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Abstract

This paper presents an analysis of a proposed
tightly coupled Inertial/GPS navigation sys-
tem for UAV applications. An indirect, error
state extended Kalman filter is employed to es-
timate vehicle position, velocity, attitude and
IMU bias errors. The indirect configuration lin-
earises the state transition matrix and greatly
reduces the required feedback frequency. Stan-
dard GPS C/A code pseudo-ranges are used di-
rectly to update the Kalman filter. The advan-
tage of this configuration arises in situations of
poor GPS availability. Traditional loosely cou-
pled filters can deliver no new information to
the filter when the observed satellite number
falls below four. In the tightly coupled con-
figuration, all available information is delivered
to the filter even in situations where only one
satellite remains observable. The extension of
the vehicle states to include IMU biases further
improves navigation accuracy by constraining
drift during the INS alone cycle and in periods
of low GPS observability. Both algorithms are
suited to a low cost implementation. Results
from flight trials of the Brumby Mk. III UAV
are presented.

1 Introduction

Inertial Measurement Units (IMUs) provide high fre-
quency acceleration and rotation rate data that can
be used independent of vehicle models. The equa-
tions of inertial navigation are essentially integrators
meaning inherent noise and biases in the system lead
to unbounded, exponential error growth in time. The
desirability of aiding inertial sensors with GPS measure-
ments has long been known [Titterton, Weston, 2004].

The traditional approach to INS/GPS integration
with Kalman filters leads to a configuration termed

‘loosely coupled’. In this structure a GPS filter (gen-
erally EKF or Least-squares recursion) processes the
GPS signals and outputs three dimensional position
(and possibly velocity) in the standard GPS Earth
Centred Earth Fixed (ECEF) reference frame. The
design of the GPS system requires four satellites to
be tracked in order to solve for three dimensional
position (a fourth time uncertainty is also solved).
When less than four satellites are visible, stand-alone
three dimensional GPS positioning cannot be ac-
complished. Loosely coupled configurations employ
a second, master Kalman Filter to predict inertial
sensor errors from the equations of inertial navigation.
The filter is updated with direct observations of the
position error formed from the outputs of the inertial
unit and the GPS filter. The standard Kalman filter
equations are optimal when sensor observations are
unbiased with white noise. By filtering the GPS data
twice this optimality constraint is effectively abandoned.

Tightly coupled Kalman filtering for INS/GPS in-
tegration is not a new innovation in itself but it has
found use in the autonomous vehicle community rarely
and only recently [Wendel, Trommer, 2004]. GPS
ranging signals are fused directly in the update stage
of the Kalman filter. The more satellites used in the
ranging process the more information the filter has to
constrain the inertial navigation solution. In a situation
of degraded GPS availability however a tightly coupled
configuration is capable of updating the filter with
only one visible satellite. In addition, a tightly coupled
filter processes the GPS signals directly. In a well
designed system this increases the chance of optimal
filter performance.

GPS availability is a function of many variables.
In ground vehicle applications the primary degradation
occurs from signal shading as the vehicle traverses close
to natural features or buildings. In UAV applications
this situation is unlikely to occur, however in dynamic



situations, the UAV’s wings can shade satellite signals.
This is a situation that has occurred in the autonomous
UAV literature, [Kim, Sukkarieh, 2003]. In addition
GPS signals are readily degraded by deliberate means.

2 Navigation Algorithms

2.1 Equations of Inertial Navigation

The standard equations of inertial navigation are imple-
mented in a high frequency (100Hz) loop, external to the
Kalman filter. A local level North, East, Down (NED)
coordinate system is chosen as appropriate to the short
range applications we are considering but could readily
be extended to a global frame without loss of generality.
From [Titterton, Weston, 2004]

v̇e = Ce
bf

b − 2ωe
ie × ve + ge

l (1)

Where:

ve [3× 1] components of the vehicle velocity
Ce

b Direction cosine matrix relating body (IMU)
frame to NED frame

ωe
ie [3× 1] Components of earth rotation vector

fb [3× 1] Specific force vector from accelerome-
ters in body (IMU) frame

ge
l Local gravity vector (including centripetal ef-

fects)
ne Arbitrary vector n written in NED frame

Equation (1) is solved via a first order discretisa-
tion and double euler integration to give vehicle velocity
and position

ve(k + 1) = ve(k) + v̇e(k)∆t (2)
Pe(k + 1) = Pe(k) + ve(k)∆t (3)

Equations (2) and (3) provide vehicle translations in the
NED coordinate system. Vehicle orientation needs to be
tracked in order to accomplish the transformation, Ce

b,
of inertial measurements in the body fixed coordinates
to the NED coordinates. In this work, the rotation com-
ponents of vehicle motion are defined by Euler angles,
representing roll, pitch and yaw respectively, [Titterton,
Weston, 2004]. φ̇
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Denoting the three Euler angles by the vector Ψ, equa-
tion (4) is discretised to first order and solved via Euler
integration.

Ψ(k + 1) = Ψ(k) + Ψ̇(k)∆t (5)

The direction cosine matrix from equation (1) is then
constructed directly from the Euler angles.

Ce
b =

 cθcψ −cφsψ + sφsθcψ sφsψ + cφsθcψ
cθsψ cφcψ + sφsθsψ −sφcψ + cφsθsψ
−sθ sφcθ cφcθ

(6)

where sΨi
and cΨi

are shorthand notations for sinΨi

and cosΨi respectively. The propagation of the direction
cosine matrix will also be useful for further derivations
and is given by [Savage, 2000]

Ċe
b = Ce

b[ωb
ib×]− [ωe

ie×]Ce
b (7)

Where:

ωb
ib [3 × 1] Components of body rotation vector

written in body frame (IMU measurements)
ωe

ie [3 × 1] Components of earth rotation vector
written in NED frame

[n×] Skew symmetric matrix notation for arbi-
trary vector n

2.2 Equations of GPS Navigation
The structure of GPS signals are specified in [Author
Unknown, 1995]. In this work, the standard, non-
differential, civilian signal is used. This represents the
lowest standard of accuracy but requires no other exter-
nal infrastructure and is the lowest cost GPS solution
available. The standard measurement of the GPS sys-
tem is the pseudo-range. This defines the approximate
range from the user GPS receiver antenna to a particular
satellite. The pseudo-range is the true geometric range
corrupted with errors and with a minimal set of error
corrections can be specified by

ρj = rj + δρr,clk + δρion − δρs,clk + v (8)

Where:

ρj Pseudo-range from the user to the jth satel-
lite

rj Geometric range from the user to the jth

satellite
δρr,clk Range equivalent receiver clock bias offset

from GPS system time
δρs,clk Range equivalent satellite clock bias offset

from GPS system time
δρion Ionospheric signal attenuation error
v Zero mean white noise

Satellite position is determined from broadcast
ephemeris parameters. Included in this broadcast
is a correction for the satellite clock bias. There are
a number of established models that account for at-
mospheric perturbations of the signal. In this work the



Klobuchar Ionospheric model [Rizos, 1995] is used. This
model is fully defined by eight coefficients broadcast as
part of the standard GPS signal.

δρion = 5× 10−9 +A cos
2π(t− t0)

P
(9)

Where A and P represent the broadcast Klobuchar
co-efficients summed with the latitude of the ionospheric
sub-point and t0 represents the time of day (usually
midday) at which ionospheric attenuation is greatest.

Once compensation for satellite clock bias and at-
mospheric effects are applied equation (8) is reduced
to

ρj = rj + δρr,clk + v (10)

Equation (10) is then simultaneously solved for position
and user clock bias resulting in the desired navigation
solution. The geometric range from equation (10) can
be expanded explicitly

ρj =
[
(Xj−x)2+(Yj−y)2+(Zj−z)2

] 1
2
+δρr,clk+v (11)

Where:

[Xj , Yj , Zj ]T [3 × 1] Components of the jth satellite’s
position in ECEF coordinates

[x, y, z]T [3× 1] Components of user’s filtered po-
sition in ECEF coordinates

A transformation from NED to ECEF and vice versa
is required for the calculation of Equation (11). These
transformations are complicated by an ellipsoidal earth
model with large GPS satellite altitudes. A number of
closed form and iterative solutions exist and the reader
who is interested is directed to [Bomford, 1971].

3 Kalman Filter Structure

Figure 1: Indirect Tightly Coupled Kalman Filter.

This work uses an indirect error state model for inertial
navigation systems. A schematic of the cycle is shown in

Figure (1). The equations are mechanised in a local level,
North, East, Down coordinate system with a flat earth
assumption. The error state vector is defined to include
position and velocity errors, attitude misalignments, user
clock bias error and inertial sensor bias errors.

x =


δPe

δve

δΦ
δcb
δfb

δωb
ib

 (12)

Where:

δPe [3 × 1] Error components of the inertial cal-
culated position

δve [3 × 1] Error components of the inertial cal-
culated velocity

δΦ [3 × 1] Misalignment errors that affect the
transformation Ce

b

δcb [1 × 1] Error in the predicted user clock bias
(in units of range)

δfb [3×1] Error components of the accelerometer
biases

δωb
ib [3 × 1] Error components of the gyroscope

biases

3.1 Inertial Error Model
In state notation the inertial navigation error equations
propagate as a linear, time-variant first order system
driven by white noise

ẋins = Finsxins + Ginswins (13)

The input driving noise, wins is defined as a vector
of three accelerometer components and three gyroscope
components.

w =
[

wfb

wωb
ib

]
(14)

The first component wfb represents the remaining
(white) noise on the accelerometers in the body frame
(to which the IMU is fixed) after the biases are removed
and the second component wωb

ib
is the remaining (white)

noise on the gyroscopes measuring rotation rates of the
body frame relative to inertial space, written in the
body frame, after biases are removed. The input noise
w is characterised by variance Q.

The system and noise input matrices, representing
the linear dynamics of the inertial system errors are
derived by perturbing equations (1) and (7). The
derivation of equations describing the propagation of
the biases is left until the next section. The iner-
tial error equations will be presented here without a



derivation which can be found in [Titterton, Weston,
2004]. In continuous time the components of Equation
(13), representing the inertial position, velocity and
misalignments from Equation (12) are

Fins =

 0 I 0
0 [−2ωe

ie×] [(Ce
bf

b)×]
0 0 [−ωe

ie×]

 (15)

Gins =

 0 0
Ce

b 0
0 −Ce

b

 (16)

Where the components of Fins and Gins are

0 Appropriately sized zero matrix
I Appropriately sized identity matrix
ωe

ie [3 × 1] earth rotation vector written in NED
frame

Ce
b Direction cosine matrix relating body and

NED frame
fb [3 × 1] specific force vector from accelerome-

ters
[n×] Skew symmetric matrix notation for arbi-

trary vector n

3.2 Bias Error Model
In this section both clock bias and inertial sensor biases
are considered together. Clock bias is an essential part
of the GPS solution and cannot be omitted. Inertial
bias estimation has the potential to improve navigation
solutions in two ways. It smoothes the trajectory in
normal operation by reducing the drift in the INS inte-
grations and it improves robustness and recoverability
by greatly reducing the drift experienced in failed or
denied GPS environments.

The bias errors are estimated as Brownian processes. In
discrete time this is

δcb(k + 1) = cb(k) + wc (17)
δfb(k + 1) = δfb(k) + waccel (18)
δωb

ib(k + 1) = δωb
ib(k) + wgyro (19)

We augment the inertial error state model

x = [xins xclock bias xins biases]T (20)

Here we have included accelerometer biases, δfb and gy-
roscope biases, δωb

ib into one term, xins biases. The con-
tinuous state transition and noise input matrices from
equations (15) and (16) are then extended

F =

 Fins 0 Fcoupled
0 Fclock bias 0
0 0 Fins biases

 (21)

G =

 Gins 0 0
0 Gclock bias 0
0 0 Gins biases

 (22)

We can specify the elements in these matrices

Fcoupled =

 0 0
Ce

b 0
0 −Ce

b

 (23)

Equation (23) represents the way the INS biases (in body
fixed coordinates) couple to the INS position, velocity
and attitude error rates in the NED frame.

Fclock bias = [0] (24)

Equation (24) represents the clock bias error transition
as a random process in continuous time.

Fins biases =
[

0 0
0 0

]
(25)

Equation (25) is analogous to equation (24) and repre-
sents the random INS bias error modeling in continuous
time.

Gclock bias = 1 (26)

Gins biases = I (27)

Equations (26) and (27) imply direct transmission of bias
noises into the bias error state.

3.3 Kalman Filter Prediction
The indirect structure depicted in Figure (1) feeds back
the estimated errors after each update cycle of the filter.
This feedback represents the entire knowledge of the er-
rors in the state and hence resets the state mean to zero.
The prediction cycle then involves a prediction of covari-
ance only. Given a suitably initialised covariance matrix,
P(k0|k0), and a discretisation (omitted for brevity) we
have

P(k + 1|k) = FP(k|k)FT + Q (28)

3.4 Kalman Filter Observation
The linear Kalman filter observation takes the form:

z = Hx + v (29)

In this implementation, the available observations are
non-linear pseudo-range errors, derived from the mea-
sured pseudo-range and a predicted pseudo-range based
on the inertial calculated position

δρ = ρgps − ρpred,ins (30)

Where ρgps is the standard C/A code pseudo-range cor-
rected for satellite clock bias and ionospheric attenuation



and ρpred,ins is constructed from equation (11) via the
INS position solution and clock bias estimate. The linear
H matrix must link these pseudo-range errors to the rel-
evant components of the state vector. In this work this
is position and clock bias only. The first order Taylor
series expansion of equation (11) is used.

δρ =
∂h
∂x

δx (31)

= Hδx (32)

So for an arbitrary number of visible satellites H can be
constructed

H =


∂ρ1
∂x

∂ρ1
∂y

∂ρ1
∂z

∂ρ1
∂cb

∂ρ2
∂x

∂ρ2
∂y

∂ρ2
∂z

∂ρ2
∂cb

. . .

∂ρn

∂x
∂ρn

∂y
∂ρn

∂z
∂ρn

∂cb

 (33)

For brevity we have included only the non-zero terms in
H and omitted the extra dimensions corresponding to
zeros. The elements of H consist of:

∂ρj
∂x

=
−(Xj − x)

[(Xj − x)2 + (Yj − y)2 + (Zj − z)2]
1
2

∂ρj
∂y

=
−(Yj − y)

[(Xj − x)2 + (Yj − y)2 + (Zj − z)2]
1
2

∂ρj
∂z

=
−(Zj − z)

[(Xj − x)2 + (Yj − y)2 + (Zj − z)2]
1
2

∂ρj
∂cb

= 1 (34)

The state and covariance updates are performed in the
typical fashion.

4 Analysis Procedure

The Kalman filter structure described in the preceding
sections was implemented with post-processed raw INS
and GPS measurements. The data was collected from
the University of Sydney’s Marulan test flight range
in May, 2005. A Brumby Mk. III UAV was flown
through a mission scenario consisting of pre-defined
paths designed to bring vision sensors into locations in
which ground targets could be observed. The primary
path components consist of straight line trajectories,
figure eights and constant radius orbits.

Shading of GPS signals by the wing has been a
common occurrence in Brumby missions to date. In
such situations, navigation accuracy has been severely
degraded especially in the altitude axis [Kim, Sukkarieh,
2003]. To evaluate bias estimation a comparison of a

stationary period after landing with and without bias
estimation is presented. This represents a period where
bias estimates have converged and where the vehicle
dynamics will not cloud the analysis. A comparison
of vehicle drift in a period of GPS outage with and
without bias estimation is also presented.

5 Results

Figure (2) presents a plan view of part of the flight
trajectory. A simulated GPS outage occurs for 20
seconds during a smooth, slow turn. A tightly coupled
solution with full satellite availability is used as a
baseline solution for comparison. Results from a tightly
coupled solution with one, two, three satellites are
compared to a loosely coupled solution without GPS
aiding (as will occur with any number of satellites below
four). Figure (3) expands the image at the end of the
period of reduced GPS observability for clarification.
Figure (4) shows results from the altitude axis for the
same situation.

Figures (2), (3) and (4) demonstrate the possible
improvements in navigation accuracy and reliability
that can be obtained with the tightly coupled configu-
ration. The altitude axis is consistently the worst case.
In this axis results show that for two or three visible
satellites positioning errors are reduced by a factor of
approximately 5. For one visible satellite positioning
errors are improved by an approximate factor of 1.5.

Figures (5) and (6) present the raw accelerometer and
gyro measurements with and without bias correction.
Bias estimation is correcting the raw measurements.
The presence of undesirable harmonics in two of the
corrected gyroscope measurements is due to filter tuning
and will be further examined in later work.

Figure (7) demonstrates the improvement in INS
alone drift that can be achieved with bias estimation.
In a simulated, partial GPS outage lasting 20 seconds,
position error in the horizontal axes was improved by a
factor of 15 where only two GPS satellites were visible.

6 Future Considerations

Future work will include a more extensive, statistical
analysis of the errors in position, velocity and attitude.
Vision observations of known map landmarks will be in-
corporated with the goal of utilising all available infor-
mation for localisation and navigation in the most robust
and autonomous manner possible.

7 Conclusion

This paper has presented an overview of potential en-
hancements that can be made to current low, cost UAV



Figure 2: Comparison of horizontal position errors after
simulated GPS satellite loss of 20s. Reducing numbers
of visible satellites compared with baseline and loosely
coupled solutions demonstrate significant improvements
in error magnitude.

navigation systems. Results were presented based on the
current configuration of the Brumby UAV. The work has
focussed on altering the INS/GPS integration structure
and extending the estimation process to include biases in
the inertial navigation sensors. Motivating the work was
the improvement to be gained by restructuring sensor
measurements that are already available.
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Figure 4: Comparison of vertical errors after simulated
GPS satellite loss.

Figure 5: Accelerometer measurements with and with-
out bias corrections taken from stationary period after
landing.

Figure 6: Gyroscope measurements with and without
bias corrections taken from stationary period after land-
ing.

Figure 7: Comparison of horizontal position errors with
and without bias estimation with two visible satellites.
Unaided INS position is significantly improved by remov-
ing the biases - Magnified.


