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Monogamy relations characterize the distributions of entanglement in multipartite systems. We

investigate monogamy relations related to the concurrence C, the entanglement of formation E,

negativity Nc and Tsallis-q entanglement Tq. New α-th power of entanglement monogamy relations

have been derived, which are tighter than the existing entanglement monogamy relations for some

classes of quantum states. Detailed examples are presented.

PACS numbers:

INTRODUCTION

Due to the essential roles played in quantum commu-

nication and quantum information processing, quantum

entanglement [1–8] has been the subject of many recent

studies in recent years. The study of quantum entan-

glement from various viewpoints has been a very active

area and has led to many impressive results. As one of

the fundamental differences between quantum and clas-

sical correlations, an essential property of entanglement

is that a quantum system entangled with one of other

subsystems limits its entanglement with the remaining

ones. The monogamy relations give rise to the distribu-

tion of entanglement in the multipartite quantum sys-

tems. Moreover, the monogamy property has emerged

as the ingredient in the security analysis of quantum key

distribution [9].

For a tripartite system A, B and C, the usu-

al monogamy of an entanglement measure E implies

that [10] the entanglement between A and BC satisfies

EA|BC ≥ EAB + EAC . However, such monogamy rela-

tions are not always satisfied by all entanglement mea-

sures for all quantum states. In fact, it has been shown

that the squared concurrence C2 [11, 12] and entangle-

ment of formation E2 [13] satisfy the monogamy rela-

tions for multi-qubit states. The monogamy inequali-

ty was further generalized to various entanglement mea-

sures such as continuous-variable entanglement [14–16],

squashed entanglement [10, 17, 18], entanglement nega-

tivity [19–23], Tsallis-q entanglement [24, 25], and Renyi-

entanglement [26–28].

In this paper, we derive monogamy inequalities

which are tighter than all the existing ones, in terms of

the concurrence C, entanglement of formation E, nega-

tivity Nc and Tsallis-q entanglement Tq.

TIGHTER MONOGAMY RELATIONS FOR

CONCURRENCE

We first consider the monogamy inequalities sat-

isfied by the concurrence. Let HX denote a discrete

finite-dimensional complex vector space associated with

a quantum subsystem X. For a bipartite pure state

|ψ〉AB ∈ HA ⊗ HB , the concurrence is given by [29–

31], C(|ψ〉AB) =
√

2 [1− Tr(ρ2A)], where ρA is the re-

duced density matrix by tracing over the subsystem B,

ρA = TrB(|ψ〉AB〈ψ|). The concurrence for a bipar-

tite mixed state ρAB is defined by the convex roof ex-

tension, C(ρAB) = min{pi,|ψi〉}
∑
i piC(|ψi〉), where the

minimum is taken over all possible decompositions of

ρAB =
∑
i

pi|ψi〉〈ψi|, with pi ≥ 0 and
∑
i

pi = 1 and

|ψi〉 ∈ HA ⊗HB .

For a tripartite state |ψ〉ABC , the concurrence of as-

sistance is defined by [32, 33]

Ca(|ψ〉ABC) ≡ Ca(ρAB) = max
{pi,|ψi〉}

∑
i

piC(|ψi〉),

where the maximum is taken over all possible decom-

positions of ρAB = TrC(|ψ〉ABC〈ψ|) =
∑
i

pi|ψi〉AB〈ψi|.

When ρAB = |ψ〉AB〈ψ| is a pure state, one has

C(|ψ〉AB) = Ca(ρAB).
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For an N -qubit state ρAB1···BN−1
∈ HA ⊗ HB1 ⊗

· · · ⊗ HBN−1
, the concurrence C(ρA|B1···BN−1

) of the s-

tate ρA|B1···BN−1
, viewed as a bipartite state under the

partition A and B1, B2, · · · , BN−1, satisfies [34]

Cα(ρA|B1,B2··· ,BN−1
) ≥

Cα(ρAB1) + Cα(ρAB2) + · · ·+ Cα(ρABN−1
), (1)

for α ≥ 2, where ρABi =

TrB1···Bi−1Bi+1···BN−1
(ρAB1···BN−1

). It is further

improved that for α ≥ 2, if C(ρABi) ≥ C(ρA|Bi+1···BN−1
)

for i = 1, 2, · · · ,m, and C(ρABj ) ≤ C(ρA|Bj+1···BN−1
) for

j = m + 1, · · · , N − 2, ∀ 1 ≤ m ≤ N − 3, N ≥ 4, then

[35],

Cα(ρA|B1B2···BN−1
) ≥

Cα(ρAB1
) +

α

2
Cα(ρAB2

) + · · ·+
(α

2

)m−1
Cα(ρABm)

+
(α

2

)m+1 (
Cα(ρABm+1) + · · ·+ Cα(ρABN−2

)
)

+
(α

2

)m
Cα(ρABN−1

) (2)

and for all α < 0,

Cα(ρA|B1B2···BN−1
) <

K(Cα(ρAB1
) + Cα(ρAB2

) + · · ·+ Cα(ρABN−1
)),(3)

where K = 1
N−1 .

In the following, we show that these monogamy in-

equalities satisfied by the concurrence can be further

refined and become even tighter. For convenience, we

denote CABi = C(ρABi) the concurrence of ρABi and

CA|B1,B2··· ,BN−1
= C(ρA|B1···BN−1

). We first introduce

two Lemmas.

[Lemma 1]. For any real numbers x and t, 0 ≤ t ≤
1, x ∈ [1,∞), we have (1 + t)x ≥ 1 + (2x − 1)tx.

[Proof]. Let f(x, y) = (1+y)x−yx with x ≥ 1, y ≥ 1.

Then ∂f
∂y = x[(1+y)x−1−yx−1] ≥ 0. Therefore, f(x, y) is

an increasing function of y, i.e., f(x, y) ≥ f(x, 1) = 2x−1.

Set y = 1
t , 0 < t ≤ 1, we obtain (1 + t)x ≥ 1 + (2x−1)tx.

When t = 0, the inequality is trivial. �

[Lemma 2]. For any 2⊗ 2⊗ 2n−2 mixed state ρ ∈
HA ⊗HB ⊗HC , if CAB ≥ CAC , we have

CαA|BC ≥ C
α
AB + (2

α
2 − 1)CαAC , (4)

for all α ≥ 2.

[Proof]. It has been shown that C2
A|BC ≥ C

2
AB+C2

AC

for arbitrary 2⊗ 2⊗ 2n−2 tripartite state ρABC [11, 37].

Then, if CAB ≥ CAC , we have

CαA|BC ≥ (C2
AB + C2

AC)
α
2

= CαAB

(
1 +

C2
AC

C2
AB

)α
2

≥ CαAB

[
1 + (2

α
2 − 1)

(
C2
AC

C2
AB

)α
2

]
= CαAB + (2

α
2 − 1)CαAC ,

where the second inequality is due to Lemma 1. As the

subsystems A and B are equivalent in this case, we have

assumed that CAB ≥ CAC without loss of generality.

Moreover, if CAB = 0, we have CAB = CAC = 0. That

is to say the lower bound becomes trivially zero. �

From Lemma 2 we have the following Theorem.

[Theorem 1]. For N -qubit mixed state, if CABi ≥
CA|Bi+1···BN−1

for i = 1, 2, · · · ,m, and CABj ≤
CA|Bj+1···BN−1

for j = m+1, · · · , N−2, ∀ 1 ≤ m ≤ N−3,

N ≥ 4, we have

CαA|B1B2···BN−1
≥

CαAB1
+ (2

α
2 − 1)CαAB2

+ · · ·+ (2
α
2 − 1)m−1CαABm

+(2
α
2 − 1)m+1(CαABm+1

+ · · ·+ CαABN−2
)

+(2
α
2 − 1)mCαABN−1

(5)

for all α ≥ 2.

[Proof]. From the inequality (4), we have

CαA|B1B2···BN−1

≥ CαAB1
+ (2

α
2 − 1)CαA|B2···BN−1

≥ CαAB1
+ (2

α
2 − 1)CαAB2

+ (2
α
2 − 1)2CαA|B3···BN−1

≥ · · ·

≥ CαAB1
+ (2

α
2 − 1)CαAB2

+ · · ·+ (2
α
2 − 1)m−1CαABm

+(2
α
2 − 1)mCαA|Bm+1···BN−1

. (6)

Similarly, as CABj ≤ CA|Bj+1···BN−1
for j = m +

1, · · · , N − 2, we get

CαA|Bm+1···BN−1

≥ (2
α
2 − 1)CαABm+1

+ CαA|Bm+2···BN−1

≥ (2
α
2 − 1)(CαABm+1

+ · · ·+ CαABN−2
)

+CαABN−1
. (7)

Combining (6) and (7), we have Theorem 1. �
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As for α ≥ 2, (2
α
2 − 1)m ≥ (α/2)m for all 1 ≤ m ≤

N − 3, our formula (5) in Theorem 1 gives a tighter

monogamy relation with larger lower bounds than (1)

and (2). In Theorem 1 we have assumed that some

CABi ≥ CA|Bi+1···BN−1
and some CABj ≤ CA|Bj+1···BN−1

for the 2 ⊗ 2 ⊗ · · · ⊗ 2 mixed state ρ ∈ HA ⊗ HB1
⊗

· · · ⊗ HBN−1
. If all CABi ≥ CA|Bi+1···BN−1

for i =

1, 2, · · · , N − 2, then we have the following conclusion:

[Theorem 2]. If CABi ≥ CA|Bi+1···BN−1
for all i =

1, 2, · · · , N − 2, then we have

CαA|B1···BN−1
≥

CαAB1
+ (2

α
2 − 1)CαAB2

+ · · ·+ (2
α
2 − 1)N−3CαABN−2

+(2
α
2 − 1)N−2CαABN−1

. (8)

Example 1. Let us consider the three-qubit state |ψ〉
in the generalized Schmidt decomposition form [38, 39],

|ψ〉 = λ0|000〉+ λ1e
iϕ|100〉+ λ2|101〉

+λ3|110〉+ λ4|111〉, (9)

where λi ≥ 0, i = 0, 1, 2, 3, 4 and
4∑
i=0

λ2i = 1.

From the definition of concurrence, we have CA|BC =

2λ0
√
λ22 + λ23 + λ24, CAB = 2λ0λ2, and CAC = 2λ0λ3.

Set λ0 = λ1 = 1
2 , λ2 = λ3 = λ4 =

√
6
6 , one has

CA|BC =
√
2
2 , CAB = CAC =

√
6
6 , then CαA|BC = (

√
2
2 )α,

CαAB + CαAC = 2(
√
6
6 )α, CαAB + α

2C
α
AC = (1 + α

2 )(
√
6
6 )α,

CαAB + (2
α
2 − 1)CαAC = 2

α
2 (
√
6
6 )α. One can see that our

result is better than the results in [34] and [35] for α ≥ 2,

see Fig 1.

TIGHTER MONOGAMY REALATIONS FOR

EOF

The entanglement of formation (EoF) [40, 41] is a

well defined important measure of entanglement for bi-

partite systems. LetHA andHB be m and n dimensional

(m ≤ n) vector spaces, respectively. The EoF of a pure

state |ψ〉 ∈ HA ⊗HB is defined by

E(|ψ〉) = S(ρA), (10)

where ρA = TrB(|ψ〉〈ψ|) and S(ρ) = −Tr(ρ log2 ρ). For a

bipartite mixed state ρAB ∈ HA⊗HB , the entanglement

of formation is given by,

E(ρAB) = min
{pi,|ψi〉}

∑
i

piE(|ψi〉), (11)

2 3 4 5 6
Α
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FIG. 1: The axis y is the concurrence of |ψ〉 and its lower

bound, which are functions of α. The black solid line rep-

resents the concurrence of |ψ〉 in Example 1, red dashed line

represents the lower bound from our result, blue dotted (green

dotdashed) line represents lower bound from the result in [35]

([34]).

with the minimum taking over all possible pure stae de-

compositions of ρAB .

Denote f(x) = H
(

1+
√
1−x
2

)
, where H(x) =

−x log2(x) − (1 − x) log2(1 − x). From (10) and (11),

one has E(|ψ〉) = f
(
C2(|ψ〉)

)
for 2⊗m (m ≥ 2) pure s-

tate |ψ〉, and E(ρ) = f
(
C2(ρ)

)
for two-qubit mixed state

ρ [42]. It is obvious that f(x) is a monotonically increas-

ing function for 0 ≤ x ≤ 1. f(x) satisfies the following

relations:

f
√
2(x2 + y2) ≥ f

√
2(x2) + f

√
2(y2), (12)

where f
√
2(x2 + y2) = [f(x2 + y2)]

√
2.

It has been shown that the EoF does not satisfy

the inequality EAB +EAC ≤ EA|BC [43]. In [44] the au-

thors showed that EoF is a monotonic function satisfying

E2(C2
A|B1B2···BN−1

) ≥ E2(
∑N−1
i=1 C2

ABi
). For N−qubit

systems, one has [34],

EαA|B1B2···BN−1
≥ EαAB1

+ EαAB2
+ · · ·+ EαABN−1

(13)

for α ≥
√

2, where EA|B1B2···BN−1
is the entanglement

of formation of ρ in bipartite partition A|B1B2 · · ·BN−1,

and EABi , i = 1, 2, · · · , N − 1, is the EoF of the mixed

states ρABi = TrB1B2···Bi−1,Bi+1···BN−1
(ρ). It is further

improved that for α ≥
√

2, if CABi ≥ CA|Bi+1···BN−1

for i = 1, 2, · · · ,m, and CABj ≤ CA|Bj+1···BN−1
for j =
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m+ 1, · · · , N − 2, ∀ 1 ≤ m ≤ N − 3, N ≥ 4, then [35]

EαA|B1B2···BN−1
≥

EαAB1
+ (α/

√
2)EαAB2

· · ·+ (α/
√

2)m−1EαABm

+(α/
√

2)m+1(EαABm+1
+ · · ·+ EαABN−2

)

+(α/
√

2)mEαABN−1
. (14)

In fact, generally we can prove the following results.

[Theorem 3]. For any N-qubit mixed state ρ ∈
HA ⊗ HB1

⊗ · · · ⊗ HBN−1
, if CABi ≥ CA|Bi+1···BN−1

for

i = 1, 2, · · · ,m, and CABj ≤ CA|Bj+1···BN−1
for j = m+

1, · · · , N−2, ∀ 1 ≤ m ≤ N−3, N ≥ 4, the entanglement

of formation E(ρ) satisfies

EαA|B1B2···BN−1
≥

EαAB1
+ (2t − 1)EαAB2

· · ·+ (2t − 1)m−1EαABm

+(2t − 1)m+1(EαABm+1
+ · · ·+ EαABN−2

)

+(2t − 1)mEαABN−1
, (15)

for α ≥
√

2, where t = α/
√

2.

[Proof]. For α ≥
√

2, we have

fα(x2 + y2)

=
(
f
√
2(x2 + y2)

)t
≥
(
f
√
2(x2) + f

√
2(y2)

)t
≥
(
f
√
2(x2)

)t
+ (2t − 1)

(
f
√
2(y2)

)t
= fα(x2) + (2t − 1)fα(y2), (16)

where the first inequality is due to the inequality (12),

and the second inequality is obtained from a similar con-

sideration in the proof of the second inequality in (4).

Let ρ =
∑
i

pi|ψi〉〈ψi| ∈ HA⊗HB1
⊗ · · · ⊗HBN−1 be

the optimal decomposition of EA|B1B2···BN−1
(ρ) for the

N-qubit mixed state ρ, we have

EA|B1B2···BN−1
(ρ)

=
∑
i

piEA|B1B2···BN−1
(|ψi〉)

=
∑
i

pif
(
C2
A|B1B2···BN−1

(|ψi〉)
)

≥ f

(∑
i

piC
2
A|B1B2···BN−1

(|ψi〉)

)

≥ f

[∑
i

piCA|B1B2···BN−1
(|ψi〉)

]2
≥ f

(
C2
A|B1B2···BN−1

(ρ)
)
,

where the first inequality is due to that f(x) is a convex

function. The second inequality is due to the Cauchy-

Schwarz inequality: (
∑
i

x2i )
1
2 (
∑
i

y2i )
1
2 ≥

∑
i

xiyi, with

xi =
√
pi and yi =

√
piCA|B1B2···BN−1

(|ψi〉). Due to the

definition of concurrence and that f(x) is a monotoni-

cally increasing function, we obtain the third inequality.

Therefore, we have

EαA|B1B2···BN−1
(ρ)

≥ fα(C2
AB1

+ C2
AB2

+ · · ·+ C2
ABm−1

)

≥ fα(C2
AB1

) + (2t − 1)fα(C2
AB2

) + · · ·+ (2t − 1)m−1fα(C2
ABm)

+ (2t − 1)m+1(fα(C2
ABm+1

) + · · ·+ fα(C2
ABN−2

))

+ (2t − 1)mfα(C2
ABN−1

)

= EαA|B1
+ (2t − 1)EαAB2

+ · · ·+ (2t − 1)m−1EαABm

+ (2t − 1)m+1(EαABm+1
+ · · ·+ EαABN−2

)

+ (2t − 1)mEαABN−1
,

where we have used the monogamy inequality in (1) for

N−qubit states ρ to obtain the first inequality. By using

(16) and the similar consideration in the proof of Theo-

rem 1, we get the second inequality. Since for any 2⊗ 2

quantum state ρABi , E(ρABi) = f
[
C2(ρABi)

]
, one gets

the last equality. �

As for (2α/
√
2 − 1) ≥ α/

√
2 for α ≥

√
2, (15) is ob-

viously tighter than (13) and(14). Moreover, similar to

the concurrence, for the case that CABi ≥ CA|Bi+1···BN−1

for all i = 1, 2, · · · , N − 2, we have a simple tighter

monogamy relation for entanglement of formation:

[Theorem 4]. If CABi ≥ CA|Bi+1···BN−1
for all i =

1, 2, · · · , N − 2, we have

EαA|B1B2···BN−1
≥ EαAB1

+ (2α/
√
2 − 1)EαAB2

+ · · ·

+(2α/
√
2 − 1)N−2EαABN−1

, (17)
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FIG. 2: The axis y is the EOF of the W state |W 〉 and its

lower bounds, which are functions of α. The black solid line

represents the EOF of the state |W 〉 in Example 2, red dashed

line represents the lower bound from our result, blue dotted

(green dotdashed) line represents the lower bound from the

result in [35] ([34]).

for α ≥
√

2.

Example 2. Let us consider the W state,

|W 〉 = 1√
3
(|100〉 + |010〉 + |001〉). We have EAB =

EAC = 0.550048, EA|BC = 0.918296, then EαA|BC =

(0.918296)α, EαAB + EαAC = 2(0.550048)α, EαAB +
α√
2
EαAC = (1 + α√

2
)(0.550048)α, EαAB + (2

α√
2 − 1)EαAC =

2
α√
2 (0.550048)α. It is easily verified that our results is

better than the results in [34] and [35] for α ≥
√

2, see

Fig 2.

TIGHTER MONOGAMY RELATIONS FOR

NEGATIVITY

Another well-known quantifier of bipartite entangle-

ment is the negativity. Given a bipartite state ρAB in

HA ⊗ HB , the negativity is defined by [45], N(ρAB) =

(||ρTAAB || − 1)/2, where ρTAAB is the partial transpose with

respect to the subsystem A, ||X|| denotes the trace nor-

m of X, ||X|| = Tr
√
XX†. Negativity is a computable

measure of entanglement, and is a convex function of

ρAB . It vanishes if and only if ρAB is separable for

the 2 ⊗ 2 and 2 ⊗ 3 systems [46]. For the purpose of

discussion, we use the following definition of negativi-

ty, N(ρAB) = ||ρTAAB || − 1. For any bipartite pure state

|ψ〉AB , the negativity N(ρAB) is given by N(|ψ〉AB) =

2
∑
i<j

√
λiλj = (Tr

√
ρA)2 − 1, where λi are the eigenval-

ues for the reduced density matrix of |ψ〉AB . For a mixed

state ρAB , the convex-roof extended negativity (CREN)

is defined as

Nc(ρAB) = min
∑
i

piN(|ψi〉AB), (18)

where the minimum is taken over all possible pure state

decompositions {pi, |ψi〉AB} of ρAB . CREN gives a per-

fect discrimination of positive partial transposed bound

entangled states and separable states in any bipartite

quantum systems [47, 48].

Let us consider the relation between CREN and

concurrence. For any bipartite pure state |ψ〉AB in a

d ⊗ d quantum system with Schmidt rank 2, |ψ〉AB =
√
λ0|00〉 +

√
λ1|11〉, one has N(|ψ〉AB) =‖ |ψ〉〈ψ|TB ‖

−1 = 2
√
λ0λ1 =

√
2(1− Trρ2A) = C(|ψ〉AB). In oth-

er words, negativity is equivalent to concurrence for

any pure state with Schmidt rank 2, and consequent-

ly it follows that for any two-qubit mixed state ρAB =∑
pi|ψi〉AB〈ψi|,

Nc(ρAB) = min
∑
i

piN(|ψi〉AB)

= min
∑
i

piC(|ψi〉AB)

= C(ρAB). (19)

With a similar consideration of concurrence, we ob-

tain the following result.

[Theorem 5]. For any N-qubit state ρ ∈ HA ⊗
HB1

⊗ · · · ⊗HBN−1
, if NcABi ≥ NcA|Bi+1···BN−1

for i =

1, 2, · · · ,m, and NcABj ≤ NcA|Bj+1···BN−1
for j = m +

1, · · · , N − 2, ∀ 1 ≤ m ≤ N − 3, N ≥ 4, we have

Nα
c A|B1B2···BN−1

≥ Nα
c AB1

+(2
α
2 − 1)Nα

c AB2
+ · · ·+ (2

α
2 − 1)m−1Nα

c ABm

+(2
α
2 − 1)m+1(Nα

c ABm+1
+ · · ·+Nα

c ABN−2
)

+(2
α
2 − 1)mNα

c ABN−1
(20)

for all α ≥ 2.

In Theorem 5 we have assumed that some NcABi ≥
NcA|Bi+1···BN−1

and some NcABj ≤ NcA|Bj+1···BN−1
. If

all NcABi ≥ NcA|Bi+1···BN−1
for i = 1, 2, · · · , N − 2, then

we have the following conclusion:
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FIG. 3: The axis y is the concurrence of |ψ〉 and its lower

bound, which are functions of α. The black solid line rep-

resents the concurrence of |ψ〉 in Example 3, red dashed line

represents the lower bound from our result, blue dotted (green

dotdashed) line represents lower bound from the result in [36]

([34]).

[Theorem 6]. If NcABi ≥ NcA|Bi+1···BN−1
for all

i = 1, 2, · · · , N − 2, we have

Nc
α
A|B1···BN−1

≥

Nc
α
AB1

+ (2
α
2 − 1)Nc

α
AB2

+ · · ·

+(2
α
2 − 1)N−2Nc

α
ABN−1

. (21)

Example 3. Let us consider again the three-qubit

state |ψ〉 (9). From the definition of CREN, we have

NcA|BC = 2λ0
√
λ22 + λ23 + λ24, NcAB = 2λ0λ2, and

NcAC = 2λ0λ3. Set λ0 = λ1 = λ2 = λ3 = λ4 =
√
5
5 .

One gets Nc
α
A|BC = ( 2

√
3

5 )α, Nc
α
AB + Nc

α
AC = 2( 2

5 )α,

Nc
α
AB+ α

2Nc
α
AC =

(
1 + α

2

)
( 2
5 )α, Nc

α
AB+(2

α
2 −1)Nc

α
AC =

2
α
2 ( 2

5 )α. One can see that our result is better than the

results in [34] and [36] for α ≥ 2, see Fig 3.

TIGHTER MONOGAMY RELATIONS FOR

TSALLIS-Q ENTANGLEMENT

For a bipartite pure state |ψ〉AB , the Tsallis-q en-

tanglement is defined by [24],

Tq(|ψ〉AB) = Sq(ρA) =
1

q − 1
(1− trρqA), (22)

for any q > 0 and q 6= 1. If q tends to 1, Tq(ρ) con-

verges to the von Neumann entropy, limq→1 Tq(ρ) =

−trρ log ρ = Sq(ρ). For a bipartite mixed state ρAB ,

Tsallis-q entanglement is defined via the convex-roof ex-

tension, Tq(ρAB) = min
∑
i piTq(|ψi〉AB), with the min-

imum taken over all possible pure state decompositions

of ρAB .

In [49], the author has proved an analytic relation-

ship between Tsallis-q entanglement and concurrence for
5−
√
13

2 ≤ q ≤ 5+
√
13

2 ,

Tq(|ψ〉AB) = gq(C
2(|ψ〉AB)), (23)

where the function gq(x) is defined by

gq(x) =
1

q − 1

[
1−

(
1 +
√

1− x
2

)q
−
(

1−
√

1− x
2

)q]
.(24)

It has been shown that Tq(|ψ〉) = gq
(
C2(|ψ〉)

)
for

2 ⊗ m (m ≥ 2) pure state |ψ〉, and Tq(ρ) = gq
(
C2(ρ)

)
for two-qubit mixed state ρ [24]. Hence (23) holds for

any q such that gq(x) in (24) is monotonically increasing

and convex. In particular, gq(x) satisfies the following

relations for 2 ≤ q ≤ 3,

gq(x
2 + y2) ≥ gq(x2) + g2q (y2). (25)

The Tsallis-q entanglement satisfies [24]

TqA|B1B2···BN−1
≥
N−1∑
i=1

TqABi , (26)

where i = 1, 2, · · ·N − 1, 2 ≤ q ≤ 3. It is futher proved

in [49],

T 2
q A|B1B2···BN−1

≥
N−1∑
i=1

T 2
q ABi

, (27)

with 5−
√
13

2 ≤ q ≤ 5+
√
13

2 . In fact, generally we can prove

the following results.

[Theorem 7]. For an arbitrary N -qubit mixed state

ρAB1···BN−1
, if CABi ≥ CA|Bi+1···BN−1

for i = 1, 2, · · · ,m,

and CABj ≤ CA|Bj+1···BN−1
for j = m + 1, · · · , N − 2, ∀

1 ≤ m ≤ N − 3, N ≥ 4, the α-th power of Tsallis-q

entanglement satisfies the monogamy relation

Tq
α
A|B1B2···BN−1

≥

Tq
α
AB1

+ (2α − 1)Tq
α
AB2

+ · · ·+ (2α − 1)m−1Tq
α
ABm

+(2α − 1)m+1(Tq
α
ABm+1

+ · · ·+ Tq
α
ABN−2

)

+(2α − 1)mTq
α
ABN−1

, (28)

where α ≥ 1, TqA|B1B2···BN−1
quantifies the Tsallis-

q entanglement in the partition A|B1B2 · · ·BN−1 and
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TqABi quantifies that in two-qubit subsystem ABi with

2 ≤ q ≤ 3.

[Proof]. For α ≥ 1, we have

gαq (x2 + y2) ≥
(
gq(x

2) + gq(y
2)
)α

(29)

≥ gαq (x2) + (2α − 1)gαq (y2),

where the first inequality is due to the inequality (25),

and the second inequality is obtained from a similar con-

sideration in the proof of the second inequality in (4).

Let ρ =
∑
i

pi|ψi〉〈ψi| ∈ HA⊗HB1 ⊗ · · · ⊗HBN−1 be

the optimal decomposition for the N-qubit mixed state

ρ, we have

TqA|B1B2···BN−1
(ρ)

=
∑
i

piTq(|ψi〉A|B1B2···BN−1
)

=
∑
i

pigq

[
C2
A|B1B2···BN−1

(|ψi〉)
]

≥ gq

[∑
i

piC
2
A|B1B2···BN−1

(|ψi〉)

]

≥ gq

[∑
i

piCA|B1B2···BN−1
(|ψi〉)

]2
= gq

[
C2
A|B1B2···BN−1

(ρ)
]
,

(30)

where the first inequality is due to that gq(x) is a convex

function. The second inequality is due to the Cauchy-

Schwarz inequality: (
∑
i

x2i )
1
2 (
∑
i

y2i )
1
2 ≥

∑
i

xiyi, with

xi =
√
pi and yi =

√
piCA|B1B2···BN−1

(|ψi〉). Due to

the definition of Tsallis-q entanglement and that gq(x) is

a monotonically increasing function, we obtain the third

inequality. Therefore, we have

Tαq A|B1B2···BN−1
(ρ)

≥ gαq

[∑
i

C2(ρABi)

]
≥ gqα(CAB1) + (2α − 1)gq

α(CAB2) + · · ·

+(2α − 1)m−1gq
α(CABm)

+(2α − 1)m+1 (gqα(CABm+1) + · · ·+ gq
α(CABN−2)

)
+(2α − 1)mgq

α(CABN−1)

= Tq
α
AB1

+ (2α − 1)Tq
α
AB2

+ · · ·+ (2α − 1)m−1Tq
α
ABm

+(2α − 1)m+1(Tq
α
ABm+1

+ · · ·+ Tq
α
ABN−2

)

+(2α − 1)mTq
α
ABN−1

, (31)

1.0 1.5 2.0 2.5 3.0
Α

0.05

0.10

0.15

0.20

0.25
y

FIG. 4: The axis y is the concurrence of |ψ〉 and its lower

bound, which are functions of α. The black solid line repre-

sents the concurrence of |ψ〉 in Example 4, green dotdashed

line represents the lower bound from our result, blue dotted

line represents lower bound from the result in [24].

where we have used the monogamy inequality in (1) for

N−qubit states ρ to obtain the first inequality. By using

(29) and the similar consideration in the proof of Theo-

rem 1, we get the second inequality. Since for any 2⊗ 2

quantum state ρABi , Tq(ρABi) = gq
[
C2(ρABi)

]
, one gets

the last equality. �

Example 4. Let us consider again the three-qubit

state |ψ〉 (9). From the definition of Tsallis-q entangle-

ment, when q = 2, we have T2A|BC = 2λ20(λ22 + λ23 + λ24),

T2AB = 2λ20λ
2
2, and T2AC = 2λ20λ

2
3. Set λ0 = λ1 =

λ2 = λ3 = λ4 =
√
5
5 . One gets T2

α
A|BC = ( 6

25 )α,

T2
α
AB+T2

α
AC = 2( 2

25 )α, T2
α
AB+(2

α
2 −1)T2

α
AC = 2α( 2

25 )α.

One can see that our result is better than that in [34] for

α ≥ 2, see Figure 4.

CONCLUSION

Entanglement monogamy is a fundamental proper-

ty of multipartite entangled states. We have presented

monogamy relations related to the α-power of concur-

rence C, entanglement of formation E, negativity Nc and

Tsallis-q entanglement Tq, which are tighter, at least for

some classes of quantum states, than the existing entan-

glement monogamy relations for α > 2, α >
√

2, α > 2

and α > 1, respectively. The necessary conditions that

our new inequalities are strictly tighter can been seen

from our monogamy relations. For instance, (8) is tighter

than the existing ones for α > 2, for all quantum states
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that at least one of the CABis (i = 2, ..., N − 1) is not ze-

ro, which excludes the fully separable states that have no

entanglement distribution at all among the subsystems.

Another case that CABi = 0 for all i = 2, ..., N − 1 is the

N -qubit GHZ state [50], which is genuine multipartite

entangled. However, for the genuine entangled N -qubit

W-state [51], one has CABi = 2
N , i = 2, ..., N − 1. In

general, most of states have at least one non-zero CABi

(i = 2, ..., N − 1).

Monogamy relations characterize the distribution-

s of entanglement in multipartite systems. Tighter

monogamy relations imply finer characterizations of the

entanglement distribution. Our approach may also be

used to study further the monogamy properties related

to other quantum correlations.
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