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Abstract

In the context of mining for frequent patterns using the standard
levelwise algorithm, the following question arises: given the current
level and the current set of frequent patterns, what is the maximal
number of candidate patterns that can be generated on the next level?
We answer this question by providing a tight upper bound, derived
from a combinatorial result from the sixties by Kruskal and Katona.
Our result is useful to reduce the number of database scans.

∗A preliminary report on this work was presented at the 2001 IEEE International
Conference on Data Mining [13].



1 Introduction

The frequent pattern mining problem [3] is by now well known. We are given
a set of items I and a database D of subsets of I called transactions. A
pattern is some set of items; its support in D is defined as the number of
transactions in D that contain the pattern; and a pattern is called frequent

in D if its support exceeds a given minimal support threshold. The goal is
now to find all frequent patterns in D.

The search space of this problem, all subsets of I, is clearly huge. Instead
of generating and counting the supports of all these patterns at once, several
solutions have been proposed to perform a more directed search through all
patterns. However, this directed search enforces several scans through the
database, which brings up another great cost, because these databases tend
to be very large, and hence they do not fit into main memory.

The standard Apriori algorithm [4] for solving this problem is based on
its monotonicity property, that all subsets of a frequent pattern must be
frequent. A pattern is thus considered potentially frequent, also called a
candidate pattern, if its support is yet unknown, but all of its subsets are
already known to be frequent. In every step of the algorithm, all candidate
patterns are generated and their supports are then counted by performing a
complete scan of the transaction database. This is repeated until no new can-
didate patterns can be generated. Hence, the number of scans through the
database equals the maximal size of a candidate pattern. Several improve-
ments on the Apriori algorithm try to reduce the number of scans through
the database by estimating the number of candidate patterns that can still
be generated.

At the heart of all these techniques lies the following purely combinatorial
problem, that must be solved first before we can seriously start applying
them: given the current set of frequent patterns at a certain pass of the

algorithm, what is the maximal number of candidate patterns that can be

generated in the passes yet to come?

Our contribution is to solve this problem by providing a hard and tight
combinatorial upper bound. By computing our upper bound after every
pass of the algorithm, we have at all times a watertight guarantee on the
size of what is still to come, on which we can then base various optimization
decisions, depending on the specific algorithm that is used.

In the next Section, we will discuss existing techniques to reduce the num-
ber of database scans, and point out the dangers of using existing heuristics
for this purpose. Using our upper bound, these techniques can be made
watertight. In Section 3, we derive our upper bound, using a combinatorial
result from the sixties by Kruskal and Katona. In Section 4, we show how
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to get even more out of this upper bound by applying it recursively. We
will then generalize the given upper bounds such that they can be applied
by a wider range of algorithms in Section 5. In Section 6, we discuss several
issues concerning the implementation of the given upper bounds on top of
Apriori-like algorithms. In Section 7, we give experimental results, showing
the effectiveness of our result in estimating, far ahead, how much will still be
generated in the future. Finally, we conclude the paper in Section 8.

2 Related Work

Nearly all frequent pattern mining algorithms developed after the proposal of
the Apriori algorithm, rely on its levelwise candidate generation and pruning
strategy. Most of them differ in how they generate and count candidate
patterns.

One of the first optimizations was the DHP algorithm proposed by Park
et al. [26]. This algorithm uses a hashing scheme to collect upper bounds
on the frequencies of the candidate patterns for the following pass. Patterns
of which it is already known that they will turn up infrequent can then be
eliminated from further consideration. The effectiveness of this technique
only showed for the first few passes. Since our upper bound can be used to
eliminate passes at the end, both techniques can be combined in the same
algorithm.

Other strategies, discussed next, try to reduce the number of passes. How-
ever, such a reduction of passes often causes an increase in the number of
candidate patterns that need to be explored during a single pass. This trade-
off between the reduction of passes and the number of candidate patterns is
important since the time needed to process a transaction is dependent on
the number of candidates that are covered in that transaction, which might
blow up exponentially. Our upper bound can be used to predict whether or
not this blowup will occur.

The Partition algorithm, proposed by Savasere et al. [27], reduces the
number of database passes to two. Towards this end, the database is parti-
tioned into parts small enough to be handled in main memory. The partitions
are then considered one at a time and all frequent patterns for that partition
are generated using an Apriori-like algorithm. At the end of the first pass,
all these patterns are merged to generate a set of all potential frequent pat-
terns, which can then be counted over the complete database. Although this
method performs only two database passes, its performance is heavily de-
pendent on the distribution of the data, and could generate much too many
candidates.
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The sampling algorithm proposed by Toivonen [29] performs at most two
scans through the database by picking a random sample from the database,
then finding all frequent patterns that probably hold in the whole database,
and then verifying the results with the rest of the database. In the cases
where the sampling method does not produce all frequent patterns, the miss-
ing patterns can be found by generating all remaining potentially frequent
patterns and verifying their frequencies during a second pass through the
database. The probability of such a failure can be kept small by decreasing
the minimal support threshold. However, for a reasonably small probability
of failure, the threshold must be drastically decreased, which can again cause
a combinatorial explosion of the number of candidate patterns.

The DIC algorithm, proposed by Brin et al. [11], tries to reduce the
number of passes over the database by dividing the database into intervals
of a specific size. First, all candidate patterns of size 1 are generated. The
frequencies of the candidate sets are then counted over the first interval of
the database. Based on these frequencies, candidate patterns of size 2 are
generated and are counted over the next interval together with the patterns
of size 1. In general, after every interval k, candidate patterns of size k + 1
are generated and counted. The algorithm stops if no more candidates can
be generated. Again, this technique can be combined with our technique in
the same algorithm.

Another type of algorithms generate frequent patterns using a depth-first
search [30, 1, 2, 17]. Generating patterns in a depth-first manner implies
that the monotonicity property cannot be exploited anymore. Hence, a lot
more patterns will be generated and need to be counted, compared to the
breadth-first algorithms. The FPgrowth algorithm from Han et al. solves this
problem by loading a compressed form of the database in main memory using
the proposed FPtree. This memory-resident FPtree benefits from a very fast
counting mechanism of all generated patterns.1 Obviously, it is not always
possible to load the compressed form of the database into main memory.

Other strategies try to push certain constraints into the candidate pattern
generation as deeply as possible to reduce the number of candidate patterns
that must be generated [14, 21, 24, 28]. Still others try to find only the
set of maximal frequent patterns, i.e. those frequent patterns that have no
superset which is also frequent [8, 30, 22]. Of course, these techniques do
not give us all frequencies of all frequent patterns as required by the general
pattern mining problem we consider in this paper.

The first heuristic specifically proposed to estimate the number of can-
didate patterns that can still be generated was used in the AprioriHybrid

1Note that the patterns in the FPtree are represented in the so called header tables.

3



algorithm [6, 7]. This algorithm uses Apriori in the initial iterations and
switches to AprioriTid if it expects it to run faster. This AprioriTid algo-
rithm does not use the database at all for counting the support of candidate
patterns. Rather, an encoding of the candidate patterns used in the previous
iteration is employed for this purpose. The AprioriHybrid algorithm switches
to AprioriTid when it expects this encoding of the candidate patterns to be
small enough to fit in main memory. The size of the encoding grows with the
number of candidate patterns. Therefore, it calculates the size the encoding
would have in the current iteration. If this size is small enough and there were
fewer candidate patterns in the current iteration than the previous iteration,
the heuristic decides to switch to AprioriTid.

This heuristic (like all heuristics) is not waterproof, however. Take, for
example, two disjoint datasets. The first dataset consists of all subsets of
a frequent pattern of size 20. The second dataset consists of all subsets of
1 000 disjoint frequent patterns of size 5. If we merge these two datasets, we
get

(

20

3

)

+ 1 000
(

5

3

)

= 11 140 patterns of size 3 and
(

20

4

)

+ 1 000
(

5

4

)

= 9 845
patterns of size 4. If we have enough memory to store the encoding for
all these patterns, then the heuristic decides to switch to AprioriTid. This
decision is premature, however, because the number of new patterns in each
pass will start growing exponentially afterwards.

Also, current state-of-the-art algorithms for frequent itemset mining, such
as Opportunistic Project [23] and DCI [25] use several techniques within the
same algorithm and switch between these techniques using several simple,
but not waterproof heuristics.

Another improvement of the Apriori algorithm, which is part of the folk-
lore, tries to combine as many iterations as possible in the end, when only
few candidate patterns can still be generated. The potential of such a combi-
nation technique was realized early on [6, 4], but the modalities under which
it can be applied were never further examined. Our work does exactly that.

3 The basic upper bounds

In all that follows, L is some family of patterns of size k.

Definition 1. A candidate pattern for L is a pattern (of size larger than k)
of which all k-subsets are in L. For a given p > 0, we denote the set of all
size-k + p candidate patterns for L by Ck+p(L).

For any p ≥ 1, we will provide an upper bound on |Ck+p(L)| in terms of
|L|. The following lemma is central to our approach. (A simple proof was
given by Katona [18].)
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Lemma 1. Given n and k, there exists a unique representation

n =

(

mk

k

)

+

(

mk−1

k − 1

)

+ · · · +

(

mr

r

)

,

with r ≥ 1, mk > mk−1 > . . . > mr, and mi ≥ i for i = r, r + 1, . . . , k.

This representation is called the k-canonical representation of n and can
be computed as follows: The integer mk satisfies

(

mk

k

)

≤ n <
(

mk+1

k

)

, the

integer mk−1 satisfies
(

mk−1

k−1

)

≤ n −
(

mk

k

)

<
(

mk−1+1

k−1

)

, and so on, until n −
(

mk

k

)

−
(

mk−1

k−1

)

− · · · −
(

mr

r

)

is zero.
We now establish:

Theorem 2. If

|L| =

(

mk

k

)

+

(

mk−1

k − 1

)

+ · · ·+

(

mr

r

)

in k-canonical representation, then

|Ck+p(L)| ≤

(

mk

k + p

)

+

(

mk−1

k − 1 + p

)

+ · · · +

(

ms+1

s + p + 1

)

,

where s is the smallest integer such that ms < s+p. If no such integer exists,

we set s = r − 1.

Proof. Suppose, for the sake of contradiction, that

|Ck+p(L)| ≥

(

mk

k + p

)

+

(

mk−1

k − 1 + p

)

+ · · · +

(

ms+1

s + p + 1

)

+

(

s + p

s + p

)

.

Note that this is in k + p-canonical representation. A theorem by Kruskal
and Katona [12, 18, 20] says that

|L| ≥

(

mk

k

)

+

(

mk−1

k − 1

)

+ · · · +

(

ms+1

s + 1

)

+

(

s + p

s

)

.

But this is impossible, because

|L| =

(

mk

k

)

+

(

mk−1

k − 1

)

+ · · · +

(

ms+1

s + 1

)

+

(

ms

s

)

+ · · · +

(

mr

r

)

≤

(

mk

k

)

+

(

mk−1

k − 1

)

+ · · ·+

(

ms+1

s + 1

)

+
∑

1≤i≤s

(

i + p − 1

i

)

<

(

mk

k

)

+

(

mk−1

k − 1

)

+ · · · +

(

ms+1

s + 1

)

+
∑

0≤i≤s

(

i + p − 1

i

)

=

(

mk

k

)

+

(

mk−1

k − 1

)

+ · · · +

(

ms+1

s + 1

)

+

(

s + p

s

)

.
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The first inequality follows from the observation that ms ≤ s + p− 1 implies
mi ≤ i + p − 1 for all i = s, s − 1, . . . , r. The last equality follows from a
well-known binomial identity.

Notation We will refer to the upper bound provided by the above theorem
as KK

k+p
k (|L|) (for Kruskal-Katona). The subscript k, the level at which we

are predicting, is important, as the only parameter is the cardinality |L| of
L, not L itself. The superscript k + p denotes the level we are predicting.

Proposition 3 (Tightness). The upper bound provided by Theorem 2 is

tight: for any given n and k there always exists an L with |L| = n such that

for any given p, |Ck+p(L)| = KK
k+p
k (|L|).

Proof. Let us write a finite set of natural numbers as a string of natural
numbers by writing its members in decreasing order. We can then compare
two such sets by comparing their strings in lexicographic order. The resulting
order on the sets is known as the colexicographic (or colex ) order. An intuitive
proof of the Kruskal-Katona theorem, based on this colex order, was given
by Bollobás [10]. Let

(

mk

k

)

+

(

mk−1

k − 1

)

+ · · · +

(

mr

r

)

be the k-canonical representation of n. Then, Bollobás has shown that all
k − p-subsets of the first n k-sets of natural numbers in colex order, are
exactly the first

(

mk

k − p

)

+

(

mk−1

k − 1 − p

)

+ · · · +

(

ms

r − s

)

k−p-sets of natural numbers in colex order, with s the smallest integer such
that s > p. Using the same reasoning as above, we can conclude that all
k + p-supersets of the first n k-sets of natural numbers in colex order are
exactly the first KK

k+p
k (n) k + p-sets of natural numbers in colex order.

Analogous tightness properties hold for all upper bounds we will present
in this paper, but we will no longer explicitly state this.

Example 1. Let L be the set of 13 patterns of size 3:

{{3, 2, 1}, {4, 2, 1}, {4, 3, 1}, {4, 3, 2},
{5, 2, 1}, {5, 3, 1}, {5, 3, 2}, {5, 4, 1}, {5, 4, 2}, {5, 4, 3},
{6, 2, 1}, {6, 3, 1}, {6, 3, 2}}.
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The 3-canonical representation of 13 is
(

5

3

)

+
(

3

2

)

and hence the maximum

number of candidate patterns of size 4 is KK 4

3(13) =
(

5

4

)

+
(

3

3

)

= 6 and the

maximum number of candidate patterns of size 5 is KK 5

3(13) =
(

5

5

)

= 1. This
is tight indeed, because

C4(L) = {{4, 3, 2, 1}, {5, 3, 2, 1}, {5, 4, 2, 1},

{5, 4, 3, 1}, {5, 4, 3, 2}, {6, 3, 2, 1}}

and
C5(L) = {{5, 4, 3, 2, 1}}.

Estimating the number of levels The k-canonical representation of |L|
also yields an upper bound on the maximal size of a candidate pattern,
denoted by maxsize(L). Recall that this size equals the number of iterations
the standard Apriori algorithm will perform. Indeed, since |L| <

(

mk+1

k

)

,
there cannot be a candidate pattern of size mk + 1 or higher, so:

Proposition 4. If
(

mk

k

)

is the first term in the k-canonical representation of

|L|, then maxsize(L) ≤ mk.

We denote this number mk by µk(|L|). From the form of KK
k+p
k as given

by Theorem 2, it is immediate that µ also tells us the last level before which
KK becomes zero. Formally:

Proposition 5.

µk(|L|) = k + min{p | KK
k+p
k (|L|) = 0} − 1.

Estimating all levels As a result of the above, we can also bound, at any
given level k, the total number of candidate patterns that can be generated,
as follows:

Proposition 6. The total number of candidate patterns that can be generated

from a set L of k-patterns is at most

KK total

k (|L|) :=
∑

p≥1

KK
k+p
k (|L|).

4 Improved upper bounds

The upper bound KK on itself is neat and simple as it takes as parameters
only two numbers: the current size k, and the number |L| of current frequent
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patterns. However, in reality, when we have arrived at a certain level k,
we do not merely have the cardinality: we have the actual set L of current
k-patterns! For example, if the frequent patterns in the current pass are
all disjoint, our current upper bound will still estimate their number to a
certain non-zero figure. However, by the pairwise disjointness, it is clear that
no further patterns will be possible at all. In sum, because we have richer
information than a mere cardinality, we should be able to get a better upper
bound.

To get inspiration, let us recall that the candidate generation process of
the Apriori algorithm works in two steps. In the join step, we join L with
itself to obtain a superset of Ck+1. The union p ∪ q of two patterns p, q ∈ L

is inserted in Ck+1 if they share their k − 1 smallest items:

insert into Ck+1

select p[1], p[2], . . . , p[k], q[k]
from Lk p, Lk q

where p[1] = q[1], . . . , p[k − 1] = q[k − 1], p[k] < q[k]

Next, in the prune step, we delete every pattern c ∈ Ck+1 such that some
k-subset of c is not in L.

Let us now take a closer look at the join step from another point of view.
Consider a family of all frequent patterns of size k that share their k − 1
smallest items, and let its cardinality be n. If we now remove from each of
these patterns all these shared k−1 smallest items, we get exactly n distinct
single-item patterns. The number of pairs that can be formed from these
single items, being

(

n

2

)

, is exactly the number of candidates the join step will
generate for the family under consideration. We thus get an obvious upper
bound on the total number of candidates by taking the sum of all

(

nf

2

)

, for
every possible family f .

This obvious upper bound on |Ck+1|, which we denote by obviousk+1(L),
can be recursively computed in the following manner. Let I denote the set
of items occurring in L. For an arbitrary item x, define the set Lx as

Lx = {s − {x} | s ∈ L and x = min s}.

Then

obviousk+1(L) :=







(

|L|

2

)

if k = 1;
∑

x∈I obviousk(L
x) if k > 1.

This upper bound is much too crude, however, because it does not take
the prune step into account, only the join step. The join step only checks
two k-subsets of a potential candidate instead of all k + 1 k-subsets.
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However, we can generalize this method such that more subsets will be
considered. Indeed, instead of taking a family of all frequent patterns sharing
their k−1 smallest items, we can take all frequent patterns sharing only their
k′ smallest items, for some k′ ≤ k − 1. If we then remove these k′ shared
items from each pattern in the family, we get a new set L′ of n patterns of
size k − k′. If we now consider the set C ′ of candidates (of size k − k′ + 1)
for L′, and add back to each of them the previously removed k′ items, we
obtain a pruned set of candidates of size k + 1, where instead of just two (as
in the join step), k − k′ + 1 of the k-subsets were checked in the pruning.
Note that we can get the estimate KKk−k′+1

k−k′ (|L′|) on the cardinality of C ′

from our upper bound Theorem 2.
Doing this for all possible values of k′ yields an improved upper bound

on |Ck+1|, which we denote by improvedk+1(L), and which is computed by
refining the recursive procedure for the obvious upper bound as follows:

improvedk+1(L) :=







(

|L|

2

)

if k = 1;

min{KKk+1

k (|L|),
∑

x∈I improvedk(L
x)} if k > 1.

Actually, as in the previous section, we can do this not only to estimate
|Ck+1|, but also more generally to estimate |Ck+p| for any p ≥ 1. Henceforth
we will denote our general improved upper bound by KK∗

k+p(L). The general
definition is as follows:

KK ∗
k+p(L) :=

{

KK
k+p
k (|L|) if k = 1;

min{KK
k+p
k (|L|),

∑

x∈I KK ∗
k+p−1(L

x)} if k > 1.

(For the base case, note that KK
k+p
k (|L|), when k = 1, is nothing but

(

|L|
p+1

)

.)

By definition, KK ∗
k+p is always smaller than KK

k+p
k . We now prove for-

mally that it is still an upper bound on the number of candidate patterns of
size k + p:

Theorem 7.
|Ck+p(L)| ≤ KK ∗

k+p(L).

Proof. By induction on k. The base case k = 1 is clear. For k > 1, it suffices
to show that for all p > 0

Ck+p(L) ⊆
⋃

x∈I

Ck+p−1(L
x) + x. (1)

(For any set of patterns H , we denote {h ∪ {x} | h ∈ H} by H + x.)
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From the above containment we can conclude

|Ck+p(L)| ≤ |
⋃

x∈I

Ck+p−1(L
x) + x|

≤
∑

x∈I

|Ck+p−1(L
x) + x|

=
∑

x∈I

|Ck+p−1(L
x)|

≤
∑

x∈I

KK ∗
k+p−1(L

x)

where the last inequality is by induction.
To show (1), we need to show that for every p > 0 and every s ∈ Ck+p(L),

s − {x} ∈ Ck+p−1(L
x), where x = min s. This means that every subset of

s−{x} of size k− 1 must be an element of Lx. Let s−{x}−{y1, . . . , yp} be
such a subset. This subset is an element of Lx iff s − {y1, . . . , yp} ∈ L and
x = min(s−{y1, . . . , yp}). The first condition follows from s ∈ Ck+p(L), and
the second condition is trivial. Hence the theorem.

A natural question is why we must take the minimum in the definition
of KK ∗. The answer is that the two terms of which we take the minimum
are incomparable. The example of an L where all patterns are pairwise
disjoint, already mentioned in the beginning of this section, shows that, for
example, KK k+1

k (|L|) can be larger than the summation
∑

x∈I KK ∗
k(L

x). But
the converse is also possible: consider L = {{1, 2}, {1, 3}}. Then KK 3

2(L) =
0, but the summation yields 1.

Example 2. Let L consist of {5, 7, 8} and {5, 8, 9} plus all 19 3-subsets of
{1, 2, 3, 4, 5} and {3, 4, 5, 6, 7}. Because 21 =

(

6

3

)

+
(

2

2

)

, we have KK 4

3(21) =
15, KK 5

3(21) = 6 and KK 6

3(21) = 1. On the other hand,

KK ∗
4(L) = KK ∗

3(L
1) + KK ∗

3(L
2) + KK ∗

3(L
3) + KK ∗

3(L
4)

+ KK ∗
2((L

5)6) + KK ∗
2((L

5)7) + KK ∗
2((L

5)8) + KK ∗
2((L

5)9)

+ KK ∗
3(L

6) + KK ∗
3(L

7) + KK ∗
3(L

8) + KK ∗
3(L

9)

= 4 + 1 + 4 + 1 + 0 + · · ·+ 0

= 10
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and

KK ∗
5(L) = KK ∗

4(L
1) + KK ∗

4(L
2) + KK ∗

4(L
3) + KK ∗

4(L
4)

+ KK ∗
3((L

5)6) + KK ∗
3((L

5)7) + KK ∗
3((L

5)8) + KK ∗
3((L

5)9)

+ KK ∗
4(L

6) + KK ∗
4(L

7) + KK ∗
4(L

8) + KK ∗
4(L

9)

= 1 + 0 + 1 + 0 + 0 + · · ·+ 0

= 2.

Indeed, we have 10 4-subsets of {1, 2, 3, 4, 5} and {3, 4, 5, 6, 7}, and the two
5-sets themselves.

We can also improve the upper bound µk(|L|) on maxsize(L). In analogy
with Proposition 5, we define:

µ∗
k(L) := k + min{p | KK ∗

k+p(L) = 0} − 1.

We then have:

Proposition 8.
maxsize(L) ≤ µ∗

k(L) ≤ µk(L).

We finally use Theorem 7 for improving the upper bound KK total

k on the
total number of candidate patterns. We define:

KK ∗
total(L) :=

∑

p≥1

KK ∗
k+p(L).

Then we have:

Proposition 9. The total number of candidate patterns that can be generated

from a set L of k-patterns is bounded by KK ∗
total(L). Moreover,

KK ∗
total(L) ≤ KK total

k (L).

5 Generalized upper bounds

The upper bounds presented in the previous sections work well for algorithms
that generate and test candidate patterns of one specific size at a time.
However, a lot of algorithms generate and test patterns of different sizes
within the same pass of the algorithm [11, 8, 29]. Hence, these algorithms
know in advance that several patterns of size larger than k are frequent or
not. Since our upper bound is solely based on the patterns of a certain length
k, it does not use information about patterns of length larger than k.
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Nevertheless, these larger sets could give crucial information. More specif-
ically, suppose we have generated all frequent patterns of size k, and we also
already know in advance that a certain set of size larger than k is not fre-
quent. Our upper bound on the total number of candidate patterns that
can still be generated, would disregard this information. We will therefore
generalize our upper bound such that it will also incorporate this additional
information.

5.1 Generalized KK -bound

From now on, L is some family of sets of patterns Lk, Lk+1, . . . , Lk+q which
are known to be frequent, such that Lk+p contains patterns of size k + p, and
all k + p − 1-subsets of all patterns in Lk+p are in Lk+p−1. We denote by |L|
the sequence of numbers |Lk|, |Lk+1|, . . . , |Lk+q|.

Similarly, let I be a family of sets of patterns Ik, Ik+1, . . . , Ik+q which are
known to be infrequent, such that Ik+p contains patterns of size k +p and all
k + p − 1-subsets of all patterns in Ik+p are in Lk+p−1. We denote by |I| the
sequence of numbers |Ik|, |Ik+1|, . . . , |Ik+q|. Note that for each p ≥ 0, Lk+p

and Ik+p are disjoint.
Before we present the general upper bounds, we also generalize our notion

of a candidate pattern.

Definition 2. A candidate pattern for (L, I) of size k + p is a pattern which
is not in Lk+p or Ik+p, all of its k-subsets are in Lk, and none of its subsets
of size larger than k is included in Ik ∪ Ik+1 ∪ · · · ∪ Ik+q. For a given p, we
denote the set of all k + p-size candidate patterns for (L, I) by Ck+p(L, I).

We note:

Lemma 10.

Ck+p(L, I) =

{

Ck+1(Lk) \ (Lk+1 ∪ Ik+1) if p = 1;

Ck+p

(

Ck+p−1(L, I) ∪ Lk+p−1

)

\ (Lk+p ∪ Ik+p) if p > 1.

Proof. The case p = 1 is clear. For p > 1, we show the inclusion in both
directions.

⊇ For every set in Ck+p

(

Ck+p−1(L, I) ∪ Lk+p−1

)

, we know that all of its
k-subsets are always contained in a k + p − 1 subset, and these are
in Ck+p−1(L, I) ∪ Lk+p−1. By definition, we know that for every set
in Ck+p−1(L, I), all of its k-subsets are in Lk. Also, for every set in
Lk+p−1, all of its k-subsets are in Lk. By definition, for every set in
Ck+p−1(L, I), all of its k + p − i-subsets are not in Ik+p−i. Also, for

12



every set in Lk+p−1, all of its k + p− i-subsets are in Lk+p−i and hence
they are not in Ik+p−i since they are disjoint. By definition, none of
the patterns in Lk+p ∪ Ik+p are in Ck+p(L, I).

⊆ It suffices to show that for every set in Ck+p(L, I), every k+p−1-subset
s is in Ck+p−1(L, I) ∪ Lk+p−1. Obviously, this is true, since if it is not
already in Lk+p−1, still all k-subsets of s must be in Lk, s can not be
in Ik+p−1 and none of its subsets can be in any Ik+p−` with ` > 1.

Hence, we define

gKK
k+p
k (|L|, |I|) :=

{

KK k+1

k (|Lk|) − |Lk+1| − |Ik+1| if p = 1;

KK
k+p
k+p−1

(gKK
k+p−1

k (|L|, |I|) + |Lk+p−1|) − |Lk+p| − |Ik+p| if p > 1,

and obtain:

Theorem 11.

|Ck+p(L, I)| ≤ gKK
k+p
k (|L|, |I|) ≤ KK

k+p
k (|Lk|) − |Lk+p| − |Ik+p|.

Proof. The first inequality is clear by Lemma 10. The second inequality is
by induction on p. The base case p = 1 is by definition. For p > 1, we have:

gKK
k+p
k (|L|, |I|) = KK

k+p
k+p−1

(gKK
k+p−1

k (|L|, |I|) + |Lk+p−1|)

− |Lk+p| − |Ik+p|

≤ KK
k+p
k+p−1

(KK
k+p−1

k (|Lk|) − |Ik+p−1|) − |Lk+p| − |Ik+p|

≤ KK
k+p
k+p−1

(KK
k+p−1

k (|Lk|)) − |Lk+p| − |Ik+p|

= KK
k+p
k (|Lk|) − |Lk+p| − |Ik+p|

where the first inequality is by induction and because of the monotonicity of
KK , the second inequality also because of the monotonicity of KK and the
last equality follows from

KK
k+p
k (|Lk|)) = KK

k+p
k+p−1

(KK
k+p−1

k (|Lk|)).

13



Again, we can also generalize the upper bound on the maximal size of a
candidate pattern, denoted by maxsize(L, I), and the upper bound on the
total number of candidate patterns, both also incorporating (L, I):

gµ(|L|, |I|) := k + min{p | gKK
k+p
k (|L|, |I|) = 0} − 1

gKK total

k (|L|, |I|) :=
∑

p≥1

gKK
k+p
k (|L|, |I|).

We obtain:

Proposition 12.

maxsize(L, I) ≤ gµ(|L|, |I|) ≤ µ(|L|).

Proposition 13. The total number of candidate patterns that can be gener-

ated from (L, I) is bounded by gKK total

k (|L|, |I|). Moreover,

gKK total

k (|L|, |I|) ≤ KK total

k (|Lk|).

Example 3. Suppose L3 consists of all subsets of size 3 of the set {1, 2, 3, 4,
5, 6}. Now assume we already know that I4 contains patterns {1, 2, 3, 4}
and {3, 4, 5, 6}. The KK upper bound presented in the previous section
would estimate the number of candidate patterns of sizes 4, 5, and 6 to be
at most

(

6

4

)

= 15,
(

6

5

)

= 6, and
(

6

6

)

= 1 respectively. Nevertheless, using
the additional information, gKK can already reduce these numbers to 13, 3,
and 0. Also, µ would predict the maximal size of a candidate pattern to
be 6, while gµ can already predict this number to be at most 5. Similarly,
KK total would predict the total number of candidate patterns that can still be
generated to be at most 22, while gKK total can already deduce this number
to be at most 16.

5.2 Generalized KK ∗-bound

Using the generalized basic upper bound, we can now also generalize our
improved upper bound KK ∗. For an arbitrary item x, define the family of
sets Lx as Lx

k, L
x
k+1, . . . , L

x
k+q, and Ix as Ix

k , Ix
k+1, . . . , I

x
k+q. We define:

gKK ∗
k+p(L, I) :=

{

gKK
k+p
k (|L|, |I|) if k = 1;

min{gKK
k+p
k (|L|, |I|),

∑

x∈I gKK ∗
k+p−1(L

x, Ix)} if k > 1.

We then have:

14



Theorem 14.

|Ck+p(L, I)| ≤ gKK ∗
k+p(L, I) ≤ KK ∗

k+p(Lk) − |Lk+p| − |Ik+p|.

Proof. The proof of the first inequality is similar to the proof of Theorem 7,
instead that we now need to show that for all p > 0,

Ck+p(L, I) ⊆
⋃

x∈I

Ck+p−1(L
x, Ix) + x.

Therefore, we need to show for every s ∈ Ck+p(L, I), s−{x} ∈ Ck+p−1(L
x, Ix),

where x = min s. First, this means that every subset of s−{x} of size k − 1
must be in Lx

k. Let s−{x}−{y1, . . . , yp} be such a subset. This subset is an
element of Lx

k if and only if s−{y1, . . . , yp} ∈ Lk and x = min(s−{y1, . . . , yp}).
The first condition follows from s ∈ Ck+p(L, I), and the second condition
is trivial. Second, we need to show that s − {x} is not in Lx

k+p. Since
s ∈ Ck+p(L, I), s is not in Lk+p and hence s − {x} cannot be in Lx

k+p.
Finally, we need to show that none of the subsets of s − {x} of size greater
than k − 1 are in Ix

k+1, . . . , I
x
k+p−1. Let s − {x} − {y1, . . . , ym} be such a

subset. Since s ∈ Ck+p(L, I), s − {y1, . . . , ym} is not in Ik+p−m, and hence
s − {x} − {y1, . . . , ym} cannot be in Ix

k+p−m.
We prove the second inequality by induction on k. The base case k = 1

is clear. For all k > 0, we have

gKK ∗
k+p(L, I)

= min{gKK
k+p
k (|L|, |I|),

∑

x∈I

gKK ∗
k+p−1(L

x, Ix)}

≤ min{KK
k+p
k (|Lk|) − |Lk+p| − |Ik+p|,

∑

x∈I

KK ∗
k+p−1(L

x
k) − |Lx

k+p| − |Ix
k+p|}

= min{KK
k+p
k (|L|),

∑

x∈I

KK ∗
k+p−1(L

x)} − |Lk+p| − |Ik+p|

= KK ∗
k+p(Lk) − |Lk+p| − |Ik+p|

where the left hand side of the minimum in the inequality is by Theorem 11
and the right hand side is by induction.

Again, we get an upper bound on maxsize(L, I):

gµ∗(L, I) := k + min{p | gKK ∗
k+p(L, I) = 0} − 1,

and on the total number of candidate patterns that can still be generated:

gKK ∗
total(L, I) :=

∑

p≥1

gKK ∗
k+p(L, I).

We then have the following analogous propositions to 8 and 9:

15



Proposition 15.

maxsize(L, I) ≤ gµ∗(L, I) ≤ µ∗(L).

Proposition 16. The total number of candidate patterns that can be gener-

ated from (L, I) is bounded by gKK ∗
total(L, I). Moreover,

gKK ∗
total(L, I) ≤ KK ∗

total(Lk).

Example 4. Consider the same set of patterns as in the previous example.
I.e., L3 consists of all subsets of size 3 of the set {1, 2, 3, 4, 5, 6} and {1, 2, 3, 4}
and {3, 4, 5, 6} are included in I4. The KK ∗ upper bound presented in the
previous section would also estimate the number of candidate patterns of
sizes 4, 5, and 6 to be at most

(

6

4

)

= 15,
(

6

5

)

= 6, and
(

6

6

)

= 1 respectively.
Nevertheless, using the additional information, gKK ∗ can perfectly predict
these numbers to be 13, 2, and 0. Again, µ∗ would predict the maximal size
of a candidate pattern to be 6, while gµ∗ can already predict this number to
be at most 5. Similarly, KK ∗

total would predict the total number of candidate
patterns that can still be generated to be at most 22, while gKK ∗

total can
already deduce this number to be at most 15.

6 Efficient Implementation

For simplicity reasons, we will restrict ourselves to the explanation of how the
improved upper bounds can be implemented. The proposed implementation
can be easily extended to support the computation of the general upper
bounds.

To evaluate our upper bounds we implemented an optimized version of the
Apriori algorithm using a trie data structure to store all generated patterns,
similar to the one described by Brin et al. [11]. This trie structure makes it
cheap and straightforward to implement the computation of all upper bounds.
Indeed, a top-level subtrie (rooted at some singleton pattern {x}) represents
exactly the set Lx we defined in Section 4. Every top-level subtrie of this
subtrie (rooted at some two-element pattern {x, y}) then represents (Lx)y,
and so on. Hence, we can compute the recursive bounds while traversing the
trie, after the frequencies of all candidate patterns are counted, and we have
to traverse the trie once more to remove all candidate patterns that turned
out to be infrequent. This can be done as follows.

Remember, at that point, we have the current set of frequent patterns of
size k stored in the trie. For every node at depth d smaller than k, we compute
the k−d-canonical representation of the number of descendants this node has
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at depth k, which can be used to compute µk−d (cf. Proposition 4), KK `
k−d

for any ` ≤ µk−d (cf. Theorem 2) and hence also KK total

k−d (cf. Proposition 6).
For every node at depth k − 1, its KK ∗ and µ∗ values are equal to its KK

and µ values respectively. Then compute for every p > 0, the sum of the
KK ∗

k−d+p−1 values of all its children, and let KK ∗
k−d+p be the smallest of

this sum and KK
k−d+p
k−d until this minimum becomes zero, which also gives

us the value of µ∗. Finally, we can compute KK ∗
total for this node. If this is

done for every node, traversed in a depth-first manner, then finally the root
node will contain the upper bounds on the number of candidate patterns
that can still be generated, and on the maximum size of any such pattern.
The soundness and completeness of this method follows directly from the
theorems and propositions of the previous sections.

We should also point out that, since the numbers involved can become
exponentially large (in the number of items), an implementation should take
care to use arbitrary-length integers such as provided by standard mathemat-
ical packages. Since the length of an integer is only logarithmic in its value,
the lengths of the numbers involved will remain polynomially bounded.

7 Experimental Evaluation

All experiments were performed on a 400MHz Sun Ultra Sparc with 512 MB
main memory, running Sun Solaris 8. The algorithm was implemented in
C++ and uses the GNU MP library for arbitrary-length integers [15].

Data sets We have experimented using three real data sets, of which two
are publicly available, and one synthetic data set generated by the program
provided by the Quest research group at IBM Almaden [5]. The mushroom
data set contains characteristics of various species of mushrooms, and was
originally obtained from the UCI repository of machine learning databases [9].
The BMS-WebView-1 data set contains several months worth of clickstream
data from an e-commerce web site, and is made publicly available by Blue
Martini Software [19]. The basket data set contains transactions from a
Belgian retail store, but can unfortunately not be made publicly available.
Table 1 shows the number of items and the number of transactions in each
data set. The table additionally shows the minimal support threshold we used
in our experiments for each data set, together with the resulting number of
iterations and the time (in seconds) which the Apriori algorithm needed to
find all frequent patterns.

The results from the experiment with the real data sets were not immedi-
ately as good as the results from the synthetic data set. The reason for this,
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Data set #Items #Transactions MinSup #It’s Time
T40I10D100K 1 000 100 000 700 18 1 700s
mushroom 120 8 124 813 16 663s
BMS-Webview-1 498 59 602 36 15 86s
basket 13 103 41 373 5 11 43s

Table 1: Database Characteristics

however, turned out to be the bad ordering of the items, as explained next.

Reordering From the form of Lx, it can be seen that the order of the items
can affect the recursive upper bounds. By computing the upper bound only
for a subset of all frequent patterns (namely Lx), we win by incorporating
the structure of the current collection of frequent patterns, but we also lose
some information. Indeed, whenever we recursively restrict ourselves to a
subtrie Lx, then for every candidate pattern s with x = min s, we lose the
information about exactly one subpattern in L, namely s − x.

We therefore would like to make it likely that many of these excluded
patterns are frequent. A good heuristic, which has already been used for
several other optimizations in frequent pattern mining [8, 11, 2], is to force the
most frequent items to appear in the most candidate patterns, by reordering
the single item patterns in increasing order of frequency.

After reordering the items in the real life data set, using this heuristic, the
results became very analogous with the results using the synthetic datasets.

Efficiency The cost for the computation of the upper bounds is negligible
compared to the cost of the complete algorithm. Indeed, the time T needed
to calculate the upper bounds is largely dictated by the number n of currently
known frequent sets. We have shown experimentally that T scales linearly
with n. Moreover, the constant factor in our implementation is very small
(around 0.00001). We ran several experiments using the different data sets
and varying minimal support thresholds. After every pass of the algorithm,
we registered the number of known frequent sets and the time spent to com-
pute all upper bounds, resulting in 145 different data points. Figure 1 shows
these results.

Upper bounds

• Figure 2 shows, after each level k, the computed upper bound KK and
improved upper bound KK ∗ for the number of candidate patterns of
size k + 1, as well as the actual number |Ck+1| it turned out to be.
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Figure 1: Time needed to compute upper bounds is linear in the number of
nodes.

We omitted the upper bound for k + 1 = 2, since the upper bound on
the number of candidate patterns of size 2 is simply

(

|L|
2

)

, with |L| the
number of frequent items.

• Figure 3 shows the upper bounds on the total number of candidate
patterns that could still be generated, compared to the actual number
of candidate patterns, |Ctotal|, that were effectively generated. Again,
we omitted the upper bound for k = 1, since this number is simply
2|L| − |L| − 1, with |L| the number of frequent items.

• Figure 4 shows the computed upper bounds µ and µ∗ on the maximal
size of a candidate pattern. Also here we omitted the result for k = 1,
since this number is exactly the number of frequent items.

The results are pleasantly surprising:

• Note that the improvement of KK ∗ over KK , and of µ∗ over µ, antici-
pated by our theoretical discussion, is indeed dramatic.

• Comparing the computed upper bounds with the actual numbers, we
observe the high accuracy of the estimations given by KK ∗. Indeed,
the estimations of KK ∗

k+1 match almost exactly the actual number of
candidate patterns that has been generated at level k + 1. Also note
that the number of candidate patterns in T40I10D100K is decreasing
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Figure 2: Actual and estimated number of candidate patterns.
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Figure 2: Actual and estimated number of candidate patterns.
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Figure 3: Actual and estimated total number of future candidate patterns.
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Figure 3: Actual and estimated total number of future candidate patterns.
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Figure 4: Estimated size of the largest possible candidate pattern.
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Figure 4: Estimated size of the largest possible candidate pattern.
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in the first four iterations and then increases again. This perfectly il-
lustrates that the heuristic used for AprioriHybrid, as explained in the
related work section, would not work on this data set. Indeed, any
algorithm that exploits the fact that the current number of candidate
patterns is small enough and there were fewer candidate patterns in
the current iteration than in the previous iteration, would falsely inter-
pret these observations, since the number of candidate patterns in the
next iterations increases again. The presented upper bounds perfectly
predict this increase.

• The upper bounds on the total number of candidate patterns are still
very large when estimated in the first few passes, which is not surprising
because at these initial stages, there is not much information yet. For
the mushroom and the artificial data sets, the upper bound is almost
exact when the frequent patterns of size 3 are known. For the basket
data set, this result is obtained when the frequent patterns of size 4 are
known and size 6 for the BMS-Webview-1 data set.

• We also performed experiments for varying minimal support thresholds.
The results obtained from these experiments were entirely similar to
those presented above.

Combining iterations As discussed in the Introduction, the proposed
upper bound can be used to protect several improvements of the Apriori
algorithm from generating too many candidate patterns. One such improve-
ment tries to combine as many iterations as possible in the end, when only
few candidate patterns can still be generated. We have implemented this
technique within our implementation of the Apriori algorithm.

We performed several experiments on each data set and limited the num-
ber of candidate patterns that is allowed to be generated. If the upper bound
on the total number of candidate patterns is below this limit, the algorithm
generates and counts all possible candidate patterns within the next iter-
ation. Figure 5 shows the results. The x-axis shows the total number of
iterations in which the algorithm completed, and the y-axis shows the total
time the algorithm needed to complete. As can be seen, for all datasets, the
algorithm can already combine all remaining iterations into one very early in
the algorithm. For example, the BMS-Webview-1 dataset, which normally
performs 15 iteration, could be reduced to six iterations to give an optimal
performance. If the algorithm already generated all remaining candidate pat-
terns in the fifth iteration, the number of candidate patterns that turned out
to be infrequent was too large, such that the gain of reducing iterations has
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Figure 5: Combining iterations.
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been consumed by the time needed to count all these candidate patterns.
Nevertheless, it is still more effective than not combining any passes at all. If
we allowed the generation of all candidate patterns to occur in even earlier it-
erations, although the upper bound predicted a to large number of candidate
patterns, this number became indeed to large keep in main memory.

8 Conclusion

Motivated by several heuristics to reduce the number of database scans in
the context of frequent pattern mining, we provide a hard and tight combi-
natorial upper bound on the number of candidate patterns and on the size of
the largest possible candidate pattern, given a set of frequent patterns. Our
findings are not restricted to a single algorithm, but can be applied to any
frequent pattern mining algorithm which is based on the levelwise genera-
tion of candidate patterns. Using the standard Apriori algorithm, on which
most frequent pattern mining algorithms are based, our experiments showed
that these upper bounds can be used to considerably reduce the number of
database scans without taking the risk of getting a combinatorial explosion
of the number of candidate patterns.
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