
Tighter Bounds for the

Determinisation of Büchi Automata�

Sven Schewe

University of Liverpool
sven.schewe@liverpool.ac.uk

Abstract. The introduction of an efficient determinisation technique
for Büchi automata by Safra has been a milestone in automata theory.
To name only a few applications, efficient determinisation techniques
for ω-word automata are the basis for several manipulations of ω-tree
automata (most prominently the nondeterminisation of alternating tree
automata) as well as for satisfiability checking and model synthesis for
branching- and alternating-time logics. This paper proposes a deter-
minisation technique that is simpler than the constructions of Safra,
Piterman, and Muller and Schupp, because it separates the principle
acceptance mechanism from the concrete acceptance condition. The prin-
ciple mechanism intuitively uses a Rabin condition on the transitions; we
show how to obtain an equivalent Rabin transition automaton with ap-
proximately (1.65 n)n states from a nondeterministic Büchi automaton
with n states. Having established this mechanism, it is simple to develop
translations to automata with standard acceptance conditions. We can
construct standard Rabin automata whose state-space is bilinear in the
size of the input alphabet and the state-space of the Rabin transition au-
tomaton, or, for large input alphabets, contains approximately (2.66 n)n

states, respectively. We also provide a flexible translation to parity au-
tomata with O(n!2) states and 2n priorities based on a later introduction
record, and hence connect the transformation of the acceptance condition
to other record based transformations known from the literature.

1 Introduction

Automata over infinite words have been introduced by Büchi in his proof that
the monadic second-order logic of one successor (S1S) is decidable [1]. Büchi au-
tomata are an adaptation of finite automata to languages over infinite sequences.
They differ from finite automata only with respect to their acceptance condi-
tion: While finite runs of finite automata are accepting if a final state is visited
at the end of the run, an infinite run of a Büchi automaton is accepting if a
final state is visited infinitely many times. Unfortunately, this close relationship
between finite and Büchi automata does not imply that automata manipulations

� This work was partly supported by the EPSRC through the grand EP/F033567/1
Verifying Interoperability Requirements in Pervasive Systems.

L. de Alfaro (Ed.): FOSSACS 2009, LNCS 5504, pp. 167–181, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

168 S. Schewe

for Büchi automata are equally simple as those for finite automata [2]. In particu-
lar, Büchi automata are not closed under determinisation: While a simple subset
construction suffices to efficiently determinise finite automata [2], deterministic
Büchi automata are strictly less expressive1 than nondeterministic Büchi au-
tomata. Determinisation therefore requires automata with more involved accep-
tance mechanisms [3,4,5], such as automata with Muller’s subset condition [6,7]
or Rabin’s [3,4] accepting pair condition. Also, an nΩ(n) lower bound for the de-
terminisation of Büchi automata has been established [8] even if we allow for Mul-
ler objectives, which implies that a simple subset construction cannot suffice.

The development of determinisation techniques for Büchi automata was in-
spired by the problem of synthesising reactive systems [9,10], a problem originally
introduced by Church [9] in 1962: Given a relation R ⊆ (2I)ω × (2O)ω repre-
sented by a Büchi automaton (or an S1S or LTL formula), we want to find a
function p : (2I)ω → (2O)ω such that (π, p(π)) ∈ R satisfies the relation for
all infinite sequences π ∈ (2I)ω. Church’s problem was solved independently by
Rabin [11], and Büchi and Landweber [12,13] in 1969. Since their seminal works,
the relation [14] between finite automata over infinite structures [11] and finite
games of infinite duration [12,13] became apparent.

Determinisation is a key ingredient in these proofs. Rabin’s extension of the
correspondence between automata and monadic logic to the case of trees [11], for
example, builds on McNaughton’s determinisation theorem [7], and Muller and
Schupp’s [4] efficient nondeterminisation technique for alternating tree automata
is closely linked to the determinisation of nondeterministic word automata. In-
deed, the standard technique to nondeterminise an alternating automaton A with
a memoryless acceptance conditions (such as a parity or Rabin automata [15]) is
to enrich the input tree with a (guessed) memoryless strategy. Nondeterminising
A can then be reduced to determinise the resulting universal automaton [4,14],
and projecting away the strategy. Improved determinisation techniques thus
have a considerable impact in automata theory and its application to mod-
ule checking [16], satisfiability checking [1,11,17,18], and open synthesis [10].

Contribution. This paper contributes a determinisation technique for Büchi
automata that simplifies the constructions of Safra [3] and Piterman [5] by sepa-
rating the principle data structure of the algorithm — the history trees proposed
in Section 3 — from the acceptance mechanism. It is my believe that this sep-
arations eases teaching and understanding the principles, but it also provides
better bounds on the size of the resulting automata.

The central advancement of the proposed method over the previous leading
determinisation techniques [3,4,5] is that we abandon the introduction of explicit
names for the nodes. One positive effect of this decision is that it yields a leaner
and simpler core data structure: The number hist(n) of history trees for Büchi
automata with n states is in o

(
(1.65 n)n

)
. We use this observation to construct a

deterministic Rabin automaton with only hist(n) states whose pairs are defined

1 Deterministic Büchi automata cannot, for example, recognise the simple ω-regular
language that consists of all infinite words that contain only finitely many a’s.

Tighter Bounds for the Determinisation of Büchi Automata 169

on the transitions. As Rabin tree automata have a memoryless accepting run if
they accept a tree [15], this implies a hist(n) bound on the size of a program
that solves Church’s problem as well as an l · hist(n) bound on the size of an
ordinary deterministic Rabin automata on alphabets with l letters.

If we want the size of the Rabin automaton to be independent of the alphabet
size, or if we want to construct a deterministic parity automaton because of the
computational advantages attached to parity objectives, we have to add memory
to the history trees. The required amount of memory depends on the acceptance
mechanism. For Rabin automata, it suffices to store the acceptance information
from the last transition, which only leads to a minor blow-up of the state-space
to o

(
(2.66 n)n

)
states.

For parity automata, we turn to the proved method of keeping a record of the
most recent relevant events in the tradition of later [19] and index appearance
records [4]: We store (an abstraction of) the order in which the nodes of the
current history tree have been introduced in a later introduction record.

The separation of concerns allows us to phrase our procedure as a nondeter-
ministic determinisation technique: While the update rule for history trees is
strict, the update rule for the later introduction record offers some leeway. This
leeway is likely to reduce the size of a deterministic automaton in practice.

Waving this advantage, we still yield a determinisation procedure similar to
Piterman’s [5], but with an improved complexity analysis (O(n!2) vs. O(nn n!)).
However, a reviewer has pointed me to unpublished work of Liu and Wang [20],
who independently2 improved Piterman’s complexity analysis to a similar bound.

Organisation of the Paper. In the following section, we recapitulate the dif-
ferent types of automata used in this paper. Section 3 then introduces history
trees, which serve as the main data structure used in the proposed determinisa-
tion techniques, transitions between them, and a principle approach to exploit
this data structure in an efficient determinisation technique. Finally, we use this
blueprint of a determinisation technique in Sections 4 and 5 to devise different
translations from nondeterministic Büchi tree automata to deterministic Rabin
automata, and one to deterministic parity automata, respectively.

2 Preliminaries — Rabin, Parity and Büchi Automata

Nondeterministic Rabin automata are used to represent ω-regular languages
L ⊆ Σω = ω → Σ over a finite alphabet Σ. A nondeterministic Rabin automaton
A = (Σ, Q, I, δ, {(Ai, Ri) | i ∈ J}) is a five tuple, consisting of a finite alphabet
Σ, a finite set Q of states with a non-empty subset I ⊆ Q of initial states, a
transition function δ : Q×Σ → 2Q that maps states and input letters to sets of
successor states, and a finite family {(Ai, Ri) ∈ 2Q × 2Q | i ∈ J} of Rabin pairs.

2 I was not aware of the unpublished work of Liu and Wang [20] when writing this
paper. While their improvement of Piterman’s analysis was submitted after the
acceptance of this paper, I would like to point out that their work is older.

170 S. Schewe

Nondeterministic Rabin automata are interpreted over infinite sequences α :
ω → Σ of input letters. An infinite sequence ρ : ω → Q of states of A is called
a run of A on an input word α if the first letter ρ(0) ∈ I of ρ is an initial state,
and if, for all i ∈ ω, ρ(i + 1) ∈ δ

(
ρ(i), α(i)

)
is an α(i)-successor state of ρ(i).

A run ρ : ω → Q is accepting if, for some index i ∈ J , some state q ∈ Ai in the
acceptance set Ai of the Rabin pair (Ai, Ri), but no state q′ ∈ Ri from the reject-
ing set Ri of this Rabin pair appears infinitely often in ρ. (∃i ∈ J. inf (ρ)∩Ai �= ∅∧
inf (ρ)∩Ri = ∅ for inf (ρ) = {q ∈ Q | ∀i ∈ ω ∃j > i such that ρ(j) = q}). A word
α : ω → Σ is accepted by A if A has an accepting run on α, and the set L(A) =
{α ∈ Σω | α is accepted by A} of words accepted by A is called its language.

For technical convenience we also allow for finite runs q0q1q2 . . . qn with
δ
(
qn, α(n)

)
= ∅. Naturally, no finite run satisfies the Rabin condition; finite runs

are therefore rejecting, and have no influence on the language of an automaton.
Two particularly simple types of Rabin automata are of special interest: parity

(or Rabin chain) and Büchi automata. We call a Rabin condition a Rabin chain
condition if J is an initial sequence of the natural numbers ω, and if Ri ⊂ Ai

and Ai ⊂ Ri+1 holds for all indices. The Rabin chain condition is nowadays
usually referred to by the term parity condition, because it can be represented
by a priority function pri : Q → ω that maps a state q to 2i + 2 (called the
priority of q) if it appears in Ai but not in Ri, and to 2i + 1 if it appears in
Ri but not in Ai−1. A run ρ of A then defines an infinite trace of priorities,
and the parity of the lowest priority occurring infinitely often determines if ρ is
accepting. That is, ρ is accepting if min(inf (pri(ρ))) is even. We denote parity
automata A = (Σ, Q, I, δ, pri), using this priority function. Büchi automata
are even simpler: they are Rabin automata with only one accepting pair (F, ∅)
that has an empty set of rejecting states (or, likewise, parity automata with a
priority function pri whose codomain is {0, 1}. A Büchi automaton is denoted
A = (Σ, Q, I, δ, F), and the states in F are called final states.

A Rabin, parity, or Büchi automaton is called deterministic, if it has a single
initial state and its transition function is deterministic. (That is, if |δ(q, σ)| ≤ 1
holds true for all states q ∈ Q and all input letters σ ∈ Σ of the automata A.)

3 Büchi Determinisation

The determinisation technique discussed in this section is a variant of Safra’s [3]
determinisation technique, and the main data structure — the history trees pro-
posed in the first subsection — can be viewed as a simplification of Safra trees [3].

3.1 History Trees

History trees are an abstraction of the possible initial sequences of runs of a
Büchi automaton A on an input word α. They can be viewed as a simplification
and abstraction of Safra trees [3]. The main difference between Safra trees and
the simpler history trees introduced in this paper is the omission of explicit
names for the nodes.

Tighter Bounds for the Determinisation of Büchi Automata 171

a, b, c, d, e, f, g

b, e, f c d, g

e f g

0 1 2

0 1 0

Fig. 1. Example History Tree. The labels of the children of every node are disjoint,
and their union is a strict subset of their parent’s label. The label of the root node
contains the reachable states of the Büchi automaton A on the input seen so far.

An ordered tree T ⊆ ω∗ is a finite prefix and order closed subset of finite
sequences of natural numbers. That is, if a sequence τ = t0, t1, . . . tn ∈ T is in
T , then all sequences s0, s1, . . . sm with m ≤ n and, for all i ≤ m, si ≤ ti, are
also in T . For a node τ ∈ T of an ordered tree T , we call the number of children
of τ its degree, denoted by degT (τ) = |{i ∈ ω | τ · i ∈ T }|.

A history tree (cf. Figure 1) for a given nondeterministic Büchi automaton
A = (Σ, Q, I, δ, F) is a labelled tree 〈T, l〉, where T is an ordered tree, and
l : T → 2Q

� {∅} is a labelling function that maps the nodes of T to non-empty
subsets of Q, such that

– the label of each node is a proper superset of the union of the labels of its
children, and

– the labels of different children of a node are disjoint.

We call a node τ the host node of a state q, if q ∈ l(τ) is in the label of τ , but
not in the label of any child of τ .

Our estimation of the number of history trees for a given Büchi automaton
draws from an estimation of Temme [21] (in the representation of Friedgut,
Kupferman, and Vardi [22]) for the number of functions from a set with n ele-
ments onto a set with βn elements, where β ∈]0, 1[is a positive rational number
smaller than 1: For the unique positive real number x that satisfies βx = 1−e−x,
and for a = − lnx+β ln(ex −1)− (1−β)+(1−β) ln

(
1−β

β

)
, the number of these

functions is in [(1+o(1))M(β)n]n for M(β) =
(

β
1−β

)1−β
e(a−β). This simplifies to

m(x) =
1
ex

(ex − 1)β(x)

for β(x) = 1−e−x

x and m(x) = M
(
β(x)

)
when using ea−β = 1

ex (ex−1)β
(

1−β
β

)1−β ,
where x can be any strictly positive real number.

To estimate the number hist(n) of history trees for Büchi automata with
n states, the number order (m) of trees with m nodes can be estimated by 4m.
(More precisely, order (m) = (2m−2)!

m!(m−1)! is the (m−1)-st Catalan number [5].) The

172 S. Schewe

a

b

c d

e

f g

Fig. 2. Relevant Fragment of a Büchi Automaton. This figure captures all tran-
sitions for an input letter σ from the states in the history tree from Figure 1. The
double lines indicate that the states c, f , and g are final states.

number of history trees with m nodes for a Büchi automaton with n states is the
product of the number order (m) of ordered trees with m nodes and functions
from the set of n states onto the set of m nodes (if the root is mapped to all states
of A), plus the functions the automata states to a set with (m + 1) elements.
Together with the estimation from above, we can numerically estimate

hist(n) ∈ sup
x>0

O
(
m(x) · 4β(x)

) ⊂ o
(
(1.65 n)n

)
.

3.2 History Transitions

For a given nondeterministic Büchi automaton A = (Σ, Q, I, δ, F), history tree
〈T, l〉, and input letter σ ∈ Σ, we construct the σ-successor 〈T̂ , l̂〉 of 〈T, l〉 in
four steps. (An example transition for the history tree shown in Figure 1 for the
σ-transition of an automaton A shown in Figure 2 is described in Figures 3–6.)

In a first step (shown in Figure 3), we construct the labelled tree 〈T ′, l′ : T ′ →
2Q〉 such that

– τ ∈ T ′ ⊃ T is a node of T ′ if, and only if, τ ∈ T is in T or τ = τ ′ · degT (τ ′)
is formed by appending the degree degT (τ ′) of a node τ ′ ∈ T in T to τ ′,

– the label l′(τ) = δ(l(τ), σ) of an old node τ ∈ T is the set δ(l(τ), σ) =⋃
q∈l(τ) δ(q, σ) of σ-successors of the states in the label of τ , and

– the label l′(τ · degT (τ ′)) = δ(l(τ), σ)∩F of a new node τ · degT (τ) is the set
of final σ-successors of the states in the label of τ .

After this step, each old node is labelled with the σ-successors of the states
in its old label, and every old node τ has spawned a new sibling τ ′ = τ · deg(τ),
which is labelled with the final states l′(τ ′) = l′(τ)∩F in the label of its parent τ .

The new tree is not necessarily a history tree: (1) nodes may be labelled with
an empty set (like node 000 of Figure 3), (2) the labels of siblings do not need to
be disjoint (f and g are, for example, in the intersection of the labels of nodes
2 and 3 in Figure 3), and (3) the union of the children’s labels do not need to
form a proper subset of their parent’s label (the union of the labels of node 20
and 21, for example, equals the label of node 2 in Figure 3).

Tighter Bounds for the Determinisation of Büchi Automata 173

a, b, c, d, e, f, g

b, c, d d e, f, g c, f, g

b b, c c d e, f f, g

c f

0 1 2 3

0 1 2 0 0 1

0 0 0

Fig. 3. First Step of the History Transition. This figure shows the tree resulting
from the history tree of Figure 1 for the Büchi automaton and transition from Figure 2
alter the first step of the history transition. Every node of the tree from Figure 3 has
spawned a new child, whose label may be empty (like the label of node 10) if no final
state is reachable upon the read input letter from any state in the label of the parent
node. (States printed in red are deleted from the respective label in the second step.)

a, b, c, d, e, f, g

b, c, d e, f, g

b c e, f g

c f

0
1

2 3

0 1 2 0 0 1

0 0 0

Fig. 4. Second Step of the History Transition. This figure shows the labelled tree
that results from the second step of the history transition. the states from the labels of
the tree shown in Figure 3 that also occur in the label of an older sibling (like the state
f from the old label of the node 21) or in the label of an older sibling of an ancestor of
the node (like the state d from the old label of the node 10) are deleted from the label.
In this tree, the labels of the siblings are pairwise disjoint, but may be empty, and the
union of the label of the children of a node are not required to form a proper subset of
their parent’s label. (The nodes colour coded red are deleted in the third step.)

174 S. Schewe

a, b, c, d, e, f, g

b, c, d e, f, g

b c

0 2

0 1

Fig. 5. Third Step of the History Transition. The nodes with (a) an empty label
(nodes 000, 02, 1, 10 and 3 from the tree shown in Figure 4) and (b) the descendants of
nodes whose children’s labels decomposed their own label (nodes 010, 20, 200 and 21)
have been deleted from the tree. The labels of the siblings are pairwise disjoint, and
form a proper subset of their parent’s label, but the tree is not order closed. The nodes
that are renamed when establishing order closedness in the final step are depicted in
red. Node 01 is the only accepting node (indicated by the double line): Its siblings have
been removed due to (b), and, different to node 2, node 01 is stable.

In the second step, property (2) is re-established. We construct the tree
〈T ′, l′′ : T ′ → 2Q〉, where l′′ is inferred from l′ by removing all states in the
label of a node τ ′ = τ · i and all its descendants if it appears in the label l′(τ · j)
of an older sibling (j < i). In Figure 3, the states that are deleted by this rule are
depicted in red, and the tree resulting from this deletion is shown in Figure 4.

Properties (1) and (3) are re-established in the third transformation step. In
this step, we construct the tree 〈T ′′, l′′ : T ′′ → 2Q〉 by (a) removing all nodes τ
with an empty label l′′(τ) = ∅, and (b) removing all descendants of nodes whose
label is disintegrated by the labels of its descendants from T ′. (We use l′′ in spite
of the type mismatch, strictly speaking we should use its restriction to T ′′.) The
part of the tree that is deleted during the third step is depicted in red in Figure 4,
and the tree resulting from this transformation step is shown in Figure 5.

We call the greatest prefix and order closed subset of T ′′ the set of stable
nodes and the stable nodes whose descendants have been deleted due to rule (b)
accepting. In Figure 5, the unstable node 2 is depicted in red, and the accepting
leaf 01 is marked by a double line. (Note that only leaves can be accepting.)

The tree resulting from this transformation satisfies the properties (1)–(3),
but it is no longer order closed. The tree from Figure 5, for example, has a
node 2, but no node 1. In order to obtain a proper history tree, the order
closedness is re-established in the final step of the transformation. We construct
the σ-successor 〈T̂ , l̂ : T̂ → 2Q

� {∅}〉 of 〈T, l〉 by “compressing” T ′′ to a an
order closed tree, using the compression function comp : T ′′ → ω∗ that maps
the empty word ε to ε, and τ · i to comp(τ) · j, where j = |{k < i | τ ·k ∈ T ′′}| is
the number of older siblings of τ · i. For this function comp : T ′′ → ω∗, we simply
set T̂ = {comp(τ) | τ ∈ T ′′} and l̂(comp(τ)) = l′′(τ) for all τ ∈ T ′′. The nodes

Tighter Bounds for the Determinisation of Büchi Automata 175

a, b, c, d, e, f, g

b, c, d e, f, g

b c

0 1

0 1

Fig. 6. Final Step of the History Transition. The history tree that results from the
complete history transition, has the shape and labelling of the tree from Figure 5, but
the former node 2 has been renamed to 1 in order to re-establishing order closedness.

that are renamed during this step are exactly those which are unstable. In our
example transformation this is node 2 (depicted in red in Figure 5).

Figure 6 shows the σ-successor for the history tree of Figure 1 and an au-
tomaton with σ-transitions as shown in Figure 2.

3.3 Deterministic Acceptance Mechanism

For a nondeterministic Büchi automaton A = (Σ, Q, I, δ, F), we call the history
tree 〈T0, l0〉 = 〈{ε}, ε �→ I〉 that contains only the empty word and maps it to
the initial states I of A the initial history tree.

For an input word α : ω → Σ we call the sequence 〈T0, l0〉, 〈T1, l1〉, . . . of
history trees that start with the initial history tree 〈T0, l0〉 and where, for every
i ∈ ω, 〈Ti, li〉 is followed by α(i)-successor 〈Ti+1, li+1〉 the history trace or α. A
node τ in the history tree 〈Ti+1, li+1〉 is called stable or accepting, respectively,
if it is stable or accepting in the α(i)-transition from 〈Ti, li〉 to 〈Ti+1, li+1〉.
Proposition 1. An ω-word α is accepted by a nondeterministic Büchi automa-
ton A if, and only if, there is a node τ ∈ ω∗ such that τ is eventually always
stable and always eventually accepting in the history trace of α.

Proof. For the “if” direction, let τ ∈ ω∗ be a node that is eventually always stable
and always eventually accepting, and let i0 < i1 < i2 < . . . be an ascending chain
of indices such that τ is stable for the α(j)-transitions from 〈Tj , lj〉 to 〈Tj+1, lj+1〉
for all j ≥ i0, and accepting for the α(i−1)-transition from 〈Ti−1, li−1〉 to 〈Ti, li〉
for all indices i in the chain.

By definition of the σ-transitions, for every j ∈ ω, the finite automaton Aj =
(Σ, Q, lij (τ), δ, F) has, for every state q ∈ lij+1(τ), a run ρq

j on the finite word
α(ij)α(ij+1)α(ij+2) . . . α(ij+1 − 1) that contains an accepting state and ends
in q. Also, A = (Σ, Q, I, δ, F) read as a finite automaton has, for every state
q ∈ li0(τ), a run ρq on the finite word α(0)α(1)α(2) . . . α(i0 − 1) that ends in q.
Let us fix such runs, and define a tree T ⊆ Q∗ that contains, besides the empty
word and the initial states, a node iq0 of length 2 if q0 is in lij+1(τ) and i is the

176 S. Schewe

first letter of ρq0 , and a node iq0q1q2 . . . qkqk+1 of length k+1 > 2 if iq0q1q2 . . . qk

is in T , qk+1 is in lik+1(n) and qk is the first letter of ρ
qk+1
k . By construction, T

is an infinite tree with finite branching degree, and therefore contains an infinite
path iq0q1q2 . . . by König’s Lemma. By construction, ρq0ρq1

0 ρq2
1 . . . is a run of A

on α that visits some accepting state infinitely many times.
To demonstrate the “only if” direction, let us fix an accepting run, ρ = q0q1 . . .

of A on an input word α. Then we can define the sequence ϑ = τ0τ1 . . . of
nodes such that, for the history trace 〈T0, l0〉, 〈T1, l1〉, . . ., τi is the host node of
qi ∈ li(τi) for the history tree 〈Ti, li〉. Let l be the shortest length |τi| of these
nodes that occurs infinitely many times.

It is easy to see that the initial sequence of length l of the nodes in ϑ eventually
stabilises: Let i0 < i1 < i2 < . . . be an infinite ascending chain of indices such
that the length |τj | ≥ l of the j-th node is not smaller than l for all j ≥ i0, and
equal to l = |τi| for all indices i ∈ {i0, i1, i2, . . .} in this chain. This implies that
τi0 , τi1 , τi2 , . . . is a descending chain when the single nodes τi are compared by
lexicographic order, and hence almost all τi := π are equal. This also implies
that π is eventually always stable.

Let us assume that π is accepting only finitely many times. Then we can
chose an index i from the chain i0 < i1 < i2 < . . . such that τj = π holds for all
indices j ≥ i, and π is not accepting for any j ≥ i. (Note that every time the
length of τj is reduced to l, τj is unstable, which we excluded, or accepting, which
violates the assumption.) But now we can pick an index i′ > i such that qi′ ∈ F
is a final state, which, together with τi′ = π, implies that π is accepting for(〈Ti′−1, li′−1〉, α(i′ − 1), 〈Ti′ , li′〉

)
. (Note that qi′ is in the label of π · degTi′−1

(π)
in the labelled tree 〈T ′

i′−1, l
′
i′−1〉 resulting from the first step of the σ-transition

of history trees.) � ��

4 From Nondeterministic Büchi Automata to
Deterministic Rabin Automata

In this section, we discuss three determinisation procedures for nondeterminis-
tic Büchi automata. First we observe that the acceptance mechanism from the
previous section already describes a deterministic automaton with a Rabin con-
dition, but the Rabin condition is on the transitions. This provides us with the
first corollary:

Corollary 1. For a given nondeterministic Büchi automaton with n states, we
can construct a deterministic Rabin transition3 automaton with o

(
(1.65 n)n

)

states and 2n − 1 accepting pairs that recognises the language L(A) of A. ��
3 A transition automaton records the history of transitions in addition to the history of

states. For such a history of transitions, we can translate the acceptance condition
1 : 1 by using the nodes as index set, and (Aτ , Rτ) where Aτ are the transitions
where τ is accepting, and Rτ are the transitions where τ is unstable as Rabin pairs.

Tighter Bounds for the Determinisation of Büchi Automata 177

To see that the number of accepting pairs is bounded by 2n − 1, note that the
labels of siblings are disjoint, and that the label of every node contains a state
not in the label of any of its children. Thus, the number of ancestors and their
older siblings of every node is strictly smaller than n. Thus, a node i0i1i2 . . . in
can be represented by a sequence of i0 0’s followed by a 1, followed by i1 0’s and
so on, such that every node that can be accepting is representable by a sequence
of strictly less than n 0’s and 1’s.

There are two obvious ways to transform an automaton with a Rabin condition
on the transitions to an automaton with Rabin conditions on the states. The
first option is to “postpone” the transitions by one step. The new states are
(with the exception of one dedicated initial state q̂0) pairs, consisting of a state
of the transition automaton and the input letter read in the previous round.
Thus, if the deterministic Rabin transition automaton has the run ρ on an input
word α, then the resulting ordinary deterministic Rabin automaton has the run
ρ′ = q̂0,

(
ρ(0), α(0)

)
,
(
ρ(1), α(1)

)
,
(
ρ(2), α(2)

)
,

Corollary 2. For a given nondeterministic Büchi automaton A with n states
over an alphabet with l letters, we can construct a deterministic Rabin automaton
with l ·o((1.65 n)n

)
states and 2n−1 accepting pairs that recognises the language

L(A) of A. ��
Given that the alphabets tend to be small in practice — in particular compared
to (1.65 n)n — a blow-up linear in the alphabet size is usually acceptable. How-
ever, an alphabet may, in principle, have up to 2n2

distinguishable letters, and
the imposed bound is not very good for extremely large alphabets. (Two letters
σ1 and σ2 can be considered equivalent or indistinguishable for a Büchi automa-
ton A = (Σ, Q, I, δ, F) if δ(q, σ1) = δ(q, σ2) holds true for all states q ∈ Q of
the automaton A.) As an alternative to preserving one input letter in the state-
space, we enrich the history trees with information about which node of the
resulting tree was accepting or unstable in the third step of the transition.

To estimate the number of different enriched history trees with n nodes, we
have to take into account that the unstable and accepting nodes are not arbi-
trarily distributed over the tree: Only leaves can be accepting, and if a node of
the tree in unstable, then all of its descendants and all of its younger siblings
are unstable, too. Furthermore, only stable nodes can be accepting and the root
cannot be unstable. (An unstable root implies that the Büchi automaton has
no run for this word. Instead of allowing for an unstable root, we use a partial
transition function.)

The number eOrder(n) of ordered trees enriched with this information can be
recursively computed using the following case distinction: If the eldest child 0 of
the root is unstable, then all nodes but the root are unstable. Hence, the number
of trees of this form is order (n) = (2n−2)!

n!(n−1)! . For the case that the eldest child 0
of the root is stable, there are eOrder(n− 1) trees where the size of the sub-tree
rooted in 0 is n−1, and eOrder(i) ·eOrder(n− i) trees where the sub-tree rooted
in 0 contains i ∈ {1, . . . , n−2} nodes. (Every tree can be uniquely defined by the
tree rooted in 0, and the remaining tree. The special treatment of the case that

178 S. Schewe

0 has no younger siblings is due to the fact that the root cannot be accepting if
it has a child.) Thus, we have eOrder(1) = 2 (as a leaf, the root can be accepting
or stable but not accepting), and

eOrder (n) = eOrder(n − 1) + order (n) +
n−2∑

i=1

eOrder(i)eOrder (n − 1)

for n ≥ 2. A numerical analysis4 of this sequence shows that eOrder(n) < 6.738n.
This allows for an estimation of the number eHist(n) of enriched history trees
for a Büchi automaton with n states similar to the estimation of the number
hist(n) of history trees:

eHist(n) ∈ sup
x>0

O
(
m(x) · 6.738β(x)

) ⊂ o
(
(2.66 n)n

)
.

Corollary 3. Given a nondeterministic Büchi automaton A with n states, we
can construct a deterministic Rabin automaton with o

(
(2.66 n)n

)
states and

2n − 1 accepting pairs that recognises the language L(A) of A. ��

5 From Nondeterministic Büchi Automata to
Deterministic Parity Automata

From a practical point of view, it is often preferable to trade state-space for sim-
pler acceptance conditions. Algorithms that solve Rabin games, for example, are
usually exponential in the index, while the index of the constructions discussed
in the previous sections is exponential in the size to the Büchi automaton we
want to determinise.

While a reasonable index has been a side product of previous determinisation
techniques [3,4,5], the smaller state-spaces resulting from the determinisation
techniques discussed in Sections 3 and 4 are partly paid for by a higher index.

Traditional techniques for the transformation of Muller and Rabin or Streett
to parity acceptance conditions use later [19] and index appearance records [4],
respectively. However, using index (or later) appearance records would result in
an exponential blow-up of the state-space, and hence in a doubly exponential
construction. We therefore introduce the later introduction record as a record
tailored for ordered trees.

A later introduction record (LIR) stores the order in which the nodes of the
ordered trees have been introduced. For an ordered tree T with m nodes, a later
introduction record is a sequence τ1, τ2, . . . τm that contains the nodes of T , such
that every node appears after its parent and older siblings.

To analyse the effect of adding a later introduction record to a history tree
on the state-space, we slightly change the representation: We represent the tree
structure of a tree with m nodes and its later introduction record by a sequence

4 eOrder(n+1)
eOrder(n)

is growing, and
(

eOrder(n+1)
eOrder(n)

)(
1 + 2

n

)
is falling for growing n ≥ 2.

Tighter Bounds for the Determinisation of Büchi Automata 179

of m − 1 integers i2, i3, . . . im, such that ij points to the position < j of the
parent of node τj in the later introduction record τ1, τ2, . . . τm. (The root τ1 has
no parent.) There are (m − 1)! such sequences.

The labelling function of a history tree 〈T, l〉 whose root is labelled with
the complete set Q of states of the Büchi automaton can be represented by a
function from Q onto {1, . . . , m} that maps each state q ∈ Q to the positions
of its host node in the LIR. Let t(n, m) denote the number of trees and later
introduction record pairs for such history trees with m nodes and n = |Q| states
in the label of the root. First, t(n, n) = (n − 1)!n! holds: There are (n − 1)!
ordered-tree / LIR pairs, and n! functions from a set with n elements onto itself.
For every m ≤ n, a coarse estimation5 provides t(n, m − 1) ≤ 1

2 t(n, m). Hence,∑n
i=1 t(n, i) ≤ 2(n − 1)!n!.
Likewise, the labelling function of a history tree 〈T, l〉 whose root is labelled

with the complete set Q of states of the Büchi automaton can be represented by
a function from Q onto {1, . . . , m} that maps each state q ∈ Q to the positions
of its host node in the LIR, or to 0 if the state is not in the label of the root. Let
t′(n, m) denote the number of history tree / LIR pairs for such history trees with
m nodes for a Büchi automaton with n states. We have t′(n, n− 1) = (n− 2)!n!
and, by an argument similar to the one used in the analysis of t, we also have
t′(n, m− 1) ≤ 1

2 t′(n, m) for every m < n, and hence
∑n−1

i=1 t′(n, i) ≤ 2(n− 2)!n!.

Proposition 2. For a given nondeterministic Büchi automaton A with n states,
we can build a deterministic parity automaton with O(n!2) states and 2n prior-
ities that recognises the language L(A) of A.

Proof. We construct a deterministic parity automaton, whose states consist of
the history tree / LIR pairs, and an explicitly represented priority. The priority
is determined by the position i of the first node in the previous LIR that is either
unstable or accepting in the σ-transition: If it is accepting, the priority is 2i, if it
is unstable, the priority is 2i−1. If no node is unstable or accepting, the priority
is 2n+1. The automaton has at most the priorities {2, 3, . . . , 2n+1} and O(n!2)
states — O

(
(n − 1)!n!

)
history tree / LIR pairs times 2n priorities.

Let α be a word in the language L(A) of A. Then there is by Proposition 1 a
node τ that is always eventually accepting and eventually always stable in the
history tree, and will hence eventually always remain in the same position p in
the LIR and be stable. (A stable node can only move further to the front of
the LIR, which can only happen finitely many times.) From that time onward,
no node with a smaller position p′ < p is deleted (this would result τ to move
further to the front of the record), nor is the node τ on position p unstable.
Hence, no odd number < 2p occurs infinitely many times. Also from that time

5 If we connect functions by letting a function g from Q onto {1, . . . , m − 1} be the
successor of a function f from Q onto {1, . . . , m} if there is an index i ∈ {1, . . . , m−1}
such that g(q) = i if f(q) = m and g(q) = f(q) otherwise, then the functions onto m
have (m−1) successors, while every function onto m−1 has at least two predecessors.
Hence, the number of labelling functions growth at most by a factor of m−1

2
, while

the number of ordered tree / LIR pairs is reduced by a factor of m − 1.

180 S. Schewe

onward, the node τ is accepting infinitely many times, which results in visiting
a priority ≤ 2p by our prioritisation rule. Hence the smallest number occurring
infinitely many times is even.

Let, on the other hand, 2i be the dominating priority of the run of our deter-
ministic parity automaton. Then eventually no lower priority than 2i appears,
which implies that all positions ≤ i remain unchanged in the LIR, and the re-
spective nodes remain stable from that time onward. Also, the node that is from
that time onward on position i is accepting infinitely many times, which implies
by Proposition 1 that α is in the language L(A) of A. ��
While the separation of concerns does not generate the same theoretical benefit
with respect to state-space reduction when we construct parity automata instead
of Rabin automata, the practical advantage might be comparable. While the
update rule for history trees is strict, the update rule for LIR’s is much less so:
The only property of LIR updates used in the proof of Proposition 2 is that
the position of accepting positions is reduced, and strictly reduced if there was
an unstable node on a smaller position of the previous LIR. This leaves much
leeway for updating the LIR — any update that satisfies this constraint will do.

Usually only a fragment of the state-space is reachable, and determinisation
algorithms tend to construct the state-space of the automaton on the fly. The
simplest way to exploit the leeway in the update rule for LIR’s is to check if
there is a suitable LIR such that a state with an appropriate history tree / LIR
pair has already been constructed. If this is the case, then we can, depending
on the priority of that state, turn to this state or construct a new state that
differs only in the priority, which allows us to ignore the new state in the further
expansion of the state-space. It is my belief that such a nondeterministic deter-
minisation procedure will result in a significant state-space reduction compared
to any deterministic rule.

References

1. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Pro-
ceedings of the International Congress on Logic, Methodology, and Philosophy
of Science, 1960, Berkeley, California, USA, pp. 1–11. Stanford University Press
(1962)

2. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM Jour-
nal of Research and Development 3, 115–125 (1959)

3. Safra, S.: On the complexity of ω-automata. In: Proceedings of the 29th Annual
Symposium on Foundations of Computer Science (FOCS 1988), White Plains, New
York, USA, pp. 319–327. IEEE Computer Society Press, Los Alamitos (1988)

4. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondetermin-
istic automata: new results and new proofs of the theorems of Rabin, McNaughton
and Safra. Theoretical Computer Science 141, 69–107 (1995)

5. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. Journal of Logical Methods in Computer Science 3 (2007)

6. Muller, D.E.: Infinite sequences and finite machines. In: Proceedings of the 4th
Annual Symposium on Switching Circuit Theory and Logical Design (FOCS 1963),
Chicago, Chicago, Illinois, USA, pp. 3–16. IEEE Computer Society Press, Los
Alamitos (1963)

Tighter Bounds for the Determinisation of Büchi Automata 181

7. McNaughton, R.: Testing and generating infinite sequences by a finite automaton.
Information and Control 9, 521–530 (1966)

8. Yan, Q.: Lower bounds for complementation of omega-automata via the full au-
tomata technique. Journal of Logical Methods in Computer Science 4 (2008)

9. Church, A.: Logic, arithmetic and automata. In: Proceedings of the International
Congress of Mathematicians, Institut Mittag-Leffler, Djursholm, Sweden, 1962
(Stockholm 1963), 15–22 August, pp. 23–35 (1962)

10. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of the
16th Annual ACM Symposium on Principles of Programming Languages (POPL
1989), Austin, Texas, USA, pp. 179–190. ACM Press, New York (1989)

11. Rabin, M.O.: Decidability of second order theories and automata on infinite trees.
Transaction of the American Mathematical Society 141, 1–35 (1969)

12. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Transactions of the American Mathematical Society 138, 295–311 (1969)

13. Büchi, J.R., Landweber, L.H.: Definability in the monadic second-order theory of
successor. Journal of Symbolic Logic 34, 166–170 (1969)

14. Wilke, T.: Alternating tree automata, parity games, and modal μ-calculus. Bulletin
of the Belgian Mathematical Society 8 (2001)

15. Emerson, E.A.: Automata, tableaux and temporal logics. In: Parikh, R. (ed.) Logic
of Programs 1985. LNCS, vol. 193, pp. 79–88. Springer, Heidelberg (1985)

16. Kupferman, O., Vardi, M.: Module checking revisited. In: Grumberg, O. (ed.) CAV
1997. LNCS, vol. 1254, pp. 36–47. Springer, Heidelberg (1997)

17. Emerson, E.A., Jutla, C.S.: Tree automata, μ-calculus and determinacy. In: Pro-
ceedings of the 32nd Annual Symposium on Foundations of Computer Science
(FOCS 1991), San Juan, Puerto Rico, pp. 368–377. IEEE Computer Society Press,
Los Alamitos (1991)

18. Schewe, S., Finkbeiner, B.: Satisfiability and finite model property for the
alternating-time μ-calculus. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp.
591–605. Springer, Heidelberg (2006)

19. Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Proceedings of the
14th Annual ACM Symposium on Theory of Computing (STOC 1982), San Fran-
cisco, California, USA, pp. 60–65. ACM Press, New York (1982)

20. Liu, W., Wang, J.: A tigher analysis of Piterman’s Büchi determinization. Infor-
mation Processing Letters (submitted, 2009)

21. Temme, N.M.: Asymptotic estimates of Stirling numbers. Studies in Applied Math-
ematics 89, 233–243 (1993)

22. Friedgut, E., Kupferman, O., Vardi, M.Y.: Büchi complementation made tighter.
International Journal of Foundations of Computer Science 17, 851–867 (2006)

	Tighter Bounds for the Determinisation of Büchi Automata
	Introduction
	Preliminaries — Rabin, Parity and Büchi Automata
	Büchi Determinisation
	History Trees
	History Transitions
	Deterministic Acceptance Mechanism

	From Nondeterministic Büchi Automata to Deterministic Rabin Automata
	From Nondeterministic Büchi Automata to Deterministic Parity Automata

