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TIGHTNESS FOR A FAMILY OF RECURSION EQUATIONS

BY MAURY BRAMSON1 AND OFER ZEITOUNI2

University of Minnesota, and University of Minnesota and
Weizmann Institute of Science

In this paper we study the tightness of solutions for a family of recursion
equations. These equations arise naturally in the study of random walks on
tree-like structures. Examples include the maximal displacement of a branch-
ing random walk in one dimension and the cover time of a symmetric simple
random walk on regular binary trees. Recursion equations associated with the
distribution functions of these quantities have been used to establish weak
laws of large numbers. Here, we use these recursion equations to establish
the tightness of the corresponding sequences of distribution functions after
appropriate centering. We phrase our results in a fairly general context, which
we hope will facilitate their application in other settings.

1. Introduction. Branching random walks (BRW) have been studied since
the 1960’s, with various cases having been studied earlier (see, e.g., [6] and [19]).
As the name suggests, such processes consist of particles that execute random
walks while also branching. One typically assumes that the particles lie on R, and
that the corresponding discrete time process starts from a single particle at 0. When
the branching is supercritical, that is, particles on the average have more than one
offspring, the number of particles will grow geometrically in time off the set of
extinction.

Two types of results have received considerable attention. The first pertains to
the location of the main body of particles, and states roughly that, at large times,
this distribution is given by a suitably scaled normal distribution, if typical tail
conditions on the random walk increments and on the offspring distribution are
assumed (see, e.g., [8] and [20]). The second pertains to the maximal displacement
of BRW, that is, the position of the particle furthest to the right. Results date back
to [18], who demonstrated a weak law of large numbers. There have since been
certain refinements for the limiting behavior of the maximal displacement, but the
theory remains incomplete. Here, we obtain sufficient conditions for the tightness
of the maximal displacement after centering. Our result is motivated by analogous
behavior for the maximal displacement of branching Brownian motion (BBM),
about which much more is known.

Received February 2007; revised March 2008.
1Supported in part by NSF Grant DMS-02-26245 and CCF-0729537.
2Supported in part by NSF Grants DMS-03-02230 and DMS-05-03775.
AMS 2000 subject classifications. 60J80, 60G50, 39B12.
Key words and phrases. Tightness, recursion equations, branching random walk, cover time.

615

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/08-AOP414
http://www.imstat.org
http://www.ams.org/msc/


616 M. BRAMSON AND O. ZEITOUNI

Another problem concerns the cover time for regular binary trees Tn of depth n.
A particle, which starts at the root of the tree, executes a symmetric simple ran-
dom walk on Tn. How long does it take for the particle to visit every site in Tn?
In [4], a weak law of large numbers was given for regular k-ary trees as n → ∞.
(That is, each parent has precisely k offspring.) Here, we show that, under an ap-
propriate scaling, the sequence of square roots of the cover times of Tn is tight
and nondegenerate, after centering. (The same result also holds for regular k-ary
trees.)

Distribution functions associated with the maximal displacement of BRW and
cover times for trees are known to satisfy recursion equations. (See [5] for a survey
of recursions arising in these and similar contexts.) The distribution function itself
is used in the context of the maximal displacement; for cover times, the relationship
is more complicated. These recursion equations were used in [18] and [4] for the
weak laws of large numbers they established. We will employ these equations to
demonstrate our results on tightness. We will phrase our main result on tightness
in a more general setting, which includes both the maximal displacement of BRW
and the cover time of trees.

We next describe the maximal displacement and cover time problems in detail
and state the corresponding results, Theorems 1.1 and 1.2. We then summarize
the remainder of the paper. We will postpone until Section 2 our general result on
tightness, Theorem 2.5, because of the terminology that is required.

We define branching random walk on R formally as follows. A particle starting
at 0 moves randomly to a site according to a given distribution function G(·), at
which time it dies and gives birth to k offspring with probability pk , independently
of the previous motion. Each of these offspring, in turn, moves independently ac-
cording to the same distribution G(·) over the next time step, then dies and gives
birth to k offspring according to the distribution {pk}. This procedure is repeated at
integer times, with the movement of all particles and the number of offspring being
assumed to be independent of one another. To avoid the possibility of extinction
and trivial special cases, we assume that p0 = 0 and p1 < 1. This implies that the
mean number of offspring m1 = ∑∞

k=1 kpk > 1.
Let Zn denote the number of particles at time n of the BRW, with xk(n), k =

1, . . . ,Zn, being the positions of these particles when ordered in some fashion. We
write

Mn = max
1≤k≤Zn

xk(n)(1.1)

for the maximal displacement of the BRW at time n. [The minimal displacement
will be given by Mmin

n = min1≤k≤Zn xk(n). Questions about Mn or Mmin
n can be

rephrased as questions about the other by substituting −x for the coordinate x

and reflecting G(·) accordingly.] When G(0) = 0, one can alternatively interpret
G(·) as the lifetime distribution of individual particles of the branching process. In
this setting, Mn+1 becomes the last death time of the nth generation of particles.
(Mmin

n+1 then becomes the first death time.)
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Let Fn(·) denote the distribution function of Mn, and set F̄n(·) = 1−Fn(·). One
can express F̄n(·) recursively in terms of Ḡ(·) = 1 − G(·) and

Q(u) = 1 − ∑
k

pk(1 − u)k for u ∈ [0,1].(1.2)

One has

F̄n+1(x) = −(
Ḡ ∗ Q(F̄n)

)
(x) = −

∫
y∈R

Ḡ(x − y)dQ(F̄n(y)),(1.3)

with F̄0(x) = 1{x<0}. Here, ∗ denotes the standard convolution. [One requires the
minus sign since the function F̄n(·) is decreasing.] Equation (1.3) is the backward
equation for F̄n+1(·) in terms of F̄n(·). It is simple to derive by relating it to the
maximal displacement of the nth generation offspring for each of the first gener-
ation offspring of the original particle. The composite function Q(F̄n) gives the
distribution of the maximum of these individual maximal displacements (relative
to their parents), with convolution by Ḡ then contributing the common displace-
ment due to the movement of the original particle. In the special case where the
branching is binary, that is, where p2 = 1, (1.2) reduces to Q(u) = 2u − u2. We
note that Q : [0,1] → [0,1] is strictly concave, in general, with

Q(0) = 0, Q(1) = 1 and Q′(0) = m1 > 1.(1.4)

One can equally well assume that branching for the BRW occurs at the begin-
ning of each time step, before the particles move rather than after. The correspond-
ing distribution functions F r

n (·) then satisfy the analog of (1.3),

F̄ r
n+1 = Q(−Ḡ ∗ F̄ r

n ).(1.5)

Since F̄1 = −Ḡ ∗ F̄0, one has F̄ r
n = Q(F̄n) for all n; consequently, {Fn} and {F r

n }
will have the same asymptotic behavior. The distribution functions F r,min

n (·) of the
minimal displacement of this BRW were studied in [18]. They satisfy a recursion
equation that is similar by (1.5).

It follows from [18], Theorem 2, that for appropriate γ0,

F r,min
n (γ n) →

{
0, for γ < γ0,
1, for γ > γ0,

(1.6)

as n → ∞, provided G(·) has finite mean and its support is bounded below. [Re-
lated results were proved in [21] and [22], and by H. Kesten (unpublished).] Ham-
mersley believed that the minimal displacement Mr,min

n was in some sense subad-
ditive. This was made precise in [24]; the subadditive ergodic theorem given there
demonstrates the strong law analog of (1.6). (The strong law was demonstrated
using other techniques in [21].) Analogous laws of large numbers hold for Fn(·),
F min

n (·) and F r
n (·), that is, for Mn,M

min
n and Mr

n. In this paper we will investigate
the refined behavior of Fn(·).
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There is an older, related theory of branching Brownian motion. Individual par-
ticles are assumed to execute standard Brownian motion on R. Starting with a
single particle at 0, particles die after independent rate-1 exponentially distrib-
uted holding times, at which point they give birth to k offspring with distribution
{pk}k≥1. All particles are assumed to move independently of one another and of
the number of offspring at different times, which are themselves independent. The
maximal displacement

Mt = max
1≤k≤Zt

xk(t)

is the analog of (1.1), where, as before, Zt and xk(t), k = 1, . . . ,Zt , are the number
of particles and their positions at time t . It is not difficult to show (see, e.g., [28])
that u(t, x) = P(Mt > x) satisfies

ut = 1
2uxx + f (u),(1.7)

with

f (u) = Q(u) − u(1.8)

and u(0, x) = 1{x<0}. When the branching is binary, f (u) = u(1 − u).
When f (·) is continuously differentiable and satisfies the more general equation

f (0) = f (1) = 0, f (u) > 0, f ′(u) ≤ f ′(0), for u ∈ (0,1),(1.9)

(1.7) is typically either referred to as the K–P–P equation or the Fisher equation.
For solutions u(t, x) of (1.7) with u(0, x) = 1{x<0}, 1−u(t, ·) will be a distribution
function for each t . In both [23] and [17], (1.7) was employed to model the spread
of an advantageous gene through a population.

In [23], it was shown that, under (1.9) and u(0, x) = 1{x<0}, the solution of (1.7)
converges to a traveling wave w(x), in the sense that, for appropriate m(t),

u
(
t, x + m(t)

) → w(x) as t → ∞(1.10)

uniformly in x, where 1−w(·) is a distribution function for which ũ(t, x) = w(x −√
2t) satisfies (1.7). Moreover,

m(t)/t → √
2 as t → ∞.(1.11)

[The centering term m(t) can be chosen so that u(t,m(t)) = c, for any given c ∈
(0,1).] In particular,

u(t, γ t) →
{

1, for γ <
√

2,
0, for γ >

√
2,

which is the analog of (1.6).
A crucial step in the proof of (1.10) consists of showing that

u
(
t, x + m(t)

)
is decreasing in t for x < 0,

(1.12)
u
(
t, x + m(t)

)
is increasing in t for x > 0.
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That is, v(t, ·) = u(t, · + m(t)) “stretches” as t increases. A direct consequence of
(1.10) and (1.12) is that the family v(t, ·) is tight, that is, for each ε > 0, there is
an Aε > 0, so that, for all t ,

v(t,−Aε) − v(t,Aε) > 1 − ε.(1.13)

More can be said about m(·) and the convergence of v(t, ·) under more general
initial data ([9] and [10]).

Although BRW is the discrete time analog of branching Brownian motion, with
(1.3) corresponding to (1.7), more refined results on the asymptotic behavior of
F̄n(·) corresponding to those of u(t, ·) in (1.10) have, except in special cases, re-
mained elusive. When G(·) admits a density which is logarithmically concave, that
is, G(·) satisfies

G′(x) = e−ϕ(x), where ϕ(x) ∈ (−∞,∞] is convex,(1.14)

one can show that the analog of (1.12) holds for F̄0(x) = 1{x<0}. As in [26] and [7],
the analog of (1.10) follows from this. Results of this nature for general G(·) are
not known. In fact, without some modification, the analog of (1.10) will be false
in general, as when G(·) is concentrated on the integers and γ0 /∈ Z.

There has recently also been some interest in related problems that arise in the
context of sorting algorithms, for which the movement of offspring of a common
parent will be dependent. (BRW with such dependence are also well known in
the general branching literature; see, e.g., [13, 21, 27].) [15] showed the analog of
(1.10) for a specific at choice of G(·). In [29] and in [2] [in the latter paper, for
general G(·) having bounded support], m(t) is calculated for related models. [12]
treats a generalization of the model in [15].

In this paper we will show that, after appropriate centering, the sequence
{Mn}n≥0 corresponding to the maximal displacement of BRW is tight. The shifted
sequence {Ms

n}n≥0 is given by

Ms
n = Mn − Med(Fn),(1.15)

where Med(Fn) = inf{x :Fn(x) ≥ 1/2} and Fn(·) is the distribution function of
Mn. F s

n(·) denotes the distribution function of Ms
n. The sequence {Ms

n}n≥0 or,
equivalently, {F s

n }n≥0, is tight if for any ε > 0, there is an Aε > 0 such that
F s

n(Aε) − F s
n(−Aε) > 1 − ε for all n; this is the analog of (1.13).

Rather than (1.14) as our main condition, we assume that, for some a > 0 and
M0 > 0, Ḡ(·) satisfies

Ḡ(x + M) ≤ e−aMḠ(x) for all x ≥ 0,M ≥ M0.(1.16)

In addition to specifying that Ḡ(·) has an exponentially decreasing right tail, (1.16)
requires that Ḡ(·) be “flat” on no interval [x, x +M], for x and M chosen as above.
It follows with a little work from [18] (3.97), that in order for γ0 < ∞ to hold,
the right tail of Ḡ(·) needs to be exponentially decreasing. The flatness condition



620 M. BRAMSON AND O. ZEITOUNI

included in (1.16) is needed for our method of proof; this additional condition will
be satisfied for most distributions that one encounters in practice. We will also
require that the branching law for the BRW satisfy p1 < 1 and

∞∑
k=1

kθpk = mθ < ∞ for some θ ∈ (1,2].(1.17)

Employing the above conditions, we now state our main result for branching
random walks:

THEOREM 1.1. Assume that the random walk increments G(·) of a BRW sat-
isfy (1.16) and that the branching law {pk}k≥1 satisfies p1 < 1 and (1.17). Then,
the sequence of random variables {Ms

n}n≥0 is tight.

As indicated earlier in the section, Theorem 1.1 will follow from a more general
result, Theorem 2.5, whose statement is postponed until the next section. Theo-
rem 2.5 assumes a more general version of the recursion equation (1.3). The heart
of the paper, Sections 2 and 3, is devoted to demonstrating Theorem 2.5. Since the
distribution function of the maximal displacement of BRW satisfies (1.3), Theo-
rem 1.1 will follow quickly. This is shown in the first part of Section 4.

Our other problem concerns the cover time for regular binary trees. The regular
binary tree Tn of depth n consists of the first n generations, or levels, of a regular
binary tree, with the root o denoting the original ancestor and Lk consisting of the
set of 2k vertices at the kth level, for k ≤ n, of the corresponding descendents. We
consider each level k − 1 vertex to be an immediate neighbor of the two level k

vertices that are immediately descended from it.
In this setting {Xj }j≥0 denotes a symmetric nearest neighbor random walk on

Tn, with X0 = o, and with each neighbor being chosen with equal probability at
each time step. The cover time of Tn is given by

Cn = min

{
J ≥ 0 :

J⋃
j=0

{Xj } = Tn

}
.

In [4] it was shown that

Cn/4(log 2)n22n →n→∞ 1 in probability.(1.18)

A natural question is how Cn should be scaled so that the resulting random
variables, after shifting by their medians, are tight. It turns out that the correct
scaling is given by

En =
√

Cn/2n.(1.19)

Defining the shift E s
n = En − Med(En) similarly to (1.15), we will show the fol-

lowing result:
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THEOREM 1.2. The sequence of random variables {E s
n}n≥0 for the regular

binary tree is tight. Furthermore, it is nondegenerate in the sense that there exists
a constant V > 0 such that

lim sup
n→∞

P(|E s
n| < V ) < 1.(1.20)

Theorem 1.2 will also follow as a special case of Theorem 2.5; this is shown
in the second part of Section 4.2. Considerably more work is required in this case
than was required for showing Theorem 1.1. In particular, an intermediate tight-
ness result first needs to be demonstrated in Theorem 4.3, for a random sequence
{βn}n≥0 that is introduced in (4.5).

In the short Section 5 we will mention a conjecture on the tightness of the cover
times for the lattice tori Z

2
n = Z

2/nZ
2. The intuition behind its proof should rely

heavily on the proof of Theorem 1.2.
Theorem 2.5 is phrased quite generally so as to allow it to be applied in other

settings. In our way of thinking, the tightness exhibited in Theorems 1.1 and 1.2
are examples of a fairly general phenomenon. Because of this level of generality,
the assumptions in Theorem 2.5 require some preparation, which is done at the be-
ginning of Section 2. For a first reading, one may think of the quantities introduced
there as generalizations of the branching law {pk}k≥1 and of the distribution of the
random walk increments G(·) employed for BRW.

The proof of Theorem 2.5 breaks into two main steps. The tightness of the
distribution functions {F s

n }n≥0 given there can be shown by showing the corre-
sponding tightness of (a) the right tail of {F̄ s

n }n≥0 and (b) the left tail of {F̄ s
n }n≥0.

An important ingredient is the Lyapunov function L(·) that is introduced in (2.12).
Section 3 is devoted to showing the bound (2.14) on supn L(F̄n), in Theorem 2.7,
that is needed to show the tightness of the right tail.

The argument for (b) is comparatively quick and is done in the latter part of
Section 2. The idea, in spirit, is to show that F̄n(·) must grow rapidly through suc-
cessive iterations until reaching values close to 1, at coordinates not changing by
much after an individual iteration. One then employs the resulting bound, together
with the tightness of the right tail from (a), to obtain the tightness of the left tail.
This is done in Proposition 2.9 and Lemma 2.10.

A summary of the results of this paper, without proofs, is given in [11]. There,
we provide intuition for the basic steps of our reasoning in the setting of branching
random walks.

2. Definitions and statement of main result. We begin the section with defi-
nitions that are employed in the statement of Theorem 2.5, which is our main result
on tightness. After stating Theorem 2.5, we introduce the Lyapunov function that
will be our main tool in proving the theorem. As indicated in the introduction, we
will then demonstrate the easier half of the theorem, with the more difficult half
being demonstrated in Section 3.
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We denote by D the set of functions F̄ : R → [0,1], such that F = 1 − F̄ is a
distribution function. We will study sequences of distribution functions {Fn}n≥0
that solve recursions of the form

F̄n+1 = TnF̄n,(2.1)

with F̄n = 1−Fn, where Tn :D → D is chosen from a family of operators that will
be defined shortly. Equations of the form (2.1) include the recursions mentioned in
the introduction in the context of Theorems 1.1 and 1.2. As mentioned there, we
are interested in proving the tightness of Fn after recentering Fn around its median.

We next describe the class of operators Tn for which we carry through our pro-
gram. For u,Gn(y, ·) ∈ D , with n ∈ N and y ∈ R, set

(Gn � u)(x) = −
∫
y∈R

Gn(y, x − y)du(y).(2.2)

One may think of {Gn} as corresponding to a family of random variables
{Ny,n}y∈R,n∈N, with P(Ny,n > x) = Gn(y, x) and u as corresponding to an in-
dependent random variable Y , with P(Y > y) = u(y); (2.2) is then equivalent to

(Gn � u)(x) = P(Y + NY,n > x).

When Gn(y, x) = Gn(x), the � operation reduces to the standard convolution, up
to a minus sign.

Let {Qn} be a sequence of increasing, nonlinear functions mapping [0,1] onto
itself. Our main result concerns recursions of the form

(Tnu)(x) = (
Gn � (Qn(u))

)
(x) = −

∫
y∈R

Gn(y, x − y)dQn(u(y)),(2.3)

for u ∈ D . We first state our assumptions on {Qn} and {Gn}.
Assumption 2.1 gives conditions on the growth of Qn. The first part of the

assumption includes a lower bound for the growth of Qn near 0; the second part
gives an upper bound on the concavity of Qn near 0. A prototypical example is
given by Qn(x) = 2x − x2 for all n. (Throughout the following definitions, all
constants will be independent of n unless explicitly mentioned otherwise.)

ASSUMPTION 2.1. The functions Qn : [0,1] → [0,1] are increasing with
Qn(0) = 0 and Qn(1) = 1. Moreover, there exist constants δ0 > 0, m ∈ (1,2],
c∗ > 0 and θ∗ > 0, such that

Qn(x) ≥ mx for all x ≤ 2δ0(2.4)

and

x2

x1
≤ Qn(x2)

Qn(x1)
[1 + c∗(Qn(x1))

θ∗] for all 0 < x1 < x2 ≤ 2(δ0 ∧ x1).(2.5)
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The next assumption gives conditions on the “convolution” kernels Gn. The
condition (G1) specifies monotonicity requirements for Gn, (G2) specifies a par-
ticular exponential tail condition, and (G3) is a centering condition.

ASSUMPTION 2.2. (G1) The functions Gn(y, x − y) are increasing in y,
whereas Gn(y, x) are decreasing in y.

(G2) There exist constants a ∈ (0,1) and M0 > 0 such that, for all x ≥ 0, y ∈ R

and M ≥ M0,

Gn(y − M,x + M) ≤ e−aMGn(y, x).(2.6)

(G3) Choosing m as in Assumption 2.1 and setting ε0 = (logm)/100,

Gn(y,0) ≥ 1 − ε0 for all y.(2.7)

In applications, the particular choice of ε0 in (2.7) can often be obtained from
ε0 > 0 by applying an appropriate translation. In this context, it is useful to note
that (G2) follows from (G1) and the following superficially weaker assumption:

(G2′) There exist constants a′ ∈ (0,1), L > 0 and M ′ ≥ 2L such that, for all
x ≥ L and y ∈ R,

Gn(y − M ′, x + M ′) ≤ e−a′M ′
Gn(y, x).(2.8)

One can check that (G2) follows from (G1) and (G2′) by setting a = a′/3 and
M0 = 2M ′; this follows from iterating the inequality

Gn(y − M,x + M) ≤ e−a′M ′
Gn(y − M + M ′, x + M − M ′)

k − 1 times, and then applying (G1).
Assumption 2.4 below gives uniform regularity conditions on the transforma-

tions Tn defined in (2.3). It gives upper and lower bounds on Tnu in terms of an
appropriate nonlinear function Q̃ of translates of u. Such a Q̃ will be required to
belong to the set of functions Q̃ satisfying the following properties.

DEFINITION 2.3. Q̃ is the collection of strictly increasing continuous func-
tions Q̃ : [0,1] �→ [0,1] with Q̃(0) = 0, Q̃(1) = 1, such that:

(T1) Q̃(x) > x for all x ∈ (0,1), and for any δ > 0, there exists cδ > 1 such
that Q̃(x) > cδx for x ≤ 1 − δ.

(T2) For each δ ∈ (0,1), there exists a nonnegative function gδ(ε) → 0 as
ε ↘ 0, such that if x ≥ δ and Q̃(x) ≤ (1 − δ)/(1 + ε), then

Q̃
((

1 + gδ(ε)
)
x
) ≥ (1 + ε)Q̃(x).(2.9)



624 M. BRAMSON AND O. ZEITOUNI

(T1) of the preceding definition gives lower bounds on the linear growth of Q̃ ∈
Q̃ away from 1, and (T2) gives a uniform local lower bound on the growth of Q̃

away from 0 and 1. In our applications in Section 4 we will have Qn = Q, with Q

strictly concave, in which case we will set Q̃ = Q. (T1) and (T2) will then be
automatically satisfied. Note that the conditions (2.4) and (2.5) in Assumption 2.1
specify the behavior of Qn near 0, whereas (T1) and (T2) specify the behavior
of Q̃ over all of (0,1).

Employing an appropriate Q̃ ∈ Q̃, we now state our last assumption. It will only
be needed for the proof of Lemma 2.10.

ASSUMPTION 2.4. There exists a Q̃ ∈ Q̃ satisfying the following. For each
η1 > 0, there exists B = B(η1) ≥ 0 satisfying, for all u ∈ D and x ∈ R,

(Tnu)(x) ≥ Q̃
(
u(x + B)

) − η1(2.10)

and

(Tnu)(x) ≤ Q̃
(
u(x − B)

) + η1.(2.11)

In the special case where Tn is of the form (2.3), with Gn(y, ·) = G(·) and
Qn = Q, and Q is strictly concave, Assumption 2.4 automatically holds with Q̃ =
Q. (One can see this by truncating G off a large enough interval which depends on
η1.)

Our main result asserts the tightness of the distribution functions given by the
recursions in (2.1) and (2.3).

THEOREM 2.5. Let Assumptions 2.1, 2.2 and 2.4 hold, and assume that
F0(x) = 1{x≥0}. Then, the sequence of distribution functions {F s

n }n≥0 is tight.

REMARK 2.6. The assumption on F0 in Theorem 2.5 can be relaxed to the
assumption that L(F 0) < ∞ for the function L in Theorem 2.7 below.

The proof of Theorem 2.5 employs a Lyapunov function L :D → R that we
introduce next. Choose δ0 > 0 so that Assumption 2.1 is satisfied, M as in (G2) of
Assumption 2.2, ε1 > 0, and b > 1. For u ∈ D , introduce the function

L(u) = sup
{x:u(x)∈(0,δ0]}

	(u;x),(2.12)

where

	(u;x) = log
(

1

u(x)

)
+ logb

(
1 + ε1 − u(x − M)

u(x)

)
+
.(2.13)

Here, we let log 0 = −∞ and (x)+ = x ∨ 0. If the set on the right-hand side of
(2.12) is empty [as it is for u(x) = 1{x<0}], we let L(u) = −∞. We will prove the
following result in Section 3.
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THEOREM 2.7. Let Assumptions 2.1 and 2.2 hold. There is a choice of para-
meters δ0, ε1,M > 0 and b > 1, such that, if L(F 0) < ∞, then

sup
n

L(Fn) < ∞.(2.14)

Theorem 2.7 implies that, with the given choice of parameters, if L(F 0) < ∞
and Assumptions 2.1 and 2.2 hold, then, for all n and x with 0 < Fn(x) ≤ δ0,

log
(

1 + ε1 − Fn(x − M)

Fn(x)

)
+

≤ (logb)
(
C0 + logFn(x)

)
for C0 = supn≥0 L(Fn) < ∞. In particular, by taking δ1 > 0 small enough such
that the right-hand side in the last inequality is sufficiently negative when 0 <

Fn(x) ≤ δ1, we have the following corollary.

COROLLARY 2.8. Let Assumptions 2.1 and 2.2 hold. Then, there exists δ1 =
δ1(C0, δ0, ε1, b,M) > 0 such that, for all n,

Fn(x) ≤ δ1 implies Fn(x − M) ≥
(

1 + ε1

2

)
Fn(x).(2.15)

The inequality (2.15) is sufficient to imply the tightness of {Fs
n }n≥0, irrespective

of the precise form of the operator Tn. This is shown in the following proposition.

PROPOSITION 2.9. Suppose that (2.15) holds for all n and some choice
of δ1,M, ε1 > 0. Also, suppose that each Tn satisfies Assumption 2.4, and that
Fn+1 = TnFn. Then, the sequence of distributions {F s

n }n≥0 is tight.

Theorem 2.5 follows directly from Corollary 2.8 and Proposition 2.9. Since the
proof of Theorem 2.7, and hence of Corollary 2.8, is considerably longer than
that of Proposition 2.9, we prove Proposition 2.9 here and postpone the proof of
Theorem 2.7 until Section 3.

The main step in showing Proposition 2.9 is given by Lemma 2.10. It says, in
essence, that if Fn is “relatively flat” somewhere away from 0 or 1, then Fn−1
is “almost as flat” at a nearby location, where its value is also smaller by a fixed
factor γ < 1. The proof of the lemma will be postponed until after we complete
the proof of Proposition 2.9.

LEMMA 2.10. Suppose that (2.15) holds for all n under some choice of
δ1,M ,ε1 > 0. Also, suppose that each Tn satisfies Assumption 2.4, and that
Fn+1 = TnFn. For fixed η0 ∈ (0,1), there exist a constant γ = γ (η0) < 1 and
a continuous function f (t) = fη0(t) : [0,1] → [0,1], with f (t) →t→0 0 such that
for any ε ∈ (0, (1 − η0)/η0), η ∈ [δ1, η0], and large enough N1 = N1(ε), the fol-
lowing holds. If M ′ ≥ M and, for given n and x, Fn(x) > δ1,

Fn(x − M ′) ≤ (1 + ε)F n(x)(2.16)
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and

Fn(x − M ′) ≤ η,(2.17)

then

Fn−1(x + N1 − M ′) ≤ (
1 + f (ε)

)
Fn−1(x − N1)(2.18)

and

Fn−1(x + N1 − M ′) ≤ γ η.(2.19)

PROOF OF PROPOSITION 2.9 ASSUMING LEMMA 2.10. Fix an η0 ∈ (0,1).
We will show the existence of an ε̂0 = ε̂0(η0) > 0, an n0 and an M̂ , such that if
n > n0 and Fn(x − M̂) ≤ η0, then

Fn(x − M̂) ≥ (1 + ε̂0)F n(x).(2.20)

This implies the claimed tightness in the statement of the proposition.
The proof of (2.20) is by contradiction, and consists of repeatedly applying

Lemma 2.10 until a small enough value of Fn, where the function is “relatively
flat,” is achieved, which will contradict (2.15). The presence of the uniform bound
γ in (2.19) will play an important role in the computations. We proceed by defining
σi , i ≥ 0, by σ0 = η0 and σi = γ σi−1. Since γ < 1, the sequence σi decreases to 0.
Set

n0 = min{i :σi < δ1}
and specify a sequence ε̂i > 0, i ≥ 0, so that ε̂n0 < ε1/4 and ε̂i = f (ε̂i−1) ≤ ε1/4.
[This is always possible by our assumption that f (t) →t→0 0.] Also, set Mn0 = M

and, for i ∈ {1, . . . , n0}, set

Mn0−i = Mn0−i+1 + 2N1(ε̂n0−i+1)

and M̂ = M0.
Suppose now that (2.20) does not hold for some x and n > n0, with Fn(x −

M̂) ≤ η0 = σ0. Then,

Fn(x − M̂) ≤ (1 + ε̂0)F n(x) ∧ σ0,

with Fn(x) > δ1. [The last inequality follows automatically from M̂ ≥ M and
(2.15).] In particular, (2.16) and (2.17) hold with M ′ = M̂ , ε = ε̂0 and η = σ0.
Applying Lemma 2.10, one concludes that

Fn−1
(
x + N1(ε̂0) − M̂

) ≤ (1 + ε̂1)F n−1
(
x − N1(ε̂0)

)
and

Fn−1
(
x + N1(ε̂0) − M̂

) ≤ γ σ0 = σ1.
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Setting y = x − N1(ε̂0), it follows that there exists a point y, such that

Fn−1(y − M1) ≤ (1 + ε̂1)F n−1(y) ∧ σ1,

where M1 = M̂ − 2N1(ε̂0) ≥ M by construction.
When Fn−1(y) ≤ δ1, this contradicts (2.15) because ε̂1 < ε1/2. When

Fn−1(y) > δ1, repeat the above procedure n1 times (with n1 ≤ n0) to show that
there exists a point y′ such that

Fn−n1(y
′ − Mn1) ≤ δ1, F n−n1(y

′ − Mn1) ≤ (1 + ε̂n1)F n−n1(y
′).

This contradicts (2.15), because Fn−n1(y
′) ≤ Fn−n1(y

′ − Mn1), Mn1 ≥ M and
ε̂n1 ≤ ε1/4. �

We now prove Lemma 2.10. The argument for (2.18) consists of two main steps,
where one first shows the inequality (2.24) below, and then uses this to show (2.18).
The inequality (2.24) follows with the aid of the properties in Assumption 2.4,
which allow us to approximate the operator Tn by the pointwise transformation Q̃,
after an appropriate translation. The inequality (2.9) is then employed to absorb
the coefficient (1 + 2ε) in (2.24) into the argument of Q̃, from which (2.18) will
follow after inverting Q̃. The argument for (2.19) also uses one direction of As-
sumption 2.4 to bound Tn by Q̃; one then inverts Q̃ to obtain (2.19).

PROOF OF LEMMA 2.10. We first demonstrate (2.18). Suppose (2.16) and
(2.17) hold for some x with Fn(x) > δ1; one then also has Fn(x − M ′) > δ1.
Let Q̃ be as in Assumption 2.4. By (2.10), (2.11) and (2.17), for any η1 > 0, there
exists B = B(η1), such that

Fn(x − M ′) ≥ Q̃
(
Fn−1(x + B − M ′)

) − η1(2.21)

and

Fn(x) ≤ Q̃
(
Fn−1(x − B)

) + η1.(2.22)

By (2.22), since Fn(x) > δ1,

Q̃
(
Fn−1(x − B)

) ≥
(

1 − η1

δ1

)
Fn(x).(2.23)

On the other hand, by (2.21) and (2.16),

(1+ε)F n(x) ≥ Q̃
(
Fn−1(x +B −M ′)

)−η1 > Q̃
(
Fn−1(x +B −M ′)

)− η1Fn(x)

δ1
.

Combining this with (2.23), it follows that, for η1 < δ1,(
1 + ε + c(ε, η1, δ1)

)
Q̃
(
Fn−1(x − B)

) ≥ Q̃
(
Fn−1(x + B − M ′)

)
,

where

c(ε, η1, δ1) = 1 + ε + η1/δ1

1 − η1/δ1
− 1 − ε
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and, in particular, c(ε, η1, δ1) →η1→0 0. Therefore, for any η1 with c(ε, η1,

δ1) < ε,

(1 + 2ε)Q̃
(
Fn−1(x − B)

) ≥ Q̃
(
Fn−1(x + B − M ′)

)
.(2.24)

We now choose N1 = B . To prove (2.18), we can assume that x − B > x +
B − M ′. [Otherwise, (2.18) is trivial.] Since Fn(x) > δ1, it follows from (2.22)
that, if η1 < δ1/2, then

Q̃
(
Fn−1(x + B − M ′)

) ≥ Q̃
(
Fn−1(x − B)

) ≥ δ1/2 > 0.(2.25)

On the other hand, from (2.17) and (2.21),

η ≥ Fn(x − M ′) ≥ Q̃
(
Fn−1(x + B − M ′)

) − η1.(2.26)

In particular, for each η1 < (1 − η)/2 and δ′ = δ′(η) chosen so that

δ′ = Q̃−1
(

δ1

2

)
∧ 1 − η

2
> 0,

F n−1(x + B − M ′) ≥ δ′ and Q̃(F n−1(x + B − M ′)) ≤ 1 − δ′. Applying (2.9)
together with (2.24), one concludes that(

1 + f (ε)
)
Fn−1(x − B) ≥ Fn−1(x + B − M ′),

with the function f (ε) := gδ′(2ε) →ε→0 0. The inequality (2.18) follows since
N1 = B .

Note that by (2.26), for any η1 > 0,

Fn−1(x + B − M ′) ≤ Q̃−1(Fn(x − M ′) + η1
) ≤ Q̃−1(η + η1).

The inequality (2.19) follows from this and property (T1), by choosing η1 small
enough so that γ = supη∈[δ1,η0] Q̃

−1(η + η1)/η < 1. �

3. Proof of Theorem 2.7. This section is devoted to proving Theorem 2.7. In
order to prove the result, we will show the following minor variation.

THEOREM 3.1. Let Assumptions 2.1 and 2.2 hold. There is a choice of pa-
rameters δ0, ε1,M,C1 > 0 and b > 1, with the property that if L(Fn+1) ≥ C for
some n and some C > C1, then L(Fn) ≥ C.

PROOF OF THEOREM 2.7 ASSUMING THEOREM 3.1. If supn L(Fn) = ∞,
then for any C, one can choose n such that L(Fn) ≥ C. For C > C1, it follows
by Theorem 3.1 that L(F 0) ≥ C. Since C can be made arbitrarily large, one must
have L(F 0) = ∞, which contradicts the assumption that L(F 0) < ∞. �

In what follows, for a function f on R and any x ∈ R, we set f (x)− =
limy↗x f (y), when this limit exists. We define, for ε > 0, x1 ∈ R, x2 = x1 − M ,
and u ∈ D ,

q1 = q1(u, ε, x1) = inf{y > 0 :u(x2 − y) ≥ (1 + 8ε)u(x1 − y)}
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and

r1 = r1(u, ε, x1)

=
⎧⎨⎩q1, if u(x2 − q1)

− ≥ u(x1 − q1 − M/2)/(1 − 4ε),

q1 − M

2
, otherwise.

Possibly, q1(u, ε, x1) = ∞, in which case we set r1(u, ε, x1) = ∞. Intuitively,
x1 − q1 is the first point to the left of x1 where u is “very nonflat.” [We are inter-
preting u to be “very nonflat” at x if the ratio u(x −M)/u(x) is not close to 1.] We
have defined r1 so that u is “very nonflat” at all points in [x1 − r1 −M/2, x1 − r1);
more detail will be given in the proof of Lemma 3.5.

The proof of Theorem 3.1 is based on the following two propositions. The first
allows one to “deconvolve” the � operation and maintain a certain amount of
“nonflatness.” In the remainder of the section we will implicitly assume that aM >

100 and that M > 2M0, where M0 is as in Assumption (G2).

PROPOSITION 3.2. Let Assumption 2.2 hold. For a given u ∈ D , n, x1 ∈ R

and ε′ ∈ (0,1/64), and for x2 = x1 − M , assume that

(Gn � u)(x2) < (1 + ε′)(Gn � u)(x1).(3.1)

Then, at least one of the following two statements holds for each δ > 0:

u(x2 − y) ≤ (1 + ε′ + δ)u(x1 − y), some y ≤ M ∧ r1(u, ε′, x1)(3.2)

u(x2 − y) ≤ (1 + ε′ − δeay/4)u(x1 − y), some y ∈ (M, r1(u, ε′, x1)].(3.3)

The second proposition controls the Lyapunov function 	 around “nonflat”
points.

PROPOSITION 3.3. Let Assumption 2.2 hold. For a given u ∈ D , n, x1 ∈ R

and ε ∈ [0, ε1), with ε1 ≤ 1/64, and for x2 = x1 − M , assume that

(Gn � u)(x2) = (1 + ε)(Gn � u)(x1).(3.4)

Choose δ < κ(ε1 − ε) and ε′ = ε + δ/2 < ε1, where κ ∈ (0,1). Then, for small
enough κ > 0 and for b > 1, neither depending on u,x1, x2, δ or ε, the following
hold:

(a) If (3.2) is satisfied, then there exists x′
1 ≥ x1 − M such that

	(u;x′
1) − 	(Gn � u;x1) ≥ −2

(
ε1 + ε0 + δ

(ε1 − ε) logb

)
.(3.5)

(b) If (3.3) is satisfied, then there exists x′
1 ≤ x1 − M such that

	(u;x′
1) − 	(Gn � u;x1)

(3.6)

≥ −6
(
ε1(x1 − x′

1) + ε0
) + a(x1 − x′

1) + 4 log(δ/(ε1 − ε))

4 logb
.
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We will also employ the following lemma, which allows us to avoid checking
the condition x2 ≤ 2x1 in (2.5).

LEMMA 3.4. Let Assumption 2.1 hold. Suppose for small enough δ0 > 0 that
0 < x1 < x2 satisfy

Qn(x1) ≤ δ0 and Qn(x2) ≤ 3
2Qn(x1).(3.7)

Then, for c∗ and θ∗ chosen as in the assumption,

x2

x1
≤ Qn(x2)

Qn(x1)
[1 + c∗(Qn(x1))

θ∗].(3.8)

PROOF OF LEMMA 3.4. Since Qn is increasing, x1 ≤ δ0 by (2.4) and (3.7); the
main inequality in (2.5) will therefore hold if x2 ∧ 2x1 is substituted there for x2.
Together with (3.7), this implies that

x2 ∧ 2x1

x1
≤ 3

2
[1 + c∗(Qn(x1))

θ∗],
which is < 2 for small enough δ0 and, hence, x2 < 2x1. One can now employ (2.5)
to obtain (3.8). �

The proof of Proposition 3.2 requires a fair amount of work. We therefore first
demonstrate Theorem 3.1 assuming Propositions 3.2 and 3.3, and then afterward
demonstrate both propositions.

PROOF OF THEOREM 3.1. Assume that the constant ε1 in (2.13) satisfies ε1 <

(logm)/100, where m ∈ (1,2] is as in (2.4). We will show that, for C large enough
and L(Fn+1) ≥ C,

L(Qn(Fn)) − L
(
Gn � Qn(Fn)

) ≥ − logm

4
(3.9)

and

L(Fn) − L(Qn(Fn)) ≥ logm

2
.(3.10)

Since L(Fn+1) = L(Gn � Qn(Fn)), it will follow from (3.9) and (3.10) that
L(Fn) ≥ L(Fn+1), which implies Theorem 3.1.

Recall the constants θ∗ and a from Assumptions 2.1 and 2.2, and the con-
stant κ from Proposition 3.3. We fix δ0 > 0 small enough so that the conclusions
of Proposition 3.3 and Lemma 3.4 hold. We also choose b close enough to 1, with
eθ∗

> b > 1, and M > 100/a large enough, such that the conclusion of Proposi-
tion 3.3 and all the following conditions hold:

(logb)(logm)

20
≤ κ,(3.11)
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a

8 logb
> 6ε1 + 6 logm

100M
,(3.12)

aM

8
> −log

(
(logb)(logm)

20

)
.(3.13)

We begin with the proof of (3.9). Propositions 3.2 and 3.3 provide the main
ingredients. Choose x1 such that(

Gn � Qn(Fn)
)
(x1) ≤ δ0, 	

(
Gn � Qn(Fn);x1

)
> C − 1

and

	
(
Gn � Qn(Fn);x1

)
> L

(
Gn � Qn(Fn)

) − (logm)/10.(3.14)

This is always possible since L(Fn+1) = L(Gn � Qn(Fn)) ≥ C. Choose ε ∈
[0, ε1) such that (3.4) in Proposition 3.3 holds for u = Qn(Fn). Also, set δ =
(logb)(logm)(ε1 − ε)/40 and note that, due to (3.11), δ < κ(ε1 − ε). Applying
Proposition 3.2, with Qn(Fn) playing the role of u there and with ε′ = ε + δ/2,
either (3.2) or (3.3) must hold.

Suppose that (3.2) holds, and set α1 = 2(ε1 + ε0) + (logm)/20 ≤ (logm)/10,
where ε0 is given in (2.7). Then, by (3.5) of Proposition 3.3, there exists x′

1 ≥
x1 − M such that

	(Qn(Fn);x′
1) − 	

(
Gn � Qn(Fn);x1

) ≥ −α1.(3.15)

In particular, 	(Qn(Fn);x′
1) ≥ C − 1 − α1 and, hence, by the definition of 	,

− logQn(Fn(x
′
1)) ≥ C − 1 − α1 − logb(1 + ε1)(3.16)

with the right-hand side being greater than − log δ0 if C is large enough. Together
with (3.15), (3.14) and the definition of L, this yields (3.9) when (3.2) holds.

Suppose now that (3.3) holds. Then, again by Proposition 3.3, (3.6) implies that

	(Qn(Fn);x′
1) − 	

(
Gn � Qn(Fn);x1

)
(3.17)

≥ −6
(
ε1(x1 − x′

1) + ε0
) + a(x1 − x′

1)

4 logb
+ log((logb)(logm)/20)

logb
.

Since ε0 = (logm)/100, it follows by (3.12) and (3.13) that the right-hand side of
(3.17) is nonnegative. Further, by exactly the same argument as in the case that
(3.2) holds (after replacing −α1 by 0), one deduces from (3.17) that

− logQn(Fn(x
′
1)) ≥ C − 1 − logb(1 + ε1) > − log δ0.

Together with (3.14), (3.17) and the definition of L, this yields (3.9) when (3.3)
holds and, hence, completes the proof of (3.9).

The proof of (3.10) is based on the properties of Qn given in Assump-
tion 2.1. The basic idea is that when Fn(x1) is sufficiently small, 	(Fn;x1) −
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	(Qn(Fn);x1) will be almost logm because: (a) the difference of the first compo-
nents of 	 contributes

log
(
Qn(Fn(x1))/Fn(x1)

) ≥ logm

on account of (2.4) and (b) the difference of the second components of 	 is negli-
gible, since Fn(x2)/Fn(x1) is not much larger than Qn(Fn(x2))/Qn(Fn(x1)), on
account of (2.5).

To justify this reasoning, first note that, by (3.9), we already know that
L(Qn(Fn)) > C − (logm)/3 > 0. So, there exists an x1 with Qn(Fn(x1)) ≤ δ0
and

	(Qn(Fn);x1) > max
(
C − logm

3
,L(Qn(Fn)) − logm

10

)
.(3.18)

Since the right-hand side is > −∞, one has, for x2 = x1 − M ,

Qn(Fn(x2)) ≤ (1 + ε1)Qn(Fn(x1)).(3.19)

So, (3.7) is satisfied, with Fn(xi) in place of xi , since ε1 < 1/2. Consequently, by
Lemma 3.4,

Fn(x2)

F n(x1)
≤ Qn(Fn(x2))

Qn(Fn(x1))
[1 + c∗(Qn(Fn(x1)))

θ∗].(3.20)

Now, set Qn(Fn(x1)) = q and Qn(Fn(x2))/Qn(Fn(x1)) = 1 + ε, which is less
than 1 + ε1. By (2.4), Fn(x1) ≤ δ0 holds and, hence, Qn(Fn(x1)) ≥ mFn(x1). So,

	(Fn;x1) = − logFn(x1) + logb

(
1 + ε1 − Fn(x2)

F n(x1)

)
+

≥ − logQn(Fn(x1)) + logm + logb(ε1 − ε − 2c∗qθ∗
)+.

Because 	(Qn(Fn);x1) > C − (logm)/3,

q ≤ e−(C−(logm)/3)(ε1 − ε)1/ logb.

Since θ∗/ logb > 1, it follows from the previous two displays and the definition
of 	 that

	(Fn;x1) ≥ − logQn(Fn(x1)) + logm

+ logb

(
ε1 − ε − 2c∗e−θ∗(C−(logm)/3)(ε1 − ε)θ

∗/ logb)
+

≥ 	(Qn(Fn);x1) + logm + logb

(
1 − 2c∗e−θ∗(C−(logm)/3))

+.

Choosing C large enough such that

logb

(
1 − 2c∗e−θ∗(C−(logm)/3))

+ ≥ − logm

10
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and using (3.18), we get

L(Fn) ≥ 	(Fn;x1) ≥ 	(Qn(Fn);x1) + 9
10 logm

≥ L(Qn(Fn)) + 1
2 logm.

This implies (3.10). �

We now prove Proposition 3.2, which was used in the proof of Theorem 3.1.
Much of the work is contained in the following lemma, whose demonstration we
postpone until after that of the proposition.

LEMMA 3.5. Suppose Gn satisfy Assumption 2.2, and for given ε′ > 0, u ∈ D ,
x1 ∈ R and x2 = x1 − M , that (3.1) holds. Then,∫ ∞

x2−r1

u(y) dGn(y + M,x2 − y) =
∫ ∞
x1−r1

u(y − M)dGn(y, x1 − y)

(3.21)
< (1 + ε′)

∫ ∞
x1−r1

u(y) dGn(y, x1 − y),

where r1 = r1(u, ε′, x1).

The integration is to be interpreted as being over the parameter y. Since
Gn(y, x − y) is increasing in y for each fixed x, the integrals are well defined
as Lebesgue–Stieltjes integrals. Here and later on, we use the convention∫ b

a
f (y) dg(y) =

∫ ∞
−∞

1{y∈[a,b)}f (y) dg(y).

PROOF OF PROPOSITION 3.2. In the proof we will omit the index n from Gn,
writing G since the estimates that are used do not depend on n.

Suppose that r1 = r1(u, ε′, x1) ≤ M . If (3.2) does not hold for a given δ > 0,
then

u(y − M) ≥ (1 + ε′ + δ)u(y) for all y ≥ x1 − r1,

which contradicts (3.21). So, to prove Proposition 3.2, it remains only to consider
the case where r1 > M .

Assume now that for a given δ > 0, neither (3.2) nor (3.3) holds. We will show
that this again contradicts (3.21). Decompose the left side of (3.21) into the inte-
grals over [x2 − r1, x2 − M) and [x2 − M,∞), which we denote by A1 and A2.
Since (3.2) is violated,

A2 = (1 + ε′ + δ)

∫ ∞
x2−M

u(y)dG(y + M,x2 − y)

(3.22)
≥ (1 + ε′ + δ)

∫ ∞
x1−M

u(y)dG(y, x1 − y).
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Since (3.3) is violated,

A1 =
∫ x1−M

x1−r1

u(y − M)dG(y, x1 − y)

≥ (1 + ε′)
∫ x1−M

x1−r1

u(y) dG(y, x1 − y)

− δ

∫ x1−M

x1−r1

u(y)ea(x1−y)/4 dG(y, x1 − y).

Hence,

A1 + A2 − (1 + ε′)
∫ ∞
x1−r1

u(y) dG(y, x1 − y)

≥ δ

[∫ ∞
x1−M

u(y)dG(y, x1 − y)(3.23)

−
∫ x1−M

x1−r1

u(y)ea(x1−y)/4 dG(y, x1 − y)

]
.

We will show that the right-hand side of (3.23) is nonnegative, which will contra-
dict (3.21) and demonstrate the proposition.

We will bound the second integral on the right-hand side of (3.23). The basic
idea will be to control the growth of u(y) as y decreases; an exponential bound on
this follows from the definition of r1. The exponential bound in Assumption (G2)
on the tail of Gn dominates this rate, and allows us to bound the corresponding
integral by the first integral on the right-hand side of (3.23).

Proceeding with the argument for this, one can check that∫ x1−M

x1−r1

u(y)ea(x1−y)/4 dG(y, x1 − y)

=
∞∑

k=1

∫ x1−M

x1−r1

1{y−x1∈(−(k+1)M,−kM]}u(y)ea(x1−y)/4 dG(y, x1 − y)

(3.24)

≤
∞∑

k=1

ea(k+1)M/4

·
∫ x1

x1−M
1{y−x1>kM−r1}u(y − kM)dG(y − kM,x1 − y + kM).

It follows from the definitions of q1 and r1 that if y − kM ≥ x1 − r1 (and hence,
y − kM ≥ x1 − q1),

u(y − kM) ≤ (1 + 8ε′)u
(
y − (k − 1)M

) ≤ · · · ≤ (1 + 8ε′)ku(y) ≤ eakM/8u(y),
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where the last inequality holds since aM > 100 was assumed. The last expression
in (3.24) is therefore at most

∞∑
k=1

ea(k+1)M/8eakM/4
∫ x1

x1−M
u(y)dG(y − kM,x1 − y + kM).

Since u(y) is decreasing in y and u(x1 − M) ≤ eaM/8u(x1), this is at most
∞∑

k=1

eakM/2eaM/4u(x1)G(x1 − kM,kM).

Applying (G2) k times to G(x1 − kM,kM), summing over k, and applying (G2)
again gives the upper bound

e−aM/4

1 − e−aM/2 u(x1)G(x1,0) ≤ e−aM/4

(1 − e−aM/2)2 u(x1)
(
G(x1,0) − G(x1 − M,M)

)
.

Since aM > 100, this is at most∫ x1

x1−M
u(y)dG(y, x1 − y) ≤

∫ ∞
x1−M

u(y)dG(y, x1 − y).(3.25)

Consequently, by the inequalities (3.24) through (3.25),∫ x1−M

x1−r1

u(y)ea(x1−y)/4 dG(y, x1 − y) ≤
∫ ∞
x1−M

u(y)dG(y, x1 − y).(3.26)

This shows the right-hand side of (3.23) is nonnegative, and completes the proof
of Proposition 3.2. �

PROOF OF LEMMA 3.5. In the proof we will omit the index n from Gn, writ-
ing G since the estimates that are used do not depend on n.

Since x2 = x1 − M , the equality in (3.21) is immediate. In order to demonstrate
the inequality in (3.21), we note that

(1 + ε′)(G � u)(x1) > (G � u)(x2)

= −
∫ ∞
−∞

G(y,x2 − y)du(y)

(3.27)
≥ −

∫ ∞
−∞

G(y + M,x2 − y)du(y)

= +
∫ ∞
−∞

u(y) dG(y + M,x2 − y),

where the first inequality follows from (3.1) and the second inequality from As-
sumption (G1). Subtracting the right and left-hand sides of (3.21) from the first
and last terms in (3.27), it therefore suffices to show that∫ x2−r1

−∞
u(y) dG(y + M,x2 − y) ≥ (1 + ε′)

∫ x1−r1

−∞
u(y) dG(y, x1 − y),(3.28)
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where r1 = r1(u, ε′, x1).
We will show (3.28) by partitioning (−∞, x2−r1) into appropriate subintervals.

Starting from q1 and r1 as defined previously, we set, for k > 1,

qk = qk(u, ε′, x1) = inf{y > rk−1 + M :u(x2 − y) ≥ (1 + 8ε′)u(x1 − y)}
and

rk = rk(u, ε′, x1) =

⎧⎪⎪⎨⎪⎪⎩
qk, if u(x2 − qk)

− ≥ u(x1 − qk − M/2)

1 − 4ε
,

qk − M

2
, otherwise.

For K = sup{k :qk < ∞}, q1, q2, . . . , qK are intuitively the successive points at
which u is “very nonflat” and which are sufficiently separated; u is “very nonflat”
at all points in [x1 − rk − M/2, x1 − rk).

For k ≤ K and i ∈ {1,2}, we set

Ai
k = [xi − rk − M/2, xi − rk), Bi

k = [xi − rk+1, xi − rk − M/2),

and let qK+1 = rK+1 = ∞. By summing over k ∈ {1, . . . ,K}, (3.28) will follow
once we show that∫

A2
k

u(y) dG(y + M,x2 − y) − (1 + ε′)
∫
A1

k

u(y) dG(y, x1 − y)

(3.29)
≥ 2ε′u(x2 − rk)

−G(x1 − rk, rk)

and ∫
B2

k

u(y) dG(y + M,x2 − y) − (1 + ε′)
∫
B1

k

u(y) dG(y, x1 − y)

(3.30)
≥ −2ε′u(x2 − rk)

− G(x1 − rk, rk).

We first show (3.29) for rk = qk . We do this by deriving a uniform lower bound
on u(y) for y ∈ A2

k , and a uniform upper bound on u(y) for y ∈ A1
k . Trivially, when

y ∈ A2
k , u(y) ≥ u(x2 − rk) holds. When y ∈ A1

k ,

u(y) ≤ u(x1 − rk − M/2) = u(x1 − qk − M/2)

≤ (1 − 4ε′)u(x1 − qk − M)− = (1 − 4ε′)u(x2 − rk)
−.

Also, note that x2 and A2
k are each obtained by translating x1 and A1

k by −M .
Therefore,∫

A2
k

u(y) dG(y + M,x2 − y) − (1 + ε′)
∫
A1

k

u(y) dG(y, x1 − y)

≥
[∫

A2
k

dG(y + M,x2 − y) − (1 + ε′)(1 − 4ε′)
∫
A1

k

dG(y, x1 − y)

]
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× u(x2 − rk)
−

= [1 − (1 + ε′)(1 − 4ε′)]
· [G(x1 − rk, rk) − G(x1 − rk − M/2, rk + M/2)]u(x2 − rk)

−.

By applying Assumption (G2) and aM > 100, it follows that this is

≥ [1 − (1 + ε′)(1 − 4ε′)][1 − e−aM/2]G(x1 − rk, rk)u(x2 − rk)
−

≥ 2ε′G(x1 − rk, rk)u(x2 − rk)
−.

This shows (3.29) when rk = qk .
For rk = qk − M/2, we employ an analogous argument. When y ∈ A1

k ,

u(y) ≤ u(x1 − rk − M/2) = u(x1 − qk)

≤ (1 + 8ε′)−1u(x2 − qk)
− = (1 + 8ε′)−1u(x2 − rk − M/2)−.

When y ∈ A2
k ,

u(y) ≥ u(x2 − rk) = u(x2 − qk + M/2) = u(x1 − qk − M/2)

≥ (1 − 4ε′)u(x2 − qk)
− = (1 − 4ε′)u(x2 − rk − M/2)−.

Arguing in the same manner as before, we now get∫
A2

k

u(y) dG(y + M,x2 − y) − (1 + ε′)
∫
A1

k

u(y) dG(y, x1 − y)

≥
[
1 − 4ε′ − 1 + ε′

1 + 8ε′
]
[1 − e−aM/2]G(x1 − rk, rk)

× u(x2 − rk − M/2)−

≥ 2ε′G(x1 − rk, rk)u(x2 − rk)
−.

This completes the proof of (3.29).
We still need to show (3.30). Bound the left side of (3.30) using∫

B2
k

u(y) dG(y + M,x2 − y) − (1 + ε′)
∫
B1

k

u(y) dG(y, x1 − y)

=
∫
B1

k

[u(y − M) − (1 + ε′)u(y)]dG(y, x1 − y)

(3.31)
≥ −

∫
B1

k

ε′u(y) dG(y, x1 − y)

= −ε′
[∫ x1−rk−M/2

x1−rk−M
u(y)dG(y, x1 − y)

+
∫ x1−rk−M

x1−rk+1

u(y) dG(y, x1 − y)

]
.
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Using Assumption (G1), one obtains for the first term on the right that∫ x1−rk−M/2

x1−rk−M
u(y)dG(y, x1 − y)

≤ u(x1 − rk − M)G(x1 − rk − M/2, rk + M/2)(3.32)

≤ u(x2 − rk)G(x1 − rk, rk).

We can also bound the second term on the right side of (3.31). Here, because
the interval can be quite long, we divide it up into subintervals of length M . Let L

denote the smallest integer such that rk +ML ≥ qk+1 (possibly, L = ∞). We have,
using (G1) in the second inequality, the definitions of qk and rk in the third, and
(G2) together with r1 ≥ −M/2 and M/2 ≥ M0 in the fourth,∫ x1−rk−M

x1−rk+1

u(y) dG(y, x1 − y) ≤
L−1∑
	=1

∫ x1−rk−M	

x1−rk−M(	+1)
u(y) dG(y, x1 − y)

≤
L−1∑
	=1

u
(
x1 − rk − M(	 + 1)

)
G(x1 − rk − M	, rk + M	)

≤
L−1∑
	=1

(1 + 8ε′)	u(x2 − rk)
− G(x1 − rk − M	, rk + M	)

≤
L−1∑
	=1

(1 + 8ε′)	e−aM	+aM/2u(x2 − rk)
−G(x1 − rk − M/2, rk + M/2).

Since aM > 100 and G(x1 − rk −M/2, rk +M/2) ≤ G(x1 − rk, rk) it follows that∫ x1−rk−M

x1−rk+1

u(y) dG(y, x1 − y) ≤ u(x2 − rk)
−G(x1 − rk, rk).

Substituting this and (3.32) into (3.31) yields (3.30), and completes the proof of
Lemma 3.5. �

We now prove Proposition 3.3.

PROOF OF PROPOSITION 3.3. Both parts (a) and (b) derive bounds for the
two components of 	 in (2.13). Part (a) employs routine estimates; in part (b),
the definition of r1 is employed to control the growth of u(x) as x decreases. We
will omit the index n from Gn, writing G since the estimates that are used do not
depend on n.

We first demonstrate part (a). Assume that (3.2) is satisfied for a given y = ŷ,
and set x′

1 = x1 − ŷ; since ŷ ≤ M , one has x′
1 ≥ x2. Then, using (G1) in the next
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to last inequality and (G3) in the last,

(G � u)(x2) = −
∫ ∞
−∞

G(y,x2 − y)du(y)

≥ −
∫ ∞
x2

G(y,x2 − y)du(y)

≥ u(x2) min
y≥x2

G(y,x2 − y)

≥ u(x2)G(x2,0) ≥ (1 − ε0)u(x2).

Hence, using (3.4), one obtains

u(x2) ≤ (G � u)(x2)

1 − ε0
= 1 + ε

1 − ε0
(G � u)(x1).(3.33)

Since u(x′
1) ≤ u(x2), it follows from (3.33) that

log
(

(G � u)(x1)

u(x′
1)

)
≥ − log

(
1 + ε

1 − ε0

)
≥ −2(ε1 + ε0).(3.34)

On the other hand, setting x′
2 = x′

1 − M , and applying (3.2) and (3.4),

logb

(
1 + ε1 − u(x′

2)/u(x′
1)

1 + ε1 − (G � u)(x2)/(G � u)(x1)

)

≥ logb

(
ε1 − ε′ − δ

ε1 − ε

)
= logb

(
1 − 3δ

2(ε1 − ε)

)
,

which is larger than −2δ/(ε1 − ε) logb for κ chosen small enough. Together with
the bound in (3.34), this implies (3.5).

We still need to demonstrate part (b). Assume that (3.3) is satisfied for a given
y = ŷ. As before, set x′

i = xi − ŷ, where we now have ŷ > M and, therefore,
x′

1 < x1 − M = x2. By the same reasoning as in part (a), (3.33) continues to hold.
Writing ŷM = �ŷ/M� − 1 ≥ 0, it follows from the definition of r1 and (3.33) that

u(x′
1) ≤ (1 + 8ε′)ŷM u(x2) ≤ (1 + 8ε′)ŷ/M

(
1 + ε

1 − ε0

)
(G � u)(x1).

So, since ε < ε0, ε′ < ε1 and M > 100,

log
(

(G � u)(x1)

u(x′
1)

)

≥ − log
(

1 + ε

1 − ε0

)
− ŷ

M
log(1 + 8ε′)(3.35)

≥ −6(ε1ŷ + ε0).
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On the other hand, by (3.3) and (3.4),

logb

(
1 + ε1 − u(x′

2)/u(x′
1)

1 + ε1 − (G � u)(x2)/(G � u)(x1)

)
(3.36)

≥ logb

(
ε1 − ε′ + δeaŷ/4

ε1 − ε

)
≥ aŷ/4 + log(δ/(ε1 − ε))

logb
.

Together, the bounds in (3.35) and (3.36) imply (3.6). �

4. Examples: branching random walks and cover time for the regular bi-
nary tree. In this section we demonstrate Theorems 1.1 and 1.2 on the tightness
of the maximal displacement of branching random walks (BRW) and the tight-
ness of the cover time for the regular binary tree. The demonstration of each result
consists of verifying the Assumptions 2.1, 2.2 and 2.4 in an appropriate setting,
and then applying Theorem 2.5. The term Fn in Theorem 2.5 corresponds to the
distribution function of the maximal displacement of the BRW in the first setting.
For the cover time problem, the relationship is less immediate and requires certain
comparisons. In both settings the functions Qn and Q̃ that are employed in As-
sumptions 2.1 and 2.4 will be strictly concave, and will satisfy Q̃ = Qn = Q. As
mentioned after Definition 2.3, properties (T1) and (T2) are therefore automatic.

4.1. Branching random walk. As in the introduction, we consider BRW whose
underlying branching processes have offspring distribution {pk}k≥1 and whose
random walk increments have distribution function G. As in Theorem 1.1, it
is assumed that {pk}k≥1 satisfies p1 < 1 and the moment condition (1.17), and
that G satisfies (G2) of Assumption 2.2. As before, we denote by Mn the max-
imal displacement of the BRW at time n, and by Fn its distribution function. In
the introduction we saw that {Fn}n≥0 satisfies the recursion (1.3), with Q(u) =
1 −∑∞

k=1 pk(1 −u)k . It is not difficult to check that the recursion (1.3) is a special
case of the recursion given by (2.3), with Qn(·) = Q(·) and Gn(y, ·) = G(·) for
all n and y. This simplifies the checking required in Assumptions 2.1, 2.2 and 2.4.

PROOF OF THEOREM 1.1. Because of (G3), Assumption 2.2 need not be
satisfied for the above choice of G. We therefore instead consider the trans-
lated BRW with increments having distribution function G(L)(x) = G(x − L),
where L > 0 is chosen large enough to satisfy G(−L) ≤ ε0 = (logm)/100, with
m = (1 + (m1 − 1)/2) ∧ 2. The maximal displacement at time n of the corre-
sponding BRW has distribution function F

(L)
n (x) which satisfies the same recur-

sion as Fn, with G(L) in place of G. One has F
(L)
n (x) = Fn(x −nL) and, therefore,

(F
(L)
n )s = F s

n . So, tightness of{F s
n }n≥0 will follow from that of (F

(L)
n )s .

Theorem 1.1 will follow once we verify the assumptions of Theorem 2.5 for
the BRW with increments distributed according to G(L). We first note that all of
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the conditions in Assumption 2.2 are satisfied. The condition (G1) for G(L) is
immediate, and (G3) is satisfied because of our choice of L. The condition (G2)
for G implies (G2′) for G(L), with a′ = a and M ′ = 2L∨M0, which in turn implies
(G2) for G(L), with a new choice of a.

It is easy to see that (2.4) of Assumption 2.1 holds in a small enough neighbor-
hood of 0, since m < m1; we chose m so that m ∈ (1,2]. The bound (2.5) requires
a little estimation. We write Q(x) = m1(x − g(x)); one has g(x) ∈ (0, x), and so
for 0 < x1 < x2 ≤ 2(δ0 ∧ x1), with δ0 > 0 chosen small enough, it follows that

Q(x2)

Q(x1)
= x2

x1

(
1 − g(x2)/x2

1 − g(x1)/x1

)
≥ x2

x1

(
1 − g(x2)

x2

)
(4.1)

≥ x2

x1

1

1 + 2g(x2)/x2
.

On the other hand, since mθ < ∞ for a given θ ∈ (1,2], one has

Q(x) ≥ m1x − cxθ(4.2)

for appropriate c > 0 and for x > 0 close enough to 0 (see [25], page 212). It
follows from (4.1) and (4.2) that, for small enough δ0,

Q(x2)

Q(x1)
≥ x2

x1

1

1 + 4c(Q(x2))θ−1 .

Since Q is concave and Q(x2) ≤ 2Q(x1), (2.5) follows from this, with θ∗ = θ − 1
and c∗ = 8c.

For Assumption 2.4, we only need to verify (2.10) and (2.11), with Q̃ = Q and

Tnu = −G
(L) ∗ Q(u). For u ∈ D ,

−(
G

(L) ∗ Q(u)
)
(x) ≥ G

(L)
(−B)Q

(
u(x + B)

) ≥ Q
(
u(x + B)

) − G(L)(−B),

which implies (2.10), if B = B(η1) is chosen large enough so that G(L)(−B) < η1.

On the other hand, for B ≥ 2L,

−(
G

(L) ∗ Q(u)
)
(x) ≤ Q

(
u(x − B)

) −
∫ x−B

−∞
G

(L)
(x − y)dQ(u(y))

≤ Q
(
u(x − B)

) + e−aB/3,

where the last inequality follows from (G2′). Choosing e−aB/3 < η1 implies (2.11).
We have demonstrated Assumptions 2.1, 2.2 and 2.4. It therefore follows from

Theorem 2.5 that {Ms
n}n≥1 is tight, which implies Theorem 1.1. �

REMARK 4.1. As mentioned in the introduction, one can study the BRW sat-
isfying the recursion

F
r

n+1 = Q(G � F
r

n) = Q(−G ∗ F
r

n),(4.3)
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rather than (1.3). In this setting the analog of Theorem 1.1 will continue to hold.
To see this, note that since F 1 = −G∗F 0, one has F

r

n = Q(Fn) for all n. Since Q

is continuous, with Q(0) = 0 and Q(1) = 1, the tightness of {(F r
n )s}n≥0 follows

directly from the tightness of {Fs
n }n≥0.

REMARK 4.2. It is easy to see that if in (G2), Gn(y, ·) = G(·) for all y, with

G(x) = 0 for x ≥ B1(4.4)

and some B1, then (G2) holds, and so such G provide a particular case of a BRW
that is covered by Theorem 1.1. For such G, there are simple direct proofs of
Theorem 1.1; see, for instance, [13, 27] and [11].

4.2. Cover time for the regular binary tree. In Section 1 we introduced the
cover time Cn for the regular binary tree Tn of depth n, and in Theorem 1.2, we
claimed that the sequence {E s

n}n≥0 is tight, for En = √
Cn/2n. In this subsection

we employ Theorem 2.5 to prove Theorem 1.2. As mentioned in Section 1, we
will rely on work in Aldous [4], where it was shown that

Cn/4(log 2)n22n →n→∞ 1 in probability.

It will be more convenient to instead demonstrate the tightness of {Ẽ s
n}n≥0, where

Ẽn =
√

C̃n/2n, and C̃n is the cover time of the extended tree T̃n that is formed from
Tn by inserting an additional vertex oo that is connected only to the root o of Tn.
One can then deduce the tightness of {E s

n}n≥0 from that of {Ẽ s
n}n≥0.

For an appropriate sequence of random variables {βn}n≥0 related to {Ẽn}n≥0,
Aldous showed that

βn+1
d= K(βn ∨ β ′

n),(4.5)

where β0 = 0, β ′
n is an independent copy of βn, and, for any nonnegative ran-

dom variable Y , K(Y) denotes a nonnegative random variable that will be defined
shortly which, when conditioned on Y = y ≥ 0, will have a density k(y, ·). If one
sets Fn(x) = P(βn ≤ x) and

G(y,x − y) =
⎧⎨⎩
∫ ∞
x

k(y, z) dz, for y ≥ 0,

G(0, x), for y < 0,
(4.6)

it follows from (4.5) and (4.6) that

Fn+1(x) = (
G � Q(Fn)

)
(x),(4.7)

where Q(u) = 2u−u2 is the concave mapping we have referred to repeatedly. [We
note that in (4.7) the choice of G(y,x − y) for y < 0 is somewhat arbitrary, since
βn ≥ 0)]. We will apply Theorem 2.5 to (4.7), and use this to deduce the desired
tightness of {Ẽ s

n}n≥0, and, hence, of {E s
n}n≥0.
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The sequence {βn}n≥0 that is employed in (4.5) is defined by βn = √
(Rn).

Here, Rn denotes the number of times the directed edge (o, oo) is traversed by
a nearest neighbor symmetric random walk by time C̃n, with R0 = 0. For any
nonnegative integer valued random variable N , (N) denotes a random variable
which, when conditioned on N = k, has a Gamma(k,1) distribution for k ≥ 1, that
is, it has a density h(y) = yk−1e−y/(k − 1)!; we set (0) = 0. The density k(y, ·)
employed above is

k(y, x) = 1x>02xe−(x2+y2)
∞∑

j=0

(xy)2j

(j !)2 for y ≥ 0.(4.8)

From (4.6) and (4.8), it follows that, for y ≥ 0,

G(y,x − y) =
⎧⎪⎨⎪⎩ e−(x2+y2)

∞∑
k=0

x2k

k!
∞∑

j=k

y2j

j ! , x > 0,

1, x ≤ 0.

(4.9)

For k as in (4.8), Aldous showed that as y → ∞, G(y, · − y) converges to the
normal distribution with mean 0 and variance 1/2 (see [4], (9)). Since βn → ∞ as
n → ∞, this and (4.5) say heuristically that {βn}n≥0 should behave like the max-
imal displacement of a binary branching random walk with normal increments,
which is a special case of the processes analyzed in Section 4.1.

Without going into details on Aldous’ computations for the derivation of (4.5),
we provide the following motivation. The random variable (Rn) corresponds to
the cumulative time spent going from o to oo for the natural continuous time ana-
log of the symmetric simple random walk, with transition rates equal to 1. The
sequence {(Rn)}n≥0 will be easier to analyze than {Rn}n≥0 itself. In particular,
Aldous showed that

(Rn+1)
d= ′′(1 + P

(
(Rn) ∨ ′(R′

n)
))

,(4.10)

where R′
n is an independent copy of Rn, ′(R′

n) is a copy of (R′
n) which is in-

dependent of (Rn) and, conditioned on (Rn) ∨ ′(R′
n) = y, P (·) is Poisson

distributed with mean y and ′′(1 + P (·)) is a Gamma random variable of para-
meter 1 + P (y). For βn = √

(Rn), it is not difficult to show from (4.10) that the
conditional density k(y, ·) of K(Y) satisfies (4.8).

We will later derive the tightness of {Ẽ s
n}n≥0 from the tightness of {βs

n}n≥0, and
the tightness of {E s

n}n≥0 from that of {Ẽ s
n}n≥0. For the former, we note that the

cover time C̃n is sandwiched between the sum of Rn and Rn + 1 random vari-
ables that correspond to the incremental return times to oo of the random walk.
These epochs will be i.i.d. and, when scaled by 2n, will have uniformly bounded
variances. The fluctuations of Rn will be at most of order

√
Rn (since {βs

n}n≥0 is
tight), and so one can show that the fluctuations of C̃n/2n will be at most of order√

C̃n/2n, which in turn will imply that the sequence {Ẽ s
n}n≥0 is tight.
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We now lay the groundwork for proving Theorem 1.2. We first demonstrate the
following result.

THEOREM 4.3. The sequence of random variables {βs
n}n≥0 for the regular

binary tree is tight.

In order to apply Theorem 2.5 to the sequence {βs
n}n≥0, we need to verify that

Assumptions 2.1, 2.2 and 2.4 hold. The choice of Q(u) = 2u−u2 here is a special
case of that considered in Section 4.1, so Assumption 2.1 holds for this Q. As in
Section 4.1, G(y,x − y) need not satisfy (G3) of Assumption 2.2. We handle this
in a way similar to what was done there, by translating G. Set ε0 = (logm)/100,
with m as in Assumption 2.1, and let N (0,1/2) denote a mean zero Gaussian
random variable of variance 1/2. We fix a constant L > 1 such that

P
(
N (0,1/2) > −L

) ≥ 1 − ε0,(4.11)

and set β
(L)
n = βn + nL. Defining F

(L)

n = P(β
(L)
n > x), it follows from (4.7) that

F
(L)

n+1(x) = (
G

(L)

n � Q
(
F

(L)

n

))
(x),(4.12)

where

G
(L)

n (y, x) = G(y − nL,x − L).

Note that the tightness of {(F (L)
n )s}n≥0 is equivalent to the tightness of {F s

n }n≥0.
We proceed to verify that Assumptions 2.1, 2.2 and 2.4 hold for the recur-
sions (4.12).

As before, Assumption 2.1 holds with the function Q(u) = 2u − u2. In order to

verify Assumption 2.2, we first need to verify (G1) for G
(L)

n ; this follows immedi-
ately from the analogous statement on G:

LEMMA 4.4. The function G(y,x − y) is increasing in y, whereas G(y,x) is
decreasing in y.

PROOF OF LEMMA 4.4. The claim is obvious when y < 0. For y ≥ 0, making
the transformation y2 �→ s, one has

∂G(y, x − y)

∂y
= 2y

∂G(
√

s, x − √
s)

∂s

∣∣∣∣
s=y2

.

On the other hand, from (4.9),

∂G(
√

s, x − √
s)

∂s

= e−se−x2

(
−

∞∑
j=0

sj

j !
j∑

k=0

x2k

k! +
∞∑

j=0

jsj−1

j !
j∑

k=0

x2k

k!
)

(4.13)
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= e−se−x2

(
−

∞∑
j=0

sj

j !
j∑

k=0

x2k

k! +
∞∑

j=0

sj

j !
j+1∑
k=0

x2k

k!
)

= e−se−x2

( ∞∑
j=0

sj

j !
x2(j+1)

(j + 1)!
)

> 0.

This completes the proof of the required monotonicity of G(y,x − y) in y.
The proof of the required monotonicity of G(y,x) in y is more subtle. First,

substituting in (4.9), one has, for x > −y, that

G(y,x) = e−(y2+(x+y)2)
∞∑

j=0

y2j

j !
j∑

k=0

(x + y)2k

k! .

Thus, after some algebra,

1

2
ey2+(x+y)2 ∂G(y, x)

∂y

=
[
−y

∞∑
j=0

y2j

j !
j∑

k=0

(x + y)2k

k! +
∞∑

j=0

jy2j−1

j !
j∑

k=0

(x + y)2k

k!

− (x + y)

∞∑
j=0

y2j

j !
j∑

k=0

(x + y)2k

k! +
∞∑

j=0

y2j

j !
j∑

k=0

k(x + y)2k−1

k!
]

(4.14)

=
[
−y

( ∞∑
j=0

y2j

j !
j∑

k=0

(x + y)2k

k! −
∞∑

j=0

y2j

j !
j+1∑
k=0

(x + y)2k

k!
)

− (x + y)

( ∞∑
j=0

y2j

j !
j∑

k=0

(x + y)2k

k! −
∞∑

j=1

y2j

j !
j−1∑
k=0

(x + y)2k

k!
)]

= (x + y)

∞∑
j=0

(y(x + y))2j

(j !)2

(
y(x + y)

j + 1
− 1

)
= (x + y)g

(
y(x + y)

)
where

g(z) =
∞∑

j=0

z2j

(j !)2

(
z

j + 1
− 1

)
.

The required monotonicity of G(y,x) therefore follows once we prove that g(z/2)

is nonpositive for z ≥ 0. But, for Iν(x) denoting the modified Bessel function of
order ν (see, e.g., [1], (9.6.10) for the definition), one has

g(z/2) = I1(z) − I0(z) = − 1

π

∫ π

0
ez cos θ (1 − cos θ) dθ ≤ 0,
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where the equality is a consequence of [1], (9.6.19). This completes the proof of
Lemma 4.4. �

We still need to check (G2) and (G3). The latter is immediate from our choice
of L and the following fact from [4], equation (9):

lim
y→∞G(y,x) = P

(
N (0,1/2) > x

)
.(4.15)

In particular, by Lemma 4.4, G(y,x) decreases in y and, therefore,

G
(L)

n (y,0) = G(y − nL,−L) ≥ lim
y→∞G(y,−L) ≥ 1 − ε0,(4.16)

where (4.15) and (4.11) were used in the last step.

It thus only remains to verify that, (G2) also holds for G
(L)

n . Because (G2′)
implies (G2), it suffices to verify that, for M = 4L, there exists an a > 0 such that,
for all x ≥ 0,

G(y − M,x + M) ≤ e−aMG(y, x).(4.17)

It is clearly enough to consider only the case y ≥ M , since G(y,x) is decreasing
in y and G(y,x) = G(0, x) for y ≤ 0. The inequality (4.17) therefore follows from
the following lemma.

LEMMA 4.5. For M and L as above, there exists C = C(L) > 0 such that, for
all y > M/2 and x ≥ y,

∂G(y, x − y)/∂y

G(y, x − y)
≥ C.(4.18)

PROOF OF LEMMA 4.5. Throughout this proof, Ci = Ci(L) denote strictly
positive constants. From (4.13), it follows that

∂G(y, x − y)/∂y

G(y, x − y)
= xye−(x2+y2)I1(2xy)

G(y, x − y)
,

where we recall that I1(z) is the modified Bessel function of order 1. Since I1(z) is
asymptotic to ez/

√
2πz for z large (see [1], (9.7.1)), and is positive and continuous

for z > 0, there exists a constant C2 > 0 such that
√

xye−2xyI1(2xy) ≥ C2 for
xy > 1. The lemma thus follows once we show that there exists C3 > 0 such that,
for y > 2 and x > y,

G(y,x − y) ≤ C3
√

xye−(x−y)2
.(4.19)

For large enough C3, (4.19) obviously holds when |x − y| ≤ 1. (Recall that
x, y > 2.) Therefore, it suffices to prove (4.19) for x > y + 1. To show this,
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rewrite (4.9) for x, y > 2 as

G(y,x − y) = e−(x2+y2)

[�y2�∑
k=0

+
∞∑

k=�y2�+1

]
x2k

k!
∞∑

j=k

y2j

j ! ,

which we rewrite as G1(y, x − y) + G2(y, x − y). First, note that by replacing
the summation over j ∈ {k, k + 1, . . .} by a summation over j ∈ N, one gets, using
Stirling’s formula,

G1(y, x − y) ≤ e−x2
�y2�∑
k=0

x2k

k! ≤ e−x2
�y2�∑
k=0

(
ex2

k

)k

≤ C4e
−x2

(
ex2

y2

)y2

,

for some C4 > 0. But, for x > y > 0, since logu ≤ u − 1 for u > 0,

log(ex2/y2) ≤ 2x

y
− 1

and, therefore,

G1(y, x − y) ≤ C4e
−(x−y)2

.(4.20)

To handle G2(y, x −y), we note that in the summation there, j > y2 and, hence,
again applying Stirling’s formula,

∞∑
j=k

y2j

j ! ≤ C5
√

k

(
ey2

k

)k

.

Therefore, another application of Stirling’s formula yields

G2(y, x − y) ≤ C6e
−(x2+y2)

∞∑
k=�y2�

(
exy

k

)2k

≤ C7
√

xye−(x−y)2
.

Together with (4.20), this completes the proof of (4.19) and, hence, of Lemma 4.5.
�

We still need to verify Assumption 2.4 for the kernels G
(L)

n and the transforma-

tion (Tnu)(x) = (G
(L)

n � u)(x). For u ∈ D ,

(Tnu)(x) ≥ G
(L)

n (x + B,−B)Q
(
u(x + B)

) ≥ Q
(
u(x + B)

) − G(L)
n (x + B,−B).

But by (G1),

G(L)
n (x + B,−B) ≤ lim

y→∞G(y,−B) = P
(
N (0,1/2) ≤ −B

)
,
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which implies (2.10) if one chooses B = B(η1) such that P(N (0,1/2) ≤ −B) <

η1. Similarly, taking B = B(η1) to be a multiple of M and using (G2′),

Tnu(x) ≤ Q
(
u(x − B)

) −
∫ x−B

−∞
G

(L)
(y, x − y)dQ(u(y))

≤ Q
(
u(x − B)

) + e−aB/3,

which implies (2.11) for e−aB/3 < η1.
We have verified Assumptions 2.1, 2.2 and 2.4 for the recursions in (4.12). The-

orem 2.5 therefore holds for {F (L)
n }n≥0, and therefore for {Fn}n≥0. We thus obtain

Theorem 4.3.
As outlined in the beginning of this subsection, one can use Theorem 4.3 to

prove Theorem 1.2.

PROOF OF THEOREM 1.2. First note that by coupling the random walks on
Tn and T̃n in the natural way, one has Cn ≤ C̃n ≤ Cn + 2Rn. From [4], (8) it
follows that ERn < 2n2 log 2 and also that, for δ > 0 small enough, P(Cn ≤
δ22n) →n→∞ 0. So, for such δ,

lim
n→∞P

(√
C̃n

2n
−

√
Cn

2n
> δ

)
≤ lim

n→∞P(2Rn ≥ δ22n)

≤ lim
n→∞

4n2 log 2

δ22n
= 0.

Hence, the tightness of {E s
n}n≥0 follows if one proves the analogous result for C̃n

instead of Cn.
Letting τ

(n)
i denote the length of the ith epoch between returns to oo of the

random walk in the extended tree of depth n, one has

Rn∑
i=1

τ
(n)
i ≤ C̃n ≤

Rn+1∑
i=1

τ
(n)
i .(4.21)

In the proof we will employ the limits

lim
n→∞

Eτ
(n)
1

2n+1 = 2, lim
n→∞

Var(τ (n)
1 )

22(n+1)
= 12.(4.22)

To see (4.22), note that τ
(n)
1 is identical in law to the return time to 0 of a simple

random walk Wj on {0,1, . . . , n+1}, having probability of jump to the right equal
to 2/3 and to the left equal to 1/3. This return time is asymptotically equivalent
to the product of a Bernoulli(1/2) random variable with the sum of a geometric
number of i.i.d. random variables, each corresponding to the time it takes for the
walk Wj started at n to return to n after hitting either 0 or n + 1; the parameter
of the geometric random variable is the probability that such a random walk hits 0
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before hitting n + 1, and all random variables involved are independent. Standard
computations, using, for example, [16], page 314 (2.4) and page 317 (3.4) lead to
(4.22).

Since βn = √
(Rn), it follows from Theorem 4.3 that, for an appropriate de-

terministic sequence {Bn}, Bn ≥ 1, there exist constants εJ →J→∞ 0 such that

P
(∣∣√(Rn) − Bn

∣∣ > J
) ≤ εJ .(4.23)

One can check that

P
(|(Rn) − B2

n| > 3J 2Bn

) ≤ εJ .(4.24)

The random variable (Rn) is the sum of Rn i.i.d. exponentials that, conditioned
on Rn, is asymptotically Gaussian with variance Rn. There therefore exists a de-
terministic sequence {An} such that, setting

CK(n) = P
(|Rn − An| ≥ K

√
An

)
,

one has

lim
K→∞ lim sup

n→∞
CK(n) = 0.(4.25)

Setting τ̄
(n)
i = τ

(n)
i /Eτ

(n)
1 , one gets, using (4.22) in the first inequality and the

inequality
√

1 + x − 1 ≤ x/2 in the second, that, for any K1 > 0,

lim
n→∞P

(∣∣∣∣∣
√

C̃n

2n
−

√
AnEτ

(n)
1

2n

∣∣∣∣∣ ≥ K1

)
≤ lim

n→∞P

(∣∣∣∣∣
√√√√ C̃n

Eτ
(n)
1

− √
An

∣∣∣∣∣ ≥ K1

)

≤ lim
n→∞P

(∣∣∣∣ C̃n

Eτ
(n)
1

− An

∣∣∣∣ ≥ K1
√

An

)
.

By (4.21), on the event {|Rn − An| ≤ K1
√

An/4},
An−K1

√
An/4∑

i=1

τ
(n)
i ≤ C̃n ≤

An+K1
√

An/4+1∑
i=1

τ
(n)
i .

Since An → ∞, using this decomposition in the first inequality, and the fact that
the τ

(n)
i are i.i.d, together with (4.22) and Markov’s inequality in the second, one

obtains

lim
n→∞P

(∣∣∣∣∣
√

C̃n

2n
−

√
AnEτ

(n)
1

2n

∣∣∣∣∣ ≥ K1

)

≤ lim
n→∞P

(
|Rn − An| ≥ K1

√
An

4

)
(4.26)
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+ lim
n→∞P

(An+K1
√

An/4+1∑
i=1

(
τ̄

(n)
i − 1

) ≥ 3K1
√

An

4

)

+ lim
n→∞P

(An−K1
√

An/4∑
i=1

(
τ̄

(n)
i − 1

) ≤ −3K1
√

An

4

)

≤ lim
n→∞CK1/4(n) + 8

K2
1

.

Together with (4.25), this demonstrates the tightness of {E s
n}n≥0.

To demonstrate (1.20), we argue by contradiction. Assuming that (1.20) does
not hold, one can use the analog of the argument from 4.23 to 4.24 [with Cn/2n

replacing (Rn)] and the fact that Cn/n22n → 4 log 2 to deduce that, for any
ε2 > 0, there exist constants bn < cn, with cn − bn = ε2n2n/100, such that, for
large enough n,

P o(Cn ∈ (bn, cn)
) ≥ 7

8 .(4.27)

Here and in the remainder of the proof, we use the notation P v to denote the
law of the symmetric simple random walk {Xj }j≥0, started at a vertex v, on the
(nonextended) tree Tn. In particular,

P o(Cn ≤ bn) ≤ 1/8.(4.28)

Define an = bn − 1000 · 2n, noting that an > 0 because bn/n22n → 4 log 2. We
will show that, with high probability, Xj = o at some j ∈ (an, bn). To see this, let

ρ
(n)
i , i ≥ 1, with ρ

(n)
0 = 0, denote the successive return times to o of the random

walk {Xj }j≥0 on Tn, and set τ̂
(n)
i = ρ

(n)
i − ρ

(n)
i−1. For any v ∈ Ln, one has by an

application of the strong Markov property that

P o({ρ(n)
i

}
i≥1 ∩ (an, bn) = ∅

) = E
(
P Xan−1(Xj �= o, j = 1, . . . , bn − an)

)
≤ P v(τ̂ (n)

1 ≥ bn − an

) ≤ Ev(τ̂
(n)
1 )

1000 · 2n
.

(Recall that for n > 1, Ln denotes the set of vertices at distance n from o.) On the
other hand,

Eo(τ̂ (n)
1

) ≥ P o(T (n)
Ln

< τ̂
(n)
1

)
Ev(τ̂ (n)

1

) ≥ 1
2Ev(τ̂ (n)

1

)
,

where T
(n)

Ln
= min{j ≥ 1 :Xj ∈ Ln}. The first limit in (4.22) holds for the nonex-

tended tree Tn as well, with n replacing n + 1. Together with the previous two
displays, this implies that, for large n,

P o({ρ(n)
i

}
i≥1 ∩ (an, bn) = ∅

) ≤ 2Eo(τ̂
(n)
1 )

1000 · 2n
≤ 1

200
.(4.29)
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Let ρ∗
n = inf{ρ(n)

i :ρ(n)
i > an} and An = {ρ∗

n ∈ (an, bn),Cn > ρ∗
n}. It follows from

(4.28) and (4.29) that

P o(An) ≥ 7
8 − 1

200 ≥ 1
2 .(4.30)

On An there is at least one (random) vertex in Ln that has not been covered
by the random walk by time ρ∗

n . Let T
(n)
v denote the hitting time of v ∈ Tn after

time 1. We will now show that one may chose ε2 > 0 such that

P o(T (n)
v < cn − an

) ≤ P o(T (n)
v < 2ε2n2n/100

)
< 1

2 .(4.31)

The first inequality is immediate from cn − an < 2ε2n2n/100. For the second in-
equality, first note that P o(T

(n)
v < τ̂

(n)
1 ) = 1/2n. (One can see this by considering

the symmetric simple random walk on the ray connecting 0 and v, disregarding
excursions off the ray.) By considering the set {T (n)

v < ρ
(n)
�n/4�} and its complement

separately, it follows from this that

P o(T (n)
v < 2ε2n2n/100

) ≤ n

4
· 1

2n
+ P o

(�n/4�∑
i=1

τ̂
(n)
i < 2ε2n2n/100

)
.(4.32)

Note that by [16], page 314, (2.4), P v(τ̂
(n)
1 < T

(n)
Ln

) = 1/(2n − 1) and, hence, by
the Markov property, for all x > 0,

P o(τ̂ (n)
1 > �x2n�) ≥ 1

2
P v(τ̂ (n)

1 > �x2n�) ≥ 1

2

(
1 − 1

(2n − 1)

)�x2n�
.

This bound implies that the random variables τ̂
(n)
1 /2n possess exponential tails and

have expectations bounded away from 0, uniformly in n. The second inequality in
(4.31) follows from this and (4.32).

It follows from the strong Markov property and a little work that

P o(An,Cn ≥ cn) ≥ P o(An) min{v∈Ln}P
o(T (n)

v ≥ cn − an

)
.

This is

≥ 1

2

(
1 − max{v∈Ln}P

o(T (n)
v < cn − an

)) ≥ 1

4
,

where we have used (4.30) in the first inequality and (4.31) in the second. This
bound contradicts (4.27). We have thus shown (1.20), which completes the proof
of the theorem. �

REMARK 4.6. We have shown Theorem 1.2 for regular binary trees. The
statement and its proof extend to regular k-ary trees. For general Galton–Watson
trees with offspring distribution satisfying p0 = 0, p1 < 1 and (1.17), one can show
the analog of Theorem 4.3 in the annealed setting, without in essence changing the
proof. [One replaces the function Q(u) = 2u − u2 by Q(u) = 1 − ∑∞

k=1 pk(1 −
u)k .] The remainder of the proof of Theorem 1.2, however, relies on the regular-
ity of the binary tree for various estimates, and so an extension to more general
Galton–Watson trees would require additional effort.
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5. An open problem. Consider the lattice torus Z
2
n = Z

2/nZ
2, and let Cn

denote the number of steps required for a simple random walk to cover Z
2
n. Con-

firming a conjecture in [3], it was proved in [14] that πCn/4n2(logn)2 → 1 in
probability. The intuition (although not the details) behind the proof in [14] draws
heavily from the covering of the regular binary tree by a simple random walk. One
thus expects that a result similar to Theorem 1.2 should hold for Cn. We therefore
put forward the following conjecture.

CONJECTURE 5.1. The sequence of random variables

En =
√

Cn

n2 − Med

(√
Cn

n2

)
is tight and nondegenerate.

Acknowledgment. We thank the referees and Ming Fang for their careful
reading of the paper and their useful suggestions.

REFERENCES

[1] ABRAMOWITZ, M. and STEGUN, I. A. (1965). Handbook of Mathematical Functions. Dover.
[2] ADDARIO-BERRY, D. (2007). Ballot theorems and the height of trees. Ph.D. thesis, McGill

Univ.
[3] ALDOUS, D. (1989). Probability Approximations via the Poisson Clumping Heuristic. Applied

Mathematical Sciences 77. Springer, New York. MR969362
[4] ALDOUS, D. J. (1991). Random walk covering of some special trees. J. Math. Anal. Appl. 157

271–283. MR1109456
[5] ALDOUS, D. J. and BANDYOPADHYAY, A. (2005). A survey of max-type recursive distribu-

tional equations. Ann. Appl. Probab. 15 1047–1110. MR2134098
[6] ATHREYA, K. B. and NEY, P. E. (1972). Branching Processes. Die Grundlehren der mathe-

matischen Wissenschaften 196. Springer, New York. MR0373040
[7] BACHMANN, M. (2000). Limit theorems for the minimal position in a branching random

walk with independent logconcave displacements. Adv. in Appl. Probab. 32 159–176.
MR1765165

[8] BIGGINS, J. D. (1990). The central limit theorem for the supercritical branching random walk,
and related results. Stochastic Process. Appl. 34 255–274. MR1047646

[9] BRAMSON, M. D. (1978). Maximal displacement of branching Brownian motion. Comm. Pure
Appl. Math. 31 531–581. MR0494541

[10] BRAMSON, M. (1983). Convergence of solutions of the Kolmogorov equation to travelling
waves. Mem. Amer. Math. Soc. 44 iv+190. MR705746

[11] BRAMSON, M. and ZEITOUNI, O. (2007). Tightness for the minimal displacement of branch-
ing random walk. J. Stat. Mech. Theory Exp. 7 P07010 (electronic). MR2335694

[12] CHAUVIN, B. and DRMOTA, M. (2006). The random multisection problem, travelling waves
and the distribution of the height of m-ary search trees. Algorithmica 46 299–327.
MR2291958

[13] DEKKING, F. M. and HOST, B. (1991). Limit distributions for minimal displacement of
branching random walks. Probab. Theory Related Fields 90 403–426. MR1133373

http://www.ams.org/mathscinet-getitem?mr=969362
http://www.ams.org/mathscinet-getitem?mr=1109456
http://www.ams.org/mathscinet-getitem?mr=2134098
http://www.ams.org/mathscinet-getitem?mr=0373040
http://www.ams.org/mathscinet-getitem?mr=1765165
http://www.ams.org/mathscinet-getitem?mr=1047646
http://www.ams.org/mathscinet-getitem?mr=0494541
http://www.ams.org/mathscinet-getitem?mr=705746
http://www.ams.org/mathscinet-getitem?mr=2335694
http://www.ams.org/mathscinet-getitem?mr=2291958
http://www.ams.org/mathscinet-getitem?mr=1133373


RECURSIONS AND TIGHTNESS 653

[14] DEMBO, A., PERES, Y., ROSEN, J. and ZEITOUNI, O. (2004). Cover times for Brownian mo-
tion and random walks in two dimensions. Ann. of Math. (2) 160 433–464. MR2123929

[15] DRMOTA, M. (2003). An analytic approach to the height of binary search trees. II. J. ACM 50
333–374 (electronic). MR2146358

[16] FELLER, W. (1957). An Introduction to Probability Theory and Its Applications, Vol. I, 2nd ed.
Wiley, New York. MR0088081

[17] FISHER, R. A. (1937). The advance of advantageous genes. Ann. of Eugenics 7 355–369.
[18] HAMMERSLEY, J. M. (1974). Postulates for subadditive processes. Ann. Probab. 2 652–680.

MR0370721
[19] HARRIS, T. E. (1963). The Theory of Branching Processes. Die Grundlehren der Mathematis-

chen Wissenschaften 119. Springer, Berlin. MR0163361
[20] KAPLAN, N. and ASMUSSEN, S. (1976). Branching random walks. II. Stochastic Process.

Appl. 4 15–31. MR0400430
[21] KINGMAN, J. F. C. (1975). The first birth problem for an age-dependent branching process.

Ann. Probab. 3 790–801. MR0400438
[22] KINGMAN, J. F. C. (1976). Subadditive processes. In École D’Été de Probabilités de

Saint-Flour, V–1975. Lecture Notes in Mathematics 539 167–223. Springer, Berlin.
MR0438477

[23] KOLMOGOROV, A., PETROVSKY, I. and PISCOUNOV, N. (1937). Étude de l’équation de la
diffusion avec croissance de la quantité de matière et son application à un problème bi-
ologique. Moscou Universitet Bull. Math. 1 1–25.

[24] LIGGETT, T. M. (1985). An improved subadditive ergodic theorem. Ann. Probab. 13 1279–
1285. MR806224

[25] LOÈVE, M. (1977). Probability Theory. I, 4th ed. Graduate Texts in Mathematics 45. Springer,
New York. MR0651017

[26] LUI, R. (1982). A nonlinear integral operator arising from a model in population genetics. I.
Monotone initial data. SIAM J. Math. Anal. 13 913–937. MR674762

[27] MCDIARMID, C. (1995). Minimal positions in a branching random walk. Ann. Appl. Probab.
5 128–139. MR1325045

[28] MCKEAN, H. P. (1975). Application of Brownian motion to the equation of Kolmogorov–
Petrovskii–Piskunov. Comm. Pure Appl. Math. 28 323–331. MR0400428

[29] REED, B. (2003). The height of a random binary search tree. J. ACM 50 306–332 (electronic).
MR2146357

SCHOOL OF MATHEMATICS

UNIVERSITY OF MINNESOTA

206 CHURCH ST. SE
MINNEAPOLIS, MINNESOTA 55455
USA
E-MAIL: bramson@math.umn.edu

SCHOOL OF MATHEMATICS

UNIVERSITY OF MINNESOTA

206 CHURCH ST. SE
MINNEAPOLIS, MINNESOTA 55455
USA
AND

FACULTY OF MATHEMATICS

WEIZMANN INSTITUTE OF SCIENCE

REHOVOT 76100
ISRAEL

E-MAIL: zeitouni@math.umn.edu

http://www.ams.org/mathscinet-getitem?mr=2123929
http://www.ams.org/mathscinet-getitem?mr=2146358
http://www.ams.org/mathscinet-getitem?mr=0088081
http://www.ams.org/mathscinet-getitem?mr=0370721
http://www.ams.org/mathscinet-getitem?mr=0163361
http://www.ams.org/mathscinet-getitem?mr=0400430
http://www.ams.org/mathscinet-getitem?mr=0400438
http://www.ams.org/mathscinet-getitem?mr=0438477
http://www.ams.org/mathscinet-getitem?mr=806224
http://www.ams.org/mathscinet-getitem?mr=0651017
http://www.ams.org/mathscinet-getitem?mr=674762
http://www.ams.org/mathscinet-getitem?mr=1325045
http://www.ams.org/mathscinet-getitem?mr=0400428
http://www.ams.org/mathscinet-getitem?mr=2146357
mailto:bramson@math.umn.edu
mailto:zeitouni@math.umn.edu

	Introduction
	Definitions and statement of main result
	Proof of Theorem 2.7
	Examples: branching random walks and cover time for the regular binary tree
	Branching random walk
	Cover time for the regular binary tree

	An open problem
	Acknowledgment
	References
	Author's Addresses

