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Tight Wavelet Frames on Multislice Graphs
Nora Leonardi, Student Member, IEEE, and Dimitri Van De Ville, Senior Member, IEEE

Abstract—We present a framework for the design of wavelet

transforms tailored to data defined on multislice graphs (i.e.,

multiplex or dynamic graphs). Graphs with multiple types of

interactions are ubiquitous in real life, motivating the extension of

wavelets to these complex domains. Our framework generalizes

the recently proposed spectral graph wavelet transform (SGWT)

[D. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets

on Graphs via Spectral Graph Theory,” Appl. Comput. Harmon.

Anal., vol. 30, pp. 129–150, Mar. 2011], which is designed in the

spectral (frequency) domain of an arbitrary finite weighted graph.
We extend the SGWT to form a tight frame, which conserves

energy in the wavelet domain, and define the relationship between

conventional and spectral graph wavelets. We then propose a
design for multislice graphs that is based on the higher-order

singular value decomposition (HOSVD), a powerful tool from

multilinear algebra. In particular, the multiple adjacency matrices
are stacked to form a tensor and the HOSVD decomposition

provides information about its third-order structure, analogous

to that provided by matrix factorizations. We obtain a set of
“eigennetworks” and from these graph wavelets, which exploit the

variability across the graphs. We demonstrate the feasibility of our

method 1) by capturing different orientations of a gray-scale image
and 2) by decomposing brain signals from functional magnetic

resonance imaging.We show its effectiveness to identify variability

across graph edges and provide meaningful decompositions.

Index Terms—Higher-order singular value decomposition

(HOSVD), multislice graph, spectral graph theory, tensor decom-

positions, wavelet transform.

I. INTRODUCTION

B RAIN networks, human society or the internet are only
some examples of systems that can be modelled as

networks. Even though many networks have multiple types of
interactions or interactions that change over time, emphasis has
traditionally been put on the study of simple or static networks.
Recent work has however illustrated the advantages of ex-
ploiting the rich information of multislice networks: dynamic
changes in modular organization of the human brain during
learning are linked to the mastery of a novel skill [1], [2]; the
multiple types of relations in human society help to understand
the different roles humans play in different networks [3]; broad
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degree distributions enhance the vulnerability to failure of
interdependent networks, in contrast to simple networks [4];
and community detection in datasets with multiple types of
similarities can be improved [5].
Often, we want to study a signal on the network, not only

the network itself. Wavelets are powerful tools in signal pro-
cessing since they can localize signal contents in both space
and frequency, and provide compact and multiscale representa-
tions of piecewise smooth signals. However, they are designed
for signals defined on regular Euclidean spaces. Since real sig-
nals are often defined on irregular domains multiple extensions
to signals defined on graphs and manifolds have recently been
proposed [6]–[10]. (We will use the terms network and graph
interchangeably in this article.) These proposals can be split
into spatial and spectral (frequency) designs. The former group
includes Jansen et al. [6] who based their method on lifting
schemes, and Ram et al. [7] who constructed wavelets for hier-
archical trees. Hammond et al. [8], Coifman and Maggioni [9]
and Narang and Ortega [10] used spectral graph theory to con-
struct spectral graph wavelets, “diffusion wavelets”, and two-
channel filter-banks for bipartite graphs, respectively. Impor-
tantly, graph wavelet transforms are adapted to the topology
of the graph. Our proposed framework generalizes the spectral
graph wavelet transform (SGWT) introduced in [8]: a redundant
wavelet transform for arbitrary weighted graphs that is based on
the eigenspace of the graph Laplacian matrix and that can be ef-
ficiently applied to graphs with a large number of nodes by ex-
pressing the wavelets as iterates of the graph Laplacian operator.
Motivated by the promising results from multislice networks

and the power of wavelets to analyze non-stationary signals, we
sought to extend wavelets to multislice graphs. We expect mul-
tislice graph wavelets, which can adapt to the variable under-
lying graph topology, to be better suited to analyze signals de-
fined on multislice graphs than “single slice” graph wavelets,
constructed either separately for each slice or after simply aver-
aging across them as is commonly done.
Our contributions in this paper are (1) to introduce a tight

frame design for the SGWT, which is desirable because it pre-
serves energy in the transformed domain and is self-reversible,
which leads to a more efficient reconstruction scheme than in
[8], (2) to make the connection between conventional and spec-
tral graph wavelets explicit, and (3) to generalize the SGWT
to multislice graphs. A multislice network, which consists of
a set of networks, can be naturally represented with tensors
(multi-way arrays). To reveal “hidden” structure in the vari-
able graph topology, we propose to use tensor decompositions.
Tensor decompositions are higher-order analogues of matrix
factorizations, which are powerful tools, for, e.g., feature selec-
tion, but which are limited to two-dimensional data. To study
data with three or more dimensions, tensor decompositions have
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been used in a wide variety of applications, such as chemomet-
rics [11], psychoactivemetrics [12], face recognition [13] and
neuroscience (for a review see [14]). The two most commonly
used decompositions are the higher order singular value decom-
position (HOSVD) and CANDECOMP/PARAFAC (CP), both
of which are often considered as higher-order generalizations of
the matrix singular value decomposition (SVD) and principal
component analysis (PCA) [15]–[18]. Each decomposition ex-
tends a different property of the SVD: The HOSVD decomposes
a third-order tensor into three orthonormal subspaces associated
with the different dimensions of a tensor, and CP decomposes it
into a linear combination of rank-1 terms. We propose to use the
HOSVD to learn “eigennetworks” from which we obtain novel
networks by combining them in different ways. These networks
and the resulting graph wavelets capitalize on the variability
across a collection of networks.
In related work, Dong et al. [5] introduced spectral clustering

methods for multislice networks. The authors suggested that
their methods may also be used to generalize other methods that
are based on the eigenspace of the Laplacian matrix, but no ap-
plications other than clustering were shown. Their method dif-
fers from ours in that they derive one joint eigenspace for the
multislice graph, whereas we derive multiple eigenspaces that
capture the variability across the slices. We are not aware of any
other proposals to generalize wavelets to multislice graphs.
We apply the proposed method to different types of regular

grid graphs and functional magnetic resonance imaging (fMRI)
data to demonstrate that it can be a useful tool for analyzing
signals defined on arbitrary weighted graphs with multiple types
of interactions.
The paper is organized as follows. In Section II, we briefly re-

view the SGWT on which our framework is based. In Section III
we introduce the construction of tight graph wavelet frames, ra-
tional dilation factors and the relationship between conventional
and spectral graph wavelets. In Section IV, we propose a frame-
work to design wavelets on multislice graphs and we present
experimental results in Section V.

Notations

Scalars are denoted by lowercase letters (e.g., ), vectors by
boldface lowercase letters (e.g., ), matrices by boldface capital
letters (e.g., ), and tensors by Euler script letters (e.g., ).
The order of a tensor is its number of dimensions, also known

as modes. For third-order tensors, slices are two-dimensional
subarrays obtained by fixing one index: , and for
a horizontal, vertical and frontal slice, respectively.
The multiplication of a tensor with a matrix in mode is

denoted by . For a third-order tensor ,
its mode-1 product with the matrix is a tensor of
size with entries

(1)

Using the -mode product notation, the matrix product
can be rewritten as .

A tensor can be converted to a matrix by unfolding it
along any mode. The mode-1 matricization or unfolding of a

third-order tensor is the matrix with entries
where , i.e., is a

reordered concatenation of the frontal slices of the tensor.

II. REVIEW OF SPECTRAL GRAPHWAVELETS

We start with a short overview of the construction of the
SGWT and refer to [8] for details and proofs.

A. Classical One-Dimensional Wavelets

To solve the problem of how to define shifting and scaling
of wavelets on irregular domains, Hammond et al. appealed to
the Fourier domain. The one-dimensional continuous wavelet

, at scale and location , can be defined
in the Fourier domain as

(2)

For ease of understanding of the SGWT design that will follow,
we highlight several properties of (2):
� the wavelet is represented on complex exponentials, which
are eigenfunctions of the one-dimensional Laplacian oper-
ator; i.e., ;

� shifting the wavelet to location corresponds to a multi-
plication by ;

� the wavelet can be interpreted as scaled bandpass filter and
scaling by corresponds to scaling with .

Shifting and scaling of the classical wavelet can thus be defined
in the Fourier domain. To generalize wavelets to graph, we will
need the analogue of the Fourier domain for graphs.

B. Weighted Graphs

Let be an undirected graph consisting of
nodes that are connected by the set of edges with

nonnegative weights . The adjacency matrix for a
graph without loops is then given by the non-diagonal entries

if ,
otherwise.

(3)

The diagonal degree matrix is given by and the
Laplacian matrix by . The normalized version of
the Laplacian matrix is defined as .
The eigenspaces of the Laplacian matrices form the graph

analogue of the Fourier domain. and are symmetric, pos-
itive semi-definite matrices and can thus be decomposed into
non-negative eigenvalues and eigenvectors. For the decom-
position is given by

(4)

where is an orthonormal matrix con-
taining eigenvectors and is a diagonal matrix whose en-
tries equal the associated eigenvalues
[19]. For , with , and the eigen-

vectors are different from those of (except if , of
course).
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C. Spectral Graph Wavelets

In analogy to the classical wavelet of II-A, we can now define
the spectral graph wavelet , at scale and node , in the
eigenspace of the graph Laplacian matrix or :

(5)

where is the wavelet generating function defined in the spec-
tral graph domain. We now compare (2) and (5):
� the wavelet is represented on the eigenvectors of
the Laplacian matrix, replacing ;

� shifting the wavelet to node corresponds to a multiplica-
tion by , replacing ;

� behaves as a scaled bandpass filter, replacing ;
� the role of the frequency is played by the eigenvalue .

Note that in practice the continuous scaling parameter will be
sampled to a finite number of scales; i.e., we have for
scales.
We also need to define the scaling function to capture

the residual “low-pass” components:

(6)

where is the scaling function generator. An example of exact
specification of and was given in .
As in the one-dimensional setting, the wavelet and scaling

coefficients are given by the inner product of the graph signal
with the wavelets and the scaling function , respectively:

(7)

(8)

Because it is infeasible to explicitly compute the eigenspace
of the Laplacian matrix for large graphs, the authors proposed
a fast method to compute the forward transform. The method is
based on approximating the kernels and with a low-dimen-
sional Chebyshev polynomial:

(9)

where denotes the Chebyshev coefficients, the order of
the polynomial approximation, and the shifted Cheby-
shev polynomials of order . The fast ap-
proximate spectral graph wavelet forward transform is given by

(10)

(11)

To recover a graph signal from a given set of wavelet coef-
ficients , where includes the wavelet and scaling co-
efficients and , and represents the
approximate SGWT, we use a left-inverse s.t. .
Since the SGWT is a redundant transform, there is an infinite
number of possible inverses. The authors in chose to use the
pseudoinverse that solves , where is the
adjoint operator. For large graphs, the pseudoinverse can be cal-
culated by an iterative conjugate gradient method.

III. TIGHT FRAME GRAPHWAVELETS

A. Tight Frame Design

The authors in highlighted the need to optimize the design of
the wavelet generating function and scaling function
for specific applications. Here, we are interested in construc-
tions that lead to tight (or Parseval) wavelet frames because
of their important property of energy conservation between the
original and transformed domain and the easy signal reconstruc-
tion [20].
Definition 1: A family of wavelets forms a

frame of , if there exist frame bounds such that

(12)

If , the family forms a Parseval frame and
preserves energy:

(13)

A Parseval frame is the normalized version of a tight frame
( ). Notably, Parseval frames have a simple reconstruc-
tion formula where the analysis functions are used at the syn-
thesis side:

(14)

Thus, the fast approximate SGWT can be used for both the
analysis and synthesis steps, avoiding the iterative computation
of the pseudoinverse. Note that the proposed analysis/synthesis
scheme uses an approximation for both steps, whereas the pseu-
doinverse proposed in [8] compensates for approximation errors
made in the analysis step. Therefore, the polynomial order
needs to be chosen high enough in the former case to ensure
perfect reconstruction.
We propose to generate Parseval graph wavelet frames by

designing thewavelet generating kernel and scaling function
in the spectral graph domain in analogy to classical definitions in
the Fourier frequency domain (Table I, Fig. 1(b)). The dyadic
spatial scales are defined as for and
the factor is chosen to ensure full spectral coverage of the
kernels.
All of these constructions are bandlimited functions, and the

union of the functions and forms a partition
of unity: .
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Fig. 1. (a) Eigenvalues of the Swiss Roll graph from [8] with nodes,
and . Scaling function , wavelet generating kernels , and sum of
squares (dotted line) of a Meyer-like rational wavelet frame with (b),
(c) and (d) and .

B. Rational Dilation Factors

The eigenvalues can be unevenly distributed depending
on the nature of the graph (see Fig. 1(a) for an example). For
increased flexibility in defining the wavelet subbands, we also
provide rational frame designs. Extensions to the rational case
of Meyer and Shannon constructions for classical wavelets were
originally proposed by Auscher [25] and have further been gen-
eralized by [26].
The rational wavelet generating kernel and scaling func-

tion with rational dilation factor , are
defined as follows for a Meyer-like wavelet frame:

]
]

elsewhere

(15)

]
elsewhere

(16)

where , and . Clearly,
the classical dyadic dilation corresponds to . The
wavelet scales are defined as for .
Fig. 1(c) and (d) show the spectra of two Meyer-like rational
wavelets.

TABLE I
SPECIFICATION OFWAVELET AND SCALING GENERATING FUNCTIONS THAT

LEAD TO PARSEVALWAVELET FRAMES

C. Conventional and Spectral Graph Wavelets

As stated in Section II-C, the eigenvalues of the graph
Laplacian play the role of frequencies . However, the exact
relation between spectral and conventional Fourier frequencies
was not further deepened in [8]. Here, we want to find this
relation. As we have introduced wavelet generating functions
from previously proposed wavelet bases, we want to define the
mapping that leads to the classical Meyer wavelet
when using the Meyer generating function and a Cartesian
grid. We use a cycle graph because it corresponds to an equis-
paced sampling grid of a one-dimensional signal with periodic
boundary conditions, and the eigenvectors of its Laplacian
matrix are the basis vectors of the discrete Fourier transform
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Fig. 2. (a) Schematic of a cycle graph that corresponds to an equispaced sam-
pling grid of a one-dimensional signal; (b) the spectral graph wavelet for the
Meyer generating window does not equal the Meyer wavelet, (c) but it
does for the generating window with .

[27] (Fig. 2(a)). Without any mapping , the spectral graph
wavelet does not yield the classical Meyer wavelet (Fig. 2(b)).
Intuitively, one would expect a mapping since the
Laplacian corresponds to a second-order derivative operator
( ), but the relation is slightly more subtle.
To understand it, we consider the eigenvalues of the cycle
graph [19]:

(17)

with ; the number of nodes, 2 the degree of
the nodes and the conventional Fourier frequency.
Inversion of (17) leads to the mapping

(18)

which we incorporate in the wavelet generating function as
. This mapping linearizes the eigenvalues and the

spectral graph wavelet yields the classical Meyer wavelet
(Fig. 2(c)). Note that the behavior of around the origin
is quadratic, as expected, but that the eigenvalues at the upper
part of the Laplacian spectrum are saturated.
Because the spectrum of any graph Laplacian matrix or

is contained in , we will incorporate the mapping

(19)

in the wavelet generating function and scaling function gen-
erator .
Interestingly, the same relation between spectral and conven-

tional Fourier frequencies has been reported when considering
the wave equation on graphs. For the interested reader, we fur-
ther discuss this result in the appendix.

IV. WAVELETS ON MULTISLICE GRAPHS

We propose to construct wavelets on multislice graphs by first
estimating eigennetworks of a multislice graph, which capture
the variability across slices (Section IV-A), and then, within this
eigennetwork construction, apply the SGWT (Section IV-B).

A. Eigenspace of Multislice Graphs

Dynamic networks or networks connected by different types
of edges can be represented by a multislice network, where
each slice corresponds to one time point or type of interaction
(Fig. 3). A multislice graph with nodes and different types
of edges is described by a third-order adjacency tensor

with the individual adjacency matrices
as its frontal slices: , for .
Here, we use tools from multilinear algebra, the HOSVD in

particular, to extract orthonormal subspaces from the adjacency
tensor, from which “novel” graphs can be constructed that cap-
ture the variability across the edge measures.
Proposition 1: The HOSVD of a tensor with

symmetric frontal slices
yields the decomposition

(20)

where is called the core tensor and
and are orthonormal mode matrices (Fig. 3). The
1-mode singular values are defined by for

, and are ordered . The
singular values for the other two modes are analogous.
The core tensor governs the interactions between the fac-

tors represented in the mode matrices; i.e., between the nodes
and various edge measures, and the mode matrix spans a joint
subspace of all adjacency matrices.
Definition 2: The core tensor can be transformed into an

“eigennetwork” tensor by the joint subspace :

(21)

with . The individual eigennetworks are
given by

(22)

with and using the slice-wise representation of
[28]. The eigennetworks are orthogonal in the sense of the scalar
product , for , and symmetric since

shares the symmetry of [16]:
.

The first eigennetwork is the average over all networks
and the additional eigennetworks capture the vari-
ability across them. The idea of extracting eigennetworks from
a tensor using HOSVD is similar to work from Vasilescu and
Terzopoulos [13] who proposed “TensorFaces”, a facial image
recognition technique.
The adjacency tensor can now also be in-

terpreted as a weighted sum of eigennetworks, as illustrated in
Fig. 3 [29]:

(23)

For a graph with a large number of nodes , it is infeasible
to compute the eigennetworks . However, noting that

, since [16],
we can efficiently compute them in an indirect way if :

(24)
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Fig. 3. An adjacency tensor is constructed from a stack of adjacency matrices . The HOSVD decomposes into a core tensor with symmetric frontal
slices and orthonormal matrices and . The decomposition can also be interpreted as a weighted sum of eigennetworks . New adjacency
matrices are built from linear combinations of the eigennetworks, which each reflect different properties of the underlying network. The adjacency matrices
are then converted to Laplacian matrices to apply the SGWT.

which is a weighted sum of the frontal slices of . can be di-
rectly computed as the left singular matrix of the mode-3 matrix
unfolding of : . For large graphs it is more ef-
ficient to compute by decomposing .

B. Graph Wavelet Design

In many real-world cases, most of the variability in the edge
measures can be reasonably assumed to be captured by the first
few eigennetworks with the largest singular values. We can thus
learn a multilinear subspace of our original adjacency tensor
by keeping only the eigennetworks with the largest singular
values. Note that the tensor obtained by discarding the
smallest 3-mode singular values is in general not the optimal
rank- approximation of a tensor , because
in HOSVD the mode matrices are optimized for each mode
separately, neglecting interactions among them. However, the
truncated HOSVD is a good approximation with the error
bounded by and is much faster
than the otherwise required iterative algorithm [30].
We propose to design adjacency matrices ,

, that capture different properties of the underlying
networks by combining the eigennetworks:

(25)

where . The SGWT is only defined for graphs with
nonnegative weights and the set of must therefore be
chosen such that . Since is the average graph, or
“backbone” of the multislice graph, and only all-postiive or
all-negative eigennetwork, must be .
The weights can also be obtained by a constrained least-

squares fitting problem, which exploits the weights in asso-
ciated with each eigennetwork :

(26)

where is a pre-defined variation between the slices of the net-
work that we like to capture. This strategy will not be fur-
ther explored here.
After calculating , we can then use the SGWT or its ap-

proximation for large graphs to construct wavelets.

V. EXPERIMENTAL RESULTS

A. Graph Wavelets on Multiplex Graphs

An image can be interpreted as a grid graph where each pixel
is a node that can be connected to neighboring pixels/nodes
according to chosen properties. To illustrate the potential of
our design to extract meaningful information from multislice
graphs, we constructed a tensor from 4 different grid graphs.
Each node was connected to at most 6 neighbors along dif-
ferent directions, and two neighboring nodes were disconnected
if their intensity values in the image differed by more than 40.
The image was pre-smoothed prior to estimating the adjacency
matrix to better approximate the gradient operator (Gaussian
kernel, ) [31]. The slices of the adjacency tensor were
ordered as shown in Fig. 4.
We obtained 4 eigennetworks and associated weights from

the HOSVD of . The columns of capture the variability
across mode 3 of (i.e., the direction of the edges):

with associated singular values
. We observe that the first column is the average

of all slices, the second one contrasts the horizontal and vertical
edges (large values in row 1 and 2), the third one the diagonal
ones, and the last one rectangular and diagonal ones.
In Fig. 5 we show 5 “directional” graph wavelets that were

implemented by combining the eigennetworks in different
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Fig. 4. Neighborhoods of 4 different grid graphs. Dashed lines indicate edge
weights that were penalized by a factor so as to enhance one direction: (a)
horizontal, (b) vertical, (c) diagonal top left to bottom right, (d) diagonal bottom
left to top right.

Fig. 5. Graph wavelets constructed from various combinations of eigennet-
works diffuse along different directions: (a) location of the wavelet on the
smoothed cameraman image, (b) : isotropic for the average graph,
(c) : horizontal, (d) : ver-
tical, (e) : diagonal, (f) :
diagonal. The first frontal slice was multiplied by ,
which turns it into the average graph. Wavelets are shown at a coarse scale.

ways. Whereas wavelets constructed using the average graph
diffuse homogeneously (i.e., there is no directional information,
Fig. 5(b)), they diffuse preferentially along a certain direction
when the average graph is combined with one of the other 3
eigennetworks, making them sensitive to different types of ori-
entations in an image (Figs. 5(c)–(f)). Since neighboring nodes
were only connected if their intensity values were sufficiently
close, the wavelets diffuse along underlying boundaries, such
as the coat.
Fig. 6 shows two graph wavelet decompositions of the

cameraman image of size 128 128, where the SGWT was
built from “horizontal” and “vertical” (wavelets shown
in Figs. 5(c) and 5(d)). The energy of the wavelet coefficients
is high for different types of features of the image: At the finest
scale, which detects edges not expected by the underlying
graph topology, the energy for the “horizontal” transform is
high around vertical edges, such as the tripod, and for the “ver-
tical” transform around horizontal edges, such as the camera.
For a graph corresponding to a Cartesian grid and when using

themapping introduced in III-C, we know that the spectral graph
wavelets are equivalent to classical wavelets. The advantage of
using graph wavelets, however, is that they are not restricted
to Cartesian grids. Weighted graphs provide a flexible model to
describe irregular data domains and the wavelets can thus be
adapted to many different applications. Here, we have used this

Fig. 6. Wavelet coefficients of the cameraman image (128 128 pixels), where
the graph wavelet transforms were built from (a) , (b) . scales,
Simoncelli-like design, and scaling and coarse to fine scale wavelet coefficients
from left to right.

flexibility to incorporate knowledge about directionality and un-
derlying boundaries. With the proposed approach for multislice
graphs, we also not only have access to an average graph ( ),
which corresponds to the common way of handling multislice
graphs, but several eigennetworks that capture the variability
across the direction of the edges.

B. Graph Wavelets on Dynamic Graphs

Cognitive function and dynamic adaptation emerge through
the integrated activity of many brain regions. Using functional
magnetic resonance imaging (fMRI), functionally connected
brain regions are identified as those exhibiting temporal de-
pendence in their activity patterns. Studies representing the
brain as a static, functionally connected network have already
led to unique insights into the organization of the brain, but
understanding how the architecture of the brain varies with
cognitive function or across subjects is a crucial frontier [32],
[33]. Chang and Glover [34] were among the first to highlight
that functional connectivity is not stationary throughout an
fMRI scanning session (with a focus on one brain region), and
Bassett et al. [2] recently studied dynamic reconfigurations in
the modular organization of brain networks during learning.
We explored the potential of our proposed framework to cap-

ture dynamic changes of the human brain network in a pre-
viously studied dataset [35], [36]. It was shown that average
functional connectivity differs between a “resting” and “movie
watching” cognitive state and enough so that a subject’s cogni-
tive state could be predicted using a classifier algorithm [36]
The fMRI data was acquired from 15 healthy subjects during

a simple block design, which consisted of alternating cycles of
watching a short movie excerpt (40–60 sec), followed by a pe-
riod where subjects were instructed to rest with eyes closed
and let their mind freely wander (90 sec) and ending with a
beep sound that instructed the subject to answer a short ques-
tion about the content of their thoughts [35].1 The fMRI data
was realigned using SPM8 and parcellated into regions
corresponding to the Automated Anatomic Labeling atlas [37]

1Data was acquired on a Siemens 3T Trio TIM in two scanning runs,
TR/TE/ , ,

mm , 21 contiguous transverse slices, 1.05 mm gap, 2598
volumes.
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Fig. 7. fMRI analysis pipeline: (a) raw fMRI data; (b) parcellation of the brain
into regions (network nodes), and estimation of their regional spatially-averaged
activity; (c) to estimate changes in network architecture over time, we com-
puted the temporal correlation between the regional activity, averaged across
subjects, of all pairs of regions using a sliding window approach (weighted net-
work edges); (d) and obtained functional brain networks.

(Fig. 7). Two regions were excluded because of signal dropout,
leaving 88 regions. We estimated regional mean activity by av-
eraging voxel time series in each brain region, and averaged
across all subjects. We constructed dynamic whole-brain func-
tional networks by estimating temporal correlations between all
pairs of brain regions using a sliding window approach with a
window length of 30 scans. The absolute values of the correla-
tion measures for each pair of regions were used as edge weights
to construct weighted graphs.
In this example, mode 3 captures the variability of the edges

across time and the eigennetworks hence contain information
on network dynamics. Fig. 8 shows eigennetworks for

and their associated weights . We observe well-
known functional clusters in the average brain network
(Fig. 8(a)), such as the interconnected visual and auditory pro-
cessing systems (nodes and ), the frontal atten-
tion network (nodes ), somato-motor cortex network
(nodes ) and language-related areas (nodes

).
The other eigennetworks represent directions of variation

from the average network across time. The second and third
eigennetworks capture variability associated with the experi-
mental paradigm, as can be seen form comparing and
to the paradigm (Figs. 8(b) and 8(c)). Since the sign of is
positive during the resting condition, edges with red color have
larger weights during the resting condition, and those with blue
color have larger weights during the transitions of the movies
condition. For example, connectivity in the visual cortex is
stronger during the resting condition, as previously observed
[36], and in frontal regions during the transitions of the movies
condition.
As is the case when applying PCA or independent component

analysis to noisy data, some of these components will repre-
sent noise (e.g., Fig. 8(e) depicting component 100). Discarding
some of the eigennetworks could thus also help to reduce noise
in a multislice graph.

To explore the multislice SGWT, we added and subtracted
from to obtain the adjacency matrices and , re-

spectively (Figs. 9(a), 9(b), 9(f), 9(g)). From we know that
enhances edges typical for the resting condition, and for

the transitions of the movies condition. has strongly con-
nected visual and auditory cortices and a wavelet localized in
the primary visual cortex diffuses to visual and auditory regions
at coarser scales, as shown in Figs. 9(c)–9(e). In contrast, as ex-
pected from the reduced connectivity within the visual cortex in
, the wavelet diffuses only within the primary visual cortex

at coarser scales (nodes ), but not to extrastriate areas
(nodes ), as shown in Figs. 9(h)–9(j).
Instead of adding and subtracting from , we could

also have explored the strategy proposed in (26) with equal to
the stimulus paradigm to find the combination of eigennetwork
weights that best approximates the stimulus paradigm.
We then implemented two SGWTs built from (resting)

and (movies), respectively, and applied them to the normal-
ized regional brain activity.We calculated the total energy of the
wavelet coefficients at each scale and for each decomposition by
summing over all brain regions. Due to energy conservation of
the tight frame design, the -norm of the wavelet coefficients
across all scales sums up to 1.
Fig. 10 shows the difference of the energy of the scaling (red

line) and wavelet coefficients (blue dashed line), where a posi-
tive value indicates that the energy is higher for the resting than
for the movies transform. We observe that at the finest scale, the
energy is increased during the condition not well represented by
the graph, i.e., the energy of the resting transform is larger than
themovies transform during themovies conditions (the blue line
goes up). In previous work we estimated two separate brain net-
works for each condition (though not in a data-driven manner)
and also observed an increase of energy when the SGWT was
not adapted to the data [38]. For the scaling coefficients the
picture is reversed, i.e., the energy of the resting transform is
smaller than the movies transform during the movies condition
(red line goes down).
Our results suggest that the variability identified by the

HOSVD and illustrated with the eigennetworks, corresponds
to relevant changes in network architecture across cognitive
states. The column vectors of give additional information
regarding the importance of these networks across time, and
the proposed multislice SGWT provides a meaningful decom-
position of fMRI data.

VI. CONCLUSION

We have extended the previously proposed SGWT to a tight
frame, shown the link between classical and spectral graph
wavelets, and presented a novel framework for the design
of wavelets on multislice graphs based on the HOSVD. The
proposed approach proceeds in two steps, by first estimating
eigennetworks from an adjacency tensor and then building
adjacency matrices that exploit the variability across slices
of the network. Only then are these adjacency matrices con-
verted to Laplacian matrices to apply the SGWT. The proposed
framework of estimating eigennetworks and their combination
is therefore not limited to the SGWT, but can be applied to
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Fig. 8. Eigennetworks for . The top plots show the corresponding column overlaid on the stimulus paradigm (gray-shaded areas
indicate the movie condition). The eigennetworks show the edge weights between 88 brain regions, ordered by lobe (frontal, limbic, occipital, parietal, subcortical,
temporal) and with homologous regions adjacent to each other (e.g., left precentral cortex followed by right precentral cortex). The colorbars are symmetric around
zero, i.e., red colors indicate positive edge weights, blue colors negative ones.

Fig. 9. (a) Adjacency matrix of the 88 88 brain graph built from the first and second eigennetworks, ; (b) visualization of the graph
in brain space, with nodes colored according to their anatomical location (light blue frontal lobe, dark blue limbic, red occipital, yellow parietal, orange
subcortical, green temporal); (c-e) the energy of scaling and wavelet coefficients from coarse to fine scale, scales and a Simoncelli-like design; (f)

adjacency matrix of the graph built from ; (g-j) as (b-e) and .

Fig. 10. Difference of the energy of the wavelet coefficients of the fMRI data
decomposed with the SGWTs built from (resting condition) and (transi-
tions of movie condition), scales and a Simoncelli-like frame design. Dif-
ference of the energy for the scaling (red), and finest scale (blue dashed), where
a positive value indicates a higher energy in the “resting” SGWT. A moving
average with equal window length as for calculating the dynamic connectivity
(i.e., 30) was applied, and gray-shaded areas indicate the movie condition.

other graph wavelet transforms [9] or discrete signal processing
frameworks [39] that are based on the adjacency matrix. Our

results suggest that eigennetworks obtained from the HOSVD
of a collection of adjacency matrices capture relevant variability
across graph edges and that they provide meaningful graph
wavelet transforms. In contrast to the common method of aver-
aging or summing acrossmultiple slices of a graph, the proposed
framework allows to exploit the variability across them.

APPENDIX
WAVE EQUATION ON GRAPHS

The relation between conven-
tional Fourier frequencies and eigenvalues of the normalized
Laplacian (i.e., ) has also been found when con-
sidering the wave equation on complete and binary graphs
[40]–[42]:

(27)
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where is a so-called edge-based Laplacian that acts as an op-
erator on functions on the edges (in contrast to the conventional
graph Laplacian that acts on signals defined on the nodes). The
edge-based wave equation has a physical interpretation, where
the edges are taut strings that are fused together at the nodes.
While the node-based wave equation has infinite wave propaga-
tion speed, the edge-based wave equation has unit propagation
speed [42].
From a purely signal-processing point-of-view, we can

consider the wave equation (27) with the normalized graph
Laplacian and discretized time. After applying the discrete tem-
poral Fourier transform to (27), we retrieve the left-hand side as

. The equivalence with the eigendecomposition
of the right-hand side then leads to

with all eigenvalues contained in .
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