = {Q}. 

Using these set systems s~,  ~ / ,  each set R ~ ~ '  can be "canonically decomposed" 
as 

R = ( . . . ( ( ( ( A  1 U A 2 ) \ B  2) U A 3 ) \ B  3) U ' "  U A k ) \ B k ,  (1) 

where A i E sJii , B i ~ , ~ ,  the unions are disjoint, and the subtracted sets B i are fully 
contained in the sets they are subtracted from. 4 

We now construct a coloring with a small enough discrepancy for the sets from 
s~/, ,~i using the Beck-Spencer  method. By (1), this coloring gives the appropriate  
discrepancy for the sets from 3 .  

Partial Colorings. We recall that a partial coloring of X is a mapping X: X 
{ 0 , - 1 ,  + 1}; uncolored points under X are those mapped to 0. The notion of 
discrepancy is naturally extended to partial  colorings. 

Let us set ~ = ~i  u ~ ' i .  In view of (1), it can be easily checked that to prove 
Theorem 1.2, it suffices to establish the following claim: 

Lemma 2.2. With (X, ~2'), ~ as above, there is a sequence A1, A 2 . . . . .  A k o f  positive 
integers and a partial coloring X of  X with the following properties: 

(i) A 1 + A 2 + ".. + A  k = O(n 1/2 1/26), where the constant o f  proportionality only 
depends on Ca, d, 

(ii) X leaves at most half o f  the points of  X uncolored, and 
(iii) for every i = 1, 2 . . . . .  k and for every S ~ ~ i ,  t x(S)I  < Ai. 

Indeed,  to get Theorem 1.2, it suffices to apply this lemma iteratively. First, we 
obtain a partial  coloring X0 of X as in the lemma. Then we let X 1 be the set of 
uncolored points under X0 and we consider the sets of , ~  restricted to X 1 . This set 
system again has the primal shatter function bounded by Cm a, so we can apply 
Lemma 2.2 again and get a partial  coloring X1 of X 1 , etc. Note that since d > 1, 
the discrepancy of the successive partial  colorings decreases geometrically. We may 
thus continue this process until only few uncolored points remain (which can be 

4 This type of "canonical decomposition" was inspired by the so-called range-searching algo- 
rithms in computational geometry and it is somewhat similar to decompositions used in such 
algorithms. See, e.g., monographs [Ed] and [Mu] or survey papers lAg] and [Ma] for more 
information on geometric range searching. 
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colored arbitrarily), and define the final coloring of  X as X = X0 + X1 -t- " ' "  ; this has 
the desired discrepancy. 

Proof  o f  L e m m a  Z2. In the proof  we define the A i as follows: We let K be a 
sufficiently large constant (depending on d, C1), we choose u as the smallest integer 
with 2 d" > n / K ,  and we set 

m i  = g n l / 2  - 1/2d2-1i-  u I / 4  

Condit ion (i) in Lemma 2.2 clearly holds. 
Before we start  the calculations, let us try to convey some intuition to the reader  

(at least to the one familiar with Spencer 's  proof  method to some extent). We want a 
good partial  coloring for all sets of ~ / ,  i = 1, 2 . . . . .  k; recall that ~ / =  0 ( 2  di) and 
IS] < n / 2  i-  1 for S ~ S~. We note that A i is largest for i = u, and the sets of 5P, 
have size about n 1- 1/d. For  a fixed set of this size, a random coloring has expected 
discrepancy about n 1/2- 1/2d, which is the one we are heading for. Fortunately,  the 
packing lemma guarantees that there are about n sets in S#,, and calculations show 
that a good coloring for all these sets exists. What  about the remaining 5~ ? As i 
grows larger than u, the size of sets in ~ and thus also their expected discrepancy 
under  a random coloring gets smaller. The A i also get smaller but  more slowly, and 
thus a random coloring is more and more likely to color these sets properly. Finally, 
for i decreasing below u, the size and expected discrepancy of the sets in ~ gets 
larger, but  the number  of sets gets smaller and this makes the calculation work also 
in this case. 

We now continue the formal proof. Let X: X ~ { - 1 , 1 }  be a random coloring. 
We define random variables bi, s for i = 1, 2 . . . . .  k, S ~ ~ by letting bi, s = bg, s (X)  
be a nearest  integer to 

x ( S )  

A i 

We show that two colorings X1, Xz exist which differ on at least half of  the elements 
of X and such that  b(X1) = b(X2), where b (X)  is the vector 

( b i , s ( X ) ;  i = 1,2 . . . . .  k,  S ~ S'~). 

Then the part ial  coloring X = (X1 - X2)/2 is as required by Lemma 2.2. To this 
end, it suffices to show that there is a value b of  the random variable b which has 
probabili ty at least 2 -" /1~ (then there must be two different colorings both giving 
the value b, see [AS]). 

Estimating the Entropy. To show the last claim, we may use an elegant approach 
suggested by Boppana  via entropy, see [AS]. For  a random variable Z with values in 
a finite set V, which attains a value v with probabili ty Pv, the entropy H ( Z )  is 
defined by 

H ( Z )  = - ~_, p~ log 2 Pv. 
vEV 
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It is easy to see from this definition that if H ( Z )  < t, then v ~ V with Pv > 2-r  
exists. Thus, we want to show H(b)<_ n/ lO.  Since entropy is subadditive 
( H ( ( Z  1 , Z2)) <_ H ( Z  1) + H(Z2), where the random variables Z1, Z 2 may be depen- 
dent), we estimate 

k 

E E H(bi, s).  
i= l se~,  

Under a random coloring X, we have, for any set S c_ X and A > 0, 

P r o b [ x ( S )  > A IV~] < e  -~2/2 (2) 

We fix an index i and a set S ~S~i, and set pj = Prob[bi, s =j ] .  For j > 1, we have 

[ Ai(2j - 1) 1 pj < P r o b [ b i s  > J ]  = P r ~  x ( S ) >  
' - - 2 " 

Using ISI -< ri_l = n / 2  i-1 and (2)with A = ((2j - 1 ) / 2 ) A i / l ~ ,  we obtain 

( 2 j _ 1 ) 2  A~ 1 ( K 2 1/d 

pj < exp - 8 ' lSI  J < exp 16 
- - ( 2 j -  1)22 i -"- f i -" f /2)  (3) 

(we have used n l/a <_ K1/~2"). A symmetric bound holds for j < - 1. To simplify 
expressions, we use a weaker bound, with K instead of K 2 - 1 / a / 1 6  and with j2 
instead of (2j - 1) 2. 

First we deal with the case i >_ u (small sets). We calculate 

H(bi, s) = - ~ Pj l~ Pj 
j= --oo 

< - l ~  Po + 2 ~ exp(-Kj22(i -") /2)( log2 e)Kja2 (i-")/2. 
j = l  

It is easy to see that, for large enough K, the sum over j > 1 can be bounded by, say, 
exp(-2(/-") /2) .  For j = 0, we have 

Po = 1 - Prob[Ibi,s[ > 1] > 1 - 2 e x p ( - K 2 ( i - " ) / 2 ) .  

Therefore, for K large enough, P0 is very close to 1 and we can write - l o g  2 P0 < 
2(1 - P 0 )  < exp(-2(i-u)/2) .  Finally we sum over i >_>_ u, using IS~/[ < 2C12ai: 

k 

~.. Y'~ H(bi, s) <_ 
i=u S ~ , ~  

k k 
~_~ 4C12 ai exp( - 2 (i-u)/2) = 4C12 a" ~_, 2 a(i-~) exp( - 2 ( i - u ) / 2 ) .  

i=u i=u  

The sum in the last expression is bounded by a constant independent of K, and thus 
the expression can be bounded by const. 2 d" = const, n / K  < n/20,  say. 



600 J. Matou~ek 

We proceed with the case i < u (large sets). We have, by (3), pj < 
exp( -K jZ2-3 (u - i ) /2 ) .  For Ijl >J0  = [ 23(u-i)/4] this becomes much smaller than 1, 
and it is easy to see that the sum - Y"lJl, J0 PJ l~ PJ is bounded by 1. For Ijl <J0 
we use the fact that the largest entropy is attained by a uniform distribution, thus 
the maximum possible contribution of the values of j in range ( - J 0 ,  J0) to H(bi, s) is 
at most l o g z ( 2 j 0 -  1 ) < u - i +  1. From this we get that H(bi, s ) < 2 + u - i .  
Summing over i yields 

u - 1  u - 1  n 
1~1(2 + u - i) < Y~ 2612du2-d(u- i ) (2  + U -- i) < const. 2 du <_ - - .  

i=1 i=1 20 

This vanishes the proof  of Lemma 2.2. [] 
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