
Tightening the Bounds on Feasible Preemptions

HARINI RAMAPRASAD and FRANK MUELLER, North Carolina State University

Data Caches are an increasingly important architectural feature in most modern computer systems. They help

bridge the gap between processor speeds and memory access times. One inherent difficulty of using data caches

in a real-time system is the unpredictability of memory accesses, which makes it difficult to calculate worst-case

execution times (WCETs) of real-time tasks.

While cache analysis for single real-time tasks has been the focus of much research in the past, bounding the

preemption delay in a multi-task preemptive environment is a challenging problem, particularly for data caches.

This paper makes multiple contributions in the context of independent, periodic tasks with deadlines less than

or equal to their periods executing on a single processor.

1) For every task, we derive data cache reference patterns for all scalar and non-scalar references. These

patterns are used to derive an upper bound on the WCET of real-time tasks.

2) We show that, when considering cache preemption effects, the critical instant does not occur upon simulta-

neous release of all tasks. We provide results for task sets with phase differences to prove our claim.

3) We develop a method to calculate tight upper bounds on the maximum number of possible preemptions for

each job of a task and, considering the worst-case placement of these preemption points, derive a much tighter

bound on its WCET. We provide results using both static and dynamic priority schemes.

Our results show significant improvements in the bounds derived. We achieve up to an order of magnitude

improvement over two prior methods and up to half an order of magnitude over a third prior method for the

number of preemptions, the WCET and the response time of a task. Consideration of the best-case and worst-case

execution times of higher priority jobs enables these improvements.

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management—scheduling; D.4.7 [Op-
erating Systems]: Organization and Design—real-time systems and embedded systems

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Real-Time Systems, Preemptions, Worst-Case Execution Time, Timing Anal-

ysis, Data Caches, Cache-Related Preemption Delay

1. INTRODUCTION

Data caches are an invaluable architectural feature in modern computer systems. Being

effective in bridging the gap between processor and memory speeds, they provide signifi-

cant improvement in latency. However, they have one inherent complexity — the latency

of memory references becomes unpredictable in the presence of data caches.

This work was supported in part by NSF grants CCR-0208581, CCR-0310860 and CCR-0312695.

Author’s address: Dept. of Computer Science, Center for Embedded Systems Research, North Carolina State

University, Raleigh, NC 27695-7534, mueller@cs.ncsu.edu, +1.919.515.7889

Preliminary versions of this work appeared in the IEEE Real-Time Embedded Technology and Applications

Symposium, 2006 [Ramaprasad and Mueller 2005] and in the IEEE Real-Time Systems Symposium, 2006

[Ramaprasad and Mueller 2006]. This journal version presents new results for phased task sets, performs a com-

plexity analysis on the framework presented, gives analysis overheads for experiments and extends the framework

for dynamic scheduling policies. It also proposes a method to calculate an upper bound on the feasible preemp-

tions for any phasing of task sets. Sections 11.2 and 11.4 have been newly added and Section 13 has been

significantly extended with the results stated above.

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use

provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server

notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the

ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific

permission and/or a fee.

c© 20YY ACM 1539-9087/20YY/0200-0001 $5.00

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY, Pages 1–28.

2 ·

In a real-time system, a priori knowledge of the worst-case execution time (WCET)

of every task is necessary in order to conduct schedulability tests. The unpredictability

introduced by data caches in such a system significantly increases the complexity of timing

a task with the aim of obtaining WCET estimates.

Data cache analysis for single tasks, itself a challenging problem, has been the focus

of much research ([Lim et al. 1994], [Kim et al. 1996], [Li et al. 1996], [White et al.

1999], [Lundqvist and Stenström 1999]). However, most real-time systems operate in a

prioritized, preemptive manner. Every task in the system is assigned a priority based on a

particular scheduling policy and, at any time, a task with higher priority may preempt that

with a lower priority. This implies that some cache blocks used by the preempted task may

potentially be evicted from cache, causing additional reload delay when the lower-priority

task resumes execution. Hence, the complexity of data cache analysis increases further in

the context of preemptive systems.

In previous work [Ramaprasad and Mueller 2005], we presented a framework that ex-

tended the concept of Cache Miss Equations [Ghosh et al. 1997] to derive exact data cache

miss/hit patterns for every memory reference in a loop nest. This analysis framework was

integrated into a static timing analysis framework to provide tight WCET estimates for

tasks in the absence of preemptions.

In this paper, we propose methods to provide tight estimates of the WCET of tasks in a

multi-task preemptive environment. The fundamental steps involved in this calculation are

as given below.

(1) Preemption delay: Given the preempted task, the set of possible preempting tasks

and the preemption point, calculate the delay incurred due to the preemption.

(2) Number of preemptions: Calculate np, an upper bound on the number of times a

task can be preempted during execution within a task set.

(3) Worst-case scenario: Identify the placement of the np preemption points in the iter-

ation space such that the worst-case total delay / preemption cost is obtained.

These issues have been studied by Staschulat et al. for instruction caches [Staschulat and

Ernst 2004], [Staschulat et al. 2005]. Our work is orthogonal and focuses on data caches.

In our current work, the calculation of the base execution time for a task (without pre-

emption delay) uses a static cache simulator to account for instruction cache effects. How-

ever, in the preemption delay calculation, only data cache effects are taken into account.

A similar method may be employed to account for instruction cache related preemption

delay, but this has not been implemented yet.

We first present a method to calculate an upper bound on the maximum number of

preemptions for a task and construct a pessimistic worst-case preemption scenario based

on this number. This yields an upper bound on the WCET estimates. Next, we propose a

method to significantly tighten the maximum number of preemptions using the entire range

of execution times for a task. Using this new, tighter estimate, we construct a realistic

worst-case preemption scenario and derive significantly tighter bounds of the WCET of a

task in the context of a task-set.

We also show that the critical instant does not occur when all tasks are released simulta-

neously if we consider preemption delays. Hence, our second method performs a per-job

analysis rather than a per-task analysis and considers all jobs within a hyperperiod.

The analysis presented in this paper is currently supported only by a mathematical proof

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

· 3

of correctness. Experimental validation of our results using a cycle-accurate simulator is

part of future work and has not been presented in this paper.

The remainder of this paper is organized as follows. Section 2 presents the task model

used in this paper. Section 3 discusses related work. Section 4 discusses the effect of

considering data cache related preemption delay on the critical instant. In Section 5, we

briefly discuss our static timing analyzer framework. Section 6 gives an overview of prior

work that analyses a single task. In Section 7, we describe our experimental setup. Section

8 introduces our basic methodology in detail. In Section 9, we discuss how to calculate an

upper bound on the number of preemptions. Section 10 assesses the general task behavior

with respect to preemption delay distributions. Section 11 discusses how WCET estimates

are tightened further by eliminating infeasible preemption points. Section 12 provides

detailed results of our analysis. Section 14 summarizes the contributions of this work.

2. TASK MODEL

In our work, we consider a periodic real-time task model with deadline less than or equal

to the period of a task. A periodic task is a sequence of jobs where the interval (period)

between any two consecutive job-releases is the same. The least common multiple of the

periods of all tasks in such a system is known as the hyperperiod of the task. Throughout

this work, we assume a list-based scheduling model where every job has a fixed priority.

The notation used in the remainder of this paper is described here. A task Ti has char-

acteristics represented by the 5 tuple (Φi, Pi, Ci, ci, Di). Here, Φi is the phase, Pi is the

period, Ci is the worst-case execution time, ci is the best-case execution time and Di is the

relative deadline (less than or equal to the period) of the task. In the context of a specific

task set, every task has a set of derived characteristics represented by the 3 tuple (Bi, Ri,

∆j,i). Here, Bi is the blocking time and Ri is the response time of the task. ∆j,i is the

preemption delay inflicted on the task due to a higher priority task Tj . Ji,j represents the

jth instance (job) of task Ti.

3. RELATED WORK

Several methods have been proposed in the past to bound data cache behavior for a single

task without taking into account the effects that other tasks may have on the behavior

([Lim et al. 1994], [Kim et al. 1996], [Li et al. 1996], [White et al. 1999], [Lundqvist and

Stenström 1999]). They use methods like data flow analysis, static cache simulation, etc.

for this purpose.

Analytical methods for predicting data cache behavior have been proposed. They in-

clude the Cache Miss Equations by Ghosh et al. [Ghosh et al. 1999], a probabilistic anal-

ysis method proposed by Fraguella et al. [Fraguela et al. 1999] and another analytical

method by Chatterjee et al. [Chatterjee et al. 2001]. The common idea behind these meth-

ods is to characterize data cache behavior by means of a set of mathematical equations. In

prior work [Ramaprasad and Mueller 2005], we have extended the cache miss equations

framework to produce exact data cache patterns for references. Techniques that make data

caches more predictable and can be applied in preemptive systems are cache partitioning

and cache locking [Lisper and Vera 2003], [Puaut and Decotigny 2002]. Both methods

lead to a significant loss in average-case performance in order to gain predictability. Re-

cent work shows improvements in these methods for the case of instruction caches [Puaut

2006]. However, since data caches stride over large data sets, it is difficult to prevent loss

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

4 ·

in performance.

Other techniques have been proposed specifically to calculate preemption delay and ana-

lyze schedulability in a multi-task preemptive system. These techniques do not specifically

analyze data cache behavior. Instead, they provide a more generic solution applicable to a

cache including specific solutions for instruction caches.

Early on, Basumallick et al. conducted a survey of cache related issues in real-time sys-

tems [Basumallick and Nilsen 1994]. This survey discussed some initial work related to the

calculation of preemption delay. Busquets-Mataix et al. proposed a method to incorporate

the effect of instruction caches on response time analysis (RTA) [Busquets-Matraix 1996].

They compared cached RTA with cached Rate Monotonic Analysis (RMA) and concluded

that cached RTA outperforms cached RMA. Lee et al. proposed and enhanced a method

to calculate an upper bound for cache related preemption delay in a real-time system [Lee

et al. 1998; Leung], [Lee et al. 2001]. They used cache states at basic block boundaries

and data flow analysis on the control flow graph of a task to analyze cache behavior and

calculate preemption delay.

Another approach by Tomiyama et al. calculates cache related preemption delay for the

program path that requires the maximum number of cache blocks [Tomiyama and Dutt

2000]. This path is determined by an integer linear programming technique. In this paper,

an empty cache is assumed at the beginning of every job and hence, each preemption is

analyzed individually. Effects of multiple preemptions are not considered. Negi et al.

combined the techniques proposed by Tomiyama et al. [Tomiyama and Dutt 2000] and by

Lee et al. [Lee et al. 1998], [Lee et al. 2001] to develop an enhanced framework [Negi et al.

2003]. Once again, however, multiple preemptions are not considered in their work since

an empty cache is assumed at the beginning of a task.

The work by Lee et al. was enhanced by Staschulat et al. [Staschulat and Ernst 2004],

[Staschulat et al. 2005]. The authors propose a complete framework for the calculation of

response time for tasks in a given task set. Response times are determined as shown below.

Ri = Ci + Bi + Σ
j=1..i−1

((⌈Ri

Pj
⌉ ∗ Cj) + ∆j,i(Ri))

where the blocking time, Bi, is not considered in the example and ∆j,i(Ri) is the overhead

incurred by higher priority tasks preempting the current one.

They address the three issues enumerated in the Section 1, namely calculation of the

maximum number of preemption points, identification of their placement and calculation

of the delay at each point. However, their focus is not on data caches, but on instruction

caches.

In their work, Staschulat et al. discuss the concept of indirect preemptions [Staschulat

et al. 2005]. Table I provides a sample task set with phase Φ, period P , WCET C and

preemption delay ∆, respectively, for tasks T1 to T4. The third column shows Φ′, another

possible set of phases for the tasks, and is used later, in Section 4, for the purpose of

comparison. For simplicity, ∆ is assumed to be fixed per task, i.e., incurred when inflicted

by any higher priority task.

In Figure 1, execution is depicted by shaded boxes and the preemption delay is depicted

by black boxes. Staschulat et al. observe that several indirect preemptions affect lower

priority tasks only once. For example, in the figure, T2 is affected by the first two in-

vocations of T1. T3 is actually only affected by the first and third invocations since, after

being preempted once, it is not scheduled at all until T2 completes execution. Furthermore,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

· 5

Φ Φ′ P C ∆

T1 2 1 3 1 0

T2 1 0.875 15 4.625 0.125

T3 0 0.125 20 2.25 0.75

T4 0 0 25 1 0.125

Table I. Task Set, Optional Phasing

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���

���
���
���

���
���
���
���

���
���
���
���

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

T1

T2

T3

T4

0 5 10

t

Fig. 1. Preemption with Φ Phasing

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

T1

T2

T3

T4

0 5 10

t

Fig. 2. Preemption without Phasing: Φi = 0

while incurring the delay due to preemption, T3 is preempted again at time eight. Hence,

the entire preemption cost is charged again when T3 resumes at time nine. This results

in a response time of R3 of 11 units. We will show in this work that considering indirect

preemption along the lines of Staschulat et al. produces pessimistic results.

In more recent work [Staschulat and Ernst 2006], Staschulat et al. propose a timing

framework that considers predictable and unpredictable (input-dependent) data cache ac-

cesses. For unpredictable accesses, a tight bound of their impact on predictable accesses

and a worst-case estimate of the number of additional data cache misses is calculated. As

such, their work considers any reused cache content to be replaced when a conflicting range

of accesses for unpredictable data references exists, up to the number of cache blocks in

either set. Alternatively, they handle cold misses for small arrays that entirely fit into cache

and do not suffer replacements at all. Our work makes no assumption on the size of arrays.

Furthermore, we assume only predictable data accesses. Notice that for array traversals

exceeding cache size, their scheme breaks down as they assume that the entire cache has

been replaced. As their and our schemes are complementary, it would be interesting to

study the compatibility of these methods. However, this study is beyond the scope of this

paper.

In other related work, Ju et al. propose a method to extend CRPD calculations using

abstract cache states to dynamic scheduling policies [Ju et al. 2007]. Once again, this work

focuses on instruction caches. Our handling of data caches differs significantly.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

6 ·

�����
�����
�����
�����

�����
�����
�����
�����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

T2

T3

T4

0 5 10

T1

t

Fig. 3. Preemption with Φ′ Phasing

4. PREEMPTION DELAY AFFECTS RESPONSE TIME

Prior work often assumes that the worst-case response time occurs at the theoretical critical

instant for fixed-priority scheduling, i.e., upon simultaneous release of all tasks. However,

this is not necessarily the critical instant when preemption delays are considered. Consider

Figure 2, which uses the same task set but with a phase of zero for all tasks and Figure 3,

which has phase differences between tasks. We observe that, in Figure 3, the response time

of T4 (15 units) exceeds its response time in Figure 2 (14 units).

In general, our method is linear (in terms of analysis time) to the length of the hyper-

period. Hence, if the hyperperiod is large, our method would have higher analysis time.

However, in practice, the hyperperiod of tasks is often a relatively small number. Hence,

releases of tasks can occasionally coincide and are otherwise separated by some minimum

time interval (typically 1 ms). For this reason, we consider in our work, all jobs of a task

within a hyperperiod. We calculate the maximum number of possible preemptions for a

job and the data cache related preemption delay at every point. This enables us to consider

ranges of execution where preemptions can occur within the code. Such analysis yields

more accurate results than the calculation of preemption delay per task and helps us sig-

nificantly tighten the estimates of the number of preemptions and the response times of

jobs.

5. STATIC TIMING ANALYSIS

A priori knowledge of the WCET of every task in a task set is assumed for performing

schedulability analysis in real-time systems. These estimates need to be safe upper bounds

on the actual execution times of tasks.

Two methods for calculating the WCET are dynamic timing analysis and static timing

analysis. It has been demonstrated in earlier studies [Wegener and Mueller 2001] that

dynamic analysis by actual execution of a task does not guarantee worst-case estimates.

Further, exhaustive testing of the input space is impractical. In contrast, static timing

analysis is a viable approach to derive safe WCET bounds. Here, all execution paths in a

program are traversed and a conservative upper bound for the execution time of the longest

path is calculated.

Several features of the program under consideration (e.g., data dependent control flow,

pointer accesses, etc.) affect the calculation of WCET. Similarly, several architectural fea-

tures also cause unpredictability in the timing analysis. One such feature that is particularly

hard to model is the data cache. Inefficient modeling of the data cache could lead to overly

pessimistic WCET estimates, hence affecting the results of schedulability tests.

Figure 4 depicts our framework for static timing analysis to derive WCET bounds. The

shaded portions indicate the components responsible for data cache analysis and the actual

timing analysis. The framework uses a static cache simulator that simulates the instruction

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

· 7

cache and a data cache analyzer framework (developed in prior work [Ramaprasad and

Mueller 2005]) to produce data cache reference patterns.

Cache

Categorizations

Static Cache
Simulator

Cache

Configuration

Source

Files
Gcc Compiler Timing

Analyzer

WCET

Prediction

Control flow
& Memory
Refs. Info.

Analyzer I/P

Generator

Data Cache
Analyzer

Cache

Configuration

Miss/Hit

Patterns

Fig. 4. Static Timing Analysis Framework

6. PRIOR WORK

In prior work [Ramaprasad and Mueller 2005], we propose a data cache analyzer frame-

work that produces data cache reference patterns, in terms of hits and misses, for every

scalar and non-scalar memory reference in a scientific, loop nest oriented task.

Our work enhances a framework developed by Vera et al. [Vera et al. 2000], [Vera and

Xue 2002] that uses the concept of Cache Miss Equations to statically characterize data

cache behavior for a single task. While this original framework only determines the number

of data cache misses, our enhanced framework provides information about the position of

every miss.

This data cache analyzer framework is integrated into the static timing analyzer frame-

work shown in Figure 4 to calculate the WCET of a task including data cache miss latency.

The constraints the tasks need to adhere to in order to be analyzable by our framework are

summarized in Section 7.

7. BENCHMARKS AND CACHE CONFIGURATION

In our analysis, we use the static timing analyzer framework described in Section 5. The

data cache analyzer in this framework produces data cache reference patterns for every

task, the details of which are described in prior work [Ramaprasad and Mueller 2005]. We

use the SimpleScalar tool-set [Burger et al. 1996] for compiling our source code. We use

this tool-set in conjunction with the portable instruction set architecture (PISA), which is a

widely used generic ISA.

Our data cache analyzer poses certain restrictions on the programs it can analyze. Pri-

marily, loop bounds must be known at compile-time, no pointer-based or dynamic mem-

ory accesses are allowed and array subscript expressions must be affine functions of the

loop induction variables. Furthermore, in our current framework, we only support non-

partitioned, direct-mapped data caches.

Benchmarks from the DSPStone benchmark suite [Zivojnovic et al. 1994] are used in

our experiments. Pointer accesses in these benchmarks were replaced by equivalent array

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

8 ·

accesses to make them analyzable by our framework. Abstract inlining [Ramaprasad and

Mueller 2005] is used on the function calls to lift all data references into one (main) func-

tion. A brief description of the benchmarks used are provided in Table II. We used the

benchmarks with different data-set sizes in order to obtain varying timing characteristics.

In all our experiments, a 4KB direct-mapped data cache with a hit penalty of 1 cycle and a

miss penalty of 100 cycles was used.

Conceptually, our methods could be applied to any processor model. However, in our

current implementation, we use the SimpleScalar processor model [Burger et al. 1996].

Benchmark Description
dot-product Program to find the dot

product of two vectors

convolution Program to implement a

convolution filter

fir Program to implement a

finite impulse response filter

lms Program to implement a least

mean-square filter

n-real-updates Program to perform n real updates

of the form D(i) = C(i) + A(i)*B(i),

where A(i), B(i), C(i) and D(i) are

real numbers, and i = 1,...,N

matrix1 Program to find the product

of two matrices

Table II. Description of benchmarks in the DSPStone suite

8. METHODOLOGY

In our prior work, we model data cache behavior for single tasks. However, in reality, most

real-time systems consist of multiple tasks operating in a prioritized, preemptive manner.

In other words, every task in the system has a priority determined by some scheduling

policy. At any point during its execution, a particular task may be interrupted by a task

with higher priority. In our work, we consider non-partitioned data caches, which means

cache lines may be shared across tasks. Thus, when a task is preempted, a subset of its

memory lines may be evicted from the data cache by the execution of the preempting

tasks.

Assuming that all memory lines of a task are evicted during preemption leads to over-

estimation of the Data Cache Related Preemption Delay (D-CRPD), thus affecting the

schedulability of task sets. In this paper, our aim is to calculate a safe, but tight estimate of

the D-CRPD and hence the WCET and response time of a task. We propose a method to

incorporate D-CRPD calculations during WCET calculation itself. Furthermore, to make

the calculation as accurate as possible, we use the intersection of the cache blocks that are

useful to the preempted task on resuming execution and those that are potentially used by

the tasks that execute before the preempted task is restarted.

8.1 Response Time Analysis

We use response time analysis to determine schedulability of a task set [Lehoczky et al.

1989; Audsley et al. 1993]. Task sets are assumed to be periodic and each task is assumed

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

· 9

to have a deadline less than or equal to its period. Response time is calculated using an

iterative approach as indicated in Equation 1.

Rn
i = Ci +

∑

j∈hp(i)

⌈
Rn

i

Pj

⌉ · Cj (1)

The set hp(i) denotes the set of tasks with a higher priority than task i. For every task,

the value of R that converges this equation is its response time. The worst-case execution

time of a task i is denoted as Ci and the period, as Pi. Since our method incorporates D-

CRPD calculations within the WCET calculation of a task, we do not require an additional

term for the delay in Equation 1.

8.2 Phase 1: Calculation of Base Time and Data Cache Patterns

In order to compute the WCET of a task that includes D-CRPD, we first calculate a base

execution time for every task. For this purpose, we analyze every task individually using

the data cache analyzer to produce data cache reference patterns as described in prior work

[Ramaprasad and Mueller 2005]. These patterns are used by the static timing analyzer

while building timing trees for every task. The timing tree provides information about the

timing of individual nodes (functions/loops) in a given task. It is to be noted that this base

time does not include the D-CRPD and is calculated only once for every task.

8.3 Phase 2: Preemption Delay Calculation

The data cache analyzer and the timing analyzer interact repeatedly to calculate the WCET

of a task with D-CRPD in this phase. The timing analyzer times the program up to a

preemption point. At this point, the data cache analyzer is invoked to calculate the number

of additional misses due to preemption. This delay is added to the remaining execution

time of the task under consideration. The same process is repeated for every interval.

In prior work [Ramaprasad and Mueller 2005], we propose a method to derive exact

hit/miss patterns for every reference in the loop nest. These patterns are known as data

cache reference patterns and indicate the number and position of every data cache miss

for every reference. We devised the following method to calculate the actual preemption

delay at a given preemption point. All data cache reference patterns for a task are merged,

maintaining the order of accesses. References that access the same cache set are connected

together to form a chain that effectively indicates cache reuse. Chains for different cache

sets are shown using a different line-style. Within each chain, a miss is represented by the

letter ’M’ and a hit is represented by a dot. An example with just three cache set chains is

shown in Figure 5.

M M M M M M M M M M M . . . M . M .

Fig. 5. Cache Line Access Chains for Lines 1, 2 and 3

Each point in the access chains of a task is assigned a weight that indicates the number

of additional data cache misses that would be incurred if a preemption were to occur at that

point. This weight is calculated as follows. First, the number of differently styled chains

that cross over this point is counted. This effectively eliminates cache sets that are not used

after the preemption point. Additionally, we perform two checks.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

10 ·

(1) Chains in which the access point on the chain immediately following the current point

is a miss in the pattern are not counted. The rationale behind this is that, if the point

were a miss in the first place, it would be due to some intra-task interference. Hence,

a preemption just before that point will not cause any further delay with respect to the

particular cache set that the chain represents.

(2) Chains that correspond to a cache set that is not used by any task with a higher priority

than the task under consideration are not counted. This ensures that only the cache

blocks that could potentially be replaced during preemption of the current task are

considered.

Access chains for a task need to be constructed only once. However, since the assign-

ment of weights for every point is further dependent on the higher-priority tasks in the task

set, the weights are task set specific rather than just task specific.

9. AN UPPER BOUND ON PREEMPTIONS

In the following, we discuss the methods to calculate the maximum number of preemption

points for a task and their placement in the worst case.

9.1 Identification of Preemption Points

First, we need to calculate an upper bound on the number of preemptions for any given

task in the worst case. Consider a task Ti. The upper bound on the number of preemptions

incurred by Ti is given by Equation 2.

ni
p =

∑

j∈hp(i)

(⌈
Di

Pj

⌉) (2)

For calculation of preemption delay due to these ni
p preemptions, we use the access

chains of the task as described in Section 8.3. The sum of the ni
p most expensive delays in

the chains is used to calculate an upper bound on the worst-case preemption delay for the

task and this is added to the WCET of the task. This method of calculating the number of

preemptions is denoted as HJ-P in the experimental results section.

9.2 Actual Calculation of WCET and Response Time

Response times of tasks are calculated using the formula shown in Equation 1. In order to

calculate the response time of a particular task, we need to know the response times of all

higher priority tasks. Hence, we start with the highest priority task and proceed towards the

lowest priority task. For every task, the D-CRPD, calculated using the method described

above, and the WCET with D-CRPD is used in the equation.

10. PREEMPTION DELAY COSTS

As shown in Section 9, an upper bound on the worst-case preemption delay for a task may

be calculated using the np most expensive preemption delays. In this process, we do not

impose any constraints on the interval between consecutive preemption points.

The reason for using this upper bound is based on an observation regarding the reuse

of cache lines in a task. The distribution of preemption costs for the second, third, fourth

and fifth tasks of a sample task set (Table III) are shown in Figure 6. The X-axis shows

the memory access points in order and the Y-axis shows the cost of preemption at a point

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

· 11

Benchmark Period Stand alone
(=deadline) WCET

convolution 62500 7491

fir 125000 9537

lms 125000 14536

n-real-updates 250000 16738

matrix1 250000 54168

Table III. Example Task Set Characteristics - Task Set 1

in terms of the calculated weight at the point. The calculation of the weight at a given

iteration point is described in Section 8.3.

�✁✂�✂✁
✄�✄✁☎�
✆✝✞✆✟✠✆✝✡✞✟✝✞✝☛✠✟☞✠✝✌✡✟✍✡☛✟✝✆✆✝☛✞☛✆✠☛☛✡☞✆✝☞☛☛✌✆☞✌☛✌✍✆✍✍☞✟✆✟✞✆✆✟☞✞✆✆✞✠✆✆☞✡✎✏✏✑✒✒✓✔✕✖✗✒✘
✙✚✛✙✜✢✣✤✤✥✢✛✦✙✧

(a) lms benchmark

★✩★✪★✫★
✬★✭★✮★
✯✰✱✯✲✳✯✰✴✱✲✰✱✰✵✳✲✶✳✰✷✴✲✸✴✵✲✰✯✯✰✵✱✵✯✳✵✵✴✶✯✰✶✵✵✷✯✶✷✵✷✸✯✸✸✶✲✯✲✱✯✯✲✶✱✯✯✱✳✯✯✶✴✹✺✺✻✼✼✽✾✿❀❁✼❂
❃❄❅❃❆❇❈❉❉❊❇❅❋❃●

(b) n-real-updates benchmark

❍■❏❍❏■❑❍
❑■▲❍▲■▼❍
◆◆❖P◗❘❙❚❘❯❙❙◗❖❱❱◆◆❚❖◆◗❚❲◆❚P❚◆❙◗❘◆❖◗◆❲◆❲P❲◗◆❙❲❚◆❯❲❙❯◗❲❘❖❱◗❯❘❖◗❲❘❲◗P❙❚◗❱❱❘◗❘❱◆P❯❚PP❲P❙PPP❯❳❨❨❩❬❬❭❪❫❴❵❬❛
❜❝❞❜❡❢❣❤❤✐❢❞❥❜❦

(c) matrix1 benchmark

❧♠♥❧
♥♠♦❧♦♠
♣❧
qrstq✉sq✈qqrsqtqq✉sr✈qrrsrtqr✉s✇✈q✇rs✇tq✇✉s①✈q①rs①tq①✉st✈qtrsttqt✉s②③③④⑤⑤⑥⑦⑧⑨⑩⑤❶
❷❸❹❷❺❻❼❽❽❾❻❹❿❷➀

(d) fir benchmark

Fig. 6. Distribution of preemption costs across the iteration space

From these graphs for the benchmarks in Figures 6(a), 6(b) and 6(c), we observe that a

large number of access points have the highest preemption cost. Furthermore, they are all

consecutive. This indicates that a preemption at any of these points would result in the same

preemption delay and, hence, picking the np most expensive points gives a reasonably tight

bound on the worst-case preemption delay.

The distribution of these delays is a direct indication of the reuse of cache lines in the

respective tasks. In most programs, ninety percent of the time is spent in ten percent of the

code. Within this ten percent, there are repetitive reuse patterns, which implies temporal

and spatial reuse. Hence, during the course of this section, all data that is used in the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

12 ·

section is already in the data cache. Preemption at any point in this section would result in

more or less the same cache lines being evicted, hence causing the same preemption delay.

Although the above behavior is observed in most cases, there are some benchmarks

(Figure 6(d)) in which we observe a gradual increase in the preemption cost up to some

point and then a decrease in the cost for successive access points. Hence, in the next

section, we discuss methods to tighten the worst-case preemption delay bound.

11. TIGHTENING PREEMPTION DELAY BOUNDS

In Section 9, we describe a method to calculate the WCET of a task with D-CRPD. How-

ever, simplified methods were used to calculate the maximum number of preemptions and

the total preemption delay incurred. We now propose methods to calculate significantly

tighter estimates of the number of preemptions and a more realistic, yet safe method to

identify the placement of these preemption points that leads to the worst-case D-CRPD.

11.1 Eliminating Infeasible Preemption Points

The formula used to calculate the maximum possible number of preemptions for a task in

Section 9 is based on the number of jobs of higher priority tasks that are released in the

period of the lower priority task and the amounts of time they each take to execute. This

leads to the consideration of several infeasible preemption points either because the lower

priority job has not been scheduled at all and, hence, cannot be preempted, or because

it has already finished executing. Hence, we developed a method that considers the best

and worst case execution times of higher priority tasks to eliminate these infeasible points.

Since we showed in Section 4 that the critical instant does not necessarily occur when all

tasks are released at the same time, we calculate the WCET for each job of a task within a

hyperperiod with the individual phasing.

Our method to eliminate infeasible preemption points is described in the remainder of

this section. However, we do not explicitly add the preemption delay at every stage in this

explanation for the sake of simplicity. The actual calculation of preemption delay and the

identification of the placement of preemption points in the iteration space of the preempted

task are discussed in the next section.

We use an example to explain the basic methodology involved in the elimination of in-

feasible preemption points. The characteristics of the task set used in the example is shown

in Table IV. The hyperperiod of this task set is 200 and all jobs within this hyperperiod are

considered in our analysis.

Task Period WCET BCET
= deadline

T0 20 7 5

T1 50 12 10

T2 200 30 25

Table IV. Example Task Set Characteristics - Task Set 2

For the purposes of our analysis, we require the construction of a timeline for every

task indicating release points for higher priority jobs. All these release points are potential

preemption points for the task under consideration and the goal is to eliminate the infeasible

ones. Figures 7 and 8 show the time lines for tasks T1 and T2, respectively. The arrows

represent job releases and are numbered consecutively. The preemption points that get

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

· 13

eliminated as a result of our analysis are circled. BCETs of higher priority jobs are laid

out above the time axis and WCETs of higher priority jobs, below the time axis. In this

example, black rectangles are used for jobs of task T0, gray rectangles for those of task T1

and the red rectangles, for those of T2.

Let us first consider the timeline for task T1 (Figure 7). In order to determine whether

release point 1 is a feasible preemption point for J1,0, we need to perform two checks.

First, we need to calculate whether J1,0 can get scheduled in the previous interval, i.e.,

between points 0 and 1. Secondly, we need to check whether any execution of J1,0 remains

beyond point 1. For the first condition, we use the BCETs of all higher priority jobs (in

this examples, J0,0). Since there is idle time after placing the BCET of J0,0 (5 units), we

determine that J1,0 could be scheduled before point 1. To check if any execution of J1,0

remains beyond point 1, we use the sum of the WCETs of J0,0 and J1,0, namely 7 and 12

units respectively. Since this does not exceed point 1, J1,0 is guaranteed to finish within

the current interval. Hence, we conclude that no preemptions are possible for J1,0.

2001801601401201008060200

T0

T1

BEST CASE

WORST CASE

40

T1 T1 T1 T1

T0 T0 T0 T0 T0 T0 T0 T0 T0 T0

0 1 2 3 4 5 7 86 9 10 11 12

Fig. 7. Timeline for Task T1

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�
�
�
�
�

�
�
�
�
�

����
����
����
����
����

����
����
����
����
����

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

2001801601401201008060200

T0

T1

BEST CASE

WORST CASE

40

T1 T1 T1 T1

T0 T0 T0 T0 T0 T0 T0 T0 T0 T0

T2 T2

0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 8. Timeline for Task T2

Second, proceed to the next release of T1, i.e., J1,1. During the interval between release

points 3 and 4, in the best case, we note that no higher priority job needs to be scheduled.

Hence, J1,1 can be scheduled in this interval. Next, we calculate that, in the worst case,

J1,1 is not guaranteed to finish before point 4. This leads to the conclusion that point 4

is a potential preemption point for J1,1. Proceeding this way, we calculate the maximum

number of preemption points for J1,1 to be 1. The analysis is repeated for further releases

of T1 within the hyperperiod.

In the above example, we see that the second release of T1, namely J1,1, has a higher

number of preemptions than J1,0, hence creating the possibility of a worse response time

for J1,1 by the addition of the preemption delay. This proves our claim that the critical

instant does not necessarily occur when all tasks are release simultaneously.

The maximum number of preemptions for releases of task T2 are calculated using the

same analysis. The timeline for T2 is shown in Figure 8. For this task, we need to consider

two higher priority tasks, namely T0 and T1. Starting with J2,0, we determine that release

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

14 ·

point 1 is a feasible preemption point since J2,0 can be scheduled before point 1 and is

not guaranteed to finish before point 1. Similarly, we determine that points 2 and 3 are

feasible. However, when we consider the interval between points 3 and 4, we calculate that,

even in the best case, the execution of J1,1, which has higher priority, occupies the entire

interval. Hence, there is no possibility of J2,0 being scheduled in this interval. This leads

to the elimination of point 4 as a feasible preemption point for J2,0. In the worst-case, J2,0

finishes execution at time 82. Hence, points 6, 7, 8, 9, 10 and 11 are also eliminated. At the

end of the hyperperiod, our analysis determines that the maximum number of preemptions

for J2,0 is 4. Our original method (described in Section 9) produces a bound of 9 for the

same job.

In summary, the method is as follows. Consider a set of tasks T0, ..., Tn. Let Ji,0, ...,

Ji,k represent the jobs of task Ti. Assume that task T0 has the highest priority and that task

Tn has the lowest priority using a static priority scheme.

A timeline between 0 and the hyperperiod of the task set is constructed for every task

Ti and the releases of all higher priority jobs are marked on this timeline. The feasibility

of a release point (say x) as a preemption point for Ji,j is determined by performing two

checks for the interval between release points x and x-1. First, we check whether Ji,j has

a chance of being scheduled in this interval based on the BCETs of higher priority jobs.

If not, point x is not a feasible preemption point. If yes, we proceed to the next check of

determining if any portion of execution of Ji,j remains beyond point x. If yes, point x

is a feasible preemption point. For this, we use the WCETs of all jobs executing in this

interval, in order of priority, including Ji,j .

The above calculations are repeated for every interval between potential preemption

points for Ji,j until it is guaranteed to finish. This analysis is performed for every job in

the hyperperiod of the task set.

11.2 Extension to a Dynamic Scheduling Policy

The analysis presented in Section 11 assumes a static priority scheme. The analysis may be

extended to support dynamic priority schemes as follows. Instead of calculating priorities

in the beginning of the analysis and assuming that they never change, we recalculate job

priorities at the beginning of every interval between consecutive preemption points. By

doing this, we add the flexibility of conceptually being able to use different scheduling

policies. Our current implementation supports the static Rate Monotone (RM) policy and

the dynamic Earliest Deadline First (EDF) policy.

11.3 Correctness of Analysis

Consider a task set with n tasks, T0, ..., Tn−1. Let us assume that the tasks are in decreasing

order of priority. Let C0, ..., Cn−1 be the WCETs of the tasks and c0, ..., cn−1 be their

BCETs. The WCET and BCET are safe upper and lower bounds, respectively, on the

longest and shortest possible execution time of a task.

Preemption of a task can only occur when it is currently running. Furthermore, in

the case of scheduling policies such as Rate-Monotone, Deadline-Monotone, Earliest-

Deadline-First, etc., the positions of potential preemption points for a task are fixed since

they are the release points of a task with higher priority.

Let us consider the interval between two consecutive preemption points, p−1 and p. Let

us assume that jobs J0,k0
, ..., Ji,ki

have been released at some prior point and have not

yet completed execution at p−1. Let us assume that Ji,ki
is the job for which we need to

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

· 15

calculate the maximum number of preemptions possible.

Let x be the length of the interval between preemption points p−1 and p. We have three

cases to consider.

Case 1:
∑i−1

j=0 cj,kj
< x,

∑i

j=0 Cj,kj
> x. Assume Ji,ki

cannot be preempted at p, i.e.,

it cannot be running at time p. However, ∃
j=0..i−1

ej,kj s.t. cj,kj
≤ ej,kj

≤ Cj,kj

and p−1 +
∑i−1

j=0 ej,kj
< p and p−1 +

∑i

j=0 ej,kj
> p, i.e., Ji,ki

is running at p.

Contradiction. Hence, p is a feasible preemption point.

Case 2:
∑i−1

j=0 cj,kj
< x,

∑i

j=0 Cj,kj
< x. Assume Ji,ki

can be preempted at p, i.e.,

it may be running at time p. Hence, ∃
j=0..i−1

ej,kj s.t. cj,kj
≤ ej,kj

≤ Cj,kj
and

p−1 +
∑i−1

j=0 ej,kj
< p and p−1 +

∑i

j=0 ej,kj
> p. However,

∑i

j=0 Cj,kj
< x implies

p−1 +
∑i

j=0 ej,kj
< p. Contradiction. Hence, Ji,ki

cannot be running at p, and p is not

a feasible preemption point.

Case 3:
∑i−1

j=0 cj,kj
> x. Assume Ji,ki

can be preempted at p, i.e., it may be running at

time p. Hence, ∃
j=0..i−1

ej,kj s.t. cj,kj
≤ ej,kj

≤ Cj,kj
and p−1 +

∑i−1
j=0 ej,kj

< p

and p−1 +
∑i

j=0 ej,kj
> p. However,

∑i−1
j=0 cj,kj

> x implies p−1 +
∑i−1

j=0 ej,kj
> p.

Contradiction. Hence, Ji,ki
cannot be running at p, and p is not a feasible preemption

point.

Hence, preemptions can only occur under Case 1, which is the condition checked by our

algorithm (see Figure 12) with the summations of WCET and BCET in the for loop and

the check implemented in the subsequent conditions.

The algorithm described above is shown as pseudocode in Figure 12 in the appendix.

The variables used are first described. The rest of the algorithm describes a loop that

iterates over every interval between consecutive preemption points (comment 2). For each

interval, after performing some initializations (comment 3), tasks released at the beginning

of the interval are identified (comment 4) and the variables related to the release of a

new job are initialized (comment 5). Next, the current priorities are calculated using the

scheduling policy for the task set (comment 6). Tasks active in the current interval are

traversed in order of priority (comment 7). For each task, best case and worst case scenarios

are calculated (comments 8 and 9 respectively). During this process, the minimum and

maximum times available for execution of a task in the current interval are calculated.

Once all active tasks have been processed, preemption information for every task that could

be preempted at the end of the interval is updated (comment 10). For all jobs that are

guaranteed to be done before the end of the current interval variables used during the

analysis are reset (comment 11).

11.4 Complexity of Analysis

Static data cache analysis to produce data cache reference patterns is performed only once

for each task. Here, we iterate through the iteration space of a task, hence making the time

and space complexity proportional to the number of data references, nd in the task, namely

O(nd).
The complexity of our algorithm to calculate D-CRPD and, hence, WCET of a task is

O(nJ ∗ nT ∗ nd) where nJ is the number of job releases in the hyperperiod of the task

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

16 ·

set and nT is the number of tasks. Our algorithm iterates over every interval between job

release points. This introduces a complexity of nJ . Within each interval, the algorithm

iterates over currently active jobs in order of priority. Since we consider systems where

a task has a deadline equal to or less than its period, there can be at most one job of a

particular task active at any time. Hence, iterating over active jobs adds a complexity of

nT . Finally, at every identified preemption point, maximum possible delay incurred by

the preempted task is calculated using its access chains and information about the range of

iteration points at which the preempted task is determined to be when it is preempted. This

introduces a complexity of nd since nd is the length of the access chain of a task. However,

in reality, this range is usually much smaller than nd for a given preemption point since it

is limited by the largest interval between two consecutive potential preemption points for

a task.

11.5 Calculation of the Preemption Delay

In Section 11.1, we describe our algorithm to eliminate infeasible preemption points in

isolation, without details of the actual calculation of the preemption delay incurred at every

feasible point. Here, we discuss the calculation of preemption delay at every point and its

addition to the remaining WCET of the preempted task.

Every preemption point determined to be feasible for a task is a point in time. This point

in time needs to be translated into an execution point in the iteration space of the preempted

task. The preemption delay at this point may then be calculated using the access chains of

the preempted task.

To explain the above with an example, consider the task set whose characteristics are

shown in Table IV. On the timeline for task T2 shown in Figure 8, point 1 is identified to

be a feasible preemption point. In order to obtain the delay due to preemption at that point,

we need to identify the iteration point (the loop iteration number of a particular loop within

the task [Ramaprasad and Mueller 2005]) within J2,0 that has been reached at the time that

the preemption occurs.

The static timing analyzer framework described in Section 5 provides best-case and

worst-case execution time estimates for a program. Furthermore, given a certain interval

of time, it can provide information about the iteration point that the program could be at

the end of the interval both in the best and the worst-case scenarios.

Using our feasible preemption point analysis, we are able to obtain the minimum and

maximum time available for a task within every interval between preemption points. This

information is obtained using the best and worst-case execution times of higher priority

tasks as described in Section 11.1. In the current example, we use the BCETs and WCETs

of jobs J0,0 and J1,0 since they have higher priority that job J2,0. In the first interval, after

subtracting the time required for the higher priority jobs, we are left with 5 units of time

in the best case and 1 unit of time in the worst case for J2,0. These provide an upper and

lower bound, respectively, for the time available for J2,0 in the interval.

The upper and lower bound thus identified are each supplied as inputs to the static tim-

ing analyzer framework. The framework performs best and worst-case timing analysis of

the preempted task to produce, for each input, two iteration points. One iteration point

represents the latest possible point that could be reached (i.e., cannot be exceeded) by the

preempted task in the given time and is obtained from best-case timing analysis of the

task. The second iteration point represents the earliest iteration point that is guaranteed

to be reached in the given time and is obtained from worst-case timing analysis of the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

· 17

preempted task.

Considering the earliest and latest iteration points among the four iteration points ob-

tained provides us with the range of iteration points that the preempted task could have

reached when it is preempted. Now, we calculate the preemption delay at each point in this

range and choose the maximum delay among those and consider that to be the worst-case

preemption delay due to preemption at the particular preemption point. This delay is added

to the remaining WCET of the preempted task.

Let us revisit the example of task T2 that is preempted at point 1 as shown in Figure 8.

Assume T2 is a program that has a loop with 100 iterations. In the interval between points

0 and 1, T2 is guaranteed to execute for at least 1 unit of time and is guaranteed not to

exceed 5 units of time as calculated using our algorithm described in Section 11.

Using the lower bound of the time available for its execution (1 unit), assume the static

timing analyzer determines that J2,0 is guaranteed to reach at least iteration 4 and cannot

proceed beyond iteration 7. Similarly, assume it determines that J2,0 is guaranteed to reach

at least iteration 9 in 5 units of time (upper bound of the time available for its execution)

and does not proceed beyond iteration 13 in the same amount of time. We now consider

the entire range of iteration points between 4 and 13 and calculate the delays at every point.

Among these, we identify the highest delay and add this delay to the remaining WCET of

J2,0.

The algorithm used to implement the above method of calculating worst-case preemp-

tion delay at a given preemption point is summarized below. The static timing analyzer

framework is invoked to perform worst-case partial timing on the minimum available ex-

ecution time for the preempted task. This yields the beginning of the range of iteration

points to be considered. Next, the timing analyzer is invoked to perform best-case partial

timing on the maximum available execution time for the preempted task. This yields the

end of the range of iteration points. The range thus identified is provided to a function that

iterates through the access chains of the preempted task and calculates the highest delay in

the given range.

In the method described thus far, we assume that, for every task, we know the values

of its period, deadline and phase. For a given phasing of tasks, our method calculates the

worst-case response times for all tasks. Instead, we now propose a modification to our

method to calculate the worst-case response times for tasks regardless of the phasing of the

tasks.

In the algorithm described above, for every preemption point, we calculate a range of

iteration points where the preempted task could be when it is preempted. We then consider

the maximum preemption delay in this range as the preemption delay at the preemption

point.

Instead, we now assume that the maximum delay in the entire iteration space is incurred

at every preemption point. Further, in order to allow any phasing among tasks, we add

extra preemptions for every job at its release. Let us assume that the maximum possible

phasing for any task is x units. Furthermore, for any given task, the maximum phasing is

less than or equal to its own period. Under these conditions, Equation 3 gives the number

of extra preemptions to add in case of a static-priority policy, and Equation 4 gives the

number of extra preemptions in the case of a dynamic-priority scheduling policy.

pextrai,j
x =

i−1
∑

hp=1

(⌈
min(x, Pi)

Php

⌉) (3)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

18 ·

pextrai,j
x =

n
∑

hp=1

(

{

⌈min(x,Pi)
Php

⌉) , ifhp 6= i

0 , otherwise

}

) (4)

However, we also observe that, every time a lower-priority task gets preempted, at least

one higher-priority task executes. The minimum amount of execution time of this higher-

priority task may be safely assumed to be at least equal to the shortest best-case execution

time (BCET) among all higher-priority tasks. Hence, the shortest BCET is subtracted

from the maximum possible phase of the lower-priority task before adding any more ex-

tra preemptions, thereby tightening the bound on the number of extra preemptions. This

calculation effectively gives us an upper bound on the number of preemptions and on the

worst case response times for a maximum phasing of x.

Consider the example used earlier in Section 3. The task-set characteristics for this ex-

ample are shown in Table I. Figure 2 shows response times of tasks when all tasks are

released simultaneously. In order to calculate the response time of a task irrespective of

phasing, we use this scenario. To every task, we add one preemption more than the number

calculated. For example, for task T2, we calculate the response time assuming three pre-

emptions instead of two and considering the maximum preemption delay at each of these

points. In our current example, since we assume that a task has a constant preemption

delay, ∆, for any preemption, we use that value as the maximum preemption delay and ob-

tain a response time of 8 units instead of 7.875 units. In Section 12, we provide worst-case

response times calculated in this manner in addition to the worst-case response time for a

given phasing.

When a preemption takes place, it results in a context-switch at the operating system

level. The operating system code that is executed in order to perform the context-switch

may also use the data cache and, hence, alter the results of our analysis. In our current

experiments, we have not considered this factor. However, conceptually, this issue may be

dealt with in the following manner.

First, we need to identify the data cache lines that are used by the operating system code.

Since this code may not adhere to the constraints that our analysis framework poses on the

programs that we analyze, our analysis cannot be used. Hence, we allocate a predetermined

area in the memory to hold the operating system code and thereby constrain the data cache

lines that it may use.

Second, we need to consider the effects that the execution of operating system code

would have on the tasks being analyzed. For this purpose, while calculating the preemption

delay incurred by a task at a given preemption point using access chains, we consider the

cache lines allocated for the operating system code as potential candidates for eviction. In

other words, the operating system code would be treated as the highest priority task in the

system and would execute every time there is a preemption.

12. EXPERIMENTAL FRAMEWORK

For our experiments, several task sets were constructed using the DSPStone benchmarks

with different data set sizes. The benchmarks used, along with their stand-alone WCETs

and BCETs, are shown in Table V. A benchmark ID is given to each of the benchmarks.

This ID will be referenced in the result tables.

In our experiments, we used tasks sets that have a base utilization (utilization without

considering preemption delays) of 0.5, 0.6, 0.7 and 0.8. Task sets of different sizes (2, 4,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

· 19

ID Name WCET BCET ID Name WCET BCET
1 convolution 7491 7491 15 matrix1 59896 54015

2 200convolution 14191 14191 16 fir 9537 9537

3 300convolution 20891 20891 17 500fir 43937 43937

4 500convolution 34291 34291 18 600fir 54837 52537

5 600convolution 45291 40991 19 700fir 65937 61137

6 700convolution 55491 47691 20 800fir 77037 69737

7 800convolution 66191 54391 21 900fir 88137 78337

8 900convolution 76391 61091 22 1000fir 99237 86937

9 1000convolution 87091 67791 23 lms 14536 14536

10 n-real-updates 16738 16738 24 600lms 89636 79536

11 300n-real-updates 56538 47338 25 700lms 112636 92536

12 400n-real-updates 92238 62638 26 800lms 135636 105536

13 500n-real-updates 127538 77938 27 900lms 158636 118536

14 dot-product 750 750 28 1000lms 181636 131536

Table V. Stand-Alone WCETs and BCETs of DSPStone Benchmarks

6, 8) were constructed for each of these utilizations. For 0.8 utilization, we were able to

construct a task set consisting of 10 tasks as well. In all these task sets, we assume a static

priority scheme.

The maximum number of preemptions, np, possible for a task are calculated using three

different methods to provide a comparison to our methods described in this paper.

(1) An upper bound on the number of preemptions, np, for a task is determined by using

Equation 2. This is denoted as HJ-P in our results.

(2) We calculate np by considering indirect preemption effects as proposed by Staschulat
et al. This method uses the periods and response times of tasks [Staschulat et al. 2005].

This is denoted as Stas-R.

(3) We calculate np using the range of execution times of higher priority jobs as proposed

in Section 11. This new method uses the periods, WCETs and BCETs of tasks to

calculate feasible preemption points. We use two methods for the actual calculation

of preemption delay as described in Section 11.5. The method using the maximum

delay in a range of iteration points (where the task is determined to be) is denoted as

OurFP-RangeMax and the one using the maximum delay in the entire iteration space

is denoted as OurFP-ItSpMax.

.

In the current set of experiments, the maximum phasing for a task, used in Equations

4 and 3, is assumed to be 1000 cycles. Although all the methods calculate the maximum

number of preemptions for a task, the first two methods do not provide information about

the placement of the preemption points. Hence, in these cases, we consider the np largest

delays for a task in order to obtain its D-CRPD.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

20 ·

13. EXPERIMENTAL RESULTS

We performed several experiments to demonstrate the working of our new methods

(OurFP-RangeMax and OurFP-ItSpMax) in comparison to prior methods (HJ-P and Stas-

R). The results of these experiments are shown and discussed in the following sections.

13.1 Response Time Analysis

In the first set of experiments, we use the task sets described in Table VI and perform

response time analysis using all the methods described in Section 12 for calculating the

number of preemptions. Results obtained for the task sets with base utilization of 0.5 and

0.8 are shown in Figure 9. Results for utilizations of 0.6 and 0.7 are similar and are omitted

due to space constraints. Different graphs are used to represent the three metrics studied

— maximum number of preemptions, WCET with preemption delay and response times

for tasks. In each graph, the x-axis represents the several task sets used. Tasks within each

task set are numbered in decreasing order of priority. It is to be noted that, in this set of

experiments, we use a static priority scheme for the task sets.

Tasks 2 4 6 8 10
U = 0.5

IDs 16, 19 1, 15,

18, 22

23, 3, 6, 11, 19,

26

2, 3, 4, 11, 15, 18, 7, 27

Periods 50K, 200K 50K,

400K,

500K,

100K

400K, 500K,

1000K, 1000K,

2000K

100K, 400K, 500K,

800K, 1000K, 2000K,

2000K, 4000K

U = 0.6
IDs 21, 27 1, 15,

8, 27

3, 4, 6, 11, 19,

26

2, 5, 6, 11, 15, 18, 7, 27

Periods 300K, 500K 50K,

400K,

500K,

1000K

100K, 400K,

500K, 1000K,

1000K, 2000K

100K, 400K, 500K,

800K, 1000K, 2000K,

2000K, 4000K

U = 0.7
IDs 27, 21 16, 9,

7, 27

3, 17, 8, 7, 20,

27

3, 5, 20, 11, 15, 19, 8,

26

Periods 300K, 500K 50K,

400K,

500K,

1000K

100K, 400K,

500K, 1000K,

1000K, 2000K

100K, 400K, 500K,

800K, 1000K, 2000K,

2000K, 4000K

U = 0.8
IDs 27, 26 28, 13,

27, 19

21, 8, 20, 13,

25, 19

8, 26, 20, 15, 9, 11, 8,

21

10, 8, 15, 9, 5, 11, 20,

27, 22, 17

Periods 300K, 500K 500K,

500K,

1000K,

2000K

400K, 500K,

500K, 1000K,

1000K, 2000K

400K, 500K, 800K,

800K, 1000K, 2000K,

2000K, 4000K

100K, 625K, 625K,

625K, 1000K, 1000K,

1250K, 1250K, 2500K,

5000K

Table VI. Task Set Characteristics: Benchmark IDs per Task Set and Periods [cycles]

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

· 21

(a) # Preemptions for U = 0.5 (b) # Preemptions for U = 0.8

(c) WCET w/ delay for U = 0.5 (d) WCET w/ delay for U = 0.8

(e) Response Time for U = 0.5 (f) Response Time for U = 0.8

Fig. 9. Results for U=0.5 and U=0.8 using RM policy

Our method of using only feasible preemption points consistently derives a much tighter

bound on the number of preemptions for a given task as compared to the two prior methods

(HJ-P and Stas-R). Since the number of preemption points identified is smaller, bounds for

the WCET with preemption delay and the response time for each task are also significantly

tighter, as indicated in our results. Even the method that calculates an upper bound on the

maximum number of feasible preemption points for any phasing of tasks (OurFP-ItSpMax)

provides significantly tighter bounds than the two prior methods.

We observe from the graphs that, for some of the tasks, response times are not indicated

for the first two methods of comparison (HJ-P and Stas-R). This means that the response

exceeded the deadline of the task, making the task set unschedulable. Results from our

methods (OurFP-RangeMax and OurFP-ItSpMax) show that these task sets are, in reality,

schedulable. This underlines the potential benefits of our new methods. For the calculation

of response time, we use a fixed-point approach and proceed only as long as the deadline

of the given task is not exceeded. In the Stas-R method, the value of the response time

obtained in one iteration of this fixed-point approach is used to calculate the number of

preemptions in the next iteration. Hence, if the response time of a task exceeds its deadline,

we stop the iterative calculation and do not report number of preemptions.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

22 ·

Widening gaps between results using our new methods (OurFP-RangeMax and OurFP-

ItSpMax) and using the two prior methods (HJ-P and Stas-R) show an increase in the

effectiveness of our methods as we proceed towards lower priority tasks. Since lower

priority tasks are less likely to be scheduled in the initial intervals, more preemption points

are deemed infeasible by our new methods, hence producing tighter bounds. This feature

of our new methods prevents the exponential increase in the number of preemptions for

successive tasks observed in the method HJ-P.

Analysis times using the method OurFP-RangeMax are indicated in Table VII. The

most significant factors affecting the analysis time of a task are the number of memory

accesses within the task and the actual loop nest structure of the task. The actual task set

characteristics, which determine the number of jobs of each task in the hyperperiod of the

task set, also contribute to this time, albeit in a much less significant way.

Utilization = 0.5 Utilization = 0.8
Task Set Size Analysis Time Task Set Size Analysis Time

2 33.65 2 558.44

4 177.80 4 626.47

6 175.20 6 436.49

8 417.85 8 419.33

10 415.11

Table VII. Analysis times in seconds

Between the two base utilizations whose results are shown in Figure 9, we observe that

the 0.8 utilization shows a higher number of preemptions than the 0.5 utilization. This is

due to the increased WCET in the case of higher utilization. Increased WCET means that

the tasks have a greater number of feasible preemptions once they have started execution

and, hence, the response times of tasks increase. It may be observed from the results

that the WCET bound of a task does not depend significantly on its priority unlike the

response time. This is due to the fact that the stand-alone or base WCET dominates the

total preemption delay cost. Thus, the WCET with preemption delay does not necessarily

increase monotonically with decreasing priority.

From our results, several observations can be made regarding the two prior methods

(HJ-P and Stas-R). While both of them produce very similar results for the first two tasks

in a task set, they start to exhibit differences as we proceed towards lower priority tasks.

The Stas-R method consistently performs better than the HJ-P method since it correctly

takes effects of indirect preemptions into account.

As already observed, the new methods OurFP-RangeMax produces significantly tighter

bounds than the two prior methods in all cases. Furthermore, the method OurFP-ItSpMax,

which produces an upper bound for the number of preemptions for any phasing of tasks,

also usually performs significantly better than both prior methods. However, in the case

of the task with second-highest priority, it gives a higher number of preemptions (and,

hence, WCET with delay and response time) than the Stas-R method. This is explained as

follows. Since the task with second-highest priority has only one higher-priority task, the

Stas-R and OurFP-ItSpMax methods actually calculate the same number of preemptions.

However, in OurFP-ItSpMax, we add one extra preemption (and, hence, extra preemption

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

· 23

delay) to account for any possible phasing. This makes the number of preemptions higher

than that produced by Stas-R.

To illustrate the variation in the maximum number of preemptions obtained by our new

method OurFP-RangeMax between the various jobs of a task, we provide results for two

of the task sets in Table VIII. As already observed from the graphs in Figure 9, OurFP-

RangeMax always produces a significantly lower value for the number of preemptions than

that produced by the two prior methods. Moving towards lower priority tasks, we further

observe that there is a difference between the number of preemptions for different jobs of

the same task by noting that the minimum, maximum and average values obtained over

all the jobs are different from each other. In the case of the task set with base utilization

0.8, we notice that number of preemptions for certain tasks are not reported in the Stas-

R method. This is for the same reason already explained with reference to the graphs in

Figure 9 — the number of preemptions could not be calculated since the response times of

those tasks exceeded their respective deadlines.

Benchmark Period WCET BCET # Jobs # P # P # P
(cycles) (cycles) (cycles) OurFP-RangeMax HJ-P Stas-R

avg min max

U = 0.5
200convolution 100k 14191 14191 40 0 0 0 0 0

300convolution 400k 20891 20891 10 0 0 0 4 1

500convolution 500k 34291 34291 8 0 0 0 7 2

300n-real-updates 800k 56538 47338 5 0.2 0 1 12 4

matrix1 1000k 59896 54015 4 1 1 1 17 6

600fir 2000k 54837 52537 2 1 1 1 34 8

800convolution 2000k 66191 54391 2 1 1 1 35 14

900lms 4000k 158636 118536 1 3 3 3 71 27

U = 0.8
n-real-updates 100k 16738 16838 50 0 0 0 0 0

900convolution 625k 76391 61091 8 0.75 0 1 7 1

matrix1 625k 59896 54015 8 1 1 1 8 3

1000convolution 625k 87091 67791 8 1.25 1 2 9 5

600convolution 1000k 45291 40991 5 0.6 0 2 16 7

300n-real-updates 1000k 56538 47338 5 1.4 0 3 17 10

800fir 1250k 77037 69737 4 1.75 1 2 23

900lms 1250k 158636 118536 4 3.75 3 5 24

1000fir 2500k 99237 86937 2 4.5 3 6 47

500fir 5000k 43937 43937 1 1 1 1 94

Table VIII. Number of Preemptions (# P) for Task Set with U=0.5 and U = 0.8

In our experiments, we also observed that the number of preemptions obtained for the

first job of every task (released at the same time as all higher priority jobs) was not always

the maximum value obtained across all jobs. This proves the claim we make in Section

4 about the critical instant not being the instant at which jobs of all tasks are released at

the same time and underlines the necessity to perform our analysis for every job in the

hyperperiod of a task set rather than once for every task.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

24 ·

(a) Difference in WCET w/ delay for U = 0.5 (b) Difference in WCET w/ delay for U = 0.8

(c) Difference in Response Time for U = 0.5 (d) Difference in Response Time for U = 0.8

Fig. 10. Results for staggered task-set for U = 0.5 and U = 0.8

13.2 Task Sets with Staggered Releases

In our first set of experiments, we assume that all tasks in a task set are released simultane-

ously (synchronous release). However, since our analysis is capable of producing worst-

case response time bounds for a task set with a particular phasing, we thought it useful to

illustrate such a case with experimental results. For this purpose, we reuse the same task

set characteristics from Table VI. However, in this experiment, we change the phasing of

the tasks. Tasks in every task set are released in reverse order of priority. Every task has a

maximum phase of 1000 cycles, or its own period, whichever is smaller.

In these experiments, the differences in the results of OurFP-RangeMax between the

first set and the current set of experiments are not significantly different. For this reason,

we decided to present the differences obtained in the bounds for the WCET and response

time for task sets with synchronous releases and task sets with staggered releases. The

differences are shown in Figure 10. The graph also shows differences between maximum

possible values (obtained using OurFP-ItSpMax) and synchronous release.

For most tasks, there are very small changes in the values of WCET and response times

for the phased task sets when compared to the difference between the maximum possible

values and synchronous release. This is because, in OurFP-ItSpMax, we add extra pre-

emptions to account for any possible phasing and assume the maximum possible delay at

every one of them. Since the increase or decrease in WCET is entirely dependent on the

relative positioning of jobs at different points in the hyperperiod, it is difficult to determine

the phasing of a task set that would result in the worst possible response-times for tasks.

This illustrates the merit of the method that calculates an upper bound on the number of

preemptions irrespective of phasing (OurFP-ItSpMax).

13.3 Effects of WCET/BCET on # of Preemptions

In order to study the effects that the ratio of WCET of a task to its BCET has on the upper

bound for the number of preemptions it incurs, we performed a set of experiments with

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

· 25

synthetic task sets. We vary the ratio of WCET to BCET for every task, maintaining all

other parameters. The results of this set of experiments are shown in Table IX. Since we

use synthetic tasks, we do not have actual code from which to construct access chains for

calculation of preemption delay. Hence, we need to assume a fixed value for the preemption

delay. Since the preemption delay is significantly less than the base WCET of a task, we

assume a delay value of 0 in our experiments for the sake of simplicity. Our primary goal

in this set of experiments is to show how the WCET/BCET ratio affects the number of

preemptions.

Task Period WCET # Preempts OurFP-RangeMax (Min/Max/Avg) # P # P
ID (cycles) (cycles) W/B = 1 W/B = 1.5 W/B = 2 W/B = 2.5 W/B = 3 HJ-P Stas-R

U = 0.5
1 80k 16k 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1 8 2

2 100k 5k 0/1/0.25 0/1/0.25 0/2/0.5 0/2/0.5 0/2/0.5 12 4

3 200k 30k 3/3/3 3/4/3.5 3/4/3.5 3/5/4 3/5/4 25 8

U = 0.8
1 80k 20k 2/2/2 2/2/2 2/2/2 2/2/2 2/2/2 8 3

2 100k 15k 1/2/1.5 1/3/1.75 1/3/1.75 1/4/2 1/4/2 12 6

3 200k 50k 6/7/6.5 8/8/8 8/9/8.5 8/9/8.5 8/8/8 25 19

Table IX. Preemptions for Task Set with U=0.8 with Varying WCET/BCET (W/B) ratios

For utilizations of 0.5 and 0.8, we consider WCET/BCET ratios of 1, 1.5, 2, 2.5 and

3. As before, in every case, the bounds obtained by our method of eliminating infeasible

preemption points is significantly lower than those obtained by the two prior methods (HJ-

P and Stas-R). As the ratio of WCET/BCET increases, the upper bound on the number of

preemptions increases slightly for small ratios. After a ratio of around 3, the number of

preemptions start to decrease once again. However, the number of preemptions does not

go below the number obtained with ratio equal to 1. This is expected since the schedule

with WCET/BCET ratio of 1 has the least amount of slack.

The maximum increase in the number of preemptions as compared to the number with

ratio equal to 1 was found to be approximately 30 percent. Hence, even if we set the BCET

of a task to 0, the pessimism in the results obtained are not very significant. In fact, they

would still be tighter bounds than those produced by the two prior methods. This is a useful

observation since several timing analyzers only provide WCET bounds for a task, but not

BCET bounds. Even in these cases, our analysis would be applicable and useful to obtain

tight bounds on the worst-case number of preemptions.

13.4 Static-Priority vs Dynamic-Priority Scheduling Policy

In all the above experiments, we use the RM scheduling policy, which is a static-priority

scheduling policy. However, our framework is conceptually able to support dynamic-

priority scheduling policies as well. In order to demonstrate this, we performed a set

of experiments using the EDF scheduling policy. For this purpose, once again we used

the task sets whose characteristics are shown in Table VI. Tasks in every task set were

released in reverse order of the lengths of their periods (i.e., in reverse order of priority

as determined by the RM scheduling policy). A phase difference of 10 cycles was used

between successive tasks. Figure 11 compares results obtained using both the RM and the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

26 ·

EDF scheduling policies for base utilizations of 0.5 and 0.8. Only the task sets that actually

exhibit a difference in behavior between the two policies are shown.

(a) # Preemptions for U = 0.5 (b) # Preemptions for U = 0.8

(c) WCET w/ delay for U = 0.5 (d) WCET w/ delay for U = 0.8

(e) Response Time for U = 0.5 (f) Response Time for U = 0.8

Fig. 11. Comparison of results for RM and EDF for U=0.5 and U=0.8

From the above results, we observe that, in some cases, the EDF policy decreases the

number of preemptions for a task in comparison to RM, yet increases its response time.

This is due to the fact that the relative deadlines of tasks alter their priorities. The ex-

periments demonstrate the applicability of our method to systems with dynamic-priority

scheduling policies.

14. CONCLUSIONS AND FUTURE WORK

In this work, we propose methods to calculate preemption delay suited to data caches

and integrate it with past work in instruction cache and pipeline analysis. A framework

developed in prior work is enhanced to calculate tight bounds for the data cache related

preemption delay for real-time tasks. These bounds are used to calculate tighter bounds on

WCETs and hence response times of tasks to determine its schedulability.

The contributions of this paper are:

(1) Calculation of an upper bound on the maximum number of preemptions for a given

task;

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

· 27

(2) Calculation of a significantly tighter bound on the maximum number of preemptions

using an algorithm that eliminates infeasible preemption points for tasks with given

phasing, and an upper bound of the same for tasks with any possible phasing;

(3) Proof that the critical instant for a task set need not occur upon simultaneous release

of all tasks when considering data cache related preemption delay;

(4) Construction of a realistic worst-case scenario for the placement of preemption points

using the BCET and WCET of tasks for systems with static or dynamic scheduling

policies.

We obtain significantly tighter bounds for (a) the number of preemptions, (b) the WCET

and (c) the response time of a task as compared with prior methods. The improvements

are up to an order of magnitude over two of the prior methods and up to half an order of

magnitude over another. To the best of our knowledge, our work is novel in its contribution

of a methodology to integrate data caches into preemption delay determination and in the

consideration of critical instants for staggered releases of tasks.

As part of future work, we propose to conduct experiments to measure the WCET of a

task using a cycle-accurate simulator. These values could then be compared to the results

of our analysis in order to validate our results.

In light of the restrictions posed on the tasks and the characteristics of the task-sets being

analyzed, it would be worthwhile to investigate the possibility of restricting areas where

a task may be preempted. In other words, a task could have a region during its execution

where is is non-preemptible. A sensitivity study may be conducted by varying the position

and length of this region. We are currently pursuing this line of investigation [Ramaprasad

and Mueller 2007].

Currently, if the data layout for a task changes, we can account for it only by recalculat-

ing the response times of all tasks. In future work, we could refine our approach to allow

incremental changes to the data layout.

REFERENCES

AUDSLEY, A. N., BURNS, A., RICHARDSON, M., AND TINDELL, K. 1993. Applying new scheduling theory

to static priority pre-emptive scheduling. Software Engineering Journal, 284–292.

BASUMALLICK, S. AND NILSEN, K. 1994. Cache issues in real-time systems. In ACM SIGPLAN Workshop on

Language, Compiler, and Tool Support for Real-Time Systems.

BURGER, D., AUSTIN, T., AND BENNETT, S. 1996. Evaluating future microprocessors: The simplescalar

toolset. Tech. Rep. CS-TR-96-1308, University of Wisconsin - Madison, CS Dept. July.

BUSQUETS-MATRAIX, J. V. 1996. Adding instruction cache effect to an exact schedulability analysis of pre-

emptive real-time systems. In EuroMicro Workshop on Real-Time Systems.

CHATTERJEE, S., PARKER, E., HANLON, P., AND LEBECK, A. 2001. Exact analysis of the cache behavior of

nested loops. In ACM SIGPLAN Conference on Programming Language Design and Implementation. 286–

297.

FRAGUELA, B. B., DOALLO, R., AND ZAPATA, E. L. 1999. Automatic analytical modeling for the estimation

of cache misses. In International Conference on Parallel Architectures and Compilation Techniques.

GHOSH, S., MARTONOSI, M., AND MALIK, S. 1997. Cache miss equations: An analytical representation of

cache misses. In Conference Proceedings of the 1997 International Conference on Supercomputing. ACM

SIGARCH, Vienna, Austria, 317–324.

GHOSH, S., MARTONOSI, M., AND MALIK, S. 1999. Cache miss equations: a compiler framework for an-

alyzing and tuning memory behavior. ACM Transactions on Programming Languages and Systems 21, 4,

703–746.

JU, L., CHAKRABORTY, S., AND ROYCHOUDHURY, A. 2007. Accounting for cache-related preemption delay

in dynamic priority schedulability analysis. In IEEE Design Automation and Test in Europe.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

28 ·

KIM, S., MIN, S., AND HA, R. 1996. Efficient worst case timing analysis of data caching. In IEEE Real-Time

Embedded Technology and Applications Symposium.

LEE, C.-G., HAHN, J., SEO, Y.-M., MIN, S. L., HA, R., HONG, S., PARK, C. Y., LEE, M., AND KIM, C. S.

1998. Analysis or cache-related preemption delay in fixed-priority preemptive scheduling. IEEE Transactions

on Computers 47(6), 700–713.

LEE, C.-G., LEE, K., HAHN, J., SEO, Y.-M., MIN, S. L., HA, R., HONG, S., PARK, C. Y., LEE, M., AND

KIM, C. S. 2001. Bounding cache-related preemption delay for real-time systems. IEEE Transactions on

Software Engineering 27(9), 805–826.

LEHOCZKY, J., SHA, L., , AND DING, Y. 1989. The rate monotonic scheduling algorithm: Exact characterization

and average case behavior. In Proceedings of the Real-Time Systems Symposium. Santa Monica, California.

LEUNG, J. Y.-T. A new algorithm for scheduling periodic, real-time tasks. to appear in Journal of Algorithmica.

LI, Y.-T. S., MALIK, S., AND WOLFE, A. 1996. Cache modeling for real-time software: Beyond direct mapped

instruction caches. In IEEE Real-Time Systems Symposium. 254–263.

LIM, S.-S., BAE, Y. H., JANG, G. T., RHEE, B.-D., MIN, S. L., PARK, C. Y., SHIN, H., AND KIM, C. S.

1994. An accurate worst case timing analysis for RISC processors. In IEEE Real-Time Systems Symposium.

97–108.

LISPER, B. AND VERA, X. 2003. Data cache locking for higher program predictability. In ACM SIGMETRICS

international conference on Measurement and modeling of computer systems. 272–282.

LUNDQVIST, T. AND STENSTRÖM, P. 1999. Empirical bounds on data caching in high-performance real-time

systems. Tech. rep., Chalmers University of Technology.

NEGI, H. S., MITRA, T., AND ROYCHOUDHURY, A. 2003. Accurate estimation of cache-related preemption

delay. ACM International Symposium on Hardware Software Codesign.

PUAUT, I. 2006. Wcet-centric software-controlled instruction caches for hard real-time systems. In Euromicro

Conference on Real-Time Systems.

PUAUT, I. AND DECOTIGNY, D. 2002. Low-complexity algorithms for static cache locking in multitasking hard

real-time systems. In IEEE Real-Time Systems Symposium.

RAMAPRASAD, H. AND MUELLER, F. 2005. Bounding worst-case data cache behavior by analytically deriving

cache reference patterns. In IEEE Real-Time Embedded Technology and Applications Symposium. 148–157.

RAMAPRASAD, H. AND MUELLER, F. 2006. Bounding preemption delay within data cache reference patterns

for real-time tasks. In IEEE Real-Time Embedded Technology and Applications Symposium. 71–80.

RAMAPRASAD, H. AND MUELLER, F. 2007. Bounding worst-case response time for tasks with non-preemptive

regions. Tech. Rep. TR 2007-22, Dept. of Computer Science, North Carolina State University.

STASCHULAT, J. AND ERNST, R. 2004. Multiple process execution in cache related preemption delay analysis.

In International Conference on Embedded Sofware.

STASCHULAT, J. AND ERNST, R. 2006. Worst case timing analysis of input dependent data cache behavior. In

Euromicro Conference on Real-Time Systems.

STASCHULAT, J., SCHLIECKER, S., AND ERNST, R. 2005. Scheduling analysis of real-time systems with

precise modeling of cache related preemption delay. In Euromicro Conference on Real-Time Systems.

TOMIYAMA, H. AND DUTT, N. D. 2000. Program path analysis to bound cache-related preemption delay in

preemptive real-time systems. ACM International Symposium on Hardware Software Codesign.

VERA, X., LLOSA, J., GONZÁLEZ, A., AND BERMUDO, N. 2000. A fast and accurate approach to analyze

cache memory behavior (research note). Lecture Notes in Computer Science 1900, 194–198.

VERA, X. AND XUE, J. 2002. Let’s study whole-program cache behavior analytically. In International Sympo-

sium on High Performance Computer Architecture. IEEE.

WEGENER, J. AND MUELLER, F. 2001. A comparison of static analysis and evolutionary testing for the verifi-

cation of timing constraints. Real-Time Systems 21, 3 (Nov.), 241–268.

WHITE, R. T., MUELLER, F., HEALY, C., WHALLEY, D., AND HARMON, M. G. 1999. Timing analysis for

data and wrap-around fill caches. Real-Time Systems 17, 2/3 (Nov.), 209–233.

ZIVOJNOVIC, V., VELARDE, J., SCHLAGER, C., AND MEYR, H. 1994. Dspstone: A dsp-oriented benchmarking

methodology. In Signal Processing Applications and Technology.

Received March 2007;

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

· 29

/* 1. Description and initialization of variables used */

n: number of tasks

release points: array of release points

timeline: array of tasks released at every release point

interval: time interval between two preemption points

bcet rem, wcet rem: array 1..n of remaining BC/WCET (init val=0)

curr job: array 1..n of current job of every task

bcet sum, wcet sum: var. to sum up BC/WCET in interval

no work done, no count, restart: array 1..n of bool (init to false)

num p: array 1..n of max. # of preemptions for tasks

curr priorities: array 1..n of current priorities

bneedtobreak, wneedtobreak: boolean values

/* 2. Loop iterating over intervals between release points */

for all rp in release points up to hyper-period {
for all tasks in system /* 3. Initialization of boolean variables for every interval */

no count[task], no work done← false

/* 4. Get tasks released at beginning of interval */

tasks← timeline[release points[rp]]

interval← release points[rp+1] - release points[rp]

for each element task of array of tasks released at current point { /* 5. Initialize released tasks */

curr job[task]← curr job[task] + 1

restart← true

bc/wcet rem[task]← bc/wcet[task]

}
/* 6. Calculation of current priorities */

curr priorities← calculate current priorities

bcet sum, wcet sum← 0

bneedtobreak, wneedtobreak← false

for every task in order of curr priorities { /* 7. Loop iterating over tasks in order of priority */

if (restart[task]) {
/* 8. Best case scenario calculation */

if (bcet rem[task] > 0) {
bcet sum← bcet sum + bcet rem[task]

if (bcet sum ≥ interval) {
for each lower priority task, lp task

no count[lp task], no work done[lp task]← true

insert into array max exec times[task][curr job[task]-1]

value bcet rem[task] - (bcet sum - interval)

bcet rem[task]← bcet sum - interval

bneedtobreak← true

} else {
insert into array max exec times[task][curr job[task]-1]

value bcet rem[task]

bcet rem[task]← 0

}
no work done[task]← false

} else {
insert into array max exec times[task][curr job[task]-1]

value 0

no work done[task]← true

}

Fig. 12. Algorithm to Eliminate Infeasible Preemption Points
ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

30 ·

/* 9. Worst case scenario calculation */

wcet sum← wcet sum + wcet rem[task]

if (wcet sum ≥ interval) {
for each lower priority tasks, lp task {

no count[lp task]← true

no work done[lp task]← true

}
if (wcet rem[task] > (wcet sum - interval)) {

insert into array min exec times[task][curr job[task]-1]

value wcet rem[task] - (wcet sum - interval)

wcet rem[task]← wcet sum - interval

no work done← false

} else {
insert into array min exec times[task][curr job[task]-1]

value 0

if (no work done[task] = true)

no count[task]← true

}
wneedtobreak← true

} else {
wcet rem[task]← 0

no count[task]← true

}
if (bneedtobreak AND wneedtobreak)

break

}
}
/* 10. Check if point marking end of interval is a

feasible preemption point */

for every task in order of curr priorities {
if (!no count[task] AND !no work done[task]) {

if (restart[task]) {
if task released at end of interval has

higher priority {
num p[task]← num p[task] + 1

insert into preempting tasks[task]

value curr priorities[0]

}
}
}
}
/* 11. If current job is done, reset variables for next job */

for every task in order of curr priorities {
if (restart[task] AND ! wcet rem[task]) {

num p[task]← 0

restart[task]← 0

}
}
}

Fig. 13. Algorithm (cont.) to Eliminate Infeasible Preemption Points

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Month 20YY.

