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Abstract. We present a novel approach to fuzzy dl-programs under the answer set semantics, which

is a tight integration of fuzzy disjunctive programs under the answer set semantics with fuzzy de-

scription logics. From a different perspective, it is a generalization of tightly integrated disjunctive

dl-programs by fuzzy vagueness in both the description logic and the logic program component.

We show that the new formalism faithfully extends both fuzzy disjunctive programs and fuzzy de-

scription logics, and that under suitable assumptions, reasoning in the new formalism is decidable.

Furthermore, we present a polynomial reduction of certain fuzzy dl-programs to tightly integrated

disjunctive dl-programs. We also provide a special case of fuzzy dl-programs for which deciding

consistency and query processing have both a polynomial data complexity.
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1 Introduction

The Semantic Web [1, 9] aims at an extension of the current World Wide Web by standards and technologies

that help machines to understand the information on the Web so that they can support richer discovery, data

integration, navigation, and automation of tasks. The main ideas behind it are to add a machine-readable

meaning to Web pages, to use ontologies for a precise definition of shared terms in Web resources, to use

KR technology for automated reasoning from Web resources, and to apply cooperative agent technology for

processing the information of the Web.

The Semantic Web consists of several hierarchical layers, where the Ontology layer, in form of the OWL

Web Ontology Language [34, 15], is currently the highest layer of sufficient maturity. OWL consists of three

increasingly expressive sublanguages, namely, OWL Lite, OWL DL, and OWL Full. OWL Lite and OWL

DL are essentially very expressive description logics with an RDF syntax [15]. As shown in [13], ontology

entailment in OWL Lite (resp., OWL DL) reduces to knowledge base (un)satisfiability in the description

logic SHIF(D) (resp., SHOIN (D)). On top of the Ontology layer, the Rules, Logic, and Proof layers

of the Semantic Web will be developed next, which should offer sophisticated representation and reasoning

capabilities.

In particular, there is a large body of work on integrating rules and ontologies, which is a key require-

ment of the layered architecture of the Semantic Web. Significant research efforts focus on hybrid integra-

tions of rules and ontologies, called description logic programs (or dl-programs), which are of the form

KB =(L,P ), where L is a description logic knowledge base and P is a finite set of rules involving either

queries to L in a loose integration (see especially [7, 8, 5, 6]) or concepts and roles from L as unary resp.

binary predicates in a tight integration (see especially [25, 26, 20]).

Other works explore formalisms for handling uncertainty and vagueness / imprecision in the Semantic

Web. In particular, formalisms for dealing with uncertainty and vagueness in ontologies have been applied

in ontology mapping and information retrieval. Vagueness and imprecision also abound in multimedia infor-

mation processing and retrieval. Moreover, handling vagueness is an important aspect of natural language

interfaces to the Web. There are several recent extensions of description logics, ontology languages, and

description logic programs for the Semantic Web by probabilistic uncertainty and fuzzy vagueness. In par-

ticular, description logic programs under probabilistic uncertainty and fuzzy vagueness have been proposed

in [18, 17] resp. [31, 32, 19].

In this paper, we continue this line of research. We present tightly integrated fuzzy description logic

programs (or simply fuzzy dl-programs) under the answer set semantics, which are a tight integration

of fuzzy disjunctive programs under the answer set semantics with fuzzy generalizations of SHIF(D)
and SHOIN (D). Even though there has been previous work on fuzzy positive dl-programs [31, 32] and

on loosely integrated fuzzy normal dl-programs [19], to our knowledge, this is the first approach to tightly

integrated fuzzy disjunctive dl-programs (with default negation in rule bodies). The main contributions of

this paper can be summarized as follows:

• We present a novel approach to fuzzy dl-programs, which is a tight integration of fuzzy disjunctive

programs under the answer set semantics with fuzzy description logics. It is a generalization of the

tightly integrated disjunctive dl-programs in [20] by fuzzy vagueness in both the description logic and

the logic program component.

• We show that the new fuzzy dl-programs have nice semantic features. In particular, all their answer

sets are also minimal models, and the cautious answer set semantics faithfully extends both fuzzy

disjunctive programs and fuzzy description logics. Furthermore, the new approach also does not need
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the unique name assumption.

• In the large class of fuzzy dl-programs that are defined over a finite number of truth values, the

problems of deciding consistency, cautious consequence, and brave consequence are all decidable. We

also present a polynomial reduction for certain fuzzy dl-programs to the tightly integrated disjunctive

dl-programs in [20].

• Finally, we delineate a special case of fuzzy dl-programs where deciding consistency and query pro-

cessing have both a polynomial data complexity.

The rest of this paper is organized as follows. Sections 2 and 3 recall combination strategies and fuzzy

description logics, respectively. Section 4 introduces the syntax of fuzzy dl-programs and defines their

answer set semantics. In Section 5, we analyze some semantic properties of fuzzy dl-programs under the

answer set semantics. Section 6 presents a reduction of fuzzy dl-programs to disjunctive dl-programs. In

Section 7, we delineate a special case of fuzzy dl-programs with polynomial data complexity. Section 8

summarizes our main results and gives an outlook on future research. Note that detailed proofs of all the

results in this paper are given in the extended version.

2 Combination Strategies

Rather than being restricted to an ordinary binary truth value among false and true, vague propositions

may also have a truth value strictly between false and true. In the sequel, we use the unit interval [0, 1] as

the set of all possible truth values, where 0 and 1 represent the ordinary binary truth values false and true,

respectively. For example, the vague proposition “John is a tall man” may be more or less true, and it is thus

associated with a truth value in [0, 1], depending on the body height of John.

In order to combine and modify the truth values in [0, 1], we assume combination strategies, namely,

conjunction, disjunction, implication, and negation strategies, denoted ⊗, ⊕, ⊲, and ⊖, respectively, which

are functions ⊗, ⊕, ⊲ : [0, 1] × [0, 1]→ [0, 1] and ⊖ : [0, 1]→ [0, 1] that generalize the ordinary Boolean

operators ∧, ∨,→, and ¬, respectively, to the set of truth values [0, 1]. For a, b∈ [0, 1], we then call a ⊗ b
(resp., a⊕b, a ⊲ b) the conjunction (resp., disjunction, implication) of a and b, and we call⊖ a the negation

of a. As usual, we assume that combination strategies have some natural algebraic properties, namely, the

properties shown in Tables 1 and 2. Note that conjunction and disjunction strategies (with the properties

in Table 1) are also called triangular norms and triangular co-norms [11], respectively. We do not assume

properties that relate the combination strategies to each other (such as de Morgan’s law); even though one

may additionally assume such properties, they are not required here.

Example 2.1 The combination strategies of various fuzzy logics are shown in Table 3.

3 Fuzzy Description Logics

In this section, we recall fuzzy SHIF(D) and fuzzy SHOIN (D) [29, 30, 21] (see also [27]). Note that

there also exists an implementation of fuzzy SHIF(D) (the fuzzyDL system; see http://gaia.isti.

cnr.it/˜straccia). Intuitively, description logics model a domain of interest in terms of concepts and

roles, which represent classes of individuals and binary relations between classes of individuals, respectively.

A description logic knowledge base encodes in particular subset relationships between classes of individuals,
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Table 1: Axioms for conjunction and disjunction strategies.

Axiom Name Conjunction Strategy Disjunction Strategy

Tautology / Contradiction a⊗ 0 = 0 a⊕ 1 = 1
Identity a⊗ 1 = a a⊕ 0 = a
Commutativity a⊗ b = b⊗ a a⊕ b = b⊕ a
Associativity (a⊗ b)⊗ c = a⊗ (b⊗ c) (a⊕ b)⊕ c = a⊕ (b⊕ c)
Monotonicity if b 6 c, then a⊗ b 6 a⊗ c if b 6 c, then a⊕ b 6 a⊕ c

Table 2: Axioms for implication and negation strategies.

Axiom Name Implication Strategy Negation Strategy

Tautology / Contradiction 0 ⊲ b = 1, a ⊲ 1 = 1, 1 ⊲ 0 = 0 ⊖ 0 = 1, ⊖ 1 = 0
Antitonicity if a 6 b, then a ⊲ c > b ⊲ c if a 6 b, then ⊖ a > ⊖ b
Monotonicity if b 6 c, then a ⊲ b 6 a ⊲ c

Table 3: Combination strategies of various fuzzy logics.

Łukasiewicz Logic Gödel Logic Product Logic Zadeh Logic

a⊗ b max(a+ b− 1, 0) min(a, b) a · b min(a, b)
a⊕ b min(a+ b, 1) max(a, b) a+ b− a · b max(a, b)

a ⊲ b min(1− a+ b, 1)

{

1 if a 6 b

b otherwise
min(1, b/a) max(1− a, b)

⊖ a 1− a
{

1 if a = 0

0 otherwise

{

1 if a = 0

0 otherwise
1− a

subset relationships between binary relations between classes, the membership of individuals to classes, and

the membership of pairs of individuals to binary relations between classes. In fuzzy description logics, these

relationships and memberships then have a degree of truth in [0, 1].

3.1 Syntax

We first describe fuzzy SHOIN (D), which has the following elementary ingredients. We assume a set

of data values, a set of elementary datatypes, and a set of datatype predicates (each with a predefined

arity n> 1). A datatype is an elementary datatype or a finite set of data values. A fuzzy datatype theory

D= (∆D, ·D) consists of a datatype domain ∆D and a mapping ·D that assigns to each data value an

element of ∆D, to each elementary datatype a subset of ∆D, and to each datatype predicate of arity n a

fuzzy relation over ∆D of arity n (that is, a mapping (∆D)n → [0, 1]). We extend ·D to all datatypes by

{v1, . . . , vn}D = {vD1 , . . . , vDn }.

Example 3.1 A crisp unary datatype predicate 618 over the natural numbers denoting the integers of at

most 18 may be defined by 618 (x)= 1, if x6 18, and 618 (x)= 0, otherwise. Then, Minor =Person ⊓
∃age.618 defines a person of age at most 18. Non-crisp predicates are usually defined by functions

for specifying fuzzy set membership degrees, such as the triangular, the trapezoidal, the L-, and the R-

function (see Fig. 1). For example, a fuzzy unary datatype predicate Young over the natural numbers
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(a) (b) (c) (d)

Figure 1: (a) Trapezoidal function; (b) Triangular function; (c) L-function; (d) R-function

denoting the degree of youngness of a person’s age may be defined by Young(x)=L(x; 10, 30). Then,

YoungPerson =Person ⊓ ∃age.Young denotes a young person.

Let A, RA, RD, I, and M be pairwise disjoint (nonempty) denumerable sets of atomic concepts, ab-

stract roles, datatype roles, individuals, and fuzzy modifiers, respectively. Here, a fuzzy modifier m [12, 33]

represents a function fm on [0, 1], which changes the membership function of a fuzzy set.

Example 3.2 The fuzzy modifiers very resp. slightly may represent the two functions very(x)=x2 resp.

slightly(x)=
√
x. Then, the concept of sports cars may be defined as SportsCar =Car⊓∃speed .very(High),

where High is a fuzzy datatype predicate over the domain of speed in km/h, which may be defined as

High(x)=R(x; 80, 250).

A role is any element of RA ∪R
−
A ∪RD (where R

−
A is the set of inverses R− of all R∈RA). We

define concepts inductively as follows. Each A∈A is a concept, ⊥ and ⊤ are concepts, and if a1, . . . ,
an ∈ I, then {a1, . . . , an} is a concept (called oneOf). If C, C1, C2 are concepts, R,S ∈RA ∪ R

−
A, and

m∈M, then (C1 ⊓C2), (C1 ⊔C2), ¬C, and m(C) are concepts (called conjunction, disjunction, negation,

and fuzzy modification, respectively), as well as ∃R.C, ∀R.C, >nS, and 6nS (called exists, value, atleast,

and atmost restriction, respectively) for an integer n> 0. If D is a datatype and T, T1, . . . , Tn ∈RD, then

∃T1, . . . , Tn.D, ∀T1, . . . , Tn.D, >nT , and 6nT are concepts (called datatype exists, value, atleast, and

atmost restriction, respectively) for an integer n>0. We eliminate parentheses as usual.

A crisp axiom has one of the following forms: (1) C ⊑D (called concept inclusion axiom), where

C and D are concepts; (2) R⊑S (called role inclusion axiom), where either R,S ∈RA or R,S ∈RD;

(3) Trans(R) (called transitivity axiom), where R∈RA; (4) C(a) (called concept assertion axiom), where

C is a concept and a∈ I; (5) R(a, b) (resp., U(a, v)) (called role assertion axiom), where R∈RA (resp.,

U ∈RD) and a, b ∈ I (resp., a∈ I and v is a data value); and (6) a= b (resp., a 6= b) (equality (resp.,

inequality) axiom), where a, b∈ I. We define fuzzy axioms as follows: A fuzzy concept inclusion (resp., fuzzy

role inclusion, fuzzy concept assertion, fuzzy role assertion) axiom is of the form α θ n, where α is a concept

inclusion (resp., role inclusion, concept assertion, role assertion) axiom, θ∈{6 ,=, > }, and n∈ [0, 1]. For

example, C(a)> 0.1, R(a, b)6 0.3, R ⊑ S> 0.4, and C ⊑ D 6 0.6 are fuzzy axioms. Informally, a fuzzy

axiom of the form α6n (resp., α=n, α>n) encodes that the truth degree of α is at most (resp., equal

to, at least) n. For example, TallPerson(jim) > 0.2 says that jim is a tall person with a truth degree of

at least 0.2, while C ⊑ D > n says that the subsumption degree between C and D is at least n. We often

use a : C and α to abbreviate C(a) and α> 1, respectively. A fuzzy (description logic) knowledge base L
is a finite set of fuzzy axioms, transitivity axioms, and equality and inequality axioms. For decidability,

number restrictions in L are restricted to simple abstract roles [16].

Fuzzy SHIF(D) has the same syntax as fuzzy SHOIN (D), but without the oneOf constructor and

with the atleast and atmost constructors limited to 0 and 1.
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Example 3.3 (Shopping Agent) The following axioms are an excerpt of the description logic knowledge

base L that conceptualizes a car selling web site:

Cars ⊔ Trucks ⊔Vans ⊔ SUVs ⊑ Vehicles (1)

PassengerCars ⊔ LuxuryCars ⊑ Cars (2)

CompactCars ⊔MidSizeCars ⊔ SportyCars ⊑ PassengerCars (3)

Cars ⊑ (∃hasReview .Integer) ⊓ (∃hasInvoice.Integer)

⊓ (∃hasResellValue.Integer) ⊓ (∃hasMaxSpeed .Integer)

⊓ (∃hasHorsePower .Integer) ⊓ . . . (4)

MazdaMX5Miata : SportyCar ⊓ (∃hasInvoice.18883)

⊓ (∃hasHorsePower .166) ⊓ . . . (5)

MitsubishiEclipseSpyder : SportyCar ⊓ (∃hasInvoice.24029)

⊓ (∃hasHorsePower .162) ⊓ . . . (6)

Eqs. 1–3 describe the concept taxonomy of the site, while Eq. 4 describes the datatype attributes of the cars

sold in the site. Eqs. 5–6 describe the properties of some sold cars.

We may then encode “costs at most about 22 000�” and “has a power of around 150 HP” in a buyer’s

request through the following concepts C and D, respectively:

C =∃hasInvoice.LeqAbout22000 and D=∃hasHorsePower .Around150 ,

where LeqAbout22000 =L(22000, 25000) and Around150 =Tri(125, 150, 175). The latter two equations

define the fuzzy concepts of “at most about 22 000�” and “around 150 HP”. The former is modeled as a

left shoulder function stating that if the prize is less than 22 000, then the degree of truth (degree of buyer’s

satisfaction) is 1, else the truth is linearly decreasing to 0 (reached at the cost of 25 000). In fact, we are

modeling a case were the buyer would like to pay less than 22 000, though may still accept a higher price (up

to 25 000) to a lesser degree. Similarly, the latter models the fuzzy concept “around 150 HP” as a triangular

function with vertice in 150 HP.

3.2 Semantics

Concerning the semantics of fuzzy SHIF(D) and SHOIN (D) [30], the main idea is that concepts and

roles are interpreted as fuzzy subsets of an interpretation’s domain. Therefore, concept inclusion, role

inclusion, concept assertion, and role assertion axioms, rather than being satisfied (true) or unsatisfied (false)

in an interpretation, have a degree of truth in [0, 1]. In the sequel, we assume that ⊗, ⊕, ⊲, and ⊖ are

some arbitrary but fixed conjunction, disjunction, implication, and negation strategies, respectively. A fuzzy

interpretation I =(∆I , ·I) relative to a fuzzy datatype theory D= (∆D, ·D) consists of a nonempty set

∆I (called the domain), disjoint from ∆D, and a fuzzy interpretation function ·I , which (i) coincides with

·D on every data value, datatype, and fuzzy datatype predicate, (ii) assigns to each modifier m ∈ M its

modifier function fm : [0, 1]→ [0, 1], and (iii) assigns

• to each individual a ∈ I an element aI ∈∆I ;

• to each atomic concept C ∈ A a function CI : ∆I → [0, 1];

• to each abstract role R ∈ RA a function RI : ∆I ×∆I → [0, 1];
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• to each concrete role T ∈ RD a function T I : ∆I ×∆D → [0, 1].

The mapping ·I is extended to all roles and concepts as follows (where x, y ∈ ∆I):

(S−)
I
(x, y) = SI(y, x)
⊤I(x) = 1

⊥I(x) = 0

{a1, . . . , an}I(x) =
⊕n

i=1 ai
I = x

(C1 ⊓ C2)
I(x) = C1

I(x)⊗ C2
I(x)

(C1 ⊔ C2)
I(x) = C1

I(x)⊕ C2
I(x)

(¬C)I(x) = ⊖CI(x)

(m(C))I(x) = fm(CI(x))

(∀R.C)I(x) = infy∈∆I RI(x, y) ⊲ CI(y)

(∃R.C)I(x) = supy∈∆I RI(x, y)⊗ CI(y)

(> n S)I(x) = sup {y1, . . . , yn} ⊆ ∆I

|{y1, . . . , yn}| = n

⊗n
i=1 S

I(x, yi)

(6 n S)I(x) = ⊖ (> n+ 1 S)I(x)

(∀T1, . . . , Tn.D)I(x) = infy1,...,yn∈∆D(
⊗n

i=1 Ti
I(x, yi)) ⊲ DD(y1, . . . , yn)

(∃T1, . . . , Tn.D)I(x) = supy1,...,yn∈∆D(
⊗n

i=1 Ti
I(x, yi))⊗DD(y1, . . . , yn) .

The mapping ·I is extended to concept inclusion, role inclusion, concept assertion, and role assertion axioms

as follows (where a, b ∈ I):

(C1 ⊑ C2)
I = infx∈∆I C1

I(x) ⊲ C2
I(x)

(R1 ⊑ R2)
I = infx,y∈∆I R1

I(x, y) ⊲ R2
I(x, y)

(C(a))I = CI(aI)

(R(a, b))I = RI(aI , bI) .

The notion of a fuzzy interpretation I satisfying a transitivity, equality, inequality, or fuzzy axiom E,

or I being a model of E, denoted I |=E, is defined as follows: (i) I |= trans(R) iff RI(x, y)> supz∈∆I

RI(x, z) ⊗ RI(z, y) for all x, y ∈∆I ; (ii) I |= a= b iff aI = bI , and I |= a 6= b iff aI 6= bI ; and (iii) I |=
α θ n iff αI θ n. A concept C is satisfiable iff there is an interpretation I and some x∈∆I such that

CI(x)> 0. We say I satisfies a fuzzy knowledge base L, or I is a model of L, denoted I |=L, iff I is a

model of all E ∈L. We say L is satisfiable iff L has a model. A fuzzy axiom E is a logical consequence of

L, denoted L |=E, iff every model of L satisfies E. A fuzzy axiom α>n is a tight logical consequence of

L, denoted L |=tight α>n, iff n is the supremum of m∈ [0, 1] subject to L |=α>m.

Example 3.4 (Shopping Agent cont’d) The following fuzzy axioms are (tight) logical consequences of L
in Example 3.3 (under the Zadeh semantics of the connectives):

C(MazdaMX5Miata) > 1.0 C(MitsubishiEclipseSpyder) > 0.32

D(MazdaMX5Miata) > 0.36 D(MitsubishiEclipseSpyder) > 0.56 .

4 Fuzzy Description Logic Programs

In this section, we present a tightly integrated approach to fuzzy disjunctive description logic programs (or

simply fuzzy dl-programs) under the answer set semantics. Observe that differently from [19] (in addition
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to being a tightly integrated approach to fuzzy dl-programs), the fuzzy dl-programs here are based on fuzzy

description logics as in [30]. Furthermore, they additionally allow for disjunctions in rule heads. We first

introduce the syntax of fuzzy dl-programs and then their answer set semantics.

The basic idea behind the tightly integrated approach in this section is as follows. Suppose that we have

a fuzzy disjunctive program P . Under the answer set semantics, P is equivalent to its grounding ground(P ).
Suppose now that some of the ground atoms in ground(P ) are additionally related to each other by a fuzzy

description logic knowledge base L. That is, some of the ground atoms in ground(P ) actually represent

concept and role memberships relative to L. Thus, when processing ground(P ), we also have to consider

L. However, we only want to do it to the extent that we actually need it for processing ground(P ). Hence,

when taking a fuzzy Herbrand interpretation I ⊆HBΦ, we have to ensure that I represents a valid truth

value assignment relative to L. In other words, the main idea behind the semantics is to interpret P relative

to Herbrand interpretations that also satisfy L, while L is interpreted relative to general interpretations over

a first-order domain. Thus, we modularly combine the standard semantics of fuzzy disjunctive programs and

of fuzzy description logics as in [19], which allows for building on the standard techniques and the results

of both areas. However, our new approach here allows for a much tighter integration of L and P .

4.1 Syntax

We assume a function-free first-order vocabulary Φ with nonempty finite sets of constant and predicate

symbols. We use Φc to denote the set of all constant symbols in Φ. We also assume pairwise disjoint

(nonempty) denumerable sets A, RA, RD, I, and M of atomic concepts, abstract roles, datatype roles,

individuals, and fuzzy modifiers, respectively, as in Section 3. We assume that Φc is a subset of I. This

assumption guarantees that every ground atom constructed from atomic concepts, abstract roles, datatype

roles, and constants in Φc can be interpreted in the description logic component. We do not assume any other

restriction on the vocabularies, that is, Φ and A (resp., RA ∪RD) may have unary (resp., binary) predicate

symbols in common.

Let X be a set of variables. A term is either a variable from X or a constant symbol from Φ. An atom is

of the form p(t1, . . . , tn), where p is a predicate symbol of arity n > 0 from Φ, and t1, . . . , tn are terms. A

literal l is an atom p or a negated atom not p. A disjunctive fuzzy rule (or simply fuzzy rule) r is of the form

a1 ∨⊕1
· · · ∨⊕l−1

al ←⊗0
b1 ∧⊗1

b2 ∧⊗2
· · · ∧⊗k−1

bk∧⊗k

not⊖k+1
bk+1 ∧⊗k+1

· · · ∧⊗m−1
not⊖m bm > v,

(7)

where l> 1, m> k> 0, a1, . . . , al, bk+1, . . . , bm are atoms, b1, . . . , bk are either atoms or truth values from

[0, 1], ⊕1, . . . ,⊕l−1 are disjunction strategies, ⊗0, . . . ,⊗m−1 are conjunction strategies, ⊖k+1, . . . ,⊖m are

negation strategies, and v ∈ [0, 1]. We refer to a1 ∨⊕1
· · · ∨⊕l−1

al as the head of r, while the conjunction

b1 ∧⊗1
. . . ∧⊗m−1

not⊖m bm is the body of r. We define H(r)= {a1, . . . , al} and B(r)=B+(r) ∪B−(r),
where B+(r) = {b1, . . . , bk} and B−(r) = {bk+1, . . . , bm}. A disjunctive fuzzy program (or simply fuzzy

program P is a finite set of fuzzy rules of the form (7). We say P is a normal fuzzy program iff l= 1 for all

fuzzy rules (7) in P . We say P is a positive fuzzy program iff l= 1 and m= k for all fuzzy rules (7) in P .

A disjunctive fuzzy description logic program (or simply fuzzy dl-program) KB = (L,P ) consists of

a description logic knowledge base L and a disjunctive fuzzy program P . It is called a normal fuzzy dl-

program iff P is a normal fuzzy program. It is called a positive fuzzy dl-program iff P is a positive fuzzy

program.
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Example 4.1 (Shopping Agent cont’d) A fuzzy dl-program KB = (L,P ) is given by the fuzzy description

logic knowledge base L in Example 3.3 and the set of fuzzy dl-rules P , which contains only the following

fuzzy dl-rule (where x⊗ y = min(x, y)):

query(x) ←⊗ SportyCar(x) ∧⊗ hasInvoice(x, y1) ∧⊗ hasHorsePower(x, y2)∧⊗
LeqAbout22000 (y1) ∧⊗ Around150 (y2) > 1 .

Informally, the predicate query collects all sporty cars, and ranks them according to whether they cost at

most around 22 000� and have around 150 HP (such a car may be requested by a car buyer with economic

needs). Another fuzzy dl-rule is given as follows (where⊖x= 1−x and Around300 =Tri(250, 300, 350)):

query ′(x) ←⊗ SportyCar(x) ∧⊗ hasInvoice(x, y1) ∧⊗ hasMaxSpeed(x, y2)∧⊗
not⊖LeqAbout22000 (y1) ∧⊗ Around300 (y2) > 1 .

Informally, this rule collects all sporty cars, and ranks them according to whether they cost at least around

22 000� and have a maximum speed of around 300 km/h (such a car may be requested by a car buyer with

luxurious needs). Another fuzzy dl-rule involving also a disjunction in its head is given as follows (where

x⊕ y = max(x, y)):

Small(x)∨⊕Old(x) ←⊗ Car(x) ∧⊗ hasInvoice(x, y) ∧⊗ not⊖GeqAbout15000 (y) > 0.7 .

This rule says that a car costing at most around 15 000� is either small or old. Observe here that Small and

Old may be two concepts in the fuzzy description logic knowledge base L. That is, the tightly integrated

approach to fuzzy dl-programs under the answer set semantics also allows for using the rules in L to express

relationships between the concepts and roles in P . This is not possible in the loosely integrated approach to

fuzzy dl-programs under the answer set semantics in [19], since the dl-queries of that framework can only

occur in rule bodies, but not in rule heads.

4.2 Semantics

We now define the answer set semantics of fuzzy dl-programs via a generalization of the standard Gelfond-

Lifschitz transformation [10].

In the sequel, let KB = (L,P ) be a fuzzy dl-program. A ground instance of a rule r∈P is obtained

from r by replacing every variable that occurs in r by a constant symbol from Φc. We denote by ground(P )
the set of all ground instances of rules in P . The Herbrand base relative to Φ, denoted HBΦ, is the set

of all ground atoms constructed with constant and predicate symbols from Φ. Observe that we define the

Herbrand base relative to Φ and not relative to P . This allows for reasoning about ground atoms from the

description logic component that do not necessarily occur in P . Observe, however, that the extension from

P to Φ is only a notational simplification, since we can always make constant and predicate symbols from

Φ occur in P by “dummy” rules such as constant(c)← and p(c)← p(c), respectively. We denote by DLΦ

the set of all ground atoms in HBΦ that are constructed from atomic concepts in A, abstract roles in RA,

concrete roles in RD, and constant symbols in Φc.

We define Herbrand interpretations and the truth of fuzzy dl-programs in them as follows. An interpre-

tation I is a mapping I : HBΦ→ [0, 1]. We write HBΦ to denote the interpretation I such that I(a)= 1 for

all a∈HBΦ. For interpretations I and J , we write I ⊆ J iff I(a)6 J(a) for all a∈HBΦ, and we define
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the intersection of I and J , denoted I ∩J , by (I ∩J)(a)= min(I(a), J(a)) for all a∈HBΦ. Observe

that I ⊆HBΦ for all interpretations I . We say that I is a model of a ground fuzzy rule r of the form (7),

denoted I |= r, iff

I(a1)⊕1 · · · ⊕l I(al) > I(b1)⊗1 · · · ⊗k−1 I(bk) ⊗k

⊖k+1 I(bk+1)⊗k+1 · · · ⊗m−1 ⊖mI(bm)⊗0 v .
(8)

Here, we implicitly assume that the disjunction strategies⊕1, . . . ,⊕l and the conjunction strategies⊗1, . . . ,
⊗m−1,⊗0 are evaluated from left to right. Notice also that the above definition implicitly assumes an

implication strategy ⊲ that is defined by a ⊲ b= sup {c∈ [0, 1] | a ⊗0 c6 b} for all a, b∈ [0, 1] (and thus

for n,m∈ [0, 1] and a=n, it holds that a⊲ b>m iff b>n⊗0m, if we assume that the conjunction strategy

⊗0 is continuous). Observe that such a relationship between the implication strategy ⊲ and the conjunction

strategy⊗ (including also the continuity of⊗) holds in Łukasiewicz, Gödel, and Product Logic (see Table 3).

We say that I is a model of a fuzzy program P , denoted I |=P , iff I |= r for all r∈ ground(P ). We say I is

a model of a description logic knowledge base L, denoted I |=L, iff L∪{a= I(a) | a∈HBΦ} is satisfiable.

An interpretation I ⊆HBΦ is a model of a fuzzy dl-program KB = (L,P ), denoted I |=KB , iff I |=L and

I |=P . We say KB is satisfiable iff it has a model.

The Gelfond-Lifschitz transform of a fuzzy dl-program KB = (L,P ) relative to an interpretation I ⊆
HBΦ, denoted KB I , is defined as the fuzzy dl-program (L,P I), where P I is the set of all fuzzy rules

obtained from ground(P ) by replacing all default-negated atoms not⊖j
bj by the truth value ⊖jI(bj). We

are now ready to define the answer set semantics of fuzzy dl-programs as follows.

Definition 4.2 Let KB = (L,P ) be a fuzzy dl-program. An interpretation I ⊆HBΦ is an answer set of

KB iff I is a minimal model of KB I . We say that KB is consistent (resp., inconsistent) iff KB has an

(resp., no) answer set.

We finally define the notions of cautious (resp., brave) reasoning from fuzzy dl-programs under the

answer set semantics as follows.

Definition 4.3 Let KB = (L,P ) be a fuzzy dl-program. Let a∈HBΦ and n∈ [0, 1]. Then, a>n is a

cautious (resp., brave) consequence of a fuzzy dl-program KB under the answer set semantics iff I(a)>n
for every (resp., some) answer set I of KB .

Example 4.4 (Shopping Agent cont’d) Consider again the fuzzy dl-program KB = (L,P ) of Exam-

ple 4.1. The following holds for the answer set M of KB :

M(q(MazdaMX5Miata)) = 0.36 M(q(MitsubishiEclipseSpyder)) = 0.32 .

5 Semantic Properties

In this section, we summarize some semantic properties (especially those relevant for the Semantic Web) of

fuzzy dl-programs under the above answer set semantics.
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5.1 Minimal Models

The following theorem shows that, like for ordinary disjunctive programs, every answer set of a fuzzy dl-

program KB is also a minimal model of KB , and the answer sets of a positive fuzzy dl-program KB are the

minimal models of KB .

Theorem 5.1 Let KB =(L,P ) be a fuzzy dl-program. Then, (a) every answer set of KB is a minimal model

of KB , and (b) if KB is positive, then the set of all answer sets of KB is given by the set of all minimal

models of KB .

5.2 Faithfulness

An important property of integrations of rules and ontologies is that they are a faithful [22, 23] extension of

both rules and ontologies.

The following theorem shows that the answer set semantics of fuzzy dl-programs faithfully extends

its counterpart for fuzzy programs. That is, the answer set semantics of a fuzzy dl-program KB = (L,P )
with empty fuzzy description logic knowledge base L coincides with the answer set semantics of its fuzzy

program P .

Theorem 5.2 Let KB = (L,P ) be a fuzzy dl-program such that L= ∅. Then, the set of all answer sets of

KB coincides with the set of all answer sets of the fuzzy program P .

The next theorem shows that the answer set semantics of fuzzy dl-programs also faithfully extends the

first-order semantics of fuzzy description logic knowledge bases. That is, for a∈HBΦ and n∈ [0, 1], it

holds that a>n is true in all answer sets of a positive fuzzy dl-program KB = (L,P ) iff a>n is true in all

fuzzy first-order models of L∪ ground(P ). The theorem holds also when a is a ground formula constructed

from HBΦ using ∧ and ∨, along with conjunction and disjunction strategies ⊗ resp. ⊕.

Theorem 5.3 Let KB = (L,P ) be a positive fuzzy dl-program, and let a∈HBΦ and n∈ [0, 1]. Then, a>n
is true in all answer sets of KB iff a>n is true in all fuzzy first-order models of L∪ ground(P ).

As an immediate corollary, we obtain that a>n is true in all answer sets of a fuzzy dl-program KB =
(L, ∅) iff a>n is true in all fuzzy first-order models of L.

Corollary 5.4 Let KB = (L,P ) be a fuzzy dl-program with P = ∅, and let a∈HBΦ and n∈ [0, 1]. Then,

a>n is true in all answer sets of KB iff a>n is true in all fuzzy first-order models of L.

5.3 Unique Name Assumption

Another aspect that may not be very desirable in the Semantic Web [14] is the unique name assumption

(which says that any two distinct constant symbols in Φc represent two distinct domain objects). It turns out

that we actually do not have to make this assumption, since the fuzzy description logic knowledge base of a

fuzzy dl-program may very well contain or imply equalities between individuals.

This result is included in the following theorem, which shows an alternative characterization of the

satisfaction of L in I ⊆HBΦ: Rather than being enlarged by a set of axioms of exponential size, L is

enlarged by a set of axioms of polynomial size. This characterization essentially shows that the satisfaction

of L in I corresponds to checking that (i) I restricted to DLΦ satisfies L, and (ii) I restricted to HBΦ−DLΦ
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does not violate any equality axioms that follow from L. In the theorem, an equivalence relation ∼ on

Φc is admissible with an interpretation I ⊆HBΦ iff I(p(c1, . . . , cn)) = I(p(c′1, . . . , c
′
n)) for all n-ary

predicate symbols p, where n> 0, and constant symbols c1, . . . , cn, c
′
1, . . . , c

′
n ∈Φc such that ci∼ c′i for all

i∈{1, . . . , n}.

Theorem 5.5 Let L be a fuzzy description logic knowledge base, and let I ⊆HBΦ. Then, L ∪ {a= I(a) |
a∈HBΦ} is satisfiable iff L ∪ {a= I(a) | a∈DLΦ} ∪ {c 6= c′ | c 6∼ c′} is satisfiable for some equivalence

relation ∼ on Φc admissible with I .

6 Reduction of Fuzzy DL-Programs to DL-Programs

In this section, we present a polynomial reduction of fuzzy dl-programs to the tightly integrated dl-programs

in [20]. Hence, reasoning in fuzzy dl-programs under the answer set semantics can be reduced to (a) reason-

ing in tightly integrated dl-programs under the answer set semantics and (b) reasoning in fuzzy description

logics. Note that reasoning in fuzzy description logics may additionally be reduced to reasoning in crisp

description logics along the lines presented in [28, 2] for fuzzy ALCH and fuzzy SHOIN .

The reduction applies to all fuzzy dl-programs KB that (i) are closed under TVn = {0, 1
n
, . . . , n

n
}

for some n> 0 and (ii) contain only combination strategies from Zadeh Logic. Here, KB is closed under

TVn iff (a) every datatype predicate in KB is interpreted by a mapping to TVn, (b) every fuzzy modifier

m in KB is interpreted by a mapping fm : TVn→TVn, (c) every truth value in KB is from TVn, and

(d) every combination strategy in KB is closed under TVn (which holds, e.g., for the combination strategies

of Łukasiewicz, Gödel, and Zadeh Logic). Note that for fuzzy dl-programs KB that are closed under TVn,

the problems of deciding consistency, cautious consequences, and brave consequences are all decidable,

since we only have to consider the finite number of interpretations I ⊆HBΦ that map to TVn.

We denote by Φn the alphabet that is obtained from the alphabet Φ by replacing every predicate symbol

p by the new predicate symbols pα with α∈TV +
n =TVn \{0}. For atoms a= p(t1, . . . , tk) and α∈TV +

n ,

the atom aα over Φn is defined by aα = pα(t1, . . . , tk). Every fuzzy interpretation I ⊆HBΦ is associated

with the binary interpretation t(I) = {aα | a∈HBΦ, α∈TV +
n , I(a)>α}.

The crisp transform of a fuzzy dl-program KB = (L,P ) is the dl-program t(KB) = (L, t(P )), where

t(P ) is the set (i) of all rules pβ(x1, . . . , xk)← pα(x1, . . . , xk) such that p is a k-ary predicate symbol

from Φ, x1, . . . , xk are distinct variables, α∈TV +
n \ { 1

n
}, and β=α − 1

n
, and (ii) of all rules aα

1 ∨ · · · ∨
aα

l ← bα1 ∧· · ·∧ bαk ∧not bγk+1
∧· · ·∧not bγm such that a rule of the form (7) belongs to P , α∈TV +

n , α6 v,

and γ=1− α+ 1
n

. Observe here that the generated dl-program t(P ) has a polynomial size in P and TV +
n

(assuming a unary number encoding for the truth values). The following theorem shows that the answer sets

of KB correspond to the answer sets of t(KB) as in [20].

Theorem 6.1 Let KB = (L,P ) be a fuzzy dl-program that (i) is closed under TVn = {0, 1
n
, . . . , n

n
} for

some n> 0 and (ii) contains only combination strategies from Zadeh Logic. Then, I ⊆HBΦ is an answer

set of KB iff t(I) is an answer set of t(KB).

Example 6.2 (Shopping Agent cont’d) The last fuzzy dl-rule of Example 4.1 is translated into the follow-

ing dl-rules in the crisp transform (for TV10 = {0, 0.1, . . . , 1}):

Small0.1(x) ∨Old0.1(x) ← Car0.1(x) ∧ hasInvoice0.1(x, y) ∧ not GeqAbout15000 1.0(y),

Small0.2(x) ∨Old0.2(x) ← Car0.2(x) ∧ hasInvoice0.2(x, y) ∧ not GeqAbout15000 0.9(y),
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Small0.3(x) ∨Old0.3(x) ← Car0.3(x) ∧ hasInvoice0.3(x, y) ∧ not GeqAbout15000 0.8(y),

Small0.4(x) ∨Old0.4(x) ← Car0.4(x) ∧ hasInvoice0.4(x, y) ∧ not GeqAbout15000 0.7(y),

Small0.5(x) ∨Old0.5(x) ← Car0.5(x) ∧ hasInvoice0.5(x, y) ∧ not GeqAbout15000 0.6(y),

Small0.6(x) ∨Old0.6(x) ← Car0.6(x) ∧ hasInvoice0.6(x, y) ∧ not GeqAbout15000 0.5(y),

Small0.7(x) ∨Old0.7(x) ← Car0.7(x) ∧ hasInvoice0.7(x, y) ∧ not GeqAbout15000 0.4(y).

7 Tractability Results

In this section, we present a special class of fuzzy dl-programs KB for which the problems of deciding

consistency and of query processing have both a polynomial data complexity. These fuzzy dl-programs are

defined relative to fuzzy DL-Lite [32], which is a fuzzy generalization of the description logic DL-Lite [4].

By [32] (resp., [4]), deciding whether a knowledge base in DL-Lite (resp., fuzzy DL-Lite) is satisfiable can

be done in polynomial time, and conjunctive query processing from a knowledge base in DL-Lite (resp.,

fuzzy DL-Lite) has a polynomial data complexity.

We first recall DL-Lite and fuzzy DL-Lite. Let A, RA, and I be pairwise disjoint sets of atomic con-

cepts, abstract roles, and individuals, respectively. A basic concept in fuzzy DL-Lite is either an atomic

concept from A or an exists restriction on roles ∃R.⊤ (abbreviated as ∃R), where R∈RA ∪R
−
A. A literal

in DL-Lite is either a basic concept b or the negation of a basic concept ¬b. Concepts in DL-Lite are defined

by induction as follows. Every basic concept in DL-Lite is a concept in DL-Lite. If b is a basic concept

in DL-Lite, and φ1 and φ2 are concepts in DL-Lite, then ¬b and φ1 ⊓ φ2 are also concepts in DL-Lite.

An axiom in DL-Lite is either (1) a concept inclusion axiom b⊑ψ, where b is a basic concept in DL-Lite,

and φ is a concept in DL-Lite, or (2) a functionality axiom (funct R), where R∈RA ∪R
−
A, or (3) a con-

cept assertion axiom b(a), where b is a basic concept in DL-Lite and a∈ I, or (4) a role assertion axiom

R(a, c), where R∈RA and a, c∈ I. A fuzzy concept (resp., role) assertion axiom is of the form b(a)>n
(resp., R(a, c)>n), where b(a) (resp., R(a, c)) is a concept (resp., role) assertion axiom in DL-Lite, and

n∈ [0, 1]. A fuzzy axiom in DL-Lite is either a fuzzy concept assertion axiom or a fuzzy role assertion ax-

iom. A fuzzy knowledge base in DL-Lite L is a finite set of concept inclusion, functionality, fuzzy concept

assertion, and fuzzy role assertion axioms in DL-Lite.

For the conjunction strategies of Gödel and Zadeh Logic, every knowledge base in fuzzy DL-Lite L
can be transformed into an equivalent one in fuzzy DL-Lite trans(L) in which every concept inclusion

axiom is of form b⊑ ℓ, where b (resp., ℓ) is a basic concept (resp., literal) in DL-Lite. We then define

trans(KB)= (L, trans(P )) by trans(P )=P ∪{b′(X)← b(X) | b⊑ b′ ∈ trans(L), b′ is a basic concept}∪
{∃R(X)← R(X,Y ) |R ∈ RA ∩Φ} ∪ {∃R−(Y )←R(X,Y ) |R∈RA ∩Φ}.

We are now ready to define fuzzy dl-programs in DL-Lite as follows. We say that a fuzzy dl-pro-

gram KB = (L,P ) is defined in DL-Lite iff (i) L is in fuzzy DL-Lite and interpreted relative to the conjunc-

tion strategies of Gödel or Zadeh Logic, (ii) trans(P ) is normal and locally stratified, and (iii) KB is closed

under TVn = {0, 1
n
, . . . , n

n
} for some n> 0, where we assume a unary encoding of the numbers in TVn.

It can be shown that fuzzy dl-programs in DL-Lite have either no or a unique answer set, which can

be computed by a finite sequence of fixpoint iterations, as usual. This implies immediately that for such

programs, consistency checking and query processing have both a polynomial data complexity, which is

formally expressed as follows.
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Theorem 7.1 Let KB =(L,P ) be a fuzzy dl-program in DL-Lite. Then, (a) deciding whether KB has an

answer set, and (b) computing the truth value of a ground atom a∈HBΦ in the answer set of KB have both

a polynomial data complexity.

8 Summary and Outlook

We have presented an approach to tightly integrated fuzzy dl-programs under the answer set semantics,

which generalizes the tightly integrated disjunctive dl-programs in [20] by fuzzy vagueness in both the de-

scription logic and the logic program component. We have shown that the new formalism faithfully extends

both fuzzy disjunctive programs and fuzzy description logics, and that under suitable assumptions, reason-

ing in the new formalism is decidable. Furthermore, we have presented a polynomial reduction for certain

fuzzy dl-programs to tightly integrated disjunctive dl-programs. Finally, we have also provided a special

case of fuzzy dl-programs for which deciding consistency and query processing have both a polynomial

data complexity.

An interesting topic for future research is to analyze the computational complexity of the main reasoning

problems in fuzzy dl-programs, and to implement the approach. Another interesting issue is to extend fuzzy

dl-programs by classical negation.
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