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We connect two recent advances in the stochastic analysis of nonequilibrium systems: the (loose) uncertainty

principle for the currents, which states that statistical errors are bounded by thermodynamic dissipation, and the

analysis of thermodynamic consistency of the currents in the light of symmetries. Employing the large deviation

techniques presented by Gingrich et al. [Phys. Rev. Lett. 116, 120601 (2016)] and Pietzonka, Barato, and Seifert

[Phys. Rev. E 93, 052145 (2016)], we provide a short proof of the loose uncertainty principle, and prove a tighter

uncertainty relation for a class of thermodynamically consistent currents J . Our bound involves a measure of

partial entropy production, that we interpret as the least amount of entropy that a system sustaining current J can

possibly produce, at a given steady state. We provide a complete mathematical discussion of quadratic bounds

which allows one to determine which are optimal, and finally we argue that the relationship for the Fano factor

of the entropy production rate var σ/mean σ � 2 is the most significant realization of the loose bound. We base

our analysis both on the formalism of diffusions, and of Markov jump processes in the light of Schnakenberg’s

cycle analysis.
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I. INTRODUCTION

After Heisenberg’s uncertainty principle in quantum me-

chanics was formulated, a large variety of uncertainty relations

have also been derived in statistical mechanics, based on

statistical concepts such as the Fisher information and the

Shannon entropy [1–3]. Today, a mature theory of thermo-

dynamics is available, based on the solid mathematics of

stochastic processes and the physical principles of stochastic

thermodynamics [4–6]. Several authors have then inspected

the statistical properties of the fundamental observables of

stochastic thermodynamics, namely the currents, allowing

them to first substantiate [7,8] and then prove [9,10] a general

nonequilibrium uncertainty principle, which roughly states

that, in a nonequilibrium process, “the least the error, the

most the dissipation,” A refinement of this statement using

a nonquadratic bound was also conjectured in Ref. [9] and

later proven in Ref. [11]. Moreover, a similar inequality holds

between the dissipation, and the average time of an estimation

of the arrow of time [12].

One remarkable feature of stochastic thermodynamics is

that it puts propositions from statistical physics in a physical

perspective, in this case the theory of large deviations [13]

of random variables defined along long-time realizations

of a Markovian process. Long-time observables are of two

kinds: some measure static properties of the process (e.g.,

the typical number of cars peering at a crossroad); others

measure dynamical properties such as currents (e.g., the

net number of cars through a street). As regards Markov

processes, static observables in the long-time limit depend

only on the steady density ρ⋆. This is the crucial object

at equilibrium, where there are no currents nor dissipation.

Nonequilibrium thermodynamics, instead, is involved both

with static observables and, most importantly for this paper,

with the behavior of some current J . In this context, the
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stochastic uncertainty relation states that

var J

(mean J )2
�

2

σ⋆

, (1)

where σ⋆ measures the steady-state dissipation rate (in units of

the Boltzmann’s constant per time; from here on kB = 1), and√
var J/mean J is the error. This inequality was first proposed

by Barato and Seifert in Ref. [7] in the context of Markov jump

processes, and therein derived for cycle currents of a network in

the linear regime (slightly out of equilibrium), and for unicyclic

networks arbitrarily far from equilibrium. Large deviation

inequalities based on the steady density ρ⋆ were then provided

in Refs. [9,10], allowing Pietzonka et al. to conjecture useful

bounds [9], and Gingrich et al. [10] to provide a full, and quite

involved, proof for generic currents; similar inequalities have

also been derived for a case of a driven periodic diffusion [14].

As a first contribution we provide in Sec. II a simpler and more

general proof, valid for all stochastic processes that verify a

certain mathematical property (of which jump processes and

diffusions are examples), and which highlights the crucial role

played by the Gallavotti-Cohen symmetry.

Not all currentlike observables are amenable to physical

interpretation, and furthermore, as we will argue, the bound

expressed in Eq. (1) comes from a quadratic approximation

of the rate function that is not optimal. In Ref. [15], some

of the authors of the present paper proposed a theory of

thermodynamic consistency of the currents. For a currentlike

observable to be consistent, a corresponding symmetry of the

thermodynamic driving forces must be obeyed. This prompts

us to inquire the question whether a tighter bound holds for

thermodynamically consistent currents.

In this paper we generalize the treatment to overdamped

diffusion processes (Sec. III). In particular, we analyze a class

of thermodynamically consistent currents J a , for which we

can prove the tighter bound

var J a

(mean J a)2
�

2

σ a
⋆

, (2)
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where σ a
⋆ is the minimum entropy production rate that can be

achieved by a system that sustains current J a , compatibly

with a given steady density ρ⋆. The class of currents for

which this result holds are defined in such a way that the

steady-state constraint ∇j = 0 is satisfied, which involves

the microscopic state-space currents in terms of which all

currentlike observables can be expressed as linear functionals.

The analysis naturally leads to the identification of a “nonequi-

librium response matrix,” which in the linear regime allows us

to connect directly to the results of Ref. [7].

Finally, we extend the analysis to Markov jump pro-

cesses, to connect to previous literature and call into play

Schnakenberg’s network theory of macroscopic observables.

With the aid of an example, we then argue that the entropy

production rate itself, which is one special case of a current-

type observable, is optimal with respect to the loose bound.

Notations. The asterisk ⋆ is reserved to steady-state quan-

tities. We assume Einstein’s convention on index contraction.

Indices are lowered with the Kronecker symbol δij ; the

Euclidean scalar product is denoted 〈 · 〉. In the case of

diffusions, the divergence operator is ∇ = ∂i = ∂/∂xi . We

omit explicit dependencies whenever unnecessary. The scalar

product of two vector fields is

〈v,w〉 =
∫

dx vi(x)wj (x) δij . (3)

II. TIGHTENING THE QUADRATIC BOUND ON LARGE

DEVIATIONS OF CURRENTS

In this section, we provide a general understanding of the

mathematical origin of the stochastic uncertainty relations,

as well as a simple general proof of their validity. The results

apply in particular to diffusions and to Markov jump processes.

Any observable macroscopic current J is a linear combi-

nation of microscopic currents j whose steady-state statistics

is described by a large deviation rate function I (j ) with a

minimum at j⋆, which we assume to satisfy a Gallavotti-Cohen

symmetry I (j ) − I (−j ) = −〈j,f 〉, where f are the conjugate

forces, such that 〈j⋆,f 〉 = σ⋆. The stationary density ρ⋆ will be

fixed throughout. The full information given by that symmetry

is that the antisymmetric part of I (j ) is linear with a slope

− 1
2
f . We can therefore decompose I (j ) into a linear part and

a symmetric part F (j ).

Obtaining a proper quadratic bound on I (j ) is equivalent

to finding a positive symmetric matrix A (i.e., a metric) and a

constant b such that

F (j ) � 〈j,Aj 〉 + b, (4)

with the conditions

Aj⋆ = 1
4
f, (5)

b = 1
4
σ⋆, (6)

so that the bound is minimal and vanishes at j⋆. This gives

us I (j ) � 〈(j − j⋆), A(j − j⋆)〉, as expected. With no other

requirement for A than this, we have immediately that

I (αj⋆) �
σ⋆

4
(1 − α)2, (7)

which is all we need to prove the loose bound: that relation

implies the same inequality between the second derivatives

of the functions around α = 1, and by the usual arguments

exposed in the mentioned references, from this equation one

can obtain the loose bound Eq. (1) for any macroscopic current,

once one recognizes I ′′(J ) = (var J )−1 (see below the specific

cases of diffusions and jump processes for full detail).

A sufficient condition for A to exist is that α d3

dα3 F (αj⋆)

� 0, which ensures that F is smaller than any osculating even

parabola in the direction of j⋆. This turns out to be the case for

jump processes, from the fact that it is true for a Poisson process

and that the property is stable under linear combination. It is

also trivially the case for a diffusion, in which case F is purely

quadratic. Note that unlike the quantum uncertainty relations,

which are inherent to how conjugate pairs of variables are

defined in quantum mechanics, the stochastic ones are not

always true: they would not hold, for instance, for a noisy

Fokker-Planck equation with conserved quartic noise, however

unphysical that would be.

The least precise solution for A can then be constructed as

an orthogonal matrix with eigenvalue σ⋆ in the direction of j⋆

and infinity in all other directions:

I⋆(j ) �

{

σ⋆

4
(1 − α)2, if ∃α ∈ R,j = αj⋆,

+∞, otherwise.
(8)

This is the solution conjectured by Pietzonka et al. [9] in the

equivalent form of an inequality on scaled cumulant generating

functions: all the bounds given are functions of a single scalar

zj⋆, where z is the quantity conjugate to the current j through

a Legendre transform. The bound being a function of a scalar

variable, it is invariant under shifts of z which are orthogonal

to j⋆, and that invariance is translated into a constraint j ∝ j⋆

for the large deviation function.

This observation leads to a few remarks. First of all, it

is not surprising that only the total entropy production σ⋆

enters the loose bound (8), since, for a fluctuation of the form

j = αj⋆ for the current, all the microscopic entropy produc-

tions (edgewise or cyclewise) fluctuate by the same factor α

and cannot be differentiated. Moreover, this bound can always

be found because j = αj⋆ is always divergence-free. However,

it will be a bad bound for most contracted currents: the less

our kernel φ, as defined in Eq. (17), projects onto j⋆, the

less precise the bound is and, in particular, currents which are

balanced on average (components of the current which vanish

on average) are completely uncertain in that respect.

In the case of diffusions, it is easy to find a better quadratic

bound: the large deviation function of the currents is already

quadratic itself, so no approximation is needed.

For jump processes, a better solution has been found by

Gingrich et al. [10] by choosing A diagonal in the basis of edge

currents, and proving the inequality for that choice (which is

solved by taking Aee = f e

4j e
⋆
).

However, A does not need to be diagonal with respect

to edge currents and, in most cases, one can construct a

quadratic bound strictly better than that one by considering

〈j,Aj 〉 − F (j ) in the space orthogonal to j⋆, and minimize

it with respect to the component of j along j⋆. That function

is positive, vanishes at zero but usually nowhere else, and

increases fast enough to be bounded from below by a bilinear
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form. We show in Appendix A that the problem of finding

an optimal bound reduces to that of finding hyperellipses

inscribed in a convex manifold with one fixed contact point. We

can always find at least one solution, which will typically have

2d contact points if d is the dimension of our cycle currents

space. The physical meaning of that optimal bound and of the

contact points is unclear.

III. DIFFUSIONS

We consider a diffusion process in continuous state space,

described by the following overdamped stochastic differential

equation, interpreted in Itō’s calculus1

dxi
t = [μi(xt ) + ∂jg

ij (xt )]dt +
√

2 ei
n(xt )dwn

t , (9)

with nondegenerate diffusion tensor given by

gij := ei
mej

nδ
mn, (10)

where μi is the driving field and ei
n is the amplitude of the

Gaussian noise with increment dwn
t .

If we could trace an infinite number of particles evolving by

the above equation, we could describe them by the probability

of finding a particle in a neighbourhood of x at time t , whose

density ρt (x) evolves by the Fokker-Planck (FP) equation

∂tρt + ∇jρt
= 0 (11)

with the FP current defined in terms of the probability density

as

jρ := μρ − g∇ρ. (12)

We focus on steady states. We assume that the FP equation

is ergodic, with a unique steady density ρ⋆. Then the steady

current j⋆ := jρ⋆
is divergenceless,

∇j⋆ = 0. (13)

We further define the conjugate thermodynamic force [18]

fi :=
g−1

ij j
j
⋆

ρ⋆

(14)

= g−1
ij μj − ∂i ln ρ⋆. (15)

At a steady state, the system delivers entropy to the environ-

ment at rate

σ⋆ = 〈j⋆,f 〉. (16)

1We follow here the treatment of Maes and co-workers, as

didactically exposed in Ref. [16]. The drift correction term ∂jg
ij

is conventionally added to avoid its appearance in later expressions

(in particular in the Fokker-Planck equation). However, as detailed in

Ref. [17], it would be desirable to add another term gij∂j ln
√

det g

which would grant the general covariance of the theory under

coordinate transformations. However, since this term contributes a

gradient to the thermodynamic force, its thermodynamic contribution

is a boundary term that can be safely omitted in the forthcoming

discussion.

A. Macroscopic currents

Macroscopic currents are defined as linear functionals of

the (microscopic) FP currents

J a = 〈j,φa〉, (17)

where φa
i (x) are some kernels, which play the crucial role of

bridging the microscopic description to the macroscopic one.

We assume for simplicity that these functionals are linearly

independent (otherwise, macroscopic conservation laws would

ensue).

The system is thermodynamically consistent if there exist

macroscopic thermodynamic forces Fa such that

fi(x) = Faφ
a
i (x), (18)

after which the entropy production rate can be written just in

terms of the macroscopic quantities as

σ = FaJ
a. (19)

In analogy to the treatment of discrete-state systems proposed

in Ref. [15], we call Eq. (18) a symmetry of the thermodynamic

forces. We provide an example of a system that has thermody-

namically consistent currents and forces in Appendix B.

At a steady state, given that j⋆ is divergenceless, by Eq. (14)

then necessarily

Fa ∂j

(

ρ⋆g
jiφa

i

)

= 0. (20)

Another immediate consequence is the following relationship

between the steady-state currents and the macroscopic ther-

modynamic forces:

J a
⋆ = GabFb, (21)

where

Gab =
∫

ρ⋆g
ijφa

i φb
j . (22)

Equation (21) has the form of a linear-response relationship

between macroscopic currents and forces, of the kind that

ensues close to equilibrium. Then, G would play a role akin to

the response matrix, an analogy that will be useful to interpret

the upcoming results. However, it must be emphasized that the

above equation is not a linear-response relationship, because

G itself is sensitive to small perturbations, for example, of the

drift μ. This nondissipative contribution to nonequilibrium

response has been analyzed in terms of the activity [19,20]. In

the following we call G the nonequilibrium response matrix.

For later use, let us introduce the quadratic dissipation

function

σ [J 1, . . . ,J n] = G−1
ab J aJ b, (23)

such that σ [J⋆] = σ⋆. Variations of σ [J∗] with respect to the

current correspond to variations of the entropy production rate

at fixed response matrix, which can be achieved by fixing the

steady-state distribution and the diffusion matrix.

B. Large deviations

We will now derive the uncertainty principle for thermody-

namically consistent currents in the context of overdamped

diffusion processes. We closely retrace the discussion of

Ref. [10], from which we abundantly borrow. Our analysis
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allows one to appreciate certain subtleties concerning thermo-

dynamic consistency and the steady state constraint ∇j = 0.

Above, our discussion regarded ideal quantities such as

the density traced by an infinite number of realizations of a

stochastic process. Here we will consider one single realization

of such a stochastic process, in a large-enough time window

[0,T ]. We are interested in certain stochastic observables,

in particular the stochastic density ρT (x) (also known as

empirical measure), counting the average number of times a

trajectory passes by x, and the empirical current j i
T (x) denoting

in which direction a stochastic trajectory proceeds as it passes

by x. They are formally defined as

ρT (x) =
1

T

∫ T

0

δ(xt − x)dt, (24)

j i
T (x) =

1

T

∫ T

0

δ(xt − x) ◦ dxi
t , (25)

where ◦ denotes the Stratonovich differential. In particular, we

are interested in the statistics of one particular macroscopic

current marked “1”

J 1
T = 〈jT ,φ1〉. (26)

For the moment we assume that the current is not orthogonal

to the steady currents, that is, J 1
⋆ = 〈φ1,j⋆〉 �= 0.

In many situations, including the present one, the probabil-

ity that macroscopic current J 1
T takes value J 1 can be proved

to satisfy a large deviation principle [21]

P
(

J 1
T ≡ J 1

)

≍ e−T I (J 1), (27)

where ≍ means asymptotically in time and I is the so-called

rate function. Unfortunately, accessing the rate function of a

special current J 1
T is a prohibitive task. Nevertheless, an exact

result has been obtained by Maes et al. [16,22] (see also [23]

for a pedagogical derivation) for the joint rate functional of

jT and ρT (for Markov jump processes, finite-time corrections

are available [24]):

I [j,ρ] =
{

1
4

∫

ρ−1g−1
ij

(

j i − j i
ρ

)(

j j − j
j
ρ

)

, ∇j = 0,

+∞, otherwise.

(28)

It is crucial that the rate functional is only finite for a

divergenceless current. The rate functional is non-negative. It

only vanishes when j = jρ ; taking the divergence, we obtain

∇jρ = 0, which implies that ρ = ρ⋆ is the steady density and

that j = j⋆ is the steady current.

In principle, the rate function for the macroscopic current

J 1
T can be obtained using the contraction principle,

I (J 1) = inf
j |〈φ1,j〉=J 1

I [j ], (29)

where I [j ] is the rate functional for the currents, found by

contracting over the density:

I [j ] = inf
ρ

I [j,ρ]. (30)

We will be interested in the variance of J 1, given by

var J 1 =
1

I ′′(J 1
⋆ )

, (31)

where the prime denotes derivative with respect to J 1. This

identity is a consequence of the fact that I (J 1) is the Legendre

transform of the cumulant generating function of J 1
T , and that

the Legendre transform inverts the curvature [13], p. 20].

C. Inequalities for the rate function: Loose bound

Equation (30) immediately implies the inequality

I [j ] � I [j,ρ⋆] =: I⋆[j ], ∇j = 0, (32)

that holds for any particular evaluation of ρ, in particular at

the steady-state density ρ⋆. The right-hand side of the above

equation defines the quadratic functional of the currents I⋆,

which explicitly reads

I⋆[j ] =
1

4

∫

ρ−1
⋆ g−1

ij (j i − j i
⋆)(j j − j j

⋆ ). (33)

Inequality (32) of course does not hold when j is not

divergenceless, in which case I [j ] = +∞. It is interesting

to notice that this quadratic bound, found by Gingrich and

co-workers [10], is not the Gaussian approximation of the

rate function around the steady state, as the second derivatives

do not agree. Instead, as noted in [10], I⋆ is the parabola

with the correct concavity which respects the Galavotti-Cohen

symmetry. This already implies that the bound is saturated near

equilibrium, where the two parabolas approach each other. See

Sec. II for further insights about quadratic approximations of

the rate function.

Let us now consider an arbitrary macroscopic current J 1,

nonorthogonal. By Eq. (29), I (J 1
⋆ ) is less than any evaluation

of the rate functional of the microscopic currents that satisfies

the constraints. A first bound is found by choosing

j ′
1 =

J 1

J 1
⋆

j⋆. (34)

By construction, this choice automatically satisfies the linear

constraints ∇j ′
J = 0 and 〈φ1,j ′

J 〉 = J . We then obtain the

loose bound on the rate function

I (J 1) � I⋆(j ′
1) �

σ⋆

4

(

J 1

J 1
⋆

− 1

)2

. (35)

D. Inequalities for the rate function: Tight bound

The above result holds for an arbitrary current. In this

section we are going to show that there is a subclass of currents

for which a tighter bound holds, and that this tighter bound can

be interpreted in the light of the minimum entropy production

principle.

To obtain a better bound, instead of considering fluctuations

of the current that are proportional to the average current, a

second choice is to pick the current that minimizes I⋆(j ) at

fixed J 1, as was proposed in Ref. [10]:

j1 = arginfj |〈j,φ1〉=J 1 I⋆[j ]. (36)

This problem can be solved by simple linear algebra. We

introduce a Lagrange multiplier λ to keep into account

the constraint, and impose that the constrained functional
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derivative of I⋆[j ] with respect to j i(x) vanishes:

δ

δj i(x)
{I⋆[j ] + λ(J 1 − 〈j,φ1〉)} = 0, (37)

yielding

j i
1 − j i

⋆ = 2λ ρ⋆g
ijφ1

j . (38)

We recall that the above inequalities only hold for divergence-

less currents; hence we need to impose that

0 = ∇j1 = 2λ ∂i

(

ρ⋆g
ijφ1

j

)

. (39)

This condition poses a constraint on φ1, thus restricting the set

of macroscopic currents that obey the tighter bound that we are

going to prove. We notice that this equation resembles Eq. (20).

It states that ρ⋆ is the steady state of both the complete system

and of the system where only force F 1 �= 0. In Appendix B

we provide an example.

Next, we plug expression (38) into the constraint equation

to solve for the Lagrange multiplier:

λ =
J 1 − J 1

⋆

2
∫

ρ⋆gijφ1
i φ

1
j

, (40)

so that

j i
1 − j i

⋆ =
J 1 − J 1

⋆
∫

ρ⋆gi ′j ′
φ1

i ′φ
1
j ′

ρ⋆g
ijφ1

j . (41)

Finally we derive the second main result of our paper, namely

the strict bound for the rate function of a thermodynamically

consistent current of the kind described above:

I (J 1) � I⋆[j1] =
(J 1 − J 1

⋆ )2

4G11

=
σ 11

⋆

4

(

J 1

J 1
⋆

− 1

)2

, (42)

where we recognized the nonequilibrium response coefficient

G11, and we introduced the partial entropy production rate

σ 11
⋆ :=

(J 1
⋆ )2

G11
. (43)

Now, given the definition of the quadratic dissipation function

Eq. (23), by simple linear algebra one can show that the

partial entropy production rate is the infimum of the dissipation

function, for fixed value of J 1:

σ 11
⋆ = inf

{J a}a |J 1
σ [J 1

⋆ , . . . ,J n
⋆ ]. (44)

In view of the discussion at the end of Sec. III A, this quantity

can be interpreted as the minimum entropy production rate that

is compatible with an observed value of J 1, for a perturbation

of the steady currents that preserves the nonequilibrium

response matrix, which implies that ρ⋆ remains unchanged.

Therefore, the partial entropy production rate is that produced

by a system that has the minimum possible entropy production

rate that sustains current J 1 on average, for a fixed steady

density. This is the second key result of our paper.

A few comments are in order here. A bound analogous

to that expressed in Eq. (43) has been provided in Ref. [10],

Eq. (16), in the context of Markov jump processes, devoid

of physical interpretation; there the matrix entry entering the

bound is implicitly defined via pseudoinverse, which makes it

dificult to compare the two results. It might be speculated that

the tighter bound follows from the loose one, given that since

it needs to hold for any system, it also has to hold for that

system that has minimum entropy production rate. However,

notice that Eq. (42) compares the rate function of a certain

system, which depends, e.g., on the drift μ, to the entropy

production rate of another system, that has minimum entropy

production. In fact, it is simple to verify that this new system

has drift μi
1 = μi −

∑

a �=1 Fag
ijφa

j . Therefore, Eq. (42) is

not a trivial consequence of Eq. (35). Furthermore, since

the minimum entropy production principle lends itself to an

information-theoretic understanding in terms of information

that an observer has at his disposal about the system [25], then,

in a way, σ 11
⋆ is a good candidate as the measure of entropy

production that an observer who only measures current 1 could

estimate. Notice that Eq. (42) tightens the bound described in

Refs. [7,9,10] in a way that still bears physical interpretation.

It is an interesting exercise to rederive the loose bound from

the tight one. All is in place to employ the very same technique

envisaged by Barato and Seifert to prove an analogous bound in

the linear regime ([7], Supplemental Material). Let us expand

all quantities in terms of the macroscopic forces:

(J 1
⋆ )2 = G1aG1bFaFb, (45a)

G11σ⋆ = G11GabFaFb. (45b)

Linear algebra tells us that matrix (G11Gab − G1aG1b)a,b is

positive definite; hence G11σ⋆ � (J 1
⋆ )2 and Eq. (35) follows.

Finally, notice that if current J 1 was orthogonal, we would

have J 1
⋆ = 0 but finite entropy production rate and finite

variance; hence the error shoots to infinity and the bound would

be trivially satisfied.

E. Uncertainty relations

In Eqs. (42) and (35), taking twice the derivative with

respect to J 1 and evaluating at J 1
⋆ , given that I (J 1

⋆ ) =
I⋆(J 1

⋆ ) = 0 and I ′(J 1
⋆ ) = I ′

⋆(J 1
⋆ ) = 0, we obtain the hierarchy

of inequalities

var J 1

(J 1
⋆ )2

�
2

σ 11
⋆

�
2

σ⋆

. (46)

One particular macroscopic current of interest is the entropy

production rate σT itself which, in view of Eq. (16), is selected

by choosing φ1 = f [10]. In this case a neat expression for the

Fano factor of the entropy production rate is found, that we

can write in compact form

var σ

σ⋆

� 2. (47)

IV. CYCLE CURRENTS OF JUMP PROCESSES

To connect to Refs. [7,9,10], and for sake of completeness,

in this section we consider ergodic, continuous-time, discrete-

state-space Markov jump processes, which occur on a network

of states (a graph). It will soon be clear that the analysis above

carries through in an analogous way, hence we do not repeat

it to avoid redundancy. Nevertheless, we deem it interesting to

inspect the theory in the light of Schnakenberg’s analysis of
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cycle currents, which allows one to automatically keep into

account the steady-state constraint and provides a smooth

transition from the formalism of nonequilibrium response

functions to the linear regime. Note that Schnakenberg’s

decomposition of cycle currents plays an instrumental part

in proving the nonquadratic bound discussed in Ref. [11].

A. Setup

Letting e := x ← y denote an oriented edge in the graph of

the system, with −e := x → y the inverse edge, we introduce

the steady semicurrents k+e
⋆ := wxyρ

⋆
y and k−e

⋆ := wyxρ
⋆
x ,

where wxy is the transition rate and ρ⋆
x the invariant measure.

The steady currents and their conjugate forces are defined as

j e
⋆ := k+e

⋆ − k−e
⋆ , (48a)

fe := ln
k+e
⋆

k−e
⋆

. (48b)

Steady currents are divergenceless, that is, they satisfy ∇j⋆ =
0, where ∇ is the incidence matrix of the graph. The steady

entropy production rate is the bilinear form [26]

σ⋆ =
∑

e

j e
⋆ fe = 〈j⋆,f 〉. (49)

We now consider a stochastic realization of the currents

jT and in particular the rate function I (j ). The following

inequality has been proven in Ref. [10]:

I (j ) � I⋆(j ) :=
1

4

∑

e

(j e − j e
⋆ )2 fe

j e
⋆

. (50)

Let us point out that the inequality only holds on the

assumption ∇j = 0.

Finally, we consider one particular macroscopic current

J = 〈j,φ〉 (51)

on the assumption that φ is not orthogonal to the steady current,

so that J⋆ �= 0. It will be clear that, from now on, the treatment

of the bounds on the rate functions and on the variances follows

in the exact same way as in the previous section. A different

perspective, though, is gained through the analysis of cycle

currents, rather than of microscopic or of thermodynamically

consistent currents.

B. Cycle analysis

References [7,9] mainly refer to Schnakenberg’s cycle

currents, which are solutions to the divergence equation

∇j = 0. The analysis of large deviations proposed in [27]

states that only cyclic terms contribute to the full statistics

of the currents. In Schnakenberg’s formalism there naturally

emerges a nonequilibrium response matrix for the cycle

currents, which allows one to prove that the bound for the

entropy production rate saturates in the linear regime in a

straightforward manner.

The equation ∇j = 0 implies that currents live in the kernel

of the incidence matrix, which is spanned by independent

cycle vectors (cα
e )e. Schnakenberg’s theory basically consists

in enforcing this condition (and in choosing a preferred basis

of cycles generated by a spanning tree, whose structure is

here irrelevant):

j⋆ = ca J
a
⋆ . (52)

Let us define the (inverse) nonequilibrium response function

G−1
ab :=

∑

e

ce
ac

e
b

fe

j e
⋆

, (53)

such that

J a
⋆ = GabFb, (54)

where the cycle forces are defined as

Fa := 〈ca,f 〉. (55)

The entropy production can then be expressed in terms of cycle

observables as

σ⋆ = J a
⋆ Fa = GabFaFb. (56)

Close to equilibrium, matrix Gab coincides with the linear

response matrix described in [26], which finds application for

example in the proper formulation of the minimum entropy

production principle [28].

We can now express the physical current as

J = �aJ
a, (57)

where �a = φ � ca .

Employing the fact that not all currents are independent,

we can contract the latter inequality to the cycle currents by

simply replacing j = caJ
a in Eq. (50),

I (J ) � I⋆(J ), (58)

where

I⋆(J ) = 1
4

(

G−1
ab J

aJ b − 2J aFa + σ⋆

)

. (59)

We then have

I (J ) � I⋆(JJ ), (60)

where JJ is the infimum of I⋆(J ) for a fixed value of J , which

is given by2

J a
J = Gab

(

J − J⋆

Ga′b′
�a′�b′

�b + Fb

)

. (61)

We now evaluate

I⋆(JJ ) =
(J − J⋆)2

4Gab�a�b

, (62)

which we believe to be a more explicit version of Eq. (16)

from [10], and in particular taking the second derivative and

evaluating at J⋆ we obtain the tight bound

var J

Gab�a�b

� 2. (63)

In particular, when �a = Fa , we obtain the entropy production

bound Eq. (1). However, differing from the case of the

thermodynamically consistent current that lead to the tighter

2We notice that, if we minimized I (j ) at fixed J with respect to j ,

the solution j J would not generally be divergenceless; hence it would

fall out of the domain of applicability of inequality (50).
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bound Eq. (42), in this case there is no immediate physical

interpretation for Gab�a�b in terms of a partial entropy

production rate. At this point, introducing a thermodynamic

consistency condition would lead us to the tight bound

discussed above. We will not repeat the discussion.

The loose bound Eq. (1) can be obtained as follows. Since

Gab is symmetric positive-definite, it is Gramian: there exists

a “square root” matrix ℓa
i (with inverse ℓi

a) such that

Gab = 〈ℓa,ℓb〉, (64)

where 〈·,·〉 denotes the Euclidean scalar product. Then

Gab�a�b = 〈ℓa�a,ℓ
b�b〉, (65)

σ⋆ = 〈ℓaJ
a
⋆ ,ℓbJ

b
⋆ 〉, (66)

and by the Cauchy-Schwarz inequality

J 2
⋆ = 〈ℓa�a,ℓbJ

b
⋆ 〉2

� σ⋆G
ab�a�b. (67)

Then,

var J

J 2
⋆

σ⋆ �
var J

Gab�a�b

� 2. (68)

This is the analog of Eq. (46) for Markov jump processes.

The interpretation in terms of the minimum rate of entropy

produced by a system that has the same response matrix can

also be retraced. However, we notice in passing that, while for

diffusion processes the response matrix is determined in terms

of the diffusion tensor and the steady-state distribution, in this

case the response matrix is a rather ad hoc object involving a

very special combination of steady-state currents and forces;

it is not obvious a priori what kind of transformations of the

transition rates of the system will preserve the response matrix.

C. Optimality of the bound

In the linear regime the bound for the entropy production

rate saturates. In fact using the Green-Kubo relations we obtain

var σ = FaFbcov(J a,J b) = 2FaFbG
ab = 2σ⋆. (69)

Then, at least close to equilibrium, the entropy production

rate is “optimal,” in the sense that any other current performs

worse. Let us then inquire whether the entropy production rate

is always the physical current that optimizes the bound. We

investigate this question with a simple model study, finding that

as one goes far from equilibrium, deviations from optimality

of the entropy production rate are small.

We consider a Markov jump process on the four-state

network with rates w+1 = w+2 = w+3 = w, w−1 = w−2 =
w−3 = w+5 = w−5 = 1, w+4 = 2w, w−4 = 2 in terms of the

driving parameter w. The affinities are given by

A1 = A2 = A = 2 log w (70)

and the system approaches equilibrium for w → 1. We

consider a current in the form

J = AJ 1 + xJ 2, (71)

which for x = A corresponds to the entropy production rate.

We calculate f (x) = σ⋆var φ/J 2
⋆ as a function of x. For w = 2,

Fig. 1 shows that f (x) approaches the optimal bound for some

σ⋆varJ/J2

⋆

x

FIG. 1. Squared error of the current f (x) = σ⋆var J/J 2
⋆ , as a

function of parameter x. The plot shows that there is a value of

xopt for which the bound is optimal.

value of x. We calculate xopt for which the bound is optimized,

and confront it to the affinity A. We find that these values are

very close and that they get closer as w → 1, as shown in the

plot in Fig. 2. Furthermore, Fig. 3 shows that the optimal error,

relative to the theoretical value 2, is approached as w → 1, and

that there is almost no difference in error between the optimal

current and the entropy production rate. In the range of w we

considered, the entropy production rate spans two orders of

magnitude.

Another example of the nonoptimality of that bound can

be seen at the end of the Appendixes for a system with three

edges but only two independent cycles.

V. CONCLUSIONS

In this paper we discussed the uncertainty relation for the

currents recently discovered by Barato and Seifert [7–9] and

proved by Gingrich et al. [10]. We first examined the conditions

for the appearance of such relations in stochastic processes,

including Markov jump processes and diffusions, and provided

a simple proof of the inequality. We then focus on overdamped

xopt/A

w

FIG. 2. Relative optimal affinity xopt/A as a function of the

driving parameter w.
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f(xopt)/2

w

varσ/2σ⋆

FIG. 3. In this plot two sets of overlapping points are plotted. The

set of circles corresponds to the relative optimal error f (xopt)/2; the

set of squares corresponds to the relative entropy production rate Fano

factor var σ/(2σ⋆), both plotted as a function of the driving parameter

w. The image clearly shows that the bound tends to perform worse

far from equilibrium, and that there is almost no difference between

the optimal current and the entropy production rate.

diffusion processes, finding that a notion of thermodynamic

consistency and of symmetry of the thermodynamic forces is

useful to produce and interpret a tighter bound on a class

of physical currents, in terms of the least possible entropy

production rate that is compatible with the observed value

of the current, and with the steady density. A notion of

nonequilibrium response function naturally emerges from our

treatment. We then performed a similar analysis in the case of

Markov jump processes, employing Schnakenberg’s theory of

cycle currents, which allows one to clarify in which sense is

the entropy production rate the optimal current with respect to

the loose bound. In the future it might be interesting to connect

this theory to other results concerning the Fano factor of the

heat in interacting particle models [29].
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APPENDIX A: OPTIMAL QUADRATIC BOUNDS

ON THE CURRENTS

In order to optimize the quadratic bound on F (j ), we start

by reducing the problem by one dimension.

Asking that F (j ) − 1
4
σ ⋆ � 〈j,Aj 〉 is equivalent to asking

that the level manifolds of the right-hand side lie inside of

those of the left-hand side. That is to say that, for any a ∈ R,

with 1
4
σ ⋆ chosen as a natural scale for F ,

{

j

∣

∣

∣

∣

F (j ) −
1

4
σ ⋆

� a
1

4
σ ⋆

}

⊇
{

j

∣

∣

∣

∣

〈j,Aj 〉 � a
1

4
σ ⋆

}

. (A1)

Note that each of the sets in the left-hand side are convex,

because F is convex. We can simplify greatly this expression

by noticing that the right-hand side always gives the same setup

to a rescaling by
√

a. We can then rewrite the conditions so

as to have the same right-hand side, and regroup the left-hand

sides into

S =
⋂

a∈R

{

j

∣

∣

∣

∣

F (j
√

a) −
1

4
σ ⋆

� a
1

4
σ ⋆

}

⊇
{

j

∣

∣

∣

∣

〈j,Aj 〉 �
1

4
σ ⋆

}

. (A2)

The problem of finding an appropriate quadratic bound then

reduces to finding a metric A such that the ball of radius 1
4
σ ⋆

is contained in S. This set is an intersection of convex sets,

so it is convex itself. Moreover, it has the Gallavotti-Cohen

symmetry: if j is in S, then so is −j .

Note that, as required, j ⋆ is on the boundary of S: this is

ensured by the constant 1
4
σ ⋆ removed from F (j ), setting a

reference for the level sets at its value in the stationary state,

and by the fact that α d3

dα3 F (αj ⋆) � 0.

Obtaining an optimal solution is then entirely problem

dependent, and there is typically a continuous set of candidates.

Luckily, there is a constructive way to obtain them. A current j

can be decomposed onto j ⋆ and the space orthogonal to it with

respect to the metric A: j = αj ⋆ + j ′ with 〈j ⋆,Aj ′〉 = 0. We

then have 〈j,Aj 〉 = α2 σ ⋆

4
+ 〈j ′,Aj ′〉, and the condition given

in Eq. (A2) becomes

⋂

a∈R

{

j ′
∣

∣

∣

∣

F ((αj ⋆ + j ′)
√

a) −
1

4
σ ⋆

� a
1

4
σ ⋆

}

⊇
{

j ′
∣

∣

∣

∣

〈j ′,Aj ′〉 �
1 − α2

4
σ ⋆

}

. (A3)

We can, once more, rescale the right-hand side and regroup

the left-hand sides, to get a new constraint on a smaller space:

S ′ =
⋂

a ∈ R

α ∈ [0,1]

{

j

∣

∣

∣

∣

F ((αj ⋆+
√

1−α2j )
√

a)−
1

4
σ ⋆

� a
1

4
σ ⋆

}

⊇
{

j

∣

∣

∣

∣

〈j,Aj 〉 �
1

4
σ ⋆

}

, (A4)

where A and j are now restricted to the space orthogonal

to f ⋆.

This process can be repeated until A is completely de-

termined. However, since we now have no a priori preferred

choice for a point where the inclusion should saturate, we have

to choose a point on the boundary of S ′ at every step, which

produces a continuous set of solutions. Moreover, every step

gives us an extra saturation point for the inclusion constraint,

unless the set for α = ±1 is the smallest one, in which case we

have that the curvature of the two sides becomes the same at the

corresponding point. At the end of the procedure, we therefore

have a number of constraints, be it saturation or equal curvature

at saturation, equal to 2d, where d is the dimension of the cycle

current space (the factor 2 comes from the Gallavotti-Cohen

symmetry).
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FIG. 4. Rescaled and centered level curves of the large deviation

function of the stationary currents in a two-state–three-channels

model. The stationary currents are marked by the red dot. The outer

(red) ellipsis gives the optimal quadratic bound on that function, and

the inner (black) ellipsis gives the one which is diagonal in the basis

of edges.

As an illustration, let us look at a very simple model

with two states connected by three channels. This j1, j2,

and j3, with the stationarity condition j1 + j2 + j3 = 0. In

Fig. 4, we plot, as functions of j1 and j2, the solutions

of F (j
√

a) − 1
4
σ ⋆ = a 1

4
σ ⋆ for various values of a (colored

hexagonal lines), the ellipsis corresponding to the optimal

quadratic bound (red), that for the edgewise bound (black),

and the value of the average currents (red dot). As can be seen,

the optimal bound saturates at four values of the current, and

is strictly more precise than the edge one.

APPENDIX B: ORNSTEIN-UHLENBECK PROCESS

Let us show by an example the nature of the class of currents

for which the tighter bound holds. We consider an Ornstein-

Uhlenbeck process

dxi = −Ŵi
jx

j dt + dwi
t , (B1)

with gij = δij and Ŵ a positive-definite matrix. The Fokker-

Planck equation reads

∂tρt = ∇(Ŵxρt + ∇ρt ), (B2)

and the steady ensemble is given by

ρ⋆ ∝ exp − 1
2
�−1

ij xixj , (B3)

where the covariance matrix is determined in terms of Ŵ via

the equation [30]

�Ŵ† + Ŵ� = 2I, (B4)

where I is the identity matrix. As generic macroscopic currents

we consider

J a =
∫

dx �a
ijx

ij j (x), (B5)

that is φa
j = xi�a

ij for a collection of matrices �a . Notice

that the steady-state thermodynamic force reads f = j⋆/ρ⋆ =
(Ŵ − �−1)x. Thermodynamic consistency is granted provided

that the collection of matrices �a is complete in the sense

that the linear system Ŵ − �−1 = F a�a† admits solutions;

if it does not, then the set of macroscopic currents we are

considering are not sufficient. Notice that the possibility of

realizing thermodynamic consistency in this kind of system

relies on the fact that the steady-state thermodynamic force is

linear in x, which justifies the definition of the macroscopic

currents Eq. (B5). Any functional that is not linear in x will

fail in this respect.

Let us now focus on the first such current a = 1. We now

need to impose Eq. (39), which yields the two conditions

on �1:

tr �1 = 0, (B6)

�−1�1† + �1�−1 = 0. (B7)

Let us look at some specific cases. First we consider

dx1 = −(x1 + x2)dt + dw1
t , (B8a)

dx2 = −(x2 − x1)dt + dw2
t , (B8b)

yielding

Ŵ =
(

1 1

−1 1

)

, � =
(

1 0

0 1

)

, �1 =
(

0 1

−1 0

)

, (B9)

and

J 1 =
∫

dx1

∫

dx2 [x1j 2(x) − x2j 1(x)]. (B10)

The thermodynamic force is

f (x) = ρ−1
⋆ (x)j⋆(x) =

(

−x2

x1

)

. (B11)

Hence in this case the only macroscopic current that satisfies

the tighter uncertainty principle J 1 is actually the entropy

production rate itself, and the tight bound reduces to the loose

one. This is due to the fact that with two degrees of freedom

there is only one current.

Let us then move to three degrees of freedom. We choose

Ŵ =

⎛

⎝

1 1 1

−1 1 1

−1 −1 1

⎞

⎠ (B12)

yielding �i,j = δi,j . Again for �1 we can choose an arbitrary

skew-symmetric matrix; for example,

�1 =

⎛

⎝

0 1 0

−1 0 0

0 0 0

⎞

⎠. (B13)

In this case the macroscopic current reads

J 1 =
∫

dx1

∫

dx2

∫

dx3 [x1j 2(x) − x2j 1(x)], (B14)

which is strictly different than the entropy production rate,

since at the steady state we have that 2 = J 1
⋆ = σ⋆/3. Indeed,

J 1 in this case can be interpreted as an independent component
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of the total entropy production rate. Let us now determine

the system that has minimum entropy production rate com-

patible with the steady state and the observed value of the

current. Let its drift be μ1(x). From the steady-state equation

0 = ∇(Ŵxρ⋆ + ∇ρ⋆) one immediately concludes that μ1(x)

must be linear μ1(x) = −Ŵ1x; therefore, we remain within

the class of OU processes. From Eq. (B4) it follows that

Ŵ1 =

⎛

⎝

1 a b

−a 1 c

−b −c 1

⎞

⎠ (B15)

and a straightforward evaluation of the entropy production

rate yields σ⋆ = 2a2 + 2b2 + 2c2, while J 1 = 2a2; hence as

could be expected it is straightforward that the minEP system

that sustains the current J 1 = 2 is the one with a = 1, b =
c = 0. We can therefore conclude that the tight bound for the

current’s variance is three times stricter than the loose bound;

however, we are not aware of simple techniques to actually

perform a direct calculation for OU processes of the current’s

variance.
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